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Abstract. We introduce a new algebraic model for program variables, suitable for reasoning about recursive
procedures with parameters and local variables in a mechanical verification setting. We give a predicate
transformer semantics to recursive procedures and prove refinement rules for introducing recursive procedure
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Keywords: Refinement, Recursive procedures, Semantics, Hoare logic, Mechanical verification.

1. Introduction

When giving a semantics for an imperative programming language, suitable for mechanical verification,
we should deal with the fact that program variables have different types. Many computational models
[Hes99, Sta99, Sta00, Lai00, CvW02, Gor88], some of which are used in mechanical verification, are based
on states represented as tuples, with one component for each program variable. Accessing or updating a
specific program variable in a mechanical verification setting requires accessing or updating the corresponding
component in the tuple. The problem becomes even more complicated when working with local variables.
Then we should add or delete components from the tuple. This extra calculus makes the reasoning about
the correctness of a program more complicated.

1 This work is based on an earlier work: Reasoning about recursive procedures with parameters. In Proceedings of the Workshop
on Mechanized Reasoning about Languages with Variable Binding, 2003, Uppsala, Sweden, ACM Press
Correspondence and offprint requests to: Ralph-Johan Back and Viorel Preoteasa
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An intuitive alternative approach is given in [BvW98]: two functions, val.x and set.x, are introduced for
each program variable x. The function val.x is defined from states to the type of x and val.x.σ is the value
of the program variable x in the state σ. The function set.x.a is defined from states to states and sets the
program variable x to a in a given state. These functions are required to satisfy some behavioral axioms,
for example, one axiom says that changing the value of one program variable leaves the rest of the program
variables unchanged. All the program constructs that deal with program variables are defined using set and
val. A drawback of this approach is that, as in the case of tuples or frames, the introduction of new program
variables is done by changing the state space.

We propose a cleaner solution which handles the introduction of local variables without changing the
state space. We replace the way local variables are introduced in [BvW98]. Our main goal is to be able to
reason about recursive procedures so that at any recursive call the procedure parameters are saved (in a
stack) and the procedures work with these parameters as if they were new. More generally, we want to be
able to save any program variable x at some point during the program execution, work with x as if it were
new, and then restore the old value of x. This should be possible as often as needed.

Last but not least we want to avoid explicitly dealing with stack-like structures in our calculus. We also
want to avoid any additional calculus (for tuples or frames) except for the predicate transformers and program
expressions one. We only want to have program constructs that satisfy some specific desired properties and
give us enough power to reason about recursive procedures with parameters and local variables, without
using a stack or any additional calculus.

The contribution of the paper is a new axiomatic model of program variables suitable for implementa-
tions in a theorem prover. We give a predicate transformer semantics [Dij75, Dij76] for mutually recursive
procedures with value and value–result parameters and local variables. We introduce new refinement rules
and Hoare [Hoa69] total correctness rules for local variables, procedure parameters and recursive procedures.
The Hoare rules are proved consistent with respect to the predicate transformer semantics. Most of these
rules have no side conditions hence they are easier to apply than the ones in the literature. When the rules
have side conditions they are straightforward to verify and the verification can be done automatically. We
introduce a special form of Hoare specification statement which fully specifies a program without the help
of any (syntactic) side conditions. We also prove a theorem that connects these specification statements
to refinement specifications. We have implemented this theory and proved all the results of this paper in
the PVS theorem prover [OSRSC01]. The implementation follows very closely the theory presented here.
However, throughout the paper, we present the significant technical details of the implementation.

The overview of the paper is as follows. We discuss related work in Section 2. Section 3 contains some
basic definitions and facts about the Refinement Calculus [Bac78, Bac80, Mor87, Mor90b, Mor90a, BvW98].
In Section 4, we introduce the primitive functions that we use to manipulate program variables. In Section 5
we give a semantic notion of program expressions. Using the primitive functions defined in Section 4 we
define in Section 6 some program statements for introducing local variables and prove some properties about
them. In Section 7 we give a least fixpoint semantics for recursive procedures with parameters and local
variables and prove a refinement rule for introducing recursive procedure calls. Based on the refinement rule
we prove, in Section 8, a Hoare total correctness rule for recursive procedures, and parameters. We discuss
refinement and Hoare specification statements in Section 9 in both the refinement calculus and Hoare logic
and prove a theorem connecting the two. Section 10 contains concluding remarks.

2. Related work

Back and von Wright [BvW98] represent a program variable x as a pair of functions (val.x, set.x) – val.x for
getting the value of x in a state, and set.x for setting x to some value in some state. The sentence var x1, . . . , xn

indicates that the program variables x1, . . . , xn satisfy certain assumptions. A program refinement using
x1, . . . , xn is done under the assumptions var x1, . . . , xn. As a consequence, one should know in advance
what program variables are needed in order to include them in the assumptions. A solution to this problem
would be to start with an infinite set of program variables and then use as many as needed. However, because
every program variable has at least one assumption associated with it, we would need to state an infinite
number of assumptions, which is impossible in a mechanical verification setting.

Reynolds [Rey81b] introduces the more general concept of acceptors, which are functions mapping values
into state transformers. A program variable is modeled as a pair of an acceptor and an expression. The
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acceptor and expression used in such a pair correspond to set.x and val.x of Back and von Wright [BvW98].
However, no assumptions about the behavior of the program variables are made.

In [BvW98] name collisions (between actual and formal parameters) are handled by renaming. This
usually requires changing the state space at procedure calls, and any nested (or recursive) calls are then
made in the new (extended) state space. In an improved version of this variable model [BvW03] changing
the state space is no longer necessary. The latter approach of handling local variables is similar to ours, but
they use a different set of primitive functions, and their focus is on refining parallel composition of action
systems, while our focus is on recursive procedures with parameters.

Staples [Sta98, Sta99, Sta00] models the state space as a Cartesian product over a set of variables V of
the dependent types τ(v), v ∈ V . When entering local blocks or calling procedures, the types of variables
may change so the state space may change as a result. In order to give a predicate transformer semantics
the author needs to define the statements over all possible state spaces. Because the state space changes,
the semantics and refinement rules of (recursive) procedures are complicated. Another limitation is that
procedures cannot access global variables.

Hesselink [Hes99] gives a predicate transformer semantics for parameterless recursive procedures with
local variables and access to global variables. Based on this semantics, a Hoare total correctness rule is
proved. Hesselink, similarly to Staples, uses a set (frame) F of program variables, and the state space is
the product over F of the types of the program variables. A rich logic that connects (changing) frames to
predicate transformers, is developed in order to give proper semantics to recursive procedures.

Kleymann [Kle99] gives an operational semantics for an imperative deterministic language with recursive
procedures. He gives a complete set of Hoare total correctness rules with respect to the operational semantics.
His approach is simple, but limited to handling procedures without parameters and local variables. Based
on the operational semantics, the author also gives a predicate transformer semantics. The latter is obtained
easily since the state space does not change (there are no local variables) and the language is deterministic. In
[Kle98] Kleymann introduces recursive procedures with local variables. Similarly to our approach the author
uses a dependent type technique to represent program variables of various types. However, the author does
not define a predicate transformer semantics for the language. Contrasting with our approach, adding a local
variable in [Kle98] seems to require a change in the state space. In turn, this change may add complexity
when giving a predicate transformer semantics for the language.

In [vO99] von Oheimb gives an operational semantics for an imperative deterministic language with
recursive procedures, and his procedures can have value and result parameters and local variables. He gives
then a (relatively) complete set of Hoare partial correctness rules with respect to the operational semantics.
When procedure calls occur the state space changes. The correctness rule for recursive procedures is very
simple and intuitive, but the rules for procedure parameters and local variables are not. However, in his
approach all program variables have the same type, which is an unrealistic assumption.

Reynolds [Rey81a] gives an axiomatic semantics for recursive procedures. The main procedure mechanism
is call-by-name and uses the copy rule. This mechanism is also used to define procedures with value, result,
and reference parameters. Since identifier collision might occur, renaming of program variables may be
needed. However, the renaming of variables leads to the introduction of new variables, which in turn might
cause the state space to change.

In [Rey81a] recursive procedures are handled by extending the logic with new primitives that express
when two expressions do not interfere. A distinction between environments and states of computation is
made. Environments map identifiers to meanings; in particular, an environment may map two different
identifiers to the same meaning. When a procedure is specified, the new non-interference primitives might be
needed in order to specify that some variables do not interfere with each other. Such a specification would
then be satisfied only in the environments in which those variables are mapped into distinct meanings. Lack
of interference is expressed more easily in our formalism, since having a type of all program variables means
that two program variables x and y do not interfere as long as they are different (x 6= y).

Gries and Levin [GL80] give Hoare proof rules for multiple assignments and procedures. The language
has one-dimensional arrays and records. Procedures have reference and value parameters and access to global
program variables. The rule for procedures is given only for the case when there is no aliasing among the
global program variables and reference arguments. The rule is also adapted to result parameters instead of
reference parameters. This is possible mainly because of the no-aliasing assumption. Finally, they treat a
very special case of aliasing. The paper does not treat recursive procedures. The authors give an axiomatic
semantics, so there is no need to talk about the state representation.
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3. Preliminaries

We use higher–order logic [Chu40] as the underlying logic. In this section we recall some facts about the
refinement calculus [BvW98].

A state space is a type State of higher–order logic. We call an element σ ∈ State a program state or
simply a state. A state transformer is a function f : State → State that maps states to states. We denote
by Func.State all state transformers. We use the notation f.σ for function application, f ; g for forward
functional composition, i.e. (f ; g).σ = g.(f.σ) and lambda notation for functions (λx • x + 3). We denote
the identity function on State with id.

We denote by bool the Boolean algebra with two elements. For a type X, 〈Pred.X, ∪, ∩, ¬, false, true〉
is the Boolean algebra of predicates over (subsets of) X.

A state relation is a binary relation on State, i.e. a function of type State → State → bool. We denote
by Rel.State all binary relations on State. We think of a relation R as a non-deterministic state transformer,
transforming a state σ to some state σ′ such that R.σ.σ′ holds. We extend pointwise the operations from
Pred.State to operations on Rel.State. We denote by R ; R′ the composition of the relations R and R′, and
by R−1 the inverse of the relation R. We call a relation R total if for all x there exists y such that R.x.y. If
f ∈ Func.State then we define |f | ∈ Rel.State by: |f |.σ.σ′ = (f.σ = σ′). The relation |f | is total.

Programs, denoted by MTran.State, are modeled by monotonic predicate transformers, i.e. monotonic
functions from Pred.State to Pred.State. 〈MTran.State, v, t, u〉 is a complete lattice where v, t, u are the
pointwise extensions of ⊆, ∪, ∩ on predicates. The complete lattice operations on predicate transformers are
interpreted as operations on programs: S v T – the refinement relation, ui∈ISi – the demonic choice, and
ti∈ISi – the angelic choice.

We denote by S ; T the functional composition of predicate transformers, the sequential composition of
programs, and by skip the identity predicate transformer.

In addition to these program constructs, we give the definition of some others:
{p}.q = p ∩ q (assertion)
[p].q = ¬p ∪ q (assumption or guard)

[R].q.σ = (∀σ′ •R.σ.σ′ ⇒ q.σ′) (demonic update)

[f ].q = [|f |] = {|f |} (functional update)

if p then S else T fi = [p] ; S u [¬p] ; T (conditional program)

where p, q are predicates, R is a state relation, f is a state function, and S, T are predicate transformers.
We call a predicate transformer S conjunctive if for all predicates p and q, we have S.(p∧ q) = S.p∧ S.q.
Many properties [BvW98] relating functions, relations and predicate transformers hold. In the next lemma

we list some that we will use later.

Lemma 1. If p, q are predicates, f is a function, R, Q are relations and S is a predicate transformer then
the following hold

(i) if R ⊆ |f |−1 and R is total then R ; |f | = Id.

(ii) {p ∧ q} = {p} ; {q}
(iii) [R] is conjunctive

(iv) R ⊆ Q ⇒ [Q] v [R]

(v) S is conjunctive ⇒ {S.q} ; S = S ; {q}
We denote predicates by p, q, functions by f, g, predicate transformers by S, T , and states by σ, σ′. We

will use Func, Pred, Rel, and MTran instead of Func.State, Pred.State, Rel.State, and MTran.State, since State
is fixed.

All these constructs are implemented in PVS exactly as they are presented here.

4. Program variables axioms

We denote by Var the type of program variables. If x is a program variable (x ∈ Var) then T.x denotes its
type. Both Var and T.x are assumed to be nonempty types in higher order logic.
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We next introduce functions for accessing and updating the value of program variables.

val.x : State → T.x (the value of x)
set.x : T.x → State → State (updating x)

As expected, for x ∈ Var, σ ∈ State, and a ∈ T.x, val.x.σ is the value of program variable x in state σ, and
set.x.a.σ is the state obtained from σ by setting the value of variable x to a.

Local variables are modeled using two statements (add and del) which intuitively correspond to stack
operations – adding a variable to the stack and deleting it from the stack. In particular, these statements
make it possible to save a program variable x at any point during execution, work with x as if it were new,
and restore the old value of x. Of the two statements, only del is a primitive one in our calculus, whereas
add will be defined in Section 6 as the relational inverse of del.

del.x : State → State (deleting local x)

A consequence of this treatment of program variables is that a program variable x cannot change its
type in a local scope. However, we overcome this problem by choosing a semantic map which translates a
syntactic program into a predicate transformer by for example prefixing all variable names with their type
names, so two (syntactic) program variables with the same name but different types would be mapped into
different program variables.

The behavior of the primitives val, set and del is described using the following axioms. Note that although
the intuition behind del is described in terms of a stack, the axioms do not make any assumptions about the
structure of the program state.

(a) val.x.(set.x.a.σ) = a

(b) x 6= y ⇒ val.y.(set.x.a.σ) = val.y.σ

(c) set.x.a ; set.x.b = set.x.b

(d) x 6= y ⇒ set.x.a ; set.y.b = set.y.b ; set.x.a

(e) set.x.(val.x.σ).σ = σ

(f) del.x is surjective

(g) x 6= y ⇒ del.x ; val.y = val.y

(h) set.x.a ; del.x = del.x

(i) x 6= y ⇒ set.x.a ; del.y = del.y ; set.x.a

The axioms (a) – (e) are the same as the assumptions in [BvW98].
Axiom (f) says that any state can be reached by deleting the program variable x from some state. Axiom

(g) states that if x and y are distinct program variables, then the value of y remains unchanged after deleting
x. Axiom (h) states that deleting x after setting it to some value is the same as deleting x directly. Finally,
axiom (i) says that it is not important in which order we set and delete two distinct program variables x
and y.

The types of the functions val, set, and del depend on their first argument (T.x), which is why we chose
to implement them in PVS using the dependent type mechanism. This, in particular, means that all T.x
should have the same super-type, which is implemented as a generic (nonempty) type ProgType. The program
variables theory then depends on ProgType, i.e., is a parameterized theory with ProgType as parameter. The
benefit to using this approach is that the theories we develop do not make any assumptions about how
ProgType is to be instantiated.

When performing concrete verifications we need to instantiate ProgType accordingly. This can be easily
done by considering the disjoint union of the program variable (values) types that we need. If, say, we need
variables of types bool and nat, then their disjoint union bool + nat, denoted as MyProgType, is used to
instantiate ProgType. Moreover, we denote by Nat the subtype of MyProgType corresponding to the nat
component of the disjoint union, and lift all operations on nat to corresponding ones on Nat. In order to use
a program variable x with values from the natural numbers, we axiomatize: T.x = Nat. However, working
with the types of the program variables becomes as simple as working with the PVS basic types once suitable
rewrite rules are introduced; type conditions would then be discharged automatically just like they would if
we were using the basic types.

Although building an algebra of program data-types requires some work, the mechanism is flexible and
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can be used to define any collection of data-types, such as arrays and pointers. The fact that we do not know
beforehand which types may be used in a refinement is not a limitation in our calculus because we can add
new types to our program data-type algebra without invalidating results that have already been proved.

4.1. A model

In order to show that the axioms are consistent, we give a model in which they are satisfied. This model is
also useful for a better understanding of the meaning of val, set and del.

For a type A we denote by 〈A∗, ·, ε〉 the free monoid of finite lists over A with “·” the concatenation of
lists and ε the empty list. We assume A ⊂ A∗ and for a1, . . . , an ∈ A we denote by (a1, . . . , an) ∈ A∗ the list
of a1, . . . , an.

Let ProgType be the disjoint union of all program variables types and Stack = ProgType∗. We take

State =

 ∏
x∈Var

T.x

× Stack

A state σ ∈ State has two components (v, s). The component v is a tuple with one component for each
program variable. The component corresponding to x in v, denoted vx, represents the value of x in the state
σ. The component s of σ is the stack of the computation.

Formally we define val, set and del as:

val.x.(v, s) = vx

set.x.a.(v, s) = (v′, s) where v′y = if x = y then a else vy fi

del.x.(v, s) =
{

set.x.a.(v, s′) if s = a · s′ ∧ a ∈ T.x

(v, s) if s = ε ∨ (s = a · s′ ∧ a 6∈ T.x)

With these definitions it is easy to prove that all axioms (a) – (i) are satisfied.
In this model the statement add.x (defined as the inverse of del.x) saves the value of x in the stack and

then makes the value of x undefined.
In [BvW03] an approach similar to ours for treating program variables is followed: the behavior of the

program variables is given by a set of functions (add, del, and val) that satisfy some axioms, and a model is
provided. Our axioms are also valid in the model provided in [BvW03], but the axioms from [BvW03] are
not valid in our model.

4.2. Lists of program variables

We often need to have multiple assignments in programs. Procedures can also have more than one parameter.
In order to define such program constructs we need to introduce lists of program variables. Although in
theory lists of program variables do not require a special treatment, when working with a theorem prover
this problem should be considered carefully.

We denote by VarList the set Var∗. We use the same notation x, y, z, . . . to denote both program variables
and lists of program variables. Unless specified, x, y, z denote lists of program variables.

For x ∈ VarList we define T.x ⊆ ProgType∗ the type of the list of program variables x = (x1, . . . , xn) by

T.(x1, . . . , xn) = {(a1, . . . , an) | (∀i • ai ∈ T.xi)}

We also extend the functions val, set and del to lists of program variables.

val.x.σ = (val.x1.σ, . . . , val.xn.σ)
del.x = del.x1 ; . . . ; del.xn

set.x.a = set.x1.a1 ; . . . ; set.xn.an

where a = (a1, . . . , an) ∈ T.x.
The predicate var.x is true if and only if all variables in x are distinct. We denote by x ∩ y the set of
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program variables that occur in both x and y and by x− y the list x from which the variables occurring in
y have been deleted.

The axioms of the program variables can be easily generalized to properties about lists of program
variables.

Lemma 2. If x, y ∈ VarList, σ ∈ State and a, b are of appropriate types, then

(i) var.x ⇒ val.x.(set.x.a.σ) = a

(ii) x ∩ y = ∅ ⇒ val.y.(set.x.a.σ) = val.y.σ

(iii) set.x.a ; set.x.b = set.x.b

(iv) x ∩ y = ∅ ⇒ set.x.a ; set.y.b = set.y.b ; set.x.a

(v) set.x.(val.x.σ).σ = σ

(vi) del.x is surjective

(vii) x ∩ y = ∅ ⇒ del.x ; val.y = val.y

(viii) set.x.a ; del.x = del.x

(ix) x ∩ y = ∅ ⇒ set.x.a ; del.y = del.y ; set.x.a

Proof. The proof can be done by induction on x and y and uses the fact that val, del, set commute for
distinct program variables.

5. Program expressions

A syntactic program expression is built from program variables and constants using some operators. So if x
and y are program variables then x + 2 ∗ y is a syntactic program expression.

The value of a program expression e in a state σ, denoted val.e.σ, is defined by structural induction on e:

• if e is a variable x then val.e.σ = val.x.σ

• if e is a constant c then val.e.σ = c

• if e is op(e1, . . . , en) for some operator op and some expressions ei then val.e.σ = op(val.e1.σ, . . . , val.en.σ)

The semantics of a syntactic program expression of type A is a function from State to A. In general, we
will consider a program expression of some type A as being any function from State to A. An expression
of type bool is called Boolean program expression. The Boolean expressions coincide with the predicates on
State. We denote by NatExp the type of natural program expressions, i.e. State → Nat.

If e1, e2, . . . , en are program expressions of types A1, A2, . . . , An, respectively, then we denote by
(e1, e2, . . . , en) the program expression (λσ • (e1.σ, e2.σ, . . . , en.σ)) of type A1 ·A2 · . . . ·An.

We denote by e
.= e′ the program expression (λσ • e.σ = e′.σ), the states of computation in which e and

e′ are equal. When there is no confusion, we sometimes use the notation x for the program expression val.x.
For example we use x + 1 for the program expression (λσ • val.x.σ + 1).

Theorem 3. If S, T ∈ MTran and e : State → A is a program expression where A 6= ∅ then

(i) ta∈A{e
.= a} = skip

(ii) (∀a ∈ A • {e .= a} ; S v T ) ⇔ S v T

Proof. The relation (i) follows easily by expanding the definitions and using the fact that A is a non-empty
type. The relation (ii) can be proved using (i) and the fact that the sequential composition of programs
left-distributes over arbitrary nonempty joins.

Definition 4. Let e : State → A, x ∈ VarList, and e′ : State → T.x. We define e[x := e′] : State → A, the
substitution of e′ for x in e as: e[x := e′].σ = e.(set.x.(e′.σ).σ)

Lemma 5. If x, y ∈ VarList and f : State → State then
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(i) var.x ⇒ (val.x)[x := e] = e

(ii) op(e1, e2)[x := e] = op(e1[x := e], e2[x := e])

(iii) x ∩ y = ∅ ⇒ (val.y)[x := e] = val.y

Next we introduce the notion of x-independence for an expression e : State → A, as the semantic
correspondent of the syntactic condition that the program variables x do not occur free in e.

Definition 6. Let e : State → A be an expression, x ∈ VarList and f : State → State be a function. We say
that e is f–independent if e = f ; e. We say that e is x–independent if

(∀f : State → State • (∀y ∈ Var • y ∩ x = ∅ ⇒ val.y = f ; val.y) ⇒ e is f–independent).

We say that e is set.x–independent if e is set.x.a-independent for all a ∈ T.x.

The idea behind the definition of x–independent is that if a function f : State → State does not change any
program variable y (except possibly x), then f does not change the value of e either.

Lemma 7. If e is a syntactic program expression that does not contain x free then val.e is x–independent.

The proof can be done by structural induction on e.

Lemma 8. If e, f are program expressions of appropriate types then

(i) (del.x; e)[x := f ] = del.x; e

(ii) x ∩ y = ∅ ∧ f is del.x–independent ⇒ (del.x; e)[y := f ] = del.x; (e[y := f ])

The way program expressions are defined so far allows them to depend not only on the current values
of the program variables but also on their values from the stack. For example del.x ; val.x is a program
expression that depends on the previous value of x. We define a subclass of program expressions that depend
only on the current values of program variables.

Two states σ and σ′ are val-equivalent, denoted by σ ∼ σ′, if for all program variables x, (val.x.σ =
val.x.σ′). We call a program expression e, val-determined if for all σ and σ′ we have σ ∼ σ′ ⇒ e.σ = e.σ′.

The fact that del.x ; val.x is val-determined cannot be proved using the axioms since this fact is not true
in the model we provided and all provable sentences must be true in the model.

The following lemma will be used to prove an assignment-like rule for a new program construct we define
in the next section.

Lemma 9. If x ∈ VarList and f : State → State is a function such that val.y is f–independent for all y ∈ Var,
y ∩ x = ∅, then set.x.a.σ ∼ set.x.a.(f.σ).

Lemma 10. If e is a syntactic program expression, then the program expression val.e is val-determined.

6. Program statements

In this section we introduce some program constructs and prove some properties about them and their
compositions. These are monotonic predicate transformers based on functions or demonic updates. When
proving an equality between programs based on functions and demonic updates, we work at the relations level.
Since the demonic update is a monoid homomorphism from relations to monotonic predicate transformers
the results can then be easily lifted to monotonic predicate transformers.

Let x ∈ VarList, e be a program expression of type T.x and b : T.x → Pred. We recall the definition of
x := e : State → State (the multiple assignment) and (x | b) : State → State → bool (the nondeterministic
assignment) from [BvW98].

(x := e).σ = set.x.(e.σ).σ

(x | b).σ.σ′ = (∃a ∈ T.x • b.a.σ ∧ set.x.a.σ = σ′)

Sometimes we use the notation (x := a | b.a) for (x | b). All properties from [BvW98] regarding the assignment
statements also hold in our framework.

Definition 11. If x ∈ VarList and e : State → T.x, then we define:
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• Add local variables:
add.x.σ.σ′ = (σ = del.x.σ′)

• Add and initialize local variables:
add.x.e.σ.σ′ = (∃σ0 • σ = del.x.σ0 ∧ set.x.(e.σ).σ0 = σ′)

• Save and delete local variables:
del.x.y.σ = set.y.(val.x.σ).(del.x.σ)

We use the function del.x.y to implement procedures with value–result parameters. del.x.y deletes a
variable from the stack and saves its value into another variable.

We denote by Add.x, Add.x.e, Del.x, and Del.x.y the predicate transformers [add.x], [add.x.e], [del.x], and
[del.x.y], respectively.

Theorem 12. If x, y ∈ VarList then

(i) Add.x ; Del.x = skip

(ii) Add.x.e ; Del.x = skip

Proof. Using Lemma 1.(i).

Lemma 13. If x, y, p, and e are of appropriate types then

(i) Del.x.p = del.x ; p

(ii) Add.x.(del.x ; p) = p

(iii) Add.x.e.(del.x ; p) = p

(iv) p is val–determined ⇒ Add.x.e.p = p[x := e]

(v) p is set.y–independent ⇒ Del.x.y.p = del.x ; p

(vi) p is val–determined and set.(x− y)–independent ⇒ Del.x.y.p = p[y := x]

Proof. (i) and (v) follow directly from the definitions.
The equalities (ii) and (iii) follow from Lemma 12 and (i).

We prove (iv):

Add.x.e.p.σ

= {Definition}
(∀σ′ • add.x.e.σ.σ′ ⇒ p.σ′)

= {Definition}
(∀σ′ • (∃σ′′ • σ = del.x.σ′′ ∧ set.x.(e.σ).σ′′ = σ′) ⇒ p.σ′)

= {Quantifier properties}
(∀σ′, σ′′ • σ = del.x.σ′′ ∧ set.x.(e.σ).σ′′ = σ′ ⇒ p.σ′)

= {Quantifier properties}
(∀σ′′ • σ = del.x.σ′′ ⇒ p.(set.x.(e.σ).σ′′))

= {p is val–determined and set.x.(e.σ).σ′′ ∼ set.x.(e.σ).(del.x.σ′′) by Lemma 9}
(∀σ′′ • σ = del.x.σ′′ ⇒ p.(set.x.(e.σ).(del.x.σ′′)))

= {Quantifier properties}
(∃σ′′σ = del.x.σ′′) ⇒ p.(set.x.(e.σ).σ

= {del.x is surjective}
p.(set.x.(e.σ).σ

= {del.x is surjective}
p[x := e].σ

We prove (vi):
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Del.x.y.p.σ

= {Definition}
p.(set.y.(val.x.σ).(del.x.σ))

= {p is set.(x− y)–independent}
p.(set.(x− y).a.(set.y.(val.x.σ).(del.x.σ)))

= {Definition of set for lists of program variables}
p.(set.(x− y, y).(a, val.x.σ).(del.x.σ))

= {Lemma 9}
p.(set.(x− y, y).(a, val.x.σ).σ)

= {p is set.(x− y)–independent}
p.(set.y.(val.x.σ).σ)

= {Definition}
p[y := val.x].σ

Theorem 14. If p is a predicate then

(i) {del.x; p} ; Del.x = Del.x ; {p}
(ii) {p} ; Add.x = Add.x ; {del.x; p}
(iii) {p} ; Add.x.e = Add.x.e ; {del.x; p}
(iv) p is val-determined ⇒ {p[x := e]} ; Add.x.e = Add.x.e ; {p}

Proof. Using Theorem 13 and Lemma 1.(v)

Theorem 15. If x, y ∈ VarList have the same type, e is program expression of type T.x, and b is a Boolean
expression, then

(i) x := e ; Del.x = Del.x

(ii) x ∩ y = ∅ ∧ e is del.x–independent ⇒ y := e ; Del.x = Del.x ; y := e

(iii) Del.x v [x | b] ; Del.x

(iv) var.x ∧ e is del.x–independent ⇒ x := e ; Del.x.y = Del.x ; y := e

Proof. The properties (i) and (ii) are straightforward consequences of Lemma 2. The properties (iii) and
(iv) can be easily proved by expanding the definitions and using Lemma 2.

7. Procedures

In this section we show how recursive procedures can be modeled using the program construct add and del.
We define procedures that have value and/or value–result parameters. These procedures could also have
local variables.

Definition 16. We call an element from A → MTran a procedure with parameters from A or simply a
procedure over A. We denote by Proc.A the type of all procedures over A.

The set A is the range of the procedure’s actual parameters. For example, a procedure with a value parameter
x and a value–result parameter y, both of type Nat, has A = NatExp× NatVar, where NatVar is the type of
all program variables of type Nat. A call to a procedure P ∈ Proc.A with the actual parameter a ∈ A is the
program P.a.

We again extend pointwise all operations on programs to procedures over A. The structure
(Proc.A, v,t, u) is a complete lattice and (Proc.A, ; , λa • skip) is a monoid such that “;” distributes over
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arbitrary meets and joins from the right. We call v the procedure refinement relation, u the demonic choice,
t the angelic choice, and ; the sequential composition of procedures.

Next we show how we model the call by value and call by value–result in this setting. We also give
semantics for recursive procedures.

7.1. Non-recursive procedures

A general non-recursive procedure declaration is:

procedure name(val x; val-res y) :
body (1)

where body is a program that does not contain any recursive call. The meaning of this procedure declaration
is that name is a procedure with the list x as value parameters and the list y as value–result parameters.
When a call is made to name the caller should provide a program expression e of type T.x and a list of
program variables z with T.z = T.y as actual parameters. The intuition behind the call is that first the
formal parameters of the procedure get the values given by e and val.z, then body is executed, and finally
the values of the formal parameters y are saved to z.

The procedure declaration (1) is an abbreviation of the following formal definition:

name = (λe, z • Add.(x · y).(e · val.z) ; body ; Del.x ; Del.y.z)

The variables e and z are chosen such that they do not occur free in x, y and body.
Using this approach any number of local variables can be added in the procedure body. If w are the local

variables, then body is Add.w ; body0 ; Del.w.
Our procedures can access global variables as well. For example if we have the procedure

procedure p1 (val-res a) :
a := a + 1;
x := x + 1

then the program x := 2 ; b := 3 ; p1(b) has the same effect as x := 3 ; b := 4. However if instead of procedure
p1 we use the following procedure

procedure p2 (val-res a) :
local x;
p1(a)

then x := 2 ; b := 3 ; p2(b) has the same effect as x := 2 ; b := 4, since the call to p1 in procedure p2 will
update the local variable x, and not the global one. Therefore our calculus implements dynamic scoping
of program variables, i.e. program variables are bounded to the scope where procedures are called and not
to where they are defined. However to implement static scoping all we have to do is to choose a suitable
semantic mapping of programs to predicate transformers which maps syntactic program variables’ names
into program variables according to scoping rules of the language to be translated. This kind of map would
translate for example a syntactic global program variable x to program variable gl x.

7.2. Recursive procedures

The semantics of a recursive procedure over A is the least fixpoint of some monotonic function on Proc.A
given by the procedure declaration.

If body : Proc.A → Proc.A is a monotonic function then we define the recursive procedure given by body
as µ body. The least fixpoint of body always exists by the Knaster–Tarski [Tar55] least fixpoint theorem
for monotonic endo-functions on a complete lattice. We introduced in our PVS implementation a couple of
theories in which we developed the theory of complete lattices necessary for stating and proving the least
fixpoint theorem.

When a recursive procedure is defined, one should prove the monotonicity of the function whose least
fixpoint defines the procedure. We have introduced rewriting rules into our PVS theories to automatically
discharge these facts.
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7.3. An example of a recursive procedure definition

Next we will show an example of how this definition works in practice. We give a recursive procedure that
computes the binomial coefficient (

n
k

)
=

n!
k! · (n− k)!

using the recursive formula (
n
k

)
=

(
n− 1
k − 1

)
+

(
n− 1

k

)
when 0 < k < n.

If k, n, c, x, y are program variables of type Nat such that var.(k, n, c, x, y) then the definition of comb is
given by:

procedure comb (val k, n; val-res c) :
local x, y
if k = 0 ∨ k = n then

c := 1
else

comb(k − 1, n− 1, x) ;
comb(k, n− 1, y) ;
c := x + y

fi

(2)

Definition (2) corresponds to following formal definition: Let A be NatExp× NatExp× NatVar and define

body.S.(e, f, u)
=

Add.(k, n, c).(e, f, val.u) ; Add.(x, y) ;
if k

.= 0 ∨ k
.= n then

c := 1
else

S.(k − 1, n− 1, x) ; S.(k, n− 1, y) ; c := x + y
fi ;
Del.(x, y) ; Del.(k, n) ; Del.c.u

(3)

Then body is a monotonic function from Proc.A to Proc.A. We define comb as µ body.

7.4. Refinement rule for introduction of recursive procedure calls

So far we have defined the refinement of procedures and given semantics for recursive procedures. In order
to express properties about procedures over A, we now need to lift the predicates to predicates that depend
on A.

We call the type A → Pred the parametric predicate type over A. The order relation (meet, join) on
parametric predicates is the pointwise extension of the order relation (meet, join) on predicates. For p : A →
Pred we define assert p (denoted {p}) as the procedure

{p} = (λa • {p.a})
In the same way we can define parametric relations and we can lift all operations over predicates, relations,
and programs to operations over parametric predicates, parametric relations and procedures. All properties
are trivially preserved.

Let P = {pw |w ∈ W} be a collection of parametric predicates (over A) that are indexed by the well-
founded set W . We define

p = (
⋃

w∈W

pw) and p<w = (
⋃

v<w

pv)

Now we are able to give the theorem for recursion introduction.
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Theorem 17. (Recursion Introduction) If body : Proc.A → Proc.A is a monotonic function on proce-
dures over A, {pw |w ∈ W} is a collection of parametric predicates, and P is a procedure over A, then

(∀w ∈ W • {pw} ; P v body.({p<w} ; P )) ⇒ {p} ; P v µ body

The proof can be done by well-founded induction on W .
The recursion introduction theorem is a standard result in the refinement calculus. However, we are

not aware of other versions that are as simple as this one – in particular, that have no side conditions but
can be applied to recursive procedures with parameters and local variables. Similar theorems with no side
conditions can only be applied to parameter-less procedures [Mor87, BvW98], whereas those that handle
procedures with parameters and local variables have (syntactic) side conditions and in general mix the
recursive mechanism with the treatment of the procedure parameters [BvW98, Sta99, Sta00].

7.5. An example of a recursive procedure refinement

We will show how this theorem can be applied to obtain by refinement the recursive procedure defined in
subsection 7.3. We take

• W = Nat,
• pw = (λ(e, f, u) • e ≤ f ∧ f

.= w),

• P =
(

λ(e, f, u) • u :=
(

f
e

))
, and

• body given by (3)

To prove that

{e ≤ f} ; u :=
(

f
e

)
v comb(e, f, u) (4)

we have to show for all w ∈ Nat that

{pw} ; P v body.({p<w} ; P )).

This is true if, by Theorem 3, for all e, f ∈ NatExp, u ∈ NatVar, and a, b ∈ Nat

{e .= a ∧ f
.= b ∧ e ≤ f

.= w} ; u :=
(

f
e

)
v S (5)

where

S =

Add.(k, n, c).(e, f, val.u) ; Add.(x, y) ;
if k = 0 ∨ k = n then

c := 1
else

{k − 1 ≤ n− 1 < w} ; x :=
(

n− 1
k − 1

)
;

{k ≤ n− 1 < w} ; y :=
(

n− 1
k

)
;

c := x + y
fi ;
Del.(x, y) ; Del.(k, n) ; Del.c.u

We prove (5) using refinement and equality rules proved in this paper for the program constructs we have
introduced.

{e .= a ∧ f
.= b ∧ e ≤ f

.= w} ; u :=
(

f
e

)
= {Refinement [BvW98]}
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{e .= a ∧ f
.= b ∧ e ≤ f

.= w} ; u :=
(

b
a

)
v {Theorem 12 and Theorem 15}

{e .= a ∧ f
.= b ∧ e ≤ f

.= w} ;

Add.(k, n, c).(e, f, val.u) ; Add.(x, y) ;

[x, y := s, t | true]

Del.(x, y) ; Del.(k, n) ; Del.c ;

u :=
(

b
a

)
= {Theorem 14 and Theorem 15}

Add.(k, n, c).(e, f, val.u) ; Add.(x, y) ;

{k .= a ∧ n
.= b ∧ k ≤ n

.= w} ;

[x, y := s, t | true] ; c :=
(

b
a

)
;

Del.(x, y) ; Del.(k, n) ; Del.c.u

v {Refinement [BvW98]}
S

8. Hoare total correctness rules

If p and q are predicates and S is a program, then a Hoare triple, denoted p {|S|} q, is true if and only if
p ⊆ S.q.

Lemma 18. (Consequence rule) If S is a monotonic predicate transformer, and p, q, p′, q′ are predicates
such that p′ ⇒ p and q′ ⇒ q then

p {|S|} q ⇒ p′ {|S|} q′

Lemma 19. (Conjunctivity rule) If S is a conjunctive predicate transformer, and p, q, p′, q′ are predicates
then

p {|S|} q ∧ p′ {|S|} q′ ⇒ (p ∧ p′) {|S|} (q ∧ q′)

For a predicate p we will denote by p̃ the predicate transformer given by:

p̃.q =
{

true if p ⊆ q
false otherwise

Lemma 20. If S is a monotonic predicate transformer then p {|S|} q is true if and only if {p} ; q̃ v S.

We will use this lemma to translate refinement results into Hoare total correctness rules.
We extend the Hoare triple notion to procedures. If p, q are parametric predicates over A and P is a

procedure over A then the parametric Hoare triple p {|P |} q is true if and only if for all a ∈ A the Hoare
triple p.a {|P.a|} q.a is true. In this case we also lift the predicate q to the procedure over A, q̃ = (λa • ˜q.a).
Lemma 20 can be trivially extended to parametric Hoare triples.

Lemma 21. p {|P |} q is true if and only if {p} ; q̃ v P .

The following theorem introduces rules for handling procedure parameters and local variables.

Theorem 22. If x, y are lists of program variables, p is a predicate, and e is a program expression then

(i) (Del.x; p) {|del.x|} p

(ii) p {|Add.x|} (del.x ; p)

(iii) p {|Add.x.e|} (del.x ; p)
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(iv) p is val–determined ⇒ p[x := e] {|Add.x.e|} p

(v) p is set.y–independent ⇒ (del.x ; p) {|Del.x.y|} p

(vi) p is val–determined and set.(x− y)–independent ⇒ p[y := x] {|Del.x.y|} p

Proof. Using Lemma 13.

To prove correctness for recursive procedures we need to introduce the following theorem. We assume
that 〈W, <〉 is a well-founded set.

Theorem 23. If for all w ∈ W , pw : A → Pred, q : A → Pred and body : Proc.A → Proc.A is monotonic,
then the following parametric Hoare rule is true

(∀w, P • p<w {|P |} q ⇒ pw {|body.P |} q)
p {|µ body|} q

Proof.
p {|µ body|} q

= {Lemma 21}
{p} ; q̃ v µ body

⇐ {Theorem 17}
(∀w • {pw} ; q̃ v body.({p<w} ; q̃)

= {Lattice properties}
(∀w, P • {p<w} ; q̃ v P ⇒ {pw} ; q̃ v body.P

= {Lemma 21}
(∀w, P • p<w {|P |} q ⇒ pw {|body.P |} q)

9. Specification statements

In [Rey81a] Reynolds introduces the concept of universal specifications – a formula is a universal specification
if it is true in all environments. An environment maps identifiers to program variables or expressions. Reynolds
defines universal specifications by using noninterference properties. A variable identifier x does not interfere
with an expression identifier e, denoted x ] e, in an environment if no assignment of x changes the value
of e. For example the specification y ≤ z {|x := 3|} y ≤ z becomes universal only under the assumption
x ] (y ≤ z).

We introduced the type of all program variables. The noninterference properties can be expressed in our
case by requiring that e is x–independent. In our approach there is a distinction between program variables
and variables of the logic, while Reynolds treats both the same. A program variable is an element of Var and
can be a constant of the logic. We define a universal specification by using variables of the logic ranging over
program variables and by stating that some of these variables must be distinct (as elements of Var, and not
as their values).

We call a refinement specification a formula of the form

{p} ; [x | b] v S (6)

which means that the specification statement {p} ; [x | b] is refined by the program S. The goal is to find
an executable program S that satisfies (6). Specification statements were originally introduced by Back
[Bac78, Bac80], who called them non-deterministic assignments. Later, Morgan introduced a variant of this,
called specification statement [Mor88b]. In this presentation the specification statement is equivalent to the
one introduced by Morgan and the one from [BvW98]. We can obtain Back’s non-deterministic assignment
statements by replacing p with p ∧ (∃a • b.a) in (6).

A procedure refinement specification has the form

(λe, x • {p.x.e} ; [x | b.x.e]) v P

where e is a program expression standing for the actual parameters of the procedure value parameters, and
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x stands for the actual value–result parameters. This specification has to be valid even if the variables x are
not distinct or the expression e interferes with x. For example the specification for computing the quotient
and the remainder of the integer division of the expression e by f can be given as:

(λe, f, x, y • {f > 0} ; [x, y := a, b | e .= f · a + b ∧ 0 ≤ b < f ]) v P (7)

We do not have to mention anything else in addition to the above statement. If procedure P is implemented
according to the specification (7) then P can be used with any parameters e, f , x and y. It does not matter
if e and f contains the program variables x and y. If x = y, i. e. x and y denote the same program variable,
the procedure still performs some meaningful computation, i.e. computes the remainder of the division in
y. However it might be easier to implement the procedure P if one requires (7) to be true only for distinct
program variables x and y.

Hoare total correctness specifications (Hoare specifications) have the form p {|S|} q. Unfortunately this
is not enough to specify that the program S performs some meaningful computation. One can provide a
program S that trivially establishes q. For example the specification 0 ≤ n {|S|} x

.= n! can be trivially
satisfied by the program S = (x := 1 ; n := 0). A solution to this problem is to use auxiliary variables
(variables that do not occur in S) to specify how the computation should be done. Using auxiliary variables
the specification for computing the factorial becomes

0 ≤ n ∧ n
.= a {|S|} x

.= a! (8)

provided that the program S does not contain a. However this means that in addition to (8) one would
also have to state that the program S must not contain references to a. Moreover we still have the problem
of adaptability [Kle99] of our specification, specifically we want to prove that a = x + 1 {|S|} a = x + 1
and a = x {|S|} a = x are Hoare equivalent, i.e. one can be proved using the other by Hoare rules. This
fact cannot be proved in [Kle99] using the Hoare consequence rule, and the author overcomes this problem
by introducing a more elaborate consequence rule. We solve this problem using the same technique as in
[LvW01, Nau01], i.e. we consider the specification as (∀a • x

.= a {|S|} x
.= a). This specification can be read

as follows: “for all integer values a if the value of x is a at the beginning of S then after executing S the value
of x is a”. In contrast with other approaches our specification variables are variables of the logic ranging over
values (integers in this example), and not necessarily over program variables. Using the consequence rule it
is trivial to prove that the above specification is equivalent to (∀a • x + 1 .= a {|S|} x + 1 .= a).

Similar to [Nau01], we consider the pre- and postconditions of a Hoare specification as dependent on
auxiliary (specification) parameters from A, p, q : A → Pred. The Hoare triple p {|S|} q is true if and only if
(∀a : A • p.a {|S|} q.a) is true, where the variable a is chosen such that it does not occur free in p, q and S.
In this approach we do not have to mention that a does not occur free in S any more.

To combine procedures and auxiliary variables all we have to do is add auxiliary variables to the procedure
pre- and postconditions. If we have procedure parameters from A, P : A → MTran, and specification
parameters from B, p, q : B → A → MTran, then we define the Hoare specification statement p {|P |} q by

p {|P |} q ⇔ (∀a, b • p.b.a {|P.a|} q.b.a) (9)

When a procedure is used we want to know that only some variables are changed by the call (in a desired
way). This fact is specified in general using a set of program variables (frame). Only the program variables
in the frame are allowed to change in an implementation. The role of the frame in our case is played by a
list of program variables x. We specify that a program S changes at most the program variables x using two
specification variables p : Pred and a : T.x with the statement:

(λa, p • p[x := a]) {|S|} (λa, p • p[x := a]) (10)

This statement not only says that the value of all variables except x remain unchanged but also that the
stack remains unchanged. For example if we take p = (y .= b) in (10) where y ∩ x = ∅ and b is not free in S
then we have (λb • y

.= b) {|S|} (λb • y
.= b), i. e. the value of y is not changed by the execution of S. When

we specify a program S with a Hoare specification statement we will also specify using (10) what variable
can be changed by S.

The following theorem shows how the elements we described above for writing Hoare specifications can
be combined to obtain a Hoare specification statement equivalent to a refinement specification.
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Theorem 24. (Refinement specification to Hoare specification) If S is a monotonic predicate trans-
former, x ∈ VarList such that var.x and b : T.x → Pred then

{p} ; [x | b] v S
⇔

(λq,m • p ∧ x
.= m ∧ q) {|S|} (λq,m • q[x := m] ∧ b[x := m].(val.x))

Proof. We prove first the implication from refinement to the Hoare statement. We assume {p} ; [x | b] v S.

(p ∧ x
.= m ∧ q) {|S|} (q[x := m] ∧ b[x := m].(val.x))

⇔ {Definition}
p ∧ x

.= m ∧ q ⊆ S.(q[x := m] ∧ b[x := m].(val.x))

⇐ {Using the assumption}
p ∧ x

.= m ∧ q ⊆ ({p} ; [x | b]).(q[x := m] ∧ b[x := m].(val.x))

⇐ {Definition of assert}
p ∧ x

.= m ∧ q ⊆ p ∧ [x | b].(q[x := m] ∧ b[x := m].(val.x))

⇐ {Monotonicity of (λr • p ∧ r)}
x

.= m ∧ q ⊆ [x | b].(q[x := m] ∧ b[x := m].(val.x))

⇐ {For some arbitrary σ ∈ State}
val.x.σ = m ∧ q.σ ⇒ [x | b].(q[x := m] ∧ b[x := m].(val.x)).σ

⇔ {Sub-derivation}

• {Assume val.x.σ = m ∧ q.σ}
[x | b].(q[x := m] ∧ b[x := m].(val.x)).σ

⇔ {Definitions}
(∀a • b.a.σ ⇒ q.(set.x.m.σ) ∧ b.a.(set.x.m.σ))

⇔ {Assumption}
(∀a • b.a.σ ⇒ q.σ ∧ b.a.σ)

⇔ {Assumption}
true

true

To prove the reverse implication we assume

(∀q, m • (p ∧ x
.= m ∧ q).σ ⇒ S.(q[x := m] ∧ b[x := m].(val.x)).σ) (11)

for all q, m, and σ.

({p} ; [x | b]).r.σ ⇒ S.r.σ

⇔ {Definitions}
p.σ ∧ [x | b].r.σ ⇒ S.r.σ

⇐ {Using (11) with m = val.x.σ and q = [x | b].r}
S.(([x | b].r)[x := val.x.σ] ∧ b[x := val.x.σ].(val.x)).σ ⇒ S.r.σ

⇐ {S is monotonic}
([x | b].r)[x := val.x.σ] ∩ b[x := val.x.σ].(val.x) ⊆ r

⇐ {For all σ′}
([x | b].r)[x := val.x.σ].σ′ ∧ b[x := val.x.σ].(val.x).σ′ ⇒ r.σ′

⇔ {Definitions}
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(∃a • (b.a.(set.x.(val.x.σ).σ′) ⇒ r.(set.x.a.σ′)) ∧
b.(val.x.σ′).(set.x.(val.x.σ).σ′) ⇒ r.σ′)

⇐ {a = val.x.σ′}
(b.(val.x.σ′).(set.x.(val.x.σ).σ′) ⇒ r.σ′) ∧

b.(val.x.σ′).(set.x.(val.x.σ).σ′) ⇒ r.σ′

⇔ {Propositional logic}
true

The Hoare specification statement in this theorem fully expresses all the needed properties of a specification
without the need for any additional (syntactic) conditions.

There exist many versions of Theorem 24 in the literature [BvW98, LvW01, Mor88b]. Most of them are
proved under the syntactic condition that x are the only variables that are changed by S. But this condition
is already expressed in the refinement specification. We instead embedded the fact that S may change only x
in the Hoare specification. This fact also helps us in proving correctness for recursive procedures. We do not
need an adaptation rule [BMW89, Old83, Kle99, Nau01] anymore. We do not use an invariance rule either,
but rather we specify the invariance property (10) for a procedure and then we prove it.

Lemma 25. (Adding specification variables) If S ∈ MTran, e is a program expression of type A, and
p, q ∈ Pred, then

(λa • e
.= a ∧ p) {|S|} (λa • q) ⇔ p {|S|} q

Proof. Using the definition of the Hoare triple and Lemma 3.

Lemma 26. If S is a monotonic predicate transformer then

(λq • p ∧ q ∧ x
.= m) {|S|} (λq • q[x := m] ∧ r)

⇔
(λq • p ∧ q ∧ x

.= m) {|S|} (λq • p[x := m] ∧ q[x := m] ∧ r)

Proof. From left to right we prove it by substituting q with p ∧ q. The other implication follows from the
consequence rule.

Theorem 27. (Adding specification variables) If x, y ∈ VarList so that y has the same type with x
and r : A → Pred, then

(λq,m • p ∧ x
.= m ∧ q) {|S|} (λq,m • q[x := m] ∧ r.(e[x := m]))

⇔
(λa, q,m • e

.= a ∧ p ∧ x
.= m ∧ q) {|S|} (λa, q,m • q[x := m] ∧ r.a)

Proof. (∀q • (p ∧ x
.= m ∧ q) {|S|} (q[x := m] ∧ r.(e[x := m])))

⇔ {Lemma 25}
(∀a, q • (e .= a ∧ p ∧ x

.= m ∧ q) {|S|} (q[x := m] ∧ r.(e[x := m])))

⇔ {Lemma 26}
(∀a, q • (e .= a ∧ p ∧ x

.= m ∧ q) {|S|} (q[x := m] ∧ e[x := m] .= a ∧ r.(e[x := m])))

⇔ {Expression property}
(∀a, q • (e .= a ∧ p ∧ x

.= m ∧ q) {|S|} (q[x := m] ∧ e[x := m] .= a ∧ r.a))

⇔ {Lemma 26}
(∀a, q • (e .= a ∧ p ∧ x

.= m ∧ q) {|S|} (q[x := m] ∧ r.a))

We have explained the need for auxiliary variables when specifying programs and procedures. In order to
prove correctness of recursive procedures using auxiliary variables, Theorem 23 is not enough; the following
theorem enables us to prove it.
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Theorem 28. If for all w ∈ W , pw : B → A → Pred, q : B → A → Pred and body : Proc.A → Proc.A is
monotonic, then the following Hoare rule is true

(∀w, P • p<w {|P |} q ⇒ pw {|body.P |} q)
p {|µ body|} q

Proof. Using Theorem 23.

9.1. An example of Hoare proof

Using these rules we prove the correctness of the procedure for computing the binomial coefficient using
similar arguments as in the refinement case, but reformulated in the context of Hoare proof rules.

If q : Pred and a, b, d : Nat than we assume

(λq, d, a, b, e, f, u • q ∧ u
.= d ∧ e

.= a ∧ f
.= b ∧ e ≤ f < w)

{|P |}(
λq, d, a, b, e, f, u • q[u := d] ∧ u

.=
(

b
a

)) (12)

The logical variables q, d, a, b denote the procedure specification parameters and e, f, u denotes the procedure
parameters. The predicate q in (12) specifies that a procedure call to comb does not change any program
variable except u. We need this fact when we prove the correctness of this procedure. We have to show that
the recursive call comb.(k − 1, n− 1, x) does not change k and n.

We prove for all q, a, b, d, e, f , and u that
q ∧ val.u

.= d ∧ e
.= a ∧ f

.= b ∧ e ≤ f
.= w

{|
Add.(k, n, c).(e, f, val.u) ; Add.(x, y) ;
if k

.= 0 ∨ k
.= n then

c := 1
else

P.(k − 1, n− 1, x) ; P.(k, n− 1, y) ; c := x + y
fi ;
Del.(x, y) ; Del.(k, n) ; Del.c.u

|}

q[u := d] ∧ val.u
.=

(
b
a

)
⇐ {Lemma 22 and Lemma 19}

del.(k, n, c); q ∧ del.(k, n, c); val.u .= d ∧
k

.= a ∧ n
.= b ∧ k ≤ n

.= w

{|
Add.(x, y) ;
if k

.= 0 ∨ k
.= n then

c := 1
else

P.(k − 1, n− 1, x) ; P.(k, n− 1, y) ; c := x + y
fi ;
Del.(x, y) ; Del.(k, n)

|}

del.c; (q[u := d]) ∧ val.c
.=

(
b
a

)
⇐ {Lemma 22 and v = (x, y, k, n, c)}
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del.v; q ∧ del.v; val.u .= d ∧ k
.= a ∧ n

.= b ∧ k ≤ n
.= w

{|
if k

.= 0 ∨ k
.= n then

c := 1
else

P.(k − 1, n− 1, x) ; P.(k, n− 1, y) ; c := x + y
fi ;

|}

del.v; (q[u := d]) ∧ val.c
.=

(
b
a

)
⇐ {if statement correctness: case k 6= 0 ∧ k 6= n}

del.v; q ∧ del.v; val.u .= d ∧ k
.= a ∧ n

.= b ∧ 0 < k < n
.= w

{| P.(k − 1, n− 1, x) ; P.(k, n− 1, y) ; c := x + y |}

del.v; (q[u := d]) ∧ val.c
.=

(
b
a

)
⇐ {Lemma 25, for all d′ ∈ T.x}

(del.v; q ∧ del.v; val.u .= d ∧ k
.= a ∧ n

.= b ∧ 0 < k < n
.= w) ∧

val.x
.= d′ ∧ k − 1 .= a− 1 ∧ n− 1 .= b− 1 ∧ k − 1 ≤ n− 1 < w

{| P.(k − 1, n− 1, x) ; P.(k, n− 1, y) |}

del.v; (q[u := d]) ∧ val.x + val.y
.=

(
b
a

)
⇐ {Lemma 8 and Assumption (12)}

(del.v; q ∧ del.v; val.u .= d ∧ k
.= a ∧ n

.= b ∧ 0 < k < n
.= w)[x := d′] ∧

val.x
.=

(
b− 1
a− 1

)
{| P.(k, n− 1, y) |}

del.v; (q[u := d]) ∧ val.x + val.y
.=

(
b
a

)
⇐ {Assumption (12) and weakening the precondition}

del.v; q ∧ del.v; val.u .= d ∧ 0 < a < b ∧

val.x
.=

(
b− 1
a− 1

)
∧ val.y

.=
(

b− 1
a

)
⊆

del.v; (q[u := d]) ∧ val.x + val.y
.=

(
b
a

)
= {logic}

true

Using Theorem 23 we obtain for all a, b, d ∈ Nat, e, f ∈ NatExp, u ∈ NatVar, and q ∈ Pred that

(q ∧ u
.= d ∧ e

.= a ∧ f
.= b ∧ e ≤ f) {|comb(e, f, u)|}

(
q[u := d] ∧ u

.=
(

b
a

))
Using the elimination of auxiliary variables, Theorem 27, we obtain for all e, f ∈ NatExp, u ∈ NatVar, and
q ∈ Pred that

(q ∧ u
.= d ∧ e ≤ f) {|comb(e, f, u)|}

(
q[u := d] ∧ u

.=
(

f [u := d]
e[u := d]

))
and using Theorem 24 we obtain for all e, f ∈ NatExp, u ∈ NatVar the refinement

{e ≤ f} ;
[
u := o | o .=

(
f
e

)]
v comb(e, f, u)
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10. Conclusions

We have introduced new program constructs for adding and deleting program variables and used them to give
a predicate transformer semantics for recursive procedures with parameters and local variables. We proved
some properties of these constructs and showed how one can prove the correctness of recursive procedures
using this semantics. We have also given a refinement rule for introduction of recursive procedure calls and,
based on it, we proved a Hoare correctness rule for recursive procedures with parameters and local variables.
We do not need to change the state space in our approach to accommodate local variables or procedure
parameters. Because of this our calculus is simpler and more algebraic than the ones in the literature.

We introduced a special form of Hoare specification statement which alone is sufficient to fully specify
a program or a procedure. Using this specification the Hoare consequence rule is enough for the adaptation
of the procedure specification to any context. We proved that this specification statement is equivalent to a
refinement specification.

Having only value and value–result parameters does not seem to be a major drawback. According to
[Don76], in the absence of aliasing, call by reference is equivalent to call by value–result.

Although our calculus does not allow program variables to change their types in local scopes and im-
plements only dynamic scoping we have showed how to handle programming languages which do not have
these restrictions by choosing a suitable semantic map of syntactic programs to predicate transformers.

Many procedure proof rules in the literature are mixing the procedure call with the procedure parameters.
We have separated these concerns as in [Mor88a], and obtained as a result much simpler rules. We have rules
for recursive procedures in which the parameters are not involved at all. We have different rules that deal
with parameters (local variables) and they are almost as simple as the assignment rules.

However, we have not investigated computability issues or the completeness of our calculus either theo-
retically or practically. So there might be problems for which one would need more rules in addition to the
ones we have introduced.

Acknowledgments. We thank the anonymous referees for their useful comments and suggestions which
lead to an improvement of the presentation of this paper.
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