
Formal Aspects of Computing (2000) 12: 18–40
c© 2000 BCS Formal Aspects

of Computing

Class Refinement as Semantics of
Correct Object Substitutability
Ralph-Johan Back, Anna Mikhajlova1 and Joakim von Wright
Turku Centre for Computer Science, Åbo Akademi University, Finland

Abstract. Subtype polymorphism, based on syntactic conformance of objects’ methods and used for substi-
tuting subtype objects for supertype objects, is a characteristic feature of the object-oriented programming
style. While certainly very useful, typechecking of syntactic conformance of subtype objects to supertype
objects is insufficient to guarantee correctness of object substitutability. In addition, the behaviour of subtype
objects must be constrained to achieve correctness. In class-based systems classes specify the behaviour of
the objects they instantiate. In this paper we define the class refinement relation which captures the semantic
constraints that must be imposed on classes to guarantee correctness of substitutability in all clients of the
objects these classes instantiate. Clients of class instances are modelled as programs making an iterative choice
over invocation of class methods, and we formally prove that when a class C ′ refines a class C , substituting
instances of C ′ for instances of C is refinement for the clients.

Keywords: Class refinement; Code inheritance; Behavioural compatibility; Object substitutability; Subclass-
ing; Subtyping; Semantics of object-oriented constructs; Correctness; Implicit and explicit invariants; New
methods

1. Introduction

The issue of correctness of object-oriented programs deserves close consideration in view of the popularity
of this programming style and the necessity to enhance reliability of programs. Not only is correctness a
crucial requirement for safety-critical systems, but also it is becoming increasingly important for distributed
object-oriented systems and frameworks, which are composed by independent users and characterised by a
late integration phase. We consider here a formal basis for ensuring correctness of class-based statically-typed
object-oriented systems.

Subtype polymorphism, which is generally recognised as central to object-orientation, is based on syntactic
conformance of objects’ methods and used for substituting subtype objects for supertype objects. In most
object-oriented languages, such as Simula, Eiffel, and C++, subclassing or implementation inheritance forms
a basis for subtype polymorphism, i.e. signatures of subclass methods automatically conform to those of
superclass methods, and, syntactically, subclass instances can be substituted for superclass instances. As

Correspondence and offprint requests to: Anna Mikhajlova, Department of Electronics & Computer Science, University of Southampton,
Highfield, Southampton SO17 1BJ, UK. Email: aam@ecs.soton.ac.uk
1 Currently at the Department of Electronics & Computer Science, University of Southampton, UK.

Class Refinement for Correct Object Substitutability 19

the mechanism of polymorphic substitutability is, to a great extent, independent of the mechanism of
implementation reuse, languages like Java and Sather separate the subtyping and subclassing hierarchies.

With both approaches, typechecking can be used to verify syntactic conformance of subtype objects to their
supertype objects. However, it has been recognised that, while certainly very useful, typechecking is insufficient
to guarantee correctness of object substitutability. An attempt to establish behavioural conformance along
with syntactic one has created a research direction known as behavioural subtyping [Ame87, LiW94, DhL95,
LeW95, DhL96]. The essence of behavioural subtyping is to associate behaviour with type signatures and to
identify subtypes that conform to their supertypes not only syntactically but also semantically.

In our view subtyping is a mechanism for substituting objects with certain method signatures for other
objects with conforming method signatures and, as such, is a purely syntactic concept. Behaviour of objects,
on the other hand, has little to do with their syntactic interfaces and is expressed in the specification of the
objects’ methods manipulating the objects’ attributes. Most importantly, syntactic subtyping is decidable and
can be checked by a computer, while behaviour-preserving subtyping is undecidable. Hence, in our approach
we separate syntactic subtyping from behavioural conformance of subtype objects to supertype objects. We
consider classes to be the carriers of behaviour and compare them for behavioural compatibility. Instances
of one class are guaranteed to behave as expected from instances of another, more abstract, class if the more
concrete class is a refinement of the more abstract. We give a definition of class refinement, which we regard
as semantics of correct substitutability of subclass instances for superclass instances in clients. We formally
prove that when a class C ′ refines a class C , substituting instances of C ′ for instances of C is refinement for
the clients.

Our definition of class refinement guards against inconsistencies potentially introduced by new methods
in the presence of subtype aliasing or in a general computational environment permitting sharing of objects
by multiple clients. New methods introduced in class C ′ may break the strongest invariant of class C , and
clients of C relying on this invariant may get invalidated when using instances of C ′ instead. New methods
may take an instance of C ′ to a state which is perceived as unreachable from the perspective of a client
relying of the strongest invariant of C . We formalise the notion of consistent new methods and prove that
they preserve the strongest invariant of the class being refined, ensuring in this way safe substitutability of
the corresponding objects in all clients.

Class refinement is orthogonal to subclassing. A class and its subclass may not be in refinement, and two
classes can be in refinement even if one of them is not declared to be a subclass of the other. With separate
interface inheritance and implementation inheritance hierarchies, a subclass may not even be intended for
behavioural conformance with its superclass, as the substitution mechanism is completely independent of the
reuse mechanism. Syntactic conformance of method signatures, however, is a prerequisite for class refinement,
as it is meaningless to compare behaviour of classes whose instances are not intended for substitution.
For simplicity, we consider subclassing to be the basis for subtyping and, consequently, require that class
refinement be established between a class and its declared subclasses. However, the same principles also apply
to systems with separate subclassing and interface inheritance hierarchies, as we will explain in the concluding
section.

We build a logical framework for reasoning about object-oriented programs as a conservative extension
of the refinement calculus [Mor90, BvW98], which is used for reasoning about correctness and refinement of
imperative programs in a rigorous, mathematically precise manner. The refinement calculus is particularly
suited for describing object-oriented programs because it allows us to describe classes at various abstraction
levels, using specification statements along with ordinary executable statements. The notion of an abstract
class, specifying behaviour common to its subclasses, can be fully elaborated in this formalisation, since
the state of class instances can be given using abstract mathematical constructions, like sets and sequences,
and class methods can be described as nondeterministic statements, abstractly but precisely specifying the
intended behaviour. The versatility of the specification language that we use permits treating specifications
and implementations in a uniform manner considering implementations to be just deterministic specifica-
tions.

The expressiveness of higher-order logic, which is the formal basis of the refinement calculus, allows us
to define relations between classes, such as class refinement, entirely within logic. Reasoning about these
relations can, therefore, be carried out completely formally. The detailed elaboration of our formalisation
permits mechanised reasoning and mechanical verification, because, being so precisely defined, every concept
can be formalised within a theorem proving environment such as HOL [GoM93] or PVS [ORS92].

20 Ralph-Johan Back et al.

2. Refinement Calculus Basics

We formalise objects, classes, and relationships between them in the refinement calculus, which is used for
reasoning about correctness and refinement of imperative programs. Let us briefly introduce the main concepts
of this formalism.

2.1. Predicates, Relations, and Predicate Transformers

A program state with components is modelled by a tuple of values, and a set of states (type) Σ is a product
space, Σ = Σ1 × . . .× Σn.

A predicate over Σ is a boolean function p : Σ → Bool which assigns a truth value to each state. The set
of predicates on Σ is denoted PΣ. The entailment ordering on predicates is defined by pointwise extension.
For p, q : PΣ, p entails q, written p ⊆ q, is defined as follows:

p ⊆ q =̂ (∀σ : Σ · p σ ⇒ q σ)

Conjunction ∩ and disjunction ∪ of (similarly-typed) predicates are also defined pointwise.
A relation from Σ to Γ is a function of type Σ → PΓ that maps each state σ to a predicate on Γ. We

write Σ↔ Γ to denote a set of all relations from Σ to Γ. This view of relations is isomorphic to viewing them
as predicates on the Cartesian space Σ × Γ. A function f : Σ → Γ can always be lifted to a (deterministic)
relation | f | : Σ↔ Γ. Functional and relational compositions are defined in a standard way.

A predicate transformer is a function S : PΓ→ PΣ from predicates to predicates. We write

Σ 7→ Γ =̂ PΓ→ PΣ

to denote a set of all predicate transformers from Σ to Γ. The refinement ordering on predicate transformers
is defined by pointwise extension from predicates. For S, T : Σ 7→ Γ, S is refined by T , written S v T , is
defined as follows:

S v T =̂ (∀q : PΓ · S q ⊆ T q)

Product operators combine predicates, functions, relations, and predicate transformers by forming Carte-
sian products of their state spaces. For example, a product P × Q of two relations P : Σ1 ↔ Γ1 and
Q : Σ2 ↔ Γ2 is a relation of type (Σ1 × Σ2)↔ (Γ1 × Γ2) defined by

(P × Q) (σ1, σ2) (γ1, γ2) =̂ P σ1 γ1 ∧ Q σ2 γ2

For predicate transformers S1 : Σ1 7→ Γ1 and S2 : Σ2 7→ Γ2, their product S1×S2 is a predicate transformer
of type Σ1 × Σ2 7→ Γ1 × Γ2 whose execution has the same effect as simultaneous execution of S1 and S2. In
addition to many other useful properties, presented, e.g., in [BaB95, BvW97], the product operator preserves
refinement:

S1 v S ′1 ∧ S2 v S ′2 ⇒ (S1 × S2) v (S ′1 × S ′2)

For modelling subtype polymorphism and dynamic binding we employ sum types. The sum or disjoint
union of two types Σ and Γ is written Σ + Γ. The types Σ and Γ are called base types of the sum in this case.
Associated with the sum types, are the injection functions which map elements of the base type to elements of
the summation

ι1 : Σ→ Σ + Γ ι2 : Γ→ Σ + Γ

and projection relations which relate elements of the summation with elements of its base types

π1 : Σ + Γ↔ Σ π2 : Σ + Γ↔ Γ

The projection is the inverse of the injection, so that π−1
1 = | ι1 |, where | ι1 | is the injection function lifted

to a relation. Since any element of Σ + Γ comes either from Σ or from Γ, but not both, the ranges of the
injections ran ι1 and ran ι2 partition Σ + Γ. For σ : Σ + Γ, the projection π1 will relate it to a unique σ′ : Σ
only if σ ∈ ran ι1, and similarly for π2. Sum types, as well as product types, associate to the right, so that
Σ1 + Σ2 + Σ3 = Σ1 + (Σ2 + Σ3).

We define the type Σ to be a subtype of Σ′, written Σ <: Σ′, if Σ = Σ′, or Σ <: Σ′i, where Σ′ = Σ′1 + . . .+ Σ′n

Class Refinement for Correct Object Substitutability 21

and i ∈ {1, . . . , n}. For example, Σ <: Σ + Σ′ and, of course, Σ + Σ′ <: Σ + Σ′. The subtype relation is reflexive,
transitive, and antisymmetric. For any Σ and Σ′ such that Σ <: Σ′, we can construct the corresponding
injection function ιΣ : Σ→ Σ′ and projection relation πΣ : Σ′ ↔ Σ in a straightforward way.

2.2. Specification Language

The language used in the refinement calculus includes executable statements along with (abstract) specification
statements. Every statement has a precise mathematical meaning as a monotonic predicate transformer. A
statement with initial state in Σ and final state in Γ determines a monotonic predicate transformer S : Σ 7→ Γ
that maps any postcondition q : PΓ to the weakest precondition p : PΣ such that the statement is guaranteed
to terminate in a final state satisfying q whenever the initial state satisfies p. A statement need not have
identical initial and final state spaces, though if it does, we write S : Ξ(Σ) instead of S : Σ 7→ Σ for
the corresponding predicate transformer. Following an established tradition, we will from now on identify
statements with the monotonic predicate transformers that they determine in this manner.

The total correctness assertion p {| S |} q is said to hold if execution of the statement S establishes the
postcondition q when started in the set of states p. The pair of state predicates (p, q) is usually referred
to as the pre- and post-condition specification of the statement S . Formally, the total correctness assertion
p {| S |} q is defined to be p ⊆ S q. The refinement ordering on predicate transformers models the notion of
total-correctness preserving program refinement. For statements S and T , the relation S v T holds if and
only if T satisfies any specification satisfied by S .

S v T = (∀p q · p {| S |} q ⇒ p {|T |} q)

Predicate transformers form a complete lattice under the refinement ordering. The bottom element is the
predicate transformer abort that maps each postcondition to the identically false predicate false, and the top
element is the predicate transformer magic that maps each postcondition to the identically true predicate true.
We know nothing about how abort is executed and it is never guaranteed to terminate. The magic statement
is miraculous since it is always guaranteed to establish any postcondition; as such, magic is the opposite of
the abortion and is not considered to be an error. Intuitively, magic can be understood as an infinite wait
statement, and, although not directly implementable, it serves as a convenient abstraction in manipulating
program statements.

Conjunction u and disjunction t of (similarly-typed) predicate transformers are defined pointwise, e.g.,

(u i ∈ I · Si) q =̂ (∩ i ∈ I · Si q)

Both conjunction and disjunction of predicate transformers model nondeterministic choice among executing
either of Si. Conjunction models demonic nondeterministic choice in the sense that nondeterminism is uncon-
trollable and each alternative must establish the postcondition. Disjunction, on the other hand, models angelic
nondeterminism, where the choice between alternatives is free and aimed at establishing the postcondition.

Sequential composition of program statements is modelled by functional composition of predicate trans-
formers and the program statement skip is modelled by the identity predicate transformer:

(S;T) q =̂ S (T q)
skip q =̂ q

Given a function f : Σ → Γ and a relation P : Σ ↔ Γ, the functional update 〈f〉 : Σ 7→ Γ, the angelic
update {P } : Σ 7→ Γ, and the demonic update [P] : Σ 7→ Γ are defined by

〈f〉 q σ =̂ q (f σ)
{P } q σ =̂ (∃ γ : Γ · P σ γ ∧ q γ)
[P] q σ =̂ (∀γ : Γ · P σ γ ⇒ q γ)

The functional update applies the function f to the state σ to yield the new state f σ. When started in a state
σ, {P } angelically chooses a new state γ such that P σ γ holds, while [P] demonically chooses a new state γ
such that P σ γ holds. If no such state exists, then {P } aborts, whereas [P] behaves as magic. For the identity
function id and the identity relation Id , all of 〈id〉, {Id}, and [Id] behave as skip.

Following [BvW97], we use the notions of assignments, program variables, and variable declarations based
on a simple syntactic extension to the typed lambda calculus. For a function (λu · t) which replaces the old

22 Ralph-Johan Back et al.

state u with the new state t, changing some components x1, . . . , xm of u while leaving the others unchanged,
the functional assignment describing such a state change is defined by

(λu · x1, . . . , xm := t1, . . . , tm) =̂ (λu · u[x1, . . . , xm := t1, . . . , tm])

For a relation (λu · λu′ · b), which using the set notation could also be written as (λu · {u′ | b}), changing a
component x of state u to some x′ related to x via a boolean expression b, the relational assignment is defined by

(λu · x := x′ | b) =̂ (λu · {u[x := x′] | b})
As such, the notation for both functional and relational assignments is a convenient syntactic abbreviation

for the corresponding lambda term describing a certain state change. Unfortunately, lambda terms do not
maintain consistent naming of state components, due to the possibility of α-conversion of bound variables. To
enforce naming consistency, we use the program variable notation, writing, e.g., (var x, y · (x := x+y); (y := 0))
to express that each function term is to be understood as a lambda abstraction over the bound variables x, y:

(var x, y · (x := x+ y); (y := 0)) = (λx, y · x := x+ y); (λx, y · y := 0)

Ordinary program statements may be modelled using the basic predicate transformers and operators
presented above, using the program variable notation. For example, the (multiple) assignment statement may
be modelled by the functional update:

(var u · x1, . . . , xm := t1, . . . , tm) =̂ 〈λu · x1, . . . , xm := t1, . . . , tm〉
Our specification language includes specification statements. The demonic assignment and the angelic

assignment are modelled by the demonic and the angelic updates respectively:

[var u · x := x′ | b] =̂ [λu · x := x′ | b]
{var u · x := x′ | b} =̂ {λu · x := x′ | b}

Intuitively, the demonic assignment expresses an uncontrollable nondeterministic choice in selecting a new
value x′ satisfying b, whereas the angelic assignment expresses a free choice. The angelic assignment can, e.g.,
be understood as a request to the user to supply a new value.

Our specification language also includes the assertion and the assumption statements, written {b} and [b]
respectively, where b is a predicate stating a condition on program variables. Both the assertion and the
assumption behave as skip if b is satisfied; otherwise, the assertion aborts, whereas the assumption behaves
as magic.

The conditional statement is defined by the demonic choice of guarded alternatives or the angelic choice
of asserted alternatives:

if g then S1 else S2 fi =̂ [g]; S1 u [¬g]; S2 = {g}; S1 t {¬g}; S2

Iteration is defined as the least fixpoint of a function on predicate transformers with respect to the
refinement ordering:

while g do S od =̂ (µX · if g then S;X else skip fi)

A variant of iteration, the iterative choice [BvW98, BMW99], allows the user to choose repeatedly an alternative
that is enabled and have it executed until the user decides to stop:

do g1 :: S1〈〉 . . . 〈〉 gn :: Sn od =̂
(µX · {g1}; S1;X t . . . t {gn}; Sn;X t skip)

We will abbreviate g1 :: S1〈〉 . . . 〈〉 gn :: Sn by 〈〉ni=1gi :: Si.
Finally, the language supports blocks with local variables. Introduction and removal of new variables are

modelled by demonic and functional updates respectively:

enter p =̂ [λu · λ(x, u′) · p (x, u′) ∧ u = u′]
exit =̂ 〈λ(x, u) · u〉

Here p is the predicate initializing the new variables. We can define a block introducing a local variable x
initialised according to a boolean expression b as follows:

(var u · begin (var x, u · b); S; end) =̂
(var u · enter (var x, u · b); S; exit)

Class Refinement for Correct Object Substitutability 23

When the variable declaration is clear from the context, we will for simplicity write just begin var x · b; S; end.
The program variable declaration can be propagated outside statements and distributed through sequential

composition, so that, e.g.,

(var u · [x := x′ | x′ > 0]; y := x) =
[var u · x := x′ | x′ > 0]; (var u · y := x)

When the variable declaration is clear from the context, we will omit it.
As suggested in [BvW98], we can define an interactive executable language, where a statement is built by

the following syntax:

S ::= abort (abortion)
| skip (skip)
| {b} (assertion)
| x1, . . . , xm := t1, . . . , tm (assignment)
| {x := x′ | b} (angelic assignment)
| S1; S2 (sequential composition)
| if g then S1 else S2 fi (conditional statement)
| while g do S od (iteration)
| do g1 :: S1〈〉 . . . 〈〉 gn :: Sn od (iterative choice)
| begin var x · b; S; end (block with local variables)

When extended with miraculous statements, this executable language becomes a general specification
language:

S ::= . . .
| magic (magic)
| [b] (assumption)
| [x := x′ | b] (demonic assignment)

In the next section we explain how to extend this language with object-oriented constructs.

2.3. Data Refinement

Data refinement is a general technique by which one can change the state space in a refinement. For statements
S : Ξ(Σ) and S ′ : Ξ(Σ′), let R : Σ′ ↔ Σ be a relation between the state spaces Σ and Σ′. According to [Bac89],
the statement S is said to be data refined by S ′ via R, denoted S vR S ′, if

{R}; S v S ′; {R}
This notion of data refinement is the standard one, often referred to as forward data refinement or downward
simulation. Alternative and equivalent characterizations of data refinement using the inverse relation R−1 are
then

S; [R−1] v [R−1]; S ′ S v [R−1]; S ′; {R} {R}; S; [R−1] v S ′

These characterizations follow from the fact that {R} and [R−1] form a Galois connection, i.e. {R}; [R−1] v
skip and skip v [R−1]; {R}. Further on we will abbreviate {R}; S; [R−1] by S ↓R and [R−1]; S ′; {R} by S ′ ↑R.
The refinement calculus provides rules for transforming more abstract program structures into more concrete
ones based on the notion of refinement of predicate transformers presented above. A large collection of
algorithmic and data refinement rules is given, for instance, in [BvW98, Mor90]. In the Appendix, we present
some of these rules, used in proofs of theorems and lemmas in this paper.

3. Modelling Object-Oriented Constructs

We focus on modelling class-based statically-typed object-oriented languages, which form the mainstream
of object-oriented programming. Accordingly, we take a view that objects are instances of classes. A class
describes objects with similar behaviour through specifying their interface. The interface represents signatures
of object methods, i.e. the method name and the types of value and result parameters. For simplicity, we

24 Ralph-Johan Back et al.

consider all object attributes as private or hidden, and all methods as public or visible to clients of the object.
We consider an object type to be the type of object attributes having an additional unique global identifier
distinguishing this object type from the others. A class can be given by the following declaration:

C = class
var attr1 : Σ1, . . . , attrm : Σm

C (val x0 : Γ0) = K,
Meth1 (val x1 : Γ1, res y1 : ∆1) = M1,
. . .
Methn (val xn : Γn, res yn : ∆n) = Mn

end

This class specifies the interface Meth1 (val : Γ1, res : ∆1), . . . ,Methn (val : Γn, res : ∆n), where Γi and ∆i are the
types of value and result parameters respectively. A method may be parameterless, with both Γi and ∆i being
the unit type (), or may have only value or only result parameters.

The class C describes (possibly abstract) attributes, specifies the way the objects are created, and gives
a (possibly nondeterministic) specification for each method. Class attributes (attr1, . . . , attrm) have the cor-
responding types Σ1 through Σm. Apart from the declared attributes, every class has an implicit constant
attribute type : String which contains the name of the object type specified by this class. This constant
identifier is unique in every class. We will use an identifier self for the tuple (attr1, . . . , attrm, type). The type of
self is then Σ = Σ1 × . . .× Σm × String . We impose a non-recursiveness restriction on Σ so that none of Σi

is equal to Σ. This restriction allows us to stay within the simple-typed lambda calculus, and is not a major
limitation, as pointers introduced in Sec. 3.3 allow (indirectly) recursive types to be modelled.

A class constructor is used to instantiate objects and has the same name as the class. Due to the fact that the
constructor concerns object creation rather than object functionality, it is associated with the class rather than
with the specified interface. Semantically, the constructor is equivalent to a stand-alone global procedure which
is associated with the class for encapsulation reasons. The statement K : Γ0 7→ Σ×Γ0, representing the body of
the constructor, introduces the attributes into the state space and initialises them using the value parameter(s)
x0 : Γ0. Methods Meth1 through Methn, specified by bodies M1, . . . ,Mn, operate on the attributes and realise
the object functionality. Every statement Mi is, in general, of type Ξ(Σ×Γi×∆i). The identifier self acts in this
model as an implicit result parameter of the constructor and an implicit variable parameter of the methods.

Being declared as such, the class C is a tuple (K,M1, . . . ,Mn). Further on we will refer to K as the
constructor and to M1, . . . ,Mn as the methods, unless stated otherwise. The object type specified by a class
can always be extracted from the class and we do not need to declare it explicitly. We use τ(C) to denote the
type of objects generated by the class C; as such, τ(C) is just another name for Σ.

3.1. Object Instantiation and Method Invocations

Initialization of a new variable c of object type τ(C) involves invoking the corresponding class constructor:

create var c.C(e) =̂ enter (var x0, u · x0 = e);K × skip;
enter (var c, (self , x0), u · c = self); Swap; exit

where Swap = 〈λx, y, z · y, x, z〉. A variable x0 : Γ0 is first entered into the state space and initialised with
the value of e. Then the constructor K is “injected” into the global state space, skipping on the global state
component u. The next statement enters a variable c and initialises it to the value of the state component
self . The state rearranging Swap makes the pair (self , x0) the first state component before exiting it from the
block. Naturally, a variable of an object type initialised in this way can be local to a block:

create var c.C(e); S; end =̂ create var c.C(e); S; exit

Invocation of a method Meth i(val xi : Γi, res yi : ∆i) on an object c instantiated by class C is modelled by

(var c, u · c.Meth i (gi, di)) =̂ begin (var (self , xi, yi), c, u ·
self = c ∧ xi = gi);
Mi × skip; c, di := self , yi;

end

where u : Φ are global variables including di : ∆i, and gi : Γi is some expression.

Class Refinement for Correct Object Substitutability 25

3.2. Modelling Object Clients

A client program using an object c : τ(C) does so by invoking its methods. Every time a client has a choice of
which method to choose for execution. In general, each option is preceded with an assertion which determines
whether the option is enabled in a particular state. While at least one of the assertions holds, the client
may repeatedly choose a particular option which is enabled and have it executed. The client decides on its
own when it is willing to stop choosing options. Such an iterative choice of method invocations, followed
by arbitrary statements not affecting the object directly, describes all the actions the client program might
undertake:

(var c, u · begin var l · b; do 〈〉ni=1qi :: c.Meth i(gi, di);Li od; end)

Here u : Φ are global variables including di, l : Λ are some local variables initialised according to b, predicates
q1 . . . qn are the asserted conditions on the state, and statements L1 through Ln are arbitrary. The initialization
b, the assertions q1 . . . qn, and the statements L1, . . . , Ln do not refer to c, which is justified by the assumption
that the object state is encapsulated. Therefore, c is not free in b, every qi is of the form q′i × true × q′′i , with
q′i : PΛ and q′′i : PΦ, and every Li is of the form L′i × skip× L′′i , with L′i : Ξ(Λ) and L′′i : Ξ(Φ).

Note that we do not allow clients to enquire objects about their types, classes, attribute and method
names. Although sometimes useful, such introspection facilities are generally regarded as unsafe. Also, a client
cannot copy an object directly, but only through invoking a Copy method if one is supplied in the interface
of the corresponding object.

Objects can, of course, be their own clients, and any method of class C can invoke other methods of
C , including itself. The most general behaviour of a method Methj(val xj : Γj , res yj : ∆j) can therefore be
described by

(var self , xj , yj ·
begin var l · b; do 〈〉ni=1qi :: self .Meth i(gi, di);Li od; end)

where self is free in b, all qi can directly access self , and all Li can directly access and modify it. For example,
a method self-calling itself is an instance of this general definition. The meaning of such a recursive method
is given by the least fixpoint of the corresponding function with respect to the refinement ordering.

3.3. Modelling Dynamic Objects

Following [BvW98], we model pointers to class instances as indices of an array of these class instances.
Natural numbers can be used as the index set of such an array, and we can declare a program variable heap
to contain the whole dynamic data structure:

var heap : array Nat of τ(C)

The type of pointers to instances of class C can then simply be defined as the type of natural numbers. The
index value 0 can be used as a nil pointer. New pointer (index) values can be generated dynamically, on
demand, by keeping a separate counter new for the next unused index:

type pointer to τ(C) =̂ Nat;
const nil : pointer to τ(C) = 0;
var new : pointer to τ(C) := 1;

There is a separate heap for each object type. Dynamic creation of an object of type τ(C) and association
of a pointer p : pointer to τ(C) with this object are modelled as follows:

p := new C(e) =̂ p, new := new , new + 1;
create var c.C(e); heap [p] := c; end

To keep the array of class instances implicit, the notation p↑ is used for the access operation heap [p],
so that p↑ := e stands for the update operation heap [p] := e, and p↑ .Meth i(gi, di) stands for the method
invocation heap [p].Meth i(gi, di).

26 Ralph-Johan Back et al.

TextDoc = class
var text : String ,

views : set of pointer to τ(View)

TextDoc (val t : String) =
enter var text , views ·

text = t ∧ views = {},
AddView (val v : pointer to τ(View)) =
{v 6= nil}; views := views ∪ {v},

AddText (val t : String) =
text := text ̂ t; self .Notify(),

GetText (res t : String) = t := text ,

Notify () =
begin var (vs, v) · vs = views;

while vs 6= {} do
[v := v′ | v′ ∈ vs];
vs := vs \ v; v↑ .Update()

od;
end

end

View = class
var txt : String ,

doc : pointer to τ(TextDoc)

View (val d : pointer to
τ(TextDoc)) =
{d 6= nil};
enter var txt , doc · doc = d;

doc ↑ .GetText(txt),

AddText (val t : String) =
doc ↑ .AddText(t),

Update () = doc ↑ .GetText(txt)
end

Fig. 1. Example of class specification.

3.4. Example

As an example of class specifications consider a text-editing application in which a text document may be
viewed and possibly changed in several different windows. Whenever the text is changed in any of the windows
in response to, e.g., user actions, all the other windows displaying the same text are notified of this change
and updated to achieve consistency in presenting the data. We specify these interactions in Fig. 1. Views are
responsible for presenting the textual data in various windows and providing operations for changing it. A
text editor can open a new text document and display it in several different windows. For this, it needs to
invoke the constructor TextDoc, create View instances using the corresponding constructor, with the pointer
to the newly-created text document passed as an argument, and finally attach these View instances to the
text document by invoking the method AddView . When one of the views is asked to add some text to the
existing one, the method AddText is invoked. This method forwards the request to the method AddText of
the current view’s doc attribute. After the new text is concatenated to the old one, all views on the document
are notified of the change and asked to update their state.

A point to notice here is that such a specification, although being rather abstract, precisely documents the
behaviour of the involved parties without resorting to verbal descriptions. The necessity for a precise docu-
mentation was pointed out in [GHJV95] when discussing the Observer pattern which our example follows.
In particular, it was advised to document which Subject (in our case TextDoc) methods trigger modifications.
Also, the place of the Notify method invocation can be fixed in the specification. We chose to call it from
the state-modifying AddText method of TextDoc after the change. Alternatively, this method could be called
from AddText of View after invoking the corresponding method on the doc attribute. The advantages and
disadvantages of both approaches are discussed in [GHJV95], we only would like to note that fixing the invo-
cation of this method in the specification helps avoiding the problem of calling this method at inappropriate
times or, even worse, not calling it at all from the overridden methods in subclasses of TextDoc and View .

3.5. Subclassing

New classes can be constructed from existing ones by inheriting some or all of their attributes and methods,
possibly overriding some attributes and methods, and adding extra methods. This mechanism is known as
subclassing.2

2 We prefer the term subclassing to implementation inheritance because the latter literally means reuse of existing methods and does not,
as such, suggest the possibility of method overriding.

Class Refinement for Correct Object Substitutability 27

A class constructed from C by subclassing is declared as follows:

C ′ = subclass of C
var attr1 : Σ1, . . . , attri : Σi, attr

′
1 : Σ′1, . . . , attr′p : Σ′p

C ′ (val x′0 : Γ′0) = K ′,
Meth1 (val x1 : Γ1, res y1 : ∆1) = M ′1,
. . .
Methk (val xk : Γk, res yk : ∆k) = M ′k,
NMeth1 (val u1 : Φ1, res v1 : Ψ1) = N1,
. . .
NMethp (val up : Φp, res vp : Ψp) = Np

A subclass may have attributes different from those of its superclass, inheriting attr1, . . . , attri and overriding
attri+1, . . . , attrm by attr′1, . . . , attr′p. The class constructor is not inherited from the superclass, but rather rede-

fined in every subclass. The statements M ′1, . . . ,M ′k override the corresponding definitions of Meth1, . . . ,Methk
given in C . The methods NMeth1, . . . ,NMethp with bodies given by N1, . . . , Np are new.

When a subclass C ′ inherits all attributes of its superclass C without overriding them, methods defined
in the superclass can be invoked from methods M ′1, . . . ,M ′k, N1, . . . , Np using a special identifier super. For
example, a method Meth i (val xi : Γi, res yi : ∆i) defined in C by Mi can be super-called inside any of
M ′1, . . . ,M ′k, N1, . . . , Np by writing super .Meth i(gi, di), where gi and di are some value and result arguments
respectively. Such a super-call corresponds to executing statement Mi × skip, with skip operating on the
additional attributes of C ′. Methods of the superclass can also be inherited as a whole. In this case
their redefinition in the subclass corresponds to super-calling them, passing value and result parameters as
arguments. Following the standard convention, we omit such inherited methods from the subclass declaration.

We view subclassing as a syntactic relation on classes, since subclasses are distinguished by an appropriate
declaration. Subclassing implies conformance of interfaces, meaning that the interface specified by a subclass
is an extension of the interface specified by the superclass, having at least all the method signatures of the
latter and possibly introducing new ones. In an extended interface the inherited method signatures can be
modified to allow more flexibility in polymorphic object substitutability. In the next section we explain how
this can be achieved.

3.6. Modelling Subtype Polymorphism and Dynamic Binding

To model subtype polymorphism, we allow object types to be sum types. The idea is to group together an
object type of a certain class and object types of all its subclasses, to form a polymorphic object type. A
variable of such a sum type can be instantiated to any base type of the summation, in other words, to any
object instantiated by a class whose object type is the base type of the summation.

A sum of object types, denoted by τ(C)+ is defined to be such that its base types are τ(C) and all the
object types of subclasses of C . For example, if D is the only subclass of C with the object type τ(D), then
τ(C)+ = τ(C) + τ(D), and we have that

τ(C) <: τ(C)+ and τ(D) <: τ(C)+

The diagram in Fig. 2 illustrates the relationship between subclassing and subtyping hierarchies. The
subclassing hierarchy on the left-hand side corresponds to the subtyping hierarchy on the right-hand side,
with the arrows meaning “is the type of instances of”.

Suppose a method Meth i (val xi : Γi, res yi : ∆i) is specified in both C and D. An invocation of this method
on an object p of type τ(C)+ is modelled as a choice between two alternatives each calling Meth i, but one
assuming that p is instantiated by class C and the other assuming instantiation by class D:

p.Meth i(gi, di) =̂
{p ∈ ran ιτ(C)};
begin var c · πτ(C) p c;

c.Meth i(gi, di);
p := ιτ(C) c;

end

 t

{p ∈ ran ιτ(D)};
begin var d · πτ(D) p d;

d.Meth i(gi, di);
p := ιτ(D) d;

end

28 Ralph-Johan Back et al.

D E

τ(C)+

τ(C) τ(D)+

τ(G)+τ(F)+

τ(E)+

τ(G)

τ(E)

τ(F)

τ(D)

C

F G

Fig. 2. The relationship between subclassing and subtyping hierarchies.

When p is an instance of C , the assertion {p ∈ ran ιτ(C)} skips, and the method Meth i is invoked on the
object c corresponding to the projection πτ(C) of p. Afterwards, the value of c is injected to be of type
τ(C)+ and used to update p. The invocation c.Meth i(gi, di) is modelled as in Sec. 3.1. The assertion that p
is an instance of D is false, aborting the second alternative of the angelic choice, since for all predicates q,
{q} = if q then skip else abort fi, and for all statements S , abort; S = abort. The angelic choice between the
two statements is then equal to the first alternative, since S t abort = S . Similarly, when p is an instance of
D, the first alternative aborts, and the choice is equal to the second alternative. As such, the choice between
the alternatives is deterministic.

A polymorphic variable p : τ(C)+ can be instantiated by either class C or its subclass. In practice we
occasionally would like to underspecify which particular class instantiates p. We can express this by using a
demonic choice of possible instantiations. We will write p.C+(e), where e is any expression of type Γ0, for this
kind of polymorphic instantiation:

create var p.C+(e) =̂ create var c.C(e);
begin var p · πτ(C) p c;

Swap;
end

 u
 create var d.D(e);

begin var p · πτ(D) p d;
Swap;

end

Intuitively, the demonic choice can be interpreted as underspecification, which would eventually be eliminated
in a refinement. Note that since the demonic choice is refined by either alternative, we have that any concrete
instantiation refines the polymorphic instantiation. Modelling of both the invocation of a method on a
polymorphic variable and the instantiation of such a variable generalises to class hierarchies with several
classes in a straightforward way, recursively.

Being equipped with subtype polymorphism, we can allow overriding methods in a subclass to be
generalised on the type of value parameters or specialised on the type of result parameters. In the first case
this type redefinition is contravariant and in the second covariant.3 When one interface is the same as the other,
except that it can redefine contravariantly value parameter types and covariantly result parameter types, this
interface conforms to the original one. For example, Meth i (val xi : Γi, res yi : ∆i) specified in class C could
be redefined in its subclass D so that the value parameters are of type Γ′i, such that Γi <: Γ′i, and the result
parameters are of type ∆′i, such that ∆′i <: ∆i. An invocation of such a method would then need to adjust the
input arguments and the result using the corresponding projections and injections. For example, invocation
of Meth i (val x′i : Γ′i, res y′i : ∆′i) specified by M ′i in class D on an object d : τ(D) with input argument gi : Γi

and result argument di : ∆i is modelled by

d.Meth i (gi, di) =̂ begin var self , x′i, y′i · self = d ∧ x′i = ιΓi
gi;

M ′i × skip; d, di := self , ι∆′i y
′
i;

end

Here the value parameter x′i is initialised with the value of the input argument injected into the type Γ′i.
Similarly, the value of the method result y′i , being of type ∆′i, cannot be directly assigned to the variable di : ∆i

and is injected into the type ∆′i using the corresponding injection function.
Subtype polymorphism extends in a natural way to pointer types. A sum of pointer types pointer to τ(C)+ is

defined to be such that its base types are pointer to τ(C) and all the pointer types to subclasses of C . A variable
of such a polymorphic pointer type cannot be instantiated using new, because the latter is defined to generate

3 For a more extensive explanation of covariance and contravariance see, e.g., [AbC96].

Class Refinement for Correct Object Substitutability 29

Bag = class
var b : bag of Char

Bag() = enter var b · b = b||c,
Add (val c : Char) = b := b ∪ b|c|c,
AddAll (val nb : bag of Char) =

while nb 6= b||c do
begin var c · c ∈ nb;

self .Add (c); nb := nb− b|c|c;
end

od
end

CountingBag = subclass of Bag
var b : bag of Char , n : Nat

CountingBag() =
enter var b, n · b = b||c ∧ n = 0,

Add (val c : Char) =
n := n+ 1; super .Add (c)

end

Fig. 3. Example of subclassing with dynamic binding of self-referential methods.

a new index in some array of class instances associated with a base pointer type. A polymorphic pointer
variable can, however, be assigned a value of an existing index to one of the arrays heapC, heapC1

, . . . , heapCn ,
which keep instances of C and instances of its subclasses C1, . . . , Cn. Before assignment, this pointer value
should be injected into the corresponding sum type.

Dynamic binding of self-referential methods can occur only when a subclass inherits all attributes of its
superclass without overriding them. Essentially, a super-call to a method self-calling other methods of the
same class resolves the latter with the definitions of the self-called methods in the class which originated the
super-call.

Suppose that class C ′ inherits all attributes of its superclass C and has some new attributes, so that the
first projection of self : Σ × Σ′ in C ′ is equal to self : Σ in C . The general behaviour of a self-referential
method Methj(val xj : Γj , res yj : ∆j) in C can be described by

(var self , xj , yj ·
begin var l · b; do 〈〉ni=1qi :: self .Meth i(gi, di);Li od; end)

The input and result arguments gi, di are among the variables self , xj , yj and l.
Let the behaviour of this method be given in C ′ by super .Methj(xj, yj). Then the super-call is defined to

invoke the self-called methods on the current self object:

(var self , xj , yj · super .Methj(xj, yj)) =̂
(var self , xj , yj · begin 〈ρ〉 (var l, self , xj , yj · b);

do 〈〉ni=1〈ρ〉 qi :: self .Meth i(gi, di);Li ↓ | ρ | od;
end)

where ρ = (λ x, (y, y′), z · x, y, z) is the projection function removing the extra attribute of self . Applying
the functional update 〈ρ〉 to the predicates (var l, self , xj , yj · b) and q1, . . . , qn, and wrapping the statements
L1, . . . , Ln in the relation | ρ | , coerces them to operate on the extended state space Λ × (Σ × Σ′) × Γj × ∆j .
As such, this is a technicality not changing the meaning of the corresponding statements. Self-calls to
Meth1, . . . ,Methn are resolved with the definitions of these methods given in C ′.

As an example consider specifications of Bag and CountingBag presented in Fig. 3. The subclass
CountingBag inherits the only attribute of its superclass Bag , representing a bag of characters, and adds
a counter of bag elements. The method Add overrides the corresponding method of the superclass by
incrementing the counter and then super-calling Add of Bag .

The method AddAll joins two bags by self-calling Add . The self-call in the definition of AddAll in Bag is
resolved by substituting the body of Add as defined in Bag:

Bag :: AddAll (val nb : bag of Char) = while nb 6= b||c do
begin var c · c ∈ nb;

b := b ∪ b|c|c;
nb := nb− b|c|c;

end
od

30 Ralph-Johan Back et al.

The definition of the method AddAll in CountingBag exemplifies dynamic binding of self-referential
methods. First of all, inheriting this method from Bag corresponds to super-calling it:

CountingBag :: AddAll (val nb : bag of Char) = super .AddAll (nb)

According to the definition of a super-called method involving self-calls, we then have that for self =
(b, n), super .AddAll (nb) is equal to

(var (b, n), nb · while 〈ρ〉 (var b, nb · nb 6= b||c) do
begin 〈ρ〉 (var c, b, nb · c ∈ nb);

self .Add(c); (var c, b, nb · nb := nb− b|c|c)↓ | ρ |;
end

od)

which, using the definitions of ρ, ↓, and functional update, is equal to

(var (b, n), nb · while (var (b, n), nb · nb 6= b||c) do
begin (var c, (b, n), nb · c ∈ nb);

self .Add(c); (var c, (b, n), nb · nb := nb− b|c|c);
end

od)

The self-call, being on self = (b, n), is resolved with the definition of Add in CountingBag .

4. Class Refinement

When a subclass overrides some methods of its superclass, there are no guarantees that its instances will
deliver the same or refined behaviour as the instances of the superclass. Unrestricted method overriding in a
subclass can lead to arbitrary behaviour of its instances. When used in a superclass context, such subclass
instances can invalidate their clients. To avoid such problems, we would like to ensure that whenever C ′ is
subclassed from C , clients using objects instantiated by C can safely use objects instantiated by C ′ instead.
First we consider class refinement between two classes having the same number of methods and then extend
the definition to account for additional methods defined in a subclass.

4.1. Class Refinement Without New Methods

Suppose classes C and C ′ specify interfaces

Meth1 (val : Γ1, res : ∆1), . . . ,Methn (val : Γn, res : ∆n) and
Meth1 (val : Γ′1, res : ∆′1), . . . ,Methn (val : Γ′n, res : ∆′n)

respectively. Let C and C ′ be modelled by tuples (K,M1, . . . ,Mn) and (K ′,M ′1, . . . ,M ′n), where K : Γ0 7→ Σ× Γ0

and K ′ : Γ′0 7→ Σ′ × Γ′0 are the class constructors, and all Mi : Ξ(Σ× Γi × ∆i) and M ′i : Ξ(Σ′ × Γ′i × ∆′i) are
the corresponding methods. The value parameter types of the constructors and the methods in C ′ are either
the same or contravariant, so that Γ0 <: Γ′0 and Γi <: Γ′i, and the result parameter types of its methods are
either the same or covariant, ∆′i <: ∆i.

Let R : Σ′ ↔ Σ be a relation coercing attribute types of C ′ to those of C , so that R is of the form
(λc · {a |R c a}). The refinement of class constructors K and K ′ with respect to R is defined as follows:

K vR K ′ =̂ {πΓ0
};K v K ′; {R × πΓ0

} (constructor refinement)

where πΓ0
is the projection relation coercing Γ′0 to Γ0. The commuting diagram in Fig. 4 (a) illustrates

constructor refinement.
The refinement of all corresponding methods Mi and M ′i with respect to the relation R is defined by

Mi vR M ′i =̂ Mi ↓ (R × πΓi
× |ι∆′i |) v M ′i (method refinement)

where πΓi
: Γ′i ↔ Γi projects the corresponding value parameters, and |ι∆′i | : ∆′i ↔ ∆i injects the corresponding

result parameters. Obviously, when Γi = Γ′i, the projection relation πΓi
is the identity relation Id. The same

holds when ∆i = ∆′i, namely, |ι∆′i | = Id . The commuting diagram in Fig. 4 (b) illustrates method refinement.

Class Refinement for Correct Object Substitutability 31

b)

f'
0

{ 9
f0

}

f
0a) & x f

0

&' x f'
0

{ R x 9
f0

}

K

K'

{ R x 9
fi

x |2
!'i

| }

M'
i

&' x f'
i
x !'

i

M
i

& x f
i
x !

i

{ R x 9
fi

x |2
!'i

| }

& x f
i
x !

i

&' x f'
i
x !'

i

Fig. 4. Constructor refinement a) and method refinement b).

Definition 1. For classes C = (K,M1, . . . ,Mn) and C ′ = (K ′,M ′1, . . . ,M ′n), class refinement C v C ′ is defined
as follows:

C v C ′ =̂ (∃R · K vR K ′ ∧ (∀i | 1 6 i 6 n · Mi vR M ′i))
The class refinement relation is reflexive and transitive. This definition of class refinement is also a proof rule
allowing us to check for any two given classes whether they are in refinement. However, from this definition
alone we cannot make any conclusions about the behaviour of clients using instances of classes that are in
refinement. Before presenting a theorem which relates class refinement to object substitutability in clients, let
us introduce two useful lemmas.

Lemma 1. Let classes C and C ′ have constructors K : Γ0 7→ Σ× Γ0 and K ′ : Γ′0 7→ Σ′ × Γ′0 with Γ0 <: Γ′0. In
a global state u : Φ, for a relation R : Σ′ ↔ Σ, a statement S : Ξ(Σ × Φ), and a constructor input argument
e : Γ0,

K vR K ′ ⇒
create var c.C(e); S; end v create var c′.C ′(e); S ↓ (R × Id); end

Lemma 2. Let classes C and C ′ have methods Mi : Ξ(Σ× Γi × ∆i) and M ′i : Ξ(Σ′ × Γ′i × ∆′i) with Γi <: Γ′i
and ∆′i <: ∆i. In a global state u : Φ including a variable di : ∆i, for a relation R : Σ′ ↔ Σ and an input
argument gi : Γi,

Mi vR M ′i ⇒
(var c, u · c.Meth i(gi, di))↓ (R × Id) v (var c′, u · c′.Meth i(gi, di))

The following theorem proves that clients using objects instantiated by some class are refined when using
objects instantiated by its refinement.

Theorem 1. For classes C and C ′, a programK expressible as an iterative choice of invocations of C methods,
and a constructor input argument e : Γ0,

C v C ′ ⇒
create var c.C(e);K [c]; end v create var c′.C ′(e);K [c′]; end

Proofs of Lemma 1, Lemma 2, and Theorem 1 can be found in the full version of this paper [BMW00].
Declaring one class as a subclass of another raises the proof obligation that the class refinement relation
holds between these classes. This is, in a way, a semantic constraint that we impose on subclassing to ensure
that behaviour of subclasses conforms to the behaviour of their superclasses and that subclass instances can
be substituted for superclass instances in all clients.

For lack of space, we cannot present here an example of proving class refinement in practice. The interested
reader can refer to [Mik00] presenting a proof of class refinement for specifications of Collection and List
interfaces of the Java Collections Framework which is a part of the standard JDK2.0.

4.2. The Problem Introduced by New Methods

As was pointed out in [LiW94] the effects of new methods become visible in the presence of subsumption
(subtype aliasing) as well as in the general computational environment that allows sharing of objects by
multiple users. For example, when a client is working with an object c′ of a subclass C ′ of C , it may freely
call new methods defined in C ′. Other clients of c′ considering it as an instance of the polymorphic type
τ(C)+ can only anticipate changes to c′ specified by the methods of the class C . New methods specifying
some “unexpected behaviour” could take c′ to (what for C is) an unreachable state, and clients of this object
considering it from the superclass perspective would be damaged.

32 Ralph-Johan Back et al.

Let us consider an example illustrating this problem. Suppose that a class Counter introduces methods Val
and Inc2 which, respectively, return the value of the counter and increment the counter by two. A subclass
Counter ′ inherits these methods and, in addition, defines a method Inc1 incrementing the counter by one:

Counter = class Counter ′ = subclass of Counter
var n : Nat var n : Nat

Counter () = enter var n · n = 0, Counter ′ () = enter var n · n = 0,
Inc2 () = n := n+ 2, Inc1 () = n := n+ 1
Val (res r : Nat) = r := n end

end

The implicit (or the strongest) invariant established by the class constructor and preserved by the methods
of Counter states that the predicate Even holds of all states reachable by objects instantiated by Counter .
The new method Inc1 defined in the subclass breaks this invariant. A client K of a polymorphic object
c : τ(Counter)+ might assume that this invariant holds of all states reachable by c and execute some statement
S relying on the invariant:

K[c] = if (Even c.Val ()) then S else abort fi

When c is instantiated by Counter , other clients in the environment ofK will only be able to call the methods
defined in the class Counter which preserve the strongest invariant. When operating in such an environment,
K will always execute S . However, when c is instantiated by Counter ′, K may also work in the environment
where other clients of c know about its origin and may call the method Inc1 in addition to the methods Inc2
and Val . Suppose, for example, that there is a client K′ which sees the class Counter ′, with the new method
Inc1 (), and tries to increase the counter by as little as possible:

K′[c] = if (c is τ(Counter ′)) then c.Inc1 () else c.Inc2 () fi

If objects c and c′ are now instantiated by Counter and Counter ′ respectively and initialised to zero, executing
K′[c];K[c] equals executing S , whereas K′[c′];K[c′] aborts because the strongest invariant is broken by
K′.

To avoid this and similar problems, we want to ensure that invocation of a new method does not result
in any unexpected behaviour or, in other words, that the new method preserves the strongest invariant of its
superclass. Let us formally analyse this consistency property and the requirements that can be imposed on
new methods to enforce this property.

4.3. Ensuring New Method Consistency

Let us first define the notion of the strongest class invariant. As suggested by its name, the strongest class
invariant is the least state predicate established by the class constructor and preserved by all its methods.

Definition 2. For a class C = (K,M1, . . . ,Mn), a state predicate I is the strongest class invariant if it is the
invariant of C and of all invariants of C it is the least one:

Inv (C, I) =̂
true {|K |} I ∧ (∀i | 1 6 i 6 n · I {|Mi |} I)∧
(∀J · true {|K |} J ∧ (∀i | 1 6 i 6 n · J {|Mi |} J) ⇒ I ⊆ J)

Suppose now that a class C = (K,M1, . . . ,Mn) specifies the interface

Meth1 (val : Γ1, res : ∆1), . . . ,Methn (val : Γn, res : ∆n)

and a class C ′ = (K ′,M ′1, . . . ,M ′n, N1, . . . , Np) specifies the interface

Meth1 (val : Γ1, res : ∆1), . . . ,Methn (val : Γn, res : ∆n),
NMeth1 (val : Φ1, res : Ψ1), . . . ,NMethp (val : Φp, res : Ψp)

For simplicity, we assume that methods Meth1, . . . ,Methn in C ′ have the same types of value and result
parameters as the corresponding methods in C . The case when the value parameter types are contravariant
and the result parameter types are covariant is treated similarly. We can express the meaning of an invariant
I of C on the attributes of C ′ as {R} I , where R is a relation coercing the attributes of C ′ to those of C . To

Class Refinement for Correct Object Substitutability 33

guarantee that a new method Nj of C ′ preserves the strongest class invariant of C , we then need to prove the
correctness assertion {R} I {|Nj |} {R} I for I such that Inv (C, I). By satisfying this correctness assertion, the
new method of C ′ preserves the set of reachable states of C . In general, preserving a coerced invariant {R} I
by a statement S ′ : Ξ(Σ′) is the same as preserving the invariant I by the statement S ′ coerced to operate on
the state space Σ, as expressed in the following lemma.

Lemma 3. For a statement S ′ : Ξ(Σ′), a relation R : Σ′ ↔ Σ, and a state predicate I : PΣ, we have

{R} I {| S ′ |} {R} I = I {| S ′ ↑R |} I
A proof of this lemma can be found in [BMW00].

Class refinement between a class C and a class C ′ introducing new methods is given as an extension of
Def. 1 requiring that every new method of C ′ preserves the strongest class invariant of C .

Definition 3. For a class C = (K,M1, . . . ,Mn) and a class C ′ = (K ′,M ′1, . . . , M ′n, N1, . . . , Np), class refinement
C v C ′ is defined as follows:

C v C ′ =̂ (∃R · K vR K ′ ∧ (∀i | 1 6 i 6 n · Mi vR M ′i)∧
(∀I · Inv (C, I) ⇒ (∀j | 1 6 j 6 p · {R} I {|Nj |} {R} I)))

As one can expect, Theorem 1, relating class refinement to object substitutability in clients, holds for
the extended definition of class refinement as well. Unfortunately, verifying correctness assertions for new
methods can be difficult in practice, because the strongest invariant of a superclass cannot always be easily
calculated from its specification, e.g., in the case of recursive method invocations. When such verification
is infeasible, we could instead verify that new methods satisfy certain restrictions such that the correctness
assertions hold automatically. Intuitively, a new method preserves the strongest invariant of the superclass if
it does not modify attributes at all, or if it modifies them as the old methods could have done. More precisely,
a new method preserves the strongest invariant of the superclass in the following cases:

• the new method is an observer, i.e. a non-modifying method

• the subclass adds new attributes without overriding the original attributes of the superclass, overridden
methods modify the original attributes only via supercalls, and the new method modifies only the new
attributes

• the new method is composed of calls to old methods

• the new method is a refinement of (a combination of) old methods

Note that in the last case the new method can either data refine the old method definitions as given in the
superclass, or refine the old method definitions as given in the subclass, or be a refinement of any combination
of these.

Formally, weak iteration of a demonic choice of statements S1, . . . , Sn, namely (uni=1 Si)
∗, describes all

possible combinations of these statements. Any combination of statements refines this statement, e.g.,
(u3

i=1 Si)
∗ v S1; S3; S2; S1. To be consistent, a new method should data refine an arbitrary combination

of old methods prefixed by enabledness guards and intermixed with arbitrary statements. We require that the
arbitrary statements do not update the attributes and necessarily terminate. A statement S is guaranteed to
terminate if it can establish any postcondition from any initial state, i.e. true = S true.

As old methods and new methods operate on different state spaces, we first have to adjust them to operate
on the common state space. Recall that methods Mi of C operate on Σ × Γi × ∆i, while methods M ′i of C ′
operate on Σ′ × Γi × ∆i and new methods Nj on Σ′ × Φj ×Ψj . We can construct a common state space Π
including all value and result parameter types of all methods in C ′ so that

Π = Γ1 × ∆1 × . . .× Γn × ∆n × Φ1 ×Ψ1 × . . .× Φp ×Ψp

Then a projection function ξi : Π→ Γi ×∆i, for i = 1..n, will give us the types of value and result parameters
of method M ′i . Similarly, a projection function ξn+j : Π→ Φj ×Ψj , for j = 1..p, will give us the types of value
and result parameters of method Nj . We can always coerce M ′i to operate on the state space Σ′ ×Π using the
corresponding projection function.

As methods Mi of C have to operate on the attributes of C ′ rather than C , they have to be appropriately
coerced using the abstraction relation R : Σ′ ↔ Σ. The resulting statement Mi ↓R, being of type Ξ(Σ′×Γi×∆i),
still has to be coerced to operate on the common state space Σ′ × Π, using the corresponding projection
function.

34 Ralph-Johan Back et al.

Putting everything together, we can now define consistency of new methods as follows.

Definition 4. For classes C=(K,M1, . . . ,Mn) and C ′=(K ′,M ′1, . . . ,M ′n, N1, . . . , Np), some guards qi, and some
terminating statements Ki skipping on the attributes of C ′, consistency of a new method Nj , for j = 1..p, with
respect to C and an abstraction relation R : Σ′ ↔ Σ is defined as follows:

Consistent (Nj, C, R) =̂
begin var l · b; (uni=1 [qi]; (skip×Mi ↓R)↓|ρi|;Ki)

∗; end v Nj

Here the local block variables l introduce the value and result parameters of all methods M ′1, . . . ,M ′n and all
new methods except Nj , whose value and result parameters are already present in the state. Effectively, the
state space inside the block is Π′ × Σ′ × Φj ×Ψj , where Π′ is the same as Π with Φj ×Ψj projected away.
The statement skip×Mi ↓R operates on the state space Π′′ × Σ′ × Γi × ∆i, where Π′′ is the same as Π with
Γi × ∆i projected away. To coerce this statement to operate on the state space of the block, which has the
same state components but in a slightly different order (unless Mi and Nj happen to have value and result
parameters of the same types), we wrap it in the function ρi : Π′ × Σ′ × Φj ×Ψj → Π′′ × Σ′ × Γi × ∆i. Note
that wrappings in the state-reassociating functions ρi are just technicalities not changing the meaning of the
corresponding statements.

Definition 4 allows a new method to be an arbitrary non-modifying method refining skip, since
(uni=1 [qi]; (skip×Mi ↓R)↓|ρi|;Ki)

∗ v skip. No less important, it follows from Def. 4 that a new method
Nj is also consistent if it is composed of calls to overriding methods intermixed with arbitrary statements or
refines an arbitrary composition of such calls:

Corollary 1. For classes C=(K,M1, . . . ,Mn) and C ′=(K ′,M ′1, . . . ,M ′n, N1, . . . , Np), some guards qi, and some
terminating statements Ki skipping on the attributes of C ′,

(∀i | 1 6 i 6 n · Mi vR M ′i) ∧
begin var l · b; (uni=1 [qi]; (skip×M ′i)↓|ρi|;Ki)

∗; end v Nj ⇒
Consistent (Nj, C, R)

If all new methods in a class C ′ are consistent, the constructor of C is refined by the constructor of C ′
and all old methods of C are refined by the corresponding methods of C ′, then class refinement between C
and C ′ is guaranteed to hold, as proved by the following theorem.

Theorem 2. For classes C=(K,M1, . . . ,Mn) and C ′=(K ′,M ′1, . . . ,M ′n, N1, . . . , Np),

(∃R · K vR K ′ ∧ (∀i | 1 6 i 6 n · Mi vR M ′i)∧
(∀j | 1 6 j 6 p · Consistent (Nj, C, R))) ⇒ C v C ′

A proof of this theorem can be found in [BMW00].

5. Conclusions and Related Work

This work is based on [MiS97], but concentrates on class refinement and its relation to object substitutability.
One of the main contributions of the present paper is in modelling clients of class instances by an iterative
choice of method invocations. In our opinion, polymorphic substitutability of objects in clients is central to
the object-oriented programming style, and, in this respect, the ability to reason about the behaviour of object
clients, and not only objects, is very important. Our model allows us to reason formally about the relationship
between refinement on classes and substitutability of class instances in clients. We prove that substituting
instances of a refined class for instances of the original class is refinement for the clients.

5.1. Related Work in Formalisation of Object-Oriented Concepts

Related work in formalisation of object-oriented concepts includes [CoP89, Nau94, Nau99, Sek96, AbL97].
William Cook and Jens Palsberg in [CoP89] give a denotational semantics of inheritance and prove its
correctness with respect to an operational “method lookup” semantics. They model dynamic binding of
self-referential methods by representing classes as functions of self-called methods and constructing subclasses

Class Refinement for Correct Object Substitutability 35

using modifying wrappers. There are only functional methods in their model, whereas we consider the methods
modifying object state as well.

Martı́n Abadi and Rustan Leino in [AbL97] develop a logic of object-oriented programs in the style of
Hoare [Hoa69], prove its soundness and discuss completeness issues. Rather than building a new logic, we
extend a logic for reasoning about imperative programs (the refinement calculus) with definitions of classes,
subclassing, subtyping, and class refinement. Our extension is conservative in the sense that it does not extend
the set of theorems over the original constants in the underlying logic. Being itself a conservative extension
of higher-order logic, the refinement calculus has the syntax of higher-order logic, with some syntactic
sugaring, and the simple set-theoretic semantics of higher-order logic. As the refinement calculus identifies
program statements with the monotonic predicate transformers that they determine, it does not emphasise the
distinction between syntax, semantics, and proof theory that is traditional in programming logics [BvW98].

Semantics of an imperative Oberon-like programming language with similar specification constructs as
here, also based on predicate transformers, is defined by David Naumann in [Nau94] and recently extended
to include more interesting and useful features in [Nau99]. The language does not include classes or visibility
controls, references or aliasing, but goes beyond our work in supporting procedure variables. Also, procedures
(methods) may have global variables in [Nau99]. We feel that permitting class methods access and modify
global variables is discordant with the object-oriented paradigm, for methodological reasons, and don’t model
this feature.

Emil Sekerinski [Sek96] defines a rich object-oriented programming and specification notation by using a
type system with subtyping and type parameters, and also using predicate transformers. In both approaches,
subtyping is based on extensions of record types. Here we use sum types instead, as suggested by Ralph Back
and Michael Butler in [BaB95] and further elaborated in [MiS97]. One motivation for moving to sum types
is to avoid complications in the typing and the logic when reasoning about record types: the simply typed
lambda calculus as the formal basis is sufficient for our purposes. Also, to allow objects of a subclass to have
different (private) attributes from those of the superclass, hiding by existential types was used in [Sek96].
It turned out that, when reasoning about method calls, this leads to complications which are not present
when using the model of sum types. Leonid Mikhajlov and Emil Sekerinski in [MiS98] give semantics to
object-oriented constructs in the refinement calculus, modelling dynamic binding of self-referential methods
following [CoP89] but permitting state-modifying methods as we do here. As their formalisation is tailored
for studying a particular problem, namely the fragile base class problem, they consider a limited set of
object-oriented constructs and mechanisms.

The detailed elaboration of our formalisation, especially the fact that we define all object-oriented
constructs and mechanisms on the semantic level, within the logic, rather than by syntactic definitions, opens
the possibility of mechanised reasoning and mechanical verification. An interesting recent work by Bart
Jacobs et al. in [JBH98] reports a work in progress on building a front-end tool for translating Java classes
to higher-order logic in PVS [ORS92]. The authors state that “current work involves incorporation of Hoare
logic [Hoa69], via appropriate definitions and rules in PVS”, and present in [JBH98] a description of the
tool “directly based on definitions”. We develop a theoretic foundation for reasoning about object-oriented
programs based on the logical framework for reasoning about imperative programs. A tool supporting
verification of correctness and refinement of imperative programs and known as the Refinement Calculator
[LRW95] already exists and extending it to handling object-oriented programs based on the formalisation
presented here appears to be only natural.

5.2. Related Work on Behavioural Compatibility of Objects

The general idea behind our approach and the research direction known as behavioural subtyping is essentially
the same – to develop a specification and verification methodology for reasoning about correctness of object-
oriented programs. Our work has been to a great extent inspired by works of Pierre America, Barbara Liskov,
Jeannette Wing, Gary Leavens, and others [Ame87, Ame91, LiW94, LeW90, LeW95, DhL96]. However, our
approach differs in a number of ways. First of all, as was already mentioned in the introduction, we consider
it essential to separate decidable syntactic properties of interface conformance or subtyping from undecidable
but provable properties of behavioural conformance or refinement. We use classes to express (at different
abstraction levels) the behaviour of objects and class refinement to express behavioural conformance. Here
we for simplicity consider systems where subclassing forms a basis for subtype polymorphism. However, our
model of classes, subclassing, and subtype polymorphism as well as the definition of class refinement can be

36 Ralph-Johan Back et al.

class S' specifies I'

Meth
1
() = S'

1
...
Meth

n
() = S'

n

Meth
1
() = S

1
...
Meth

n
() = S

n

class S specifies I

Meth
1
() = T

1
...
Meth

n
() = T

n

class C

Meth
1
() = T'

1
...
Meth

n
() = T'

n

class D

b)

implements Meth
1
() = T

1
...
Meth

n
() = T

n

class C

Meth
1
() = T'

1
...
Meth

n
() = T'

n

class D

implements

a)

{pre
1
} Meth

1
() {post

1
}

...
{pre

n
} Meth

n
() {post

n
}

type I

>

type I'

{pre'
1
} Meth

1
() {post'

1
}

...
{pre'

n
} Meth

n
() {post'

n
}

Fig. 5. Behavioural subtyping (a) and class refinement (b) in the case of separate interface and implementation inheritance hierarchies.

used to reason about the meaning of programs using separate subclassing and interface inheritance hierarchies.
By associating a specification class with every interface type, we can reason about the behaviour of objects
having this interface. All classes claiming to implement a certain interface must refine its specification class.
Subclassing in this layout does not, in general, require establishing class refinement between the superclass
and the subclass.

When used in the context of separate subclassing and subtyping hierarchies, class refinement is very
similar to behavioural subtyping. Consider a graphical representation of the corresponding settings in Fig. 5.
In both cases I and I ′ are certain interfaces (types) such that I ′ is a syntactic subtype of I . In the case of
behavioural subtyping in Fig. 5 (a) the behaviour of methods is specified in terms of pre- and postconditions.
To verify that I ′ is a behavioural subtype of I , written I ′ < I , America, Liskov, and Wing require proving that
every precondition prei is stronger than the corresponding pre′i and every postcondition posti is weaker than
the corresponding post′i, while Dhara and Leavens in [DhL96] weaken the requirement for postconditions.
In addition to proving behavioural subtyping, one must also verify that the classes C and D claiming to
implement the types I and I ′ respectively really do so. America in [Ame91] proposes a rigorous verification
method that can be used for this purpose. For verifying, e.g., that C implements I , he uses a representation
function mapping concrete states of C to the set of abstract states associated with I as well as a representation
invariant constraining the values of attributes in C , and requires proving that every method Ti of C preserves
the representation invariant and establishes posti coerced to the state space of C when prei also coerced to
the state space of C holds. Since in [Ame91] and other works on behavioural subtyping no formal semantics
is given to implementation constructs and mechanisms, such as, e.g., super-calls or dynamic binding, this
verification can only be done semi-formally.

Consider now the diagram (b) of Fig. 5 illustrating class refinement. First of all, we can reason about
specification classes S and S ′ and implementation classes C and D in a uniform manner, and the behavioural
conformance between the participating classes is the class refinement. Since class refinement is transitive, we
get directly that D, implementing I ′ by refining its specification S ′, also refines the specification S of I .

Class refinement can be used to verify correctness even if D happens to be a subclass of C . Dynamic
binding of self-referential methods, which becomes possible in this case, can be resolved as described in
Sec. 3.6, and then we can prove that, e.g., S ′ v D using the definition of class refinement. With behavioural
subtyping, however, it is not clear how one can prove that a method satisfies certain pre- and postconditions
in the presence of dynamic binding of self-referential methods.

When used for reasoning about systems with unified subclassing and subtyping, our approach eliminates
a significant amount of proof obligations as compared to behavioural subtyping. We do not need to prove
separately that a class and its subclass implement the corresponding type and its behavioural subtype, all that
needs to be proved is class refinement between the subclass and the superclass.

Researchers working in the area of behavioural subtyping, e.g., America in [Ame91], maintain that
specifications in terms of pre- and postconditions are more abstract and easier to understand than those
in a more operational style, capturing method invocation order. We feel that the essence of object-oriented
programs is in invoking methods on objects, and, as our TextDoc-View example shows, it might be necessary
to specify explicitly that a certain method calls other methods. When reasoning about correctness, it is often
necessary to know the method invocation order, which is more difficult to specify in terms of pre- and
postconditions. Therefore, we consider it essential for a specification language to support both declarative and
operational specification styles, permitting abstract specifications when it is desirable to abstract away from
implementation details and also permitting capturing method invocation order when it is essential. Similar
ideas are supported by Richard Helm et al. in [HHG90]. They include method calls in abstract specifications

Class Refinement for Correct Object Substitutability 37

of contracts to express behavioural dependencies between co-operating objects. Martin Büchi and Wolfgang
Weck in [BüW97] also advocate a specification language combining specification statements with method calls.

Mark Utting in his PhD thesis [Utt92] extends the refinement calculus to support a variety of object-
oriented programming styles. One of the main contributions of [Utt92] is a formal definition in the refinement
calculus of modular reasoning advocated by Leavens in [LeW90]. It is assumed that all objects are ordered
by a substitution relation 6 which must be a preorder but otherwise is unrestricted. An object-oriented
system is defined to support modular reasoning if methods of an object a, such that a 6 b, are refined by
the corresponding methods of b. Clearly our methodology of object-oriented system development supports
modular reasoning, because, if the substitution ordering is chosen so that a 6 b whenever the class of a is
refined by the class of b, then the corresponding methods are in refinement. Our definition of class refinement
is constructive, meaning that it can be used to formally verify behavioural conformance between given classes.
Proving refinement between classes guarantees correctness of substitutability in all clients of the objects these
classes instantiate. Utting’s definition of modular reasoning, on the other hand, is non-constructive; to cite
Liskov and Wing’s description in [LiW94], “it tells you what to look for, but not how to prove that you got it”.

As it follows the style of behavioural subtyping, the approach reported in [Utt92] separates implementations
and specifications (types) and checks behavioural conformance of types to their supertypes. Data refinement
is only allowed between the implementation and a specification of an object, although a way of generalizing
data refinement for the (behavioural) subtyping is discussed in the future work section. Utting’s approach
to formalisation of object-oriented programs differs from ours in several aspects, motivated primarily by the
fact that the refinement calculus used as the basis for his object-oriented extensions was formalised within
infinitary rather than higher-order logic. In particular, with the state space modelled by a product space as
we have here, encapsulation is built-in rather naturally in the model: methods operate only on the instances
of the corresponding class and cannot access or modify instances of other classes. In [Utt92] the state is
not considered to be a tuple of state components, but rather a function from all variables (including object
variables) to all values (including object values) in the program. Methods of all objects operate on the global
state and encapsulation is only assumed.

Behavioural dependencies in the presence of subclassing have also been studied in various extensions of Z
specification languages, e.g., [LaH92, Cus91], but only between class specifications and not implementations.
By having specification constructs as part of the (extended) programming language, we do not have to treat
specifications and implementations separately.

Data refinement of modules, abstract data types, and abstract machines as, e.g., in [Hoa72, Mor90, Abr96]
forms a basis for class refinement. The latter, however, has special features due to subtype polymorphism
and dynamic binding. Our definition of class refinement is based on the method of proving data refinement
known as forward data refinement or downward simulation. Although it was shown to be incomplete, this
method is most widely used as it is sufficient for most cases in practical program development.

Our treatment of new methods follows that of Liskov and Wing as presented in [LiW94]. They describe
two approaches to dealing with new method consistency. The first approach requires that new methods satisfy
the explicit class invariant and the history constraint, whereas the second approach forces new methods to
preserve the strongest superclass invariant. Here we do not consider explicit class invariants and refer to
[Mik99] for a detailed analysis of consistency requirements that must be imposed in the presence of explicit
invariants. In this paper we present a formal analysis of the requirements that, when satisfied by new methods,
are guaranteed to preserve the strongest superclass invariant. Our definition of new method consistency is
more permissive than that of Liskov and Wing. They informally require that “for each extra method an
explanation be given of how its behaviour could be effected by just those methods already defined for the
supertype”. Our definition of consistency permits new methods not only to be composed of calls to existing
methods, but also refine an arbitrary combination of the old methods as defined in the subclass or data refine
an arbitrary combination of the old methods as defined in the superclass.

Acknowledgments

The authors would like to thank Emil Sekerinski, Leonid Mikhajlov, Michael Butler, and Martin Büchi for
valuable comments on this paper.

38 Ralph-Johan Back et al.

References

[Abr96] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press, 1996.
[AbC96] Martı́n Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag, 1996.
[AbL97] Martı́n Abadi and K. Rustan M. Leino. A logic of object-oriented programs. In Proceedings of TAPSOFT’97, LNCS 1214,

pages 682–696. Springer, April 1997.
[Ame87] Pierre America. Inheritance and subtyping in a parallel object-oriented language. In Proceedings of ECOOP’87, LNCS 276,

pages 234–242, Paris, France, 1987. Springer-Verlag.
[Ame91] Pierre America. Designing an object-oriented programming language with behavioral subtyping. In J. W. de Bakker, W. P.

de Roever, and G. Rozenberg, editors, Foundations of Object-Oriented Languages, REX School/Workshop, Noordwijkerhout,
The Netherlands, May/June 1990, LNCS 489, pages 60–90, New York, N.Y., 1991. Springer-Verlag.

[Bac89] R. J. R. Back. Changing data representation in the refinement calculus. In 21st Hawaii International Conference on System
Sciences. IEEE, January 1989.

[BaB95] R. J. R. Back and M. J. Butler. Exploring summation and product operators in the refinement calculus. In B. Möller,
editor, Mathematics of Program Construction, 1995, volume 947. Springer-Verlag, 1995.

[BMW99] R. J. R. Back, Anna Mikhajlova, and Joakim von Wright. Reasoning about interactive systems. In J. M. Wing, J. Woodcock,
and J. Davies, editors, Proceedings of the World Congress on Formal Methods (FM’99), volume 1709 of LNCS, pages 1460–
1476. Springer-Verlag, September 1999.

[BMW00] Ralph-Johan Back, Anna Mikhajlova, and Joakim von Wright. Class refinement as semantics of correct object substi-
tutability. Technical Report 333, Turku Centre for Computer Science, February 2000.

[BvW97] R. J. R. Back and J. von Wright. Programs on product spaces. Technical Report 143, Turku Centre for Computer Science,
November 1997.

[BvW98] R. J. R. Back and J. von Wright. Refinement Calculus: A Systematic Introduction. Springer-Verlag, April 1998.
[BvW99] R. J. R. Back and Joakim von Wright. Encoding, decoding and data refinement. Technical Report 236, Turku Centre for

Computer Science, March 1999.
[BüW97] Martin Büchi and Wolfgang Weck. A plea for grey-box components. Technical Report 122, Turku Center for Computer

Science, Presented at the Workshop on Foundations of Component-Based Systems, Zurich, September 1997.
[CoP89] William Cook and Jens Palsberg. A denotational semantics of inheritance and its correctness. In Proceedings OOPSLA’89,

volume 24, pages 433–443. ACM SIGPLAN notices, October 1989.
[Cus91] Elspeth Cusack. Inheritance in object-oriented Z. In P. America, editor, Proceedings of ECOOP’91, LNCS 512, pages

167–179, Geneva, Switzerland, July 15–19, 1991. Springer-Verlag.
[DhL95] Krishna Kishore Dhara and Gary T. Leavens. Weak behavioral subtyping for types with mutable objects. In Mathematical

Foundations of Programming Semantics, volume 1 of Electronic Notes in Theoretical Computer Science. Elsevier, 1995.
[DhL96] K. K. Dhara and G. T. Leavens. Forcing behavioral subtyping through specification inheritance. In Proceedings of the 18th

International Conference on Software Engineering, pages 258–267, Berlin, Germany, 1996.
[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley, 1995.
[GoM93] M. J. C. Gordon and Thomas F. Melham. Introduction to HOL: A theorem proving environment for higher order logic.

Cambridge University Press, 1993.
[HHG90] Richard Helm, Ian M. Holland, and Dipayan Gangopadhyay. Contracts: Specifying behavioural compositions in object-

oriented systems. In Proceedings of OOPSLA/ECOOP’90, ACM SIGPLAN Notices, pages 169–180, October 1990.
[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. CACM, 12(10):576–583, 1969.
[Hoa72] C. A. R. Hoare. Proofs of correctness of data representation. Acta Informatica, 1(4):271–281, 1972.
[JBH98] Bart Jacobs, Joachim van den Berg, Marieke Huisman, Martijn van Berkum, Ulrich Hensel, and Hendrick Tews. Reasoning

about Java classes (preliminary report). In Proceedings of OOPSLA’98, pages 329–340, Vancouver, Canada, October 1998.
Association for Computing Machinery.

[LaH92] K. Lano and H. Haughton. Reasoning and refinement in object-oriented specification languages. In O. Lehrmann Madsen,
editor, Proceedings of ECOOP’92, LNCS 615. Springer-Verlag, 1992.

[LRW95] T. L̊angbacka, R. Ruksenas, and J. von Wright. TkWinHOL: A tool for window inference in HOL. Higher Order Logic
Theorem Proving and its Applications: 8th International Workshop, 971:245–260, September 1995.

[LeW90] Gary T. Leavens and William E. Weihl. Reasoning about object-oriented programs that use subtypes (extended abstract).
In Proceedings of OOPSLA/ECOOP’90, volume 25(10) of ACM SIGPLAN Notices, pages 212–223, 1990.

[LiW94] B. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transactions on Programming Languages and Systems,
16(6):1811–1841, November 1994.

[LeW95] Gary T. Leavens and William E. Weihl. Specification and verification of object-oriented programs using supertype
abstraction. Acta Informatica, 32(8):705–778, November 1995.

[Mik99] Anna Mikhajlova. Consistent extension of components in the presence of explicit invariants. In Technology of Object-
Oriented Languages and Systems (TOOLS 29), pages 76–85. IEEE Computer Society Press, June 1999.

[Mik00] Anna Mikhajlova. Combining code with specifications: How to document and verify frameworks. Special Issue of L’Objet
on Formal Methods for Object Systems, 6(1), 2000.

[Mor90] C. C. Morgan. Programming from Specifications. Prentice–Hall, 1990.
[MiS97] Anna Mikhajlova and Emil Sekerinski. Class refinement and interface refinement in object-oriented programs. In Proceedings

of the 4th International Formal Methods Europe Symposium, FME’97, LNCS 1313, pages 82–101. Springer, 1997.
[MiS98] Leonid Mikhajlov and Emil Sekerinski. A study of the fragile base class problem. In Eric Jul, editor, Proceedings of

ECOOP’98, pages 355–382. Springer, July 1998.
[Nau94] D. A. Naumann. Predicate transformer semantics of an Oberon-like language. In Ernst-R. Olderog, editor, Programming

Concepts, Methods and Calculi, pages 460–480, San Miniato, Italy, 1994.
[Nau99] D. A. Naumann. Predicate transformer semantics of a higher order imperative language with record subtypes. Science of

Class Refinement for Correct Object Substitutability 39

Computer Programming, 1999. To appear. URL: http://guinness.cs.stevens-tech.edu/~naumann/
publications.html.

[ORS92] S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype Verification System. In D. Kapur, editor, 11th International
Conference on Automated Deduction (CADE), volume 607 of Lecture Notes in Artificial Intelligence, pages 748–752, Saratoga,
NY, June 1992. Springer-Verlag.

[Sek96] E. Sekerinski. A type-theoretic basis for an object-oriented refinement calculus. In S. J. Goldsack and S. J. H. Kent, editors,
Formal Methods and Object Technology. Springer-Verlag, 1996.

[Utt92] Mark Utting. An Object-Oriented Refinement Calculus with Modular Reasoning. PhD thesis, University of New South Wales,
Kensington, Australia, 1992.

Appendix

Here we present refinement and correctness rules that will be used in proofs of lemmas and theorems presented
in the paper. Proofs of these rules can be found in [BvW98, BvW97, BvW99].

Correctness Rules

(a) p {| S1; S2 |} q = (∃r · p {| S1 |} r ∧ r {| S2 |} q)
(b) p {| (ui ∈ I · Si) |} q = (∀i ∈ I · p {| Si |} q)
(c) p {| [r] |} q = p ∩ r ⊆ q
(d) r {| S |} r ⇒ r {| S∗ |} r
(e) r {| S |} r ⇒ (true × r) {| skip× S |} (true × r)
(f) true = S true ⇒ (true × r) {| S × skip |} (true × r)
(g) (true × p) ∩ (var x, u · b) {| S |} (true × q) ⇒ p {| begin (var x, u · b); S; end |} q

Algorithmic Refinement Rules

Skip is unit of sequential composition :

S; skip = S = skip; S

Relational product distribution through composition :

(P1 × Q1); (P2 × Q2) = (P1;P2)× (Q1;Q2)

Distribution of sequential composition through updates :

(a) 〈f〉; 〈g〉 = 〈f; g〉
(b) [P]; [Q] = [P ;Q]
(c) {P }; {Q} = {P ;Q}

Product distribution through updates :

(a) 〈f〉 × 〈g〉 = 〈f × g〉
(b) [P]× [Q] = [P × Q]
(c) {P } × {Q} = {P × Q}

Product distribution through sequential composition :

(a) (S1;T1)× (S2;T2) v (S1 × S2); (T1 × T2)
(b) (S1 × skip); (S2 × skip) = (S1; S2)× skip
(c) skip× {R}; (S × skip) = S × {R}
(d) [P × Q] = [P × Id]; [Id× Q] = [Id× Q]; [P × Id]
(e) {P × Q} = {P × Id}; {Id× Q} = {Id× Q}; {P × Id}

40 Ralph-Johan Back et al.

Data Refinement Rules

The sequential composition rule states that the data refinement of a sequential composition is refined by a
sequential composition of the data refined components:

(S1; S2)↓R v (S1 ↓R); (S2 ↓R)

Data refinement also distributes through demonic and angelic choice:

(S u T)↓R v S ↓R u T ↓R
(S t T)↓R v S ↓R t T ↓R

The indifferent block rule reduces data refinement of a block with local variables to a data refinement of a
statement inside that block, retaining the local variables:

begin (p× true); S; end↓R v begin (p× true); S ↓ (Id × R); end

When the initializing predicate is effected by the data refinement, the block rule requires that this predicate is
coerced accordingly:

begin p; S; end↓R v begin p′; S ↓ (Id × R); end,
where p′ ⊆ (λ(x, y′) · ∃ y · R y′ y ∧ p(x, y))

There are also two auxiliary block begin rules:

(a) begin p; [(R × Id)−1] v begin p′,
where p′ ⊆ (λ(x′, y) · ∃x · R x′ x ∧ p(x, y))

(b) {R}; begin p v begin p′; {Id × R},
where p′ ⊆ (λ(x, y′) · ∃ y · R y′ y ∧ p(x, y))

Another block-related local variable rule allows us to change local variables in a refinement. For any
S : Ξ(Λ× Σ) and R : Λ′ ↔ Λ,

begin p; S; end v begin p′; S ↓ (R × Id); end,
where p′ ⊆ (λ(x′, y) · ∃x · R x′ x ∧ p(x, y))

Using the program variable notation, this rule can be expressed as follows:

begin (var l, u · b); S; end v
begin (var l′, u · (∃ l · R l′ l ∧ b));

S ↓ (R × Id);
end

The indifferent statement rule describes the cases when a statement is not affected by data refinement:

(skip× S)↓ (R × Id) v skip× S and (S × skip)↓ (Id × R) v S × skip

The iterative choice rule states that for any Si : Σ 7→ Σ, R : Σ′ ↔ Σ, and any qi : PΣ indifferent to R,

do 〈〉ni=1qi :: Si od↓R v do 〈〉ni=1qi :: Si ↓R od

where indifference means that qi = q′i×true when R is of the form Id×R′, and qi = true×q′i when R = R′×Id .
Finally, the identity of inverse coercion rule states that wrapping the statement S ↓ R in ↑ R undoes the

effect of wrapping S in ↓R:

S v (S ↓R)↑R

Received May 1999

Accepted in revised form March 2000 by E. C. R. Hehner

