Nordic Journal of Computing

Continuous Action Systems as a Model for Hybrid
Systems*

Ralph-Johan Back, Luigia Petre and Ivan Porres
Turku Centre for Computer Science (TUCS)
Lemminkdisenkatu 14A, FIN-20520 Turku, Finland
{Ralph.Back,Luigia.Petre, Ivan.Porres}@abo. fi

Abstract. Action systems have been used successfully to describe discrete sys-
tems, i.e., systems with discrete control acting upon a discrete state space. In this
paper we define continuous action systems that extend the action system approach
to also model hybrid systems, i.e., systems with discrete control over a continuously
evolving state. The semantics of continuous action systems is defined in terms of
traditional action systems and their properties are proved using standard action
systems proof techniques. We describe the essential features of continuous action
systems, show that they can be used to describe a diverse range of hybrid systems
and illustrate the framework by a collection of examples.

CR Classification: F.3.1 F.4.1D.24

Key words: Refinement Calculus, Action Systems, Hybrid Systems.

1. Introduction

A system using discrete control over its continuously evolving processes is
referred to as a hybrid system. The use of formal methods and models to
describe hybrid systems has attracted quite a lot of attention in the last
years, with a number of different models and formalisms being proposed in
the literature (see e.g., [2, 13, 9]). In this paper we continue this line of
research, essentially proposing what we believe is a new and very general
model for hybrid systems, based on the action system paradigm.

Action systems [4, 6] have been used successfully to model discrete sys-
tems, i.e., systems with discrete control upon a discrete state space. Their
original purpose was to model concurrent and distributed systems. In this
paper we show that the action system framework can be adapted to model
hybrid systems. An important advantage of this adaption is that standard
modeling and proof techniques, developed for ordinary action systems, can
be reused to model and reason about hybrid systems.

Our extension of action systems to hybrid systems is based on a new
approach to describing the state of a system. Essentially, our state attributes
will range over functions of time, rather than just over values. This allows

*This article is an extended version of the conference paper published by Springer-
Verlag in [5].

March 2000

2 RALPH-JOHAN BACK, LUIGIA PETRE AND IVAN PORRES

an attribute to capture not only its present value, but also the whole history
of values that the attribute has had, as well as the default future values that
the attribute will receive. Updating a state attribute is restricted so that
only its future behavior can be changed, not its past behavior. We will refer
to action systems with this model of state as continuous action systems.
Continuous action systems are inspired by, but differ from, the extension of
action systems to hybrid systems described in [15].

Proofs about action system properties are based on the refinement calcu-
lus [8]. This extends the programming logic based on weakest precondition
predicate transformers proposed in [10]. Action systems are intended to be
stepwise developed and the correctness of these steps to be verified within
the refinement calculus. As continuous action systems are a consistent ex-
tension of action systems, we get an implicit notion of refinement also for
them. Even though the refinement of hybrid systems is not the purpose
of this paper, the approach we adopt for hybrid systems fits well into the
refinement calculus framework and it can be used for systems where correct
construction is a central concern.

The refinement calculus is based on higher-order logic, which in turn is
an extension of simply typed lambda calculus. Functions are defined by
A-abstraction and can be used without explicit definition and naming. As
an example, the function that calculates the successor of a natural number
is defined as (An -n + 1). We denote by f.z the application of the function
f to the argument z, so that, e.g., (An-n + 1).1 = 2. A binary relation
R C A x B is here considered as a function R : A — PB, i.e., mapping
elements in A to sets of elements in B.

We proceed as follows. The action system model is briefly reviewed in
Section 2. In Section 3 we define the continuous action systems and explain
their semantics; we also point out their generality. Section 4 contains exam-
ples of hybrid systems, modeled using our framework. In Section 5 we show
how to prove safety properties for continuous action systems and in sec-
tion 6 we show how to construct more complex continuous action systems.
Conclusions and comparisons to related work are presented in Section 7.

2. Action Systems

We start by giving a brief overview of the action systems formalism. An
action system consists essentially of a discrete state space updated by a
discrete control mechanism !. The state of the system is described using
attributes. For specifying them, we define a finite set Attr of attribute names
and assume that each attribute name in Attr is associated with a non-empty
set of values. This set of values is the type of the attribute. If the attribute
x takes values from Val, we say that = has the type Val and we write it
as = : Val. The name and the type completely specify the attribute. We

1 We use a simple model of state here, see [8] for a more advanced model of state, which
better supports proofs of program properties in higher order logic.

CONTINUOUS ACTION SYSTEMS AS A MODEL FOR HYBRID SYSTEMS 3

consider several predefined types, like Real for the set of real numbers, Real .
for the set of non-negative real numbers, and Bool for the boolean values
{F,T}. The value of an attribute can be read in an expression, and its value
can be changed by an assignment, in the usual way.

An action system consists of a finite set of attributes used to observe and
manipulate the state of the system and a finite set of actions that act upon
the attributes. The set of actions models the control mechanism over the
state of the system. An action system A has the following form:

A L |varzeSy;do A00Ay,od]l:y (1)
Here x = z1,...,z, are the local attributes of the system, S is a statement
initializing them, while 4; = g; — S;, ¢ = 1,...,m, are the actions of the

system. The boolean expression g; is the guard of the action A; and S;
is the body of the action. The attributes y = y1,...,yr are defined in the
environment of A, being called imported attributes. Attributes in x may be
exported, in the sense that they can be read, or written, or both read and
written by environment actions. In this case, we decorate these attributes
with —, 4+ or *, respectively. An action ‘g — S’ is an atomic guarded
statement that is executed in the loop ‘do ... od ’ only when g is enabled,
i.e., when g evaluates to T. The actions are executed in the loop as long
as there are enabled actions. Hence, the loop is just Dijkstra’s guarded
iteration statement. The body S of an action is defined as follows:

S = abort |skip|z:=e|{z:=42'|R}|if g then S; else S fi | S1; S>

Here z is a list of attributes, e is a corresponding list of expressions, z’ is a
list of variables standing for unknown values, and R is a relation specified
in terms of x and z'. Intuitively ‘skip’ is the stuttering action, ‘z:=¢€’ is a
multiple assignment, ‘if g then S else S5 fi’ is the conditional composition of
two statements, and ‘S7;S%’ is the sequential composition of two statements.
The action ‘abort’ always fails and is used to model disallowed behaviors.
Given a relation R(xz,z') and a list of attributes z, we denote by {z: =z'|R}
the non-deterministic assignment of some value ' € R.xz to z (the effect
is the same as abort, if R.z = (). The semantics of the actions language
has been defined in terms of weakest preconditions in a standard way [10].
Thus, for any predicate ¢, we define

wp(abort, q) = F
wp(skip, q) = q
wple:-eq) = qlai=d]
wp({z:=12'|R},q) = (Vo' € Rx-qlz :=2))
wp(Sl ; 52, q) = wp(S1,wp(52,q))
wp(if g then Sy else Sy fi, q) = if g then wp(S1,q) else wp(Ss,q) fi

where ¢[z := e] stands for the result of substituting all the free occurrences
of the attributes = in the predicate q.

4 RALPH-JOHAN BACK, LUIGIA PETRE AND IVAN PORRES

The execution of an action system is as follows. The initialization Sy will
set the attributes to some specific values, using a sequence of possibly non-
deterministic assignments. Then, enabled actions are repeatedly chosen and
executed. The chosen actions will change the values of the attributes in
a way that is determined by the action body. Two or more actions can be
enabled at the same time, in which case one of them is non-deterministically
chosen for execution. By interleaving atomic actions in a non-deterministic
fashion, action systems can model parallel execution. The computation
terminates when no action is enabled. Termination of an action system
means the termination of the control over the system. This means that the
state will evolve no more, fixing the final values of the attributes forever.

An action system is not usually regarded in isolation, but as a part of
a more complex system. The rest of the system (the environment) com-
municates with the action system using shared (imported and exported)
attributes, referred to as the global attributes. We can model other means
of communication as well, using the action systems framework, but this is
out of the scope of this paper [7].

A large action system is constructed from smaller ones using parallel com-
position. We define the parallel composition of two action systems

A = |varz:T*Sy;dogr — S0 ...0¢yn —Spod]:y
A" = Jvarg': T » S| ;dogy — S0 ...0¢g, — S, od]|: ¢/

as the action system A || A’, defined by

Al A L |var z : T,z' : T' * Sy ; S ;
dogy —» 50 ...0¢,—S,09,—80...0g,—8)
od]| : (yUy') = (zU2)

We assume here that the attributes z and z’ are disjoint. The initializations
So and S}, may only refer to the respective attributes z and z’, so the order
in which the initializations are executed does not matter. The imported
attributes in A || A’ are the union of the attributes imported by A and
A’, but without the exported attributes z and z’ of the two systems. The
actions consist of the union of the actions of A and A'.

In the next section we specify a notion of #ime and show how to model
attributes that are functions of time. These extensions to the action systems
formalism define a new model for hybrid systems.

3. Continuous Action Systems

A system using a discrete control over its continuously evolving state is
referred to as a hybrid system. In this section we introduce continuous
action systems, an extension of the action system formalism to model hybrid
systems.

CONTINUOUS ACTION SYSTEMS AS A MODEL FOR HYBRID SYSTEMS 5

A continuous action system consists of a finite set of time-dependent at-
tributes (the continuously evolving state) together with a finite set of actions
(the discrete control) that act upon the attributes. It is of the form in (2):

e L |(var x :Realy =T * Sp;do gy — 510 ...0¢gy, = Spod)| 1y (2)

The time domain is modeled with the predefined type Real,. The attributes
z are functions of time and form the state of the system; they can range
over discrete or continuous value domains 7'. Intuitively, the execution of
@ proceeds as follows. There is an implicit attribute now, that shows the
present time. Initially now = 0. The initialization Sy assigns initial time
functions to the attributes z1,...,z,. These time functions describe the
default future behavior of the attributes, whose values may, thereby, change
with the progress of time. The system will then start evolving according
to these functions, with time (as measured by now) moving forward con-
tinuously. The guards of the actions may refer the value of now, as may
expressions in the action bodies and the initialization statements.

Actions are urgent. As soon as one of the conditions g1, ..., g, becomes
true, the system chooses one of the enabled actions, say g; — S;, for execu-
tion. The choice is non-deterministic if there is more than one such action.
The body S; of the action is then executed. Execution is atomic and instan-
taneous. It will usually change some attributes by changing their present
and future behavior. Attributes that are not changed will behave as before.
After the changes stipulated by S; have been done, the system will evolve to
the next time instance when one of the actions is enabled, and the process
is repeated. The next time instance when an action is enabled may well
be the same as the previous, i.e., time needs not to progress between the
execution of two enabled actions. This is usually the case when the system
is doing some (discrete, logical) computation to determine how to proceed
next. Such a computation does not take any time. It is possible that after
a certain time instance, none of the actions will be enabled anymore. This
just means that, after this time instance, the system will continue to evolve
forever according to the functions last assigned to the attributes. Hence, ter-
mination of the discrete control over the system only fixes the time functions
corresponding to the attributes, and not their values.

As an example of a continuous action system consider the system shown
in Fig. 1. We write z:— e for an assignment rather than z: =e, to emphasize
that only the future behavior of the attribute z is changed to the function
e and the past behavior remains unchanged.

The attributes = and clock are first initialized to the constant function
(At-0) and the switching function up is set to the constant function (At -F).
The guard of the first action is immediately enabled at time 0, so the first
action’s body is executed immediately. The future behaviors of clock and x
are changed to start increasing linearly from 0, and the future behavior of
up is changed to the constant function (At-T), i.e., up is set to be true in all
future time instances. After this, the system starts to evolve by advancing

6 RALPH-JOHAN BACK, LUIGIA PETRE AND IVAN PORRES

st 2nd 1t 2nd

A act act act act

Saw = |(var z,clock : Real; — Real, up : Real; — Bool X L
« x:— (At-0);clock:— (At-0);up:— (At-F); |
do x.now = 0 A —up.now —
clock :— (At -t — now);

x:— clock ;up:— (At-T) up o
O x.now = 1A up.now — True F—— —_

clock :— (At -t — now); . oo

x:— (At-1—clock.t); T ot

up — ()\t . F) clock : : :
od 1

Fig. 1: Continuous action system Saw (left) and its behavior (right).

time continuously. In particular, the value of x increases linearly, depending
on time. When z gets value 1 (expressed by z.now = 1), the second action
is enabled. The clock is then first reset, the future behavior of z is changed
to decrease linearly with the clock value, and the future behavior of up is set
to the constant F. This continues until = reaches 0 (z.now = 0), when the
first action is again enabled, changing = to increase again, and so on. The
effect of these two actions is a saw-tooth-like behavior, where the value of
z alternatively increases and decreases forever. The evolution of the system
is also described in Fig. 1, showing each attribute on the same time domain
together with the points in time where a discrete action is performed.
An even simpler system is as follows:

Sine £ |(var z : Real; — Real * z:— (At -sint))|

Here we have omitted the ‘do ...od ’ construct because there are no actions
at all that can change the system behavior. Thus, the attribute = of this
system will behave as a continuous sine wave, forever.

One of the main advantages of the continuous action systems model for
hybrid computation is that both discrete and continuous behavior can be
described in the same way. In particular, if the attributes are only assigned
constant functions, then we obtain a discrete computation.

3.1 Semantics of continuous action systems

Let € be the continuous action system in (2). We explain the meaning of €
by translating it into an ordinary action system. Its semantic interpretation

CONTINUOUS ACTION SYSTEMS AS A MODEL FOR HYBRID SYSTEMS 7

is defined by the following (discrete) action system C:

c £ [var mnow:Real;,z:Realy - T
. now :=0; S5y ; N; (3)
do g1 —S;NO ...O0¢n— Sn; N od
sy

Here the attribute now is declared, initialized, and updated explicitly. It
models the time moments that are of interest for the system, i.e., the starting
time and the succeeding moments when some action is enabled. The value
of now is updated by the statement N L pow: = next.gg.now. Here
g9 = g1 V ... V g, is the disjunction of all guards of the actions and next is
defined by

1>

(4)

{min{t' >t | ggt'}, if 3+ >t such that gg.t
next.gg.t .

t, otherwise.

The function next models the moments of time when at least one action
is enabled. Only at these moments can the future behavior of attributes
be modified. The presence of the function min means that all actions are
urgent. If no action will ever be enabled, then the second branch of the
definition will be followed, and the attribute now will denote the moment
of time when the last discrete action was executed. In this case the discrete
control terminates, i.e. the attributes will evolve forever according to the
functions last assigned. One can observe from the definition of next that
it is possible for an infinite number of actions to be enabled at the same
moment. This implies that an infinite number of actions can be executed
in no time, a feature generally known as a Zeno behavior. The treatment
of Zeno behavior in the context of continuous action systems seems rather
involved and it is planned to be thoroughly addressed in the future.

In this paper we assume that the minimum in the definition of next always
exists, when at least one guard is enabled in the present or future. Continu-
ous action systems not satisfying this requirement are considered ill-defined.
E.g., the minimum in the definition of next cannot be calculated when there
are strict inequalities in the time-dependent guards, see (5) below.

Bad £ |(var z:Real; — Real

do now >1—z:— (At-0) od

)|
The future update x :— e is defined by

1>

z:=z/nowfe

(At -if t < 1o then z.t else e.t fi)

r.:—e

x/ty/e

1>

8 RALPH-JOHAN BACK, LUIGIA PETRE AND IVAN PORRES

For instance, consider the future update clock:— (At-t—now) in the example
in Fig. (1). We have that

clock :— (At -t — now)
= clock : =clock/now/(A\t -t — now)
= dock :=(Mt-if t < now then clock.t else (At -t — now).t fi)
= cdock := (XMt -if t < now then clock.t else t —now fi)

Thus, only the future behavior of clock is changed in this assignment. It is
important to note that all the attributes of a continuous action system are
functions of time, except for now. For instance, the statement z :— (At - t)
updates the default future of z with an increasing function, while z : — (¢ -
now) updates it with a constant function.

This explication of a continuous action system shows it essentially as a
collection of time functions zi,...,z, over the non-negative reals, defined
in a stepwise manner. The steps form a sequence of intervals Iy, I1, I, . . .,
where each interval I} is either a left closed interval of the form [¢;,%;11) or a
closed interval of the form [¢;,t;], i.e., a point. The action system determines
a family of functions z1, . .., z, which are stepwise defined over this sequence
of intervals and points. The extremes of these intervals correspond to the
control points of the system where a discrete action is performed. In the
example in Fig. (1), the sequence of intervals is [0],[0,1),[1,2), [2,3),. ..

As such, the continuous action system is best understood as the limit of
a sequence of approximations of the time functions z1, ..., z,, defined over
successively longer and longer intervals [0,¢;), where i = 0,1,2,.... Looking
at the example in Fig. (1) in this way, its sequence of initial segments is
[0],[0,1),[0,2),]0,3),... and its defined approximations are successively

zt = 0, 0t
zt = t, 0<t
Lt 0<t<l,
T V-t 1<t
£, 0<t<l,
zt = { 1—t, 1<t<2,
t—2, 2<t

Each attribute has a defined history of its past, i.e., on the interval [0,now),
its present value in the point [now], and a default future. The execution of
an action can modify the present value of a variable and its default future,
but not its past. It is important to note that such a definition does not nec-
essarily determine a single function for z;. Because of the non-deterministic
choices involved, there might be a collection of such function tuples that are
allowed by the continuous action system, and we do not know which one of

CONTINUOUS ACTION SYSTEMS AS A MODEL FOR HYBRID SYSTEMS 9

these will actually be the one the system follows. Thus, the system behavior
may only be determined up to a certain tolerance, and any system behavior
that is within these limits is possible.

3.2 Systems using differential equations

The behavior of a dynamic system is often described using a system of
differential equations. We can allow this kind of definitions by introducing
the shorthand

ii— f & {z:—y | ynow =z.now ANy = f.y,y > now}

This will assign to z a time function that satisfies the given differential
equation and which is such that the function x is continuous at now. As an
example, if f = (At-¢), where c is a constant value, then we have that

Z:— (At-c) Logpi— (At - z.now + ¢ x (t — now))

Hence, we can use continuous action systems to express hybrid systems using
either explicit functional expressions or implicit differential equations.

3.8 Real-time systems

We can use clock variables or timers to measure the passage of time and to
correlate the execution of an action with the time. A clock variable is an
attribute that measures the time elapsed since it was set to zero. Assume
that ¢ is an attribute of type Real. We then use the following definition for
resetting the clock ¢:

reset(c) Lo (At -t — now)

This definition is just a convenience for correlating the behavior of our sys-
tem with the passage of the time. Since a clock variable is just a regular
attribute, we can define as many clocks as needed and reset them indepen-
dently. It is also possible to do arithmetic operations with clock variables,
to use time constrains as guards, or to refer to past values of an attribute.
For instance, z.(now —1) = 1 will hold one time unit after z.now = 1 holds.
Hence, continuous action systems can be used to model real-time systems.

Summarizing, continuous action systems represent a new model for hybrid
computation that is general enough to be used for several different purposes.
This approach can model both continuous and discrete state-based systems,
systems whose behavior can be determined up to a certain tolerance, dy-
namic systems, as well as real-time systems. The following section presents
two examples in more detail.

10 RALPH-JOHAN BACK, LUIGIA PETRE AND IVAN PORRES

Train 2 |(var d,v : Real; — Real,v’,d’ : Real; — Real
state : Realy — {c;ccelerating, cruising, decelerating, stopped}
o d:— (M- a*2t);v:i— (At-ax*t);
{v' = V" —e <" <V + e}
state : — accelerating;
do state.now = accelerating A v.now = v’ —
vi— (At-v');
d:— (Mt - d.now + v * (t — now));
{d/ . du|d/ — ¢ < d’ < d,—l—é‘,};
state : — cruising
O state.now = cruising A d.now =d —
vi— (-0 —ax* (t — now));

d:— (At - d.now +v' * (t — now) —% % (t — now)?);

state : — decelerating
O state.now = decelerating A v.now =0 —
d:— (At - d.now);
v:— (At-0);
state : — stopped
od

Fig. 2: Train movement as a continuous action system.

4. Example Models

In this section we show how simple hybrid systems can be described as
continuous action systems. We model the movement of a train as well as a
press that reacts to external signals from the environment. A more complex
case study using continuous action systems can be found in [3].

4.1 Train

The train example has been presented before in [15], using differential ac-
tions. The approach taken here, based on continuous action systems, has
an explicit expression of the functions describing the continuous behavior.

The train is initially in position 0, having the velocity 0 and it starts
moving, by speeding up with acceleration a until it reaches the velocity v'.
From this point on, the train keeps going with this constant speed v'. When
it reaches the position d’, it starts decelerating with acceleration —a, until
it reaches velocity 0 and stops. The actual velocity and acceleration have
the tolerances € and &, respectively. In Fig. 2 we specify the movement
of the train as a continuous action system. We use the convention that an
assignment x :— ¢, where z is a function Real; — T and c if of type T,
stands for z:— (At-¢) (i.e., the pointwise extended constant function, rather
than the constant itself, is assigned to).

CONTINUOUS ACTION SYSTEMS AS A MODEL FOR HYBRID SYSTEMS 11

accelerating

v=(At-axt)
a*t2

R ‘

v=v'

cruising

v=(\t-v")
d = (At - d.now+v' * (t — now))

d=d'
decelerating stop
v=(At-v' —ax*(t— now)) a v=0_ |y = (At-0)
= (At - d.now + v' * (t — now) — 5 * (t — now)?) d = (At - d.now)

Fig. 3: State diagram for the Train system.

Fig. 3 shows another description of the train system, in terms of a state
diagram. This kind of description is also known as a hybrid automata [2].
Here the states are associated with the continuously evolving behavior, while
the transitions are labeled with the guards.

The train model is sequential, as shown by Fig. 3, but non-deterministic.
A change of behavior is performed when a certain position or velocity is
reached, i.e., when a guard depending on that position or velocity holds.
However, that position or velocity is non-deterministically computed in the
previous state. The attributes v' and d’' are local. They are modified when
the train is in the previous state to an approximation of their initial value.
Thus, the system changes its time behavior based on deterministic guards,
but non-determinism is achieved through non-deterministic assignments to
attributes before they are tested in guards.

4.2 Press

Our second example concerns a system that reacts to external signals pro-
duced by the environment. Fig. 4 shows a model of a press from a metal
processing factory [12]. The press works as follows. First, its lower part is
raised to the middle position. Then an upper conveyor belt feeds a metal
blank into the press. When the press is loaded (signaled by sensor; being
true), the lower part of the press is raised to the top position and the blank
is forged. The press will then move down until the bottom position and
the forged blank is placed into a lower conveyor belt. When the press is
unloaded (signaled by sensory being true), the lower part is raised to the
middle position, ready for being loaded again. The press works cyclically
and keeps evolving from one phase to another. We model these phases with

12 RALPH-JOHAN BACK, LUIGIA PETRE AND IVAN PORRES

a task attribute in the continuous action system Press shown in Fig. 4. This
attribute has the discrete values loading, pressing, moving2unload, unload-
ing, moving2load. The continuous attribute p shows the position of the press
plate and is, at different moments in time, a linearly increasing, a linearly
decreasing or a constant function of time. The positions of reference for the

press, i.e. bottom, middle, and top, are given as parameters.

Press = |(

top — |:

middle ——

bottom ——

var p,c : Realy — Real,

do

]

]

od

task : Realy — {loading, pressing, moving2unload,
unloading, moving2load}

reset(c) ; p:— middle ; task : — loading;

task.now = loading A sensori.now —

reset(c);

p:— (At-middle + v * c.t);

task :— pressing

task.now = pressing A p.now = top —

reset(c);

p:— (At-top — v * c.t);

task :— moving2unload

task.now = moving2unload N p.now = bottom —

p:— (At - bottom);

task :— unloading

task.now = unloading N\ —~sensorz.now —

reset(c);

p:— (At - bottom + v * c.t);

task :— moving2load

task.now = moving2load A p.now = middle —

p:— maddle;

task :— loading

: SENSori, SENsSora

Fig. 4: Press functioning as a continuous action system.

The press is a typical part of a control system. Control systems are es-
sentially composed from several components that work together in order to
meet the requirements of the overall system. An important feature of a com-
ponent consists in its interaction with the environment. For the press, this

CONTINUOUS ACTION SYSTEMS AS A MODEL FOR HYBRID SYSTEMS 13

interaction with the environment (the conveyor belts) is modeled with sev-
eral sensors, modeled by imported boolean attributes that can be changed
by the environment at any time. It can be seen here how an imported
attribute reflects the evolution of another component of a complex system.

5. Safety Properties

Properties of continuous action systems can be established by proving that
these properties hold for the corresponding discrete action systems. Hence,
there is no special proof theory for continuous action systems, but the stan-
dard proof theory for action systems suffices (with the exception that we
exclude Zeno behavior and ill-defined systems). In this paper, we concen-
trate on safety properties since in many cases they are essential properties
that we want to establish initially for hybrid systems.

A common characterization for a safety property is that nothing ‘bad’
happens during the life time of the system. Put in another way, a safety
property S is a ‘good’ property G that always holds, i.e., S = (Vt > 0-G.t).
We can establish S for the action system € in (2), by proving that a property
A

1 (Vt]0<t<now-G't)

is an invariant of the corresponding discrete action system €, where (V¢ >
0-G'.t = G.t). This implies the safety property, provided that the system
does not have a Zeno behavior (i.e., now will go to infinity in the system).
The safety property S holds when the system is started in an initial state
satisfying P, if and only if the following conditions are satisfied for C:

(Vt>0 -Gt = G.t)
P = wp(now :=0;S5y; N,I)
INg; = wp(S;;N,I), i=1,...,m

Consider the press example of section 4.2 and the following two safety
properties. First, we want to prove that the movable plate of the press
does not pass the limits of the machine. Formally this is expressed by
(Vt > 0-bottom < p.t < top), where p is the vertical position of the plate. In
the proofs, we assume that bottorn < middle < top. Second, we also want
to prove that p is a continuous function on Real;. We need to choose an
invariant I that allows us to establish the safety property (V¢ > 0-bottom <
p.t < top) A (p continuous on Realy) using the proof rule above.

For the first conjunct of the safety property, an invariant of the form
(Vt | 0 <t < now - bottom < p.t < top) would be sufficient. However, to
prove the global continuity property, we need a stronger invariant, which also
ensures that the press remains in the correct position during the loading and
unloading operations. The following invariant [is sufficient for establishing

14 RALPH-JOHAN BACK, LUIGIA PETRE AND IVAN PORRES

the required safety property:

I £ (pcontinuous on [0, now] A
(Vt | 0 <t < now - bottom < p.t < top) A
(Vt | 0 <t < now - task.t = loading = p.t = middle) A
(Vt | 0 <t < now - task.t = unloading = p.t = bottom,))

The first of the three conditions above is obviously discharged. Hence,
the proof must establish that the invariant is satisfied by the initialization
from the moment 0 until the first moment an action is enabled, and during
the time elapsed between the execution of two actions. Discharging the
second of the three conditions above, as well as the third condition for ¢ = 1
is demonstrated in Appendix A. Proofs of a more complex model, using
differential equations, are shown in [3].

6. Composing continuous action systems

The previous examples only describe isolated systems. For modeling com-
plex systems, where several different subsystems or components evolve con-
currently, we need to formally define the composition of continuous action
systems. We define the parallel composition of two continuous action sys-
tems similarly with the parallel composition of discrete action systems in
Section 2. For parallel composition, we may also need to hide certain at-
tributes of the system when describing more complex systems, but we ignore
this aspect here for brevity.
Thus, if we have the continuous action systems € and €’ below:

C = |(varz:Realy 5T+ Sp;dogy = S0 ...0¢,u = Spod)|:y
¢ = |(varz':Realy - T'+S;;dogy — S0 ...0g, =S, 0d)|:y

then their parallel composition is the continuous action system € || €, de-
fined by
€l e L |(varz:Real, — T,2':Realy — T * Sy ; S
do gy — 50 ...0¢,—S,0¢g;— S0 ...0g, — S, od
)N (yUy') = (2U2")

We assume here that z and 2’ are disjoint. We need to combine the contin-
uous action systems before we translate them into discrete action systems,
because the local attribute now would appear in both € and €. By com-
bining the continuous action systems first, we ensure that the combined
system uses a single now attribute, which is checked by actions from both
components.

Parallel composition essentially combines the attributes of the two com-
ponent systems and, therefore, their continuous evolution. As the actions
in the parallel composition are the combined actions of the two systems,
discrete changes will usually occur more frequently. An action in one sys-
tem may depend on an attribute in the other system, which may be again
modified by actions of the former system. This means that the behavior of

CONTINUOUS ACTION SYSTEMS AS A MODEL FOR HYBRID SYSTEMS 15

a system in a parallel composition is usually different from the behavior of
the system standing alone.

We exemplify parallel composition by extending the press model from
Section 4.2 with two conveyor belts for feeding and removing the blanks into
and from the press. These conveyor belts are operated by corresponding
engines. If there are no blanks over a belt, its engine should stop. The
movements of the two belts are independent of each other and take place at
constant speeds ©; and Os.

The press and the belts share four sensors, which become active when a
blank crosses them. We assume that sensors and sensors hold when a blank
enters them while sensor; and sensory hold when a blank leaves them. We
assume that the sensors are always deactivated between two consecutive
pieces. This can be ensured by restricting the minimum distance between
blanks. The controller of a conveyor belt keeps track of how many pieces are
on the belt, so it can disconnect the engine when it is empty. The formal
specification of the top conveyor belt is as follows:

TopBelt L |(var items : Realy — Int,
speed : Realy — Real
* items, speed :— 0,0;
do sensors.now — items :— items + 1
O sensori.now — items :— items — 1
O speed.now # 0 A items.now = 0 — speed :— 0
O speed.now = 0 A items.now # 0 — speed : — O
od
)| : sensory, sensors

The specification of the bottom conveyor belt is similar, using sensors and
sensory instead of sensor; and sensors. The complete model of the system
consists of the parallel composition of the press with the top and the bottom
conveyor belts: Factory = Press || TopBelt || BottomBelt.

7. Conclusions and Related Work

In this paper we have shown how to extend the action systems framework for
modeling hybrid systems, by introducing the notion of a continuous action
system. The attributes in continuous action systems are functions over time
and they are updated in a way that only changes their present and future
behavior. Essentially, this amounts to extending the notion of state with
both a history and a default future, thus generalizing the classical action
systems approach that only handles the present state.

This extension allows us to model systems that combine discrete control
with continuous behavior, the latter either defined by explicit functions of
time or by differential equations. We have shown how to prove safety prop-
erties of continuous action systems using the classical invariant method. We
have also shown that the continuous action system model provides a simple
way of defining the parallel composition of hybrid systems, using communi-
cation by means of shared variables. Continuous action systems are general

16 RALPH-JOHAN BACK, LUIGIA PETRE AND IVAN PORRES

and can be used to model dynamic, real-time and tolerant systems, as well
as complex control systems, see for example [3].

The idea of extending an existing formalism to model real-time systems
by introducing a variable representing the time was already presented by
Abadi and Lamport in [1]. We follow the same approach here, extending
an existing formalism to handle hybrid systems, instead of creating a new
formalism specific for such systems. This provides a clear advantage since
now we can apply all the previous results on action systems to study real-
time and hybrid models.

Ronkko and Ravn [14] have already proposed a model for combining ac-
tion systems and continuous behavior, called hybrid action system. This
approach is not intended for modeling real-time systems and has no implicit
notion of time. The continuous evolution of a variable is modeled as a spe-
cial kind of an atomic differential action. A differential action cannot be
interrupted and its bounds are specified in advance. This affects the par-
allel composition of systems, since different simultaneous actions must be
combined into a sequence of atomic actions. In the worst case, the parallel
composition of two systems with n and m actions leads to a system with
n*xm actions. In our model, parallel composition of two such systems gives a
continuous action system with n + m actions. This is a major simplification
for handling large systems.

These advantages still exist when comparing our formalism with the hy-
brid automata [2]. The number of states in the parallel composition of two
hybrid automata is also the product of the number of states of the origi-
nal automata. Moreover, the continuous action system formalism is more
expressive than hybrid automata: it allows explicit failures of the system
(modeled with the abort statement), as well as references to historical val-
ues of the attributes in guards and expressions. Compared to hybrid au-
tomata, our model also allows the attributes to be selectively updated: only
those attributes that are changed need to be mentioned in an action. There
are still some other important differences between our formalism and the
hybrid automata. In the hybrid automata formalism, transitions are fired
synchronously, while in the action system formalism actions are selected and
executed asynchronously. Continuous action systems actions are urgent, i.e.,
they are executed as soon as they are enabled. There is no notion of location
and location invariant related to continuous action systems, i.e., there is no
relation between the guard of an action and the attributes that it updates.

Another interesting model for hybrid systems is provided by the phase
transition systems [11]. In this model, the continuous behavior of the system
is modeled using a finite set of activities, from which only one can be enabled
at a certain time. Thus, a single activity completely defines the continuous
behavior of a system at a given time. Compared to this model, our approach
allows attributes to be selectively updated.

Continuous action systems model of specification is currently used for syn-
thesizing complex control systems. The next step in the development of this
formalism is to illustrate the stepwise refinement concept. This would pro-

CONTINUOUS ACTION SYSTEMS AS A MODEL FOR HYBRID SYSTEMS 17

vide for the derivation of executable control programs that are correct with
respect to their specification, given in terms of continuous actions systems.
Acknowledgment We would like to thank Cristina Cerschi, Mauno Ronk-
k6 and Hannu Toivonen for our inspiring discussions as well as the anony-
mous referees for their useful comments on the topics covered in this paper.

[1]

[2]

[4]

[5]

References

ABADI, M. AND LAMPORT, L. 1994. An Old-Fashioned Receipe for Real Time.
ACM Transactions on Programming Languages and Systems 16, 5 (September),
1543-1571.

ALUR, R., CourcouBgTis, C., HENZINGER, T.A., AND Ho, P.H. 1993. Hybrid
automata: an algorithmic approach to the specification and verification of hybrid
systems. In Hybrid Systems I, Number 736 in LNCS. Springer-Verlag, 209-229.
Back, R. J. ANp CEerscHi, C. 2000. Modeling and Verifying a Temperature
Control System Using Hybrid Action Systems. In Proc. of the 5th Int. Workshop
in Formal Methods for Industrial Critical Systems.

Back, R. J. AND KURKI-SUONIO, R. 1983. Decentralization of Process Nets
with Centralized Control. In 2nd Symp. on Principles of Distributed Computing,
Number 873 in LNCS. ACM SIGACT-SIGOPS, 131-142.

Back, R. J., PETRE, L., AND PORREs, I. 2000. Generalizing Action Systems
to Hybrid Systems. In 6th International Symposium in Formal Techniques in
Real-Time and Fault-Tolerant Systems (FTRTF'T 2000), Number 1926 in LNCS.
Springer-Verlag, 202-213.

BaAck, R. J. AND SERE, K. 1991. Stepwise Refinement of Parallel Algorithms.
In Science of Computer Programming 13, 133-180.

Back, R. J. AND SERE, K. 1994. From Action Systems to Modular Systems.
In Formal Methods Europe (FME ’94), Number 873 in LNCS. Springer-Verlag,
1-25.

Back, R. J. AND vON WRIGHT, J. 1998. Refinement Calculus - A Systematic
Introduction. Springer-Verlag.

BRANICKY, M.S. 1996. General hybrid dynamical systems: modeling, analysis
and control. In Hybrid Systems III, Number 1066 in LNCS. Springer-Verlag,
186-200.

DuksTRA, E. W. 1976. A Discipline of Programming. Prentice-Hall Interna-
tional.

KESTEN, Y., MANNA, Z., AND PNUELI, A. 1998. Verification of Clocked and
Hybrid Systems. In Lectures on Embedded Systems. Number 1494 in LNCS.
Springer Verlag, 4-73.

LEWERENTZ, C. AND LINDNER, T. 1995. Formal Development of Reactive Sys-
tems: Case Study Production Cell.. Number 891 in LNCS. Springer-Verlag.
NERODE, A. AND KouN, W. 1993. Models for Hybrid Systems: automata,
topologies, controllability, observability. In Hybrid Systems I, Number 736 in
LNCS. Springer-Verlag, 317-356.

RONKKO, M. AND RAVN, A.P. 1999. Action Systems with Continuous Behaviour.
In Proceedings of the Hybrid Systems V, Number 1567 in LNCS. Springer-Verlag,
304-323.

RONKKO, M. AND SERE, K. 1999. Refinement and Continuous Behaviour. In
Hybrid Systems: Computation and Control, Number 1569 in LNCS. Springer-
Verlag, 223-237.

18 RALPH-JOHAN BACK, LUIGIA PETRE AND IVAN PORRES

Appendix A. Proofs

We want to ensure that the model of the press always preserves the invariant

described in Section 5. We first prove below that the initialization statement
establishes this invariant.

wp(now : =0; reset(c) ; p:— (At - middle) ; task : — loading ; now : = next.gg.now, I)
= { wp rule for seq. comp. and assig., see (4) for the formula of next.gg.now}
wp(now : =0 ; reset(c) ;p:— (Mt - middle) ; task : — loading,
(Vnow' | now' = min{t’ > now| (task.t' = loading A sensory.t') V
(task.t' = pressing A p.t' = top) V
(task.t’ = moving2unload A p.t' = bottom) V
(task.t’ = unloading A sensora.t') V
(task.t' = moving2load A p.t' = middle)

p continuous on [0, now'] A

(V|0 < t < now’ - bottom < p.t < top) A

(V|0 < t < now' - task.t = loading = p.t = middle) A

(V|0 < t < now' - task.t = unloading = p.t = bottom))

= {wp rule for seq. comp. and assig., future update, splitting ranges, predicate calc.}
wp(now : =0 ; reset(c) ; p:— (At - middle),

(Vnow' | now' = min{t' > now| (loading = loading A sensori.t')V
(loading = pressing A p.t' = top)V
(loading = moving2unload A p.t' = bottom)V
(loading = unloading A sensors.t')V
(loading = moving2load A p.t' = middle)

p continuous on [0, now’] A
(V|0 < t < now’ - bottom < p.t < top) A
(Vt|0 < t < now - task.t = loading = p.t = middle) A
(Vtlnow < t < now' - loading = loading = p.t = middle) A
(Vt|0 < t < now - task.t = unloading = p.t = bottom) A
(Vtlnow < t < now' - loading = unloading = p.t = bottom)))
= {predicate calc.}
wp(now : =0 ; reset(c) ; p:— (At - middle),
(Vnow' | now' = min{t' > now|sensor;.t'}-
p continuous on [0, now'] A
(V£|0 < t < now' - bottom < p.t < top) A
(Vt|0 <t < now - task.t = loading = p.t = middle) A
(Vtlnow < t < now' - p.t = middle) A
(Vt|0 < t < now - task.t = unloading = p.t = bottom)))
= {wp rule for seq. comp. and assig., future update}
wp(now : =0 ; reset(c),
(Vnow' | now’ = min{t' > now|sensor;.t'}-
p/now/middle continuous on [0, now'] A
(Vt|0 < t < mow - bottom < p.t < top) A
(Vt|now < t < now' - bottom < middle < top) A
(Vt|0 <t < now - task.t = loading = p.t = middle) A
(Vtlnow < t < now' - middle = middle) A
(0 < t < now A task.t = unloading = p.t = bottom)))
= {bottom < middle < top is an assumpt. of the model, predicate calc. }

CONTINUOUS ACTION SYSTEMS AS A MODEL FOR HYBRID SYSTEMS

wp(now : =0 ; reset(c),
(Vnow' | now' = min{t' > now|sensor;.t'}-
p/now/middle continuous on [0, now'] A
(Vt|0 < t < now - bottom < p.t < top) A
(Vt|0 <t < now - task.t = loading = p.t = middle) A
(Vt|0 < t < now - task.t = unloading = p.t = bottom)))
= {wp rule for seq. comp., future update}
wp(now : =0, wp(reset(c),
(Vnow' | now' = min{t' > now|sensor;.t'}-
(At - if t < now then p.t else middle fi) continuous on [0, now'] A
(Vt|0 <t < now - bottom < p.t < top) A
(Vt|0 <t < now - task.t = loading = p.t = middle) A
(Vt|0 < t < now - task.t = unloading = p.t = bottom))))
= {c does not appear in the postcond., wp rule for assig. applied twice}
(now' = min{t' > 0|sensor:.t'}-
(At - if t < 0 then p.t else middle fi) continuous on [0, now'] A
(Vt|0 <t < 0-bottom < p.t < top) A
(Vt|0 <t < 0 - task.t = loading = p.t = middle) A
(Vt|0 <t < 0 - task.t = unloading = p.t = bottom))
= {assume ¢t < 0 = F, predicate calc.}
(Vnow' | now’ = min{t' > 0|sensory.t'}:
(At - middle) continuous on [0, now'])
= {(At - middle) is a ct. funct., so it is continuous}
T

19

The last step in the proof above assumes that the minimum exists (sensorq

p continuous on [0, now] A

(Vt|0 < t < now - bottom < p.t < top)A

(Vt|0 < t < now - task.t = loading = p.t = middle)A
(Vt|0 < t < now - task.t = unloading = p.t = bottom)A
task.now = loading A sensori.now

F wp(reset(c) ; p:— (At - middle + v x c.t) ; task : — pressing ; now : = next.gg.now, I)

= {wp rule for seq. comp.(twice), wp rule for assig., see (4) for next.gg.now}
wp(reset(c) ;p:— (At - middle + v * c.t), wp(task : — pressing,
(Vnow' |now’ = min{t' > now| (task.t' = loading A sensor,.t') V
(task.t' = pressing A p.t' = top) V
(task.t' = moving2unload A p.t' = bottom) V
(task.t’ = unloading A sensora.t') V
(task.t’ = moving2load A p.t' = middle))

p continuous on [0, now'] A

(V|0 < t < now' - bottom < p.t < top) A

(V¢|0 < t < now' - task.t = loading = p.t = middle) A
(Vt|0 <t < now' - task.t = unloading = p.t = bottom)))

= {wp rule for seq. comp. and assig., future update, splitting ranges, predicate calc.}

wp(reset(c);p:— (At - middle + v * c.t),
(Vnow'|now’ = min{t’ > now| (pressing = loading A sensori.t') V
(pressing = pressing A p.t' = top) V
(pressing = moving2unload A p.t' = bottom) V
(pressing = unloading A sensors.t') V
pressing = moving2load A p.t' = middle
ing ing2load A p.t' iddl

will eventually be on).Below we consider whether the system behaves cor-
rectly after the execution of the first action.

20 RALPH-JOHAN BACK, LUIGIA PETRE AND IVAN PORRES

p continuous on [0, now'] A
Vt|0 < t < now' - bottom < p.t < top) A
Vt|0 < t < now - task.t = loading = p.t = middle) A
Vtlnow < t < now' - pressing = loading = p.t = middle) A
Vt|0 < t < now - task.t = unloading = p.t = bottom) A
(Vtlnow < t < now' - pressing = unloading = p.t = bottom))
= {predicate calc., wp rule for seq. comp.}
wp(reset(c),wp(p :— (At - middle + v = c.t),
(Vnow'|now’ = mi?{l{t' > tL]ow|p.t' = top}) -
p continuous on [0,now’| A
(V|0 < t < now’ - bottom < p.t < top) A
(Vt|0 <t < now - task.t = loading = p.t = middle) A
(Vt|0 < t < now - task.t = unloading = p.t = bottom))
= {invariant assumpt.}
wp(reset(c),wp(p :— (At - middle + v = c.t),
(Vnow' [now' = miT[L{t' > CL]0w|p.t' = top}) -
p continuous on [0, now’| A
(V|0 < t < now’ - bottom < p.t < top)))
= {future update}
wp(reset(c), (Ynow' [now’ = min{t' > now|middle + v x c.t' = top}-
p/now/(\t - middle + v * c.t) continuous on [0, now'] A
(Vt|0 < t < mow - bottom < p.t < top) A
(Vtlnow < t < now’ - bottom < p.t < top)))
= {invariant assumpt.}
wp(reset(c), (Ynow' [now’ = min{t' > now|middle + v x c.t' = top}-
p/now/ (Mt - middle + v * c.t) continuous on [0, now'] A
(Vtlnow < t < now’ - bottom < p.t < top)))
= {reset(c) = (c:— (At -t — now)), wp rule for assig., future update}
(Vnow'|now’ = min{t' > now|middle + v * (' — now) = top}-
(Mt - if t < now then p.t else middle + v * (t — now) fi) continuous on [0, now'] A
(Vt|now < t < now' - bottom < middle + v * (t — now) < top))
= {computing min function}
o min{t' > now|middle + v * (' — now) = top}
= {assumption top > middle > 0, v > 0}
top — middle
v
top — middle
v
(Mt - if t < now then p.t else middle + v * (t — now) fi) continuous on [0, now'] A
(Vt|now < t < now' - bottom < middle + v * (t — now) < top))
= {1-point rule}
(At - if t < now then p.t else middle + v * (t — now) fi)
top — middle
v

Y Y)

now +

- (Vnow'|now’ = now +

continuous on [0, now +] A

top — middle

(Vt|now < t < now + - bottom < middle + v * (¢ — now) < top)

= {assumpt. v > 0, bottom < middle < top, real analysis, properties of T}
(At - if t < now then p.t else middle + v * (t — now) fi)
top — middle
—
= {p cont. on [0, now], p.now = middle, lim,_, ,,,,~ p-t = middle = p.now}

continuous on [0, now +

We have proved that the first action preserves the invariant of the sys-
tem. The proofs for the other actions follow a similar pattern as the proofs
presented so far.

