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Abstract. We show how to formalise different kinds of loop constructs
within the refinement calculus, and how to use this formalisation to derive
general transformation rules for loop constructs. The emphasis is on using
algebraic methods for reasoning about equivalence and refinement of loop
constructs, rather than operational ways of reasoning about loops in terms of
their execution sequences. We apply the algebraic reasoning techniques to
derive a collection of transformation rules for action systems and for guarded
loops. These include transformation rules that have been found important in
practical program derivations: data refinement and atomicity refinement of
action systems; and merging, reordering, and data refinement of loops with
stuttering transitions.

1 Introduction

Loops in imperative programming notations are generally defined using
recursion. For recursion constructs (greatest and least fixpoints) a simple
algebraic theory exists. However, this theory has not been applied to the
correctness of transformation rules and refinement rules for guarded loop
constructs (such as the ordinary while-loop that occurs in most imperative
programming languages) within a total correctness framework. Rules for
transformation and refinement of loop constructs have traditionally been
proved using operational arguments (unless they have only been justified
informally). This means that the proofs are long and hard to follow. Further-
more, they are very difficult to check and (as we shall see) they may make
assumptions that are not really needed.
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In this paper we define two simple fixpoint-based iteration operators
– one is a least and the other a greatest fixpoint. We derive a number of
basic properties for the iteration operators and then define the traditional
loop construct in terms of iteration. The main part of the paper shows how
a comprehensive collection of transformation and refinement rules can be
derived from the basic rules for iterations. These rules include a rule for
data refinement with stutteringand a rule forrefinement of atomicityin
loops. Neither of these has, to our knowledge, been given purely algebraic
proofs before.

The algebraic style of reasoning makes proofs short and easy to read and
to check. Furthermore, it allows conditions (assumptions) of the rules to be
easily identified; they generally arise from the need to commute statements
in a proof step. In particular, many conditions arise from a need to propagate
free guard statements either forward or backward.

We use lambda notation for functions (e.g.,(λx • x = 1)) and an infix
dot for function application (f. x). Quantifiers are given low precedence and
their scope is delimited by parentheses. We use standard notation for logical
connectives andT for boolean truth. Proofs are written in a calculational
style.

The rest of the paper is organised as follows. In Sect. 2 we briefly outline
the basic theory of predicate transformers and refinement that is the basis
for the paper. Section 3 describes two iteration constructs and their basic
properties. In Sect. 6 we show how traditional loop constructs (while- and
do-loops) are defined in terms of the iteration constructs. We give algebraic
proofs for a number of loop transformation rules, including a rule for data
refinement of loops with stuttering. The properties of iterations are applied
to action systems in Sect. 4, and in Sect. 5 we consider the more demanding
task of atomicity refinement. We then consider basic rules for guarded loops
in Sect. 6. In Sect. 7 we derive examples of practically useful transformation
rules for loops and we then finish with some concluding remarks in Sect. 8.

2 Predicate transformers as program statements

We assume that the reader is familiar with the weakest precondition seman-
tics of simple imperative programming languages and with the basic notions
of program refinement [2,3,14,15,21,22]. We here quickly describe the no-
tions of states, predicates and predicate transformers used in this paper, and
how they are formalised.
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2.1 Predicate transformers

By a predicate we mean a boolean state function, i.e., a function of type
Σ → Bool, where the typeΣ models the state space. Since a predicate
represents a set of states, we freely use set notation (intersection, union,
subset) for predicates.

A predicate transformeris a function that maps predicates to predicates.
We useMtran(Σ, Γ ) for the set ofmonotonicfunctions that map predicates
in Γ → Bool to predicates inΣ → Bool. HereΣ is theinitial state spaceand
Γ thefinal state space. We take predicate transformers to model programs
according to aweakest preconditionintuition: if S is a predicate transformer
andq a predicate over its final state space (apostcondition) then the predicate
S. q describes those initial states from which execution ofS is guaranteed
to terminate in a state inq. If σ ∈ S. q, then we say thatS establishes
postconditionq from initial stateσ.

The two basic operations on predicate transformers are (sequential) com-
position and (demonic) choice, defined as follows:

(S1 ; S2). q = S1. (S2. q) (sequential composition)
(S1 u S2). q = S1. q ∩ S2. q (demonic choice)

Demonic choice is a meet (greatest lower bound) operator. In fact,
Mtran(Σ, Γ ) is a complete lattice (though we will not make use of the
join operator here). The bottom element isabort = (λq • false) and the top
element ismagic = (λq • true). The unit of composition isskip = (λq • q).
The ordering on predicate transformers is defined byS v S′ ≡ (∀q • S. q ⊆
S′. q), therefinement ordering.

In the weakest precondition intuition, the choiceS uS′ establishes post-
conditionq if and only if bothS andS′ establishq. The bottom element
abort establishes no postcondition, not eventrue. Dually, the top element
magic establishes all postconditions, evenfalse.

Predicate transformers can be classified according to basic homomor-
phism properties (in addition to monotonicity). We will mostly consider
conjunctive predicate transformers; we say thatS is conjunctiveif it dis-
tributes over nonempty meets, i.e., ifS. (∩ i ∈ I • qi) = (∩ i ∈ I • S. qi)
for arbitrary nonempty collections{qi | i ∈ I} of predicates. Dually,S is
disjunctiveif it distributes over nonempty joins of predicates. Furthermore,
S is strict if S. false = false andterminatingif S. true = true. It is well
known that conjunctivity and disjunctivity each implies monotonicity.

We will also make use of continuity. For that, we define a setK to be
directed(with respect to an orderingv) if

(∀x, y ∈ K • ∃z ∈ K • x t y v z) (directedness)

A function f is said to becontinuousif it distributes over joins of directed
sets. This definition is slightly more general than the traditional definition
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in terms of distributivity over limits of sequences. Furthermore, it has the
advantage of not involving the natural numbers. Note that continuity is
related to disjunctivity: if a predicate transformer is strict and disjunctive,
then it is also continuous.

The basic algebraic properties of monotonic predicate transformers can
be summarised by stating thatMtran(Σ, Σ) is a monoid with composition
; and unitskip and thatMtran(Σ, Γ ) is a complete lattice with meetu,
top magic and bottomabort. Furthermore, these two structures interact as
follows, for nonempty index setI:

(u i ∈ I • Si) ; S = (u i ∈ I • Si ; S)
S ; (u i ∈ I • Si) v (u i ∈ I • S ; Si)
S ; (u i ∈ I • Si) = (u i ∈ I • S ; Si) if S is conjunctive

To avoid excessive parentheses, we give composition higher precedence than
choice.

2.2 Guards and assertions

We do not assume any specific notation for constructing predicate transform-
ers that model basic program statements (typically, some kind of notation
for assignments to program variables would be used). However, we will
use two ways of injecting predicates into predicate transformers, defined as
follows:

[p]. q = ¬p ∪ q (guard)
{p}. q = p ∩ q (assert)

Intuitively, the guard statement[p] and the assert statement{p} both test
whether the conditionp holds in the present state. If the condition holds,
then both act asskip, i.e., do not change the state. If the condition does not
hold, then the guard statement terminates miraculously (acts likemagic)
while the assert statement acts likeabort.

The following basic algebraic properties of guards and assertions will
be used (the proofs are straightforward):

[p] v [q] ≡ p ⊇ q {p} v {q} ≡ p ⊆ q
[p] ; [q] = [p ∩ q] {p} ; {q} = {p ∩ q}

[p] u [q] = [p ∪ q] {p} u {q} = {p ∩ q}

2.3 Context information

An assertion{p} at a certain point in a program can be seen as asserting that
p holds at that point. Dually, a guard[p] corresponds to an assumption that
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p holds. A refinement of the form{p} ; S v S ; {q} modelspropagation
of contextual information; it can be interpreted as saying that if we knowp
holds in the initial state then execution ofS leads to a final state whereq
holds. Similarly, other refinements including assertions and guards can be
interpreted as propagation of information.

The following lemma collects some rules used in this paper.

Lemma 1. Assertions and guards can be propagated according to the fol-
lowing rules:

(a) S ; {q} v {p} ; S ≡ S. q ⊆ p
(b) [p] ; S v S ; [q] ≡ ¬p ⊆ S. (¬q)
(c) S ; [q] v [p] ; S ≡ S. true ∩ p ⊆ S. q if S is conjunctive
(d) S ; [q] v [p] ; S ≡ S. (¬q) ⊆ ¬p ∪ S. false if S is disjunctive

Proof. We show only the proof of part (b), as the proofs of the other parts
are similar. We have

[p] ; S v S ; [q]
≡ {definitions}

(∀r • ¬p ∪ S. r ⊆ S. (¬q ∪ r))
⇒ {specialiser := ¬q}

¬p ∪ S. (¬q) ⊆ S. (¬q)
≡ {lattice property}

¬p ⊆ S. (¬q)

and

[p] ; S v S ; [q]
≡ {definitions}

(∀r • ¬p ∪ S. r ⊆ S. (¬q ∪ r))
⇐ {general ruleS. p ∪ S. q ⊆ S. (p ∪ q) for monotonicS}

(∀r • ¬p ∪ S. r ⊆ S. (¬q) ∪ S. r)
⇐ {monotonicity of∪ with respect to⊆}

¬p ⊆ S. (¬q)

2

Using the notion ofdual predicate transformers, defined byS◦. q =
¬S. (¬ q) we can reformulate Lemma 1 (d) in the following way which
shows the duality with (c) clearly: ifS is disjunctive then

S ; [q] v [p] ; S ≡ S◦. true ∩ p ⊆ S◦. q



300 R.J.R. Back, J. von Wright

Furthermore, Lemma 1 (c) and (d) have dual formulations in terms of as-
sertions (which we will not use in this paper), using the following general
equivalence:

S ; [q] v [p] ; S ≡ {p} ; S v S ; {q}
for arbitrary monotonic predicate transformerS.

By combining Lemma 1 (b) and (c) we immediately get the following:

Lemma 2. Assume thatS is conjunctive. Then

[p] ; S v S ; [q] ⇒ S ; [¬q] v [¬p] ; S

3 Iteration constructs

Standard algebraic treatment of recursion and iteration is based on fixpoint
theory. Before we define and investigate the iteration constructs, we recall a
number of basic results from the fixpoint theory of lattices. These are stan-
dard results (“folk theorems”) that appear in the literature in many variations
[1,11,25].

First of all, we assume that theKnaster-Tarski theoremis known:

Lemma 3. Every monotonic function on a complete lattice has a complete
lattice of fixpoints.

In particular, this means that a monotonic functionf on a complete lattice
has a least fixpointµ. f and a greatest fixpointν. f . These are characterised
by the following properties:

f. (µ. f) = µ. f f. (ν. f) = ν. f (unfolding)
f. x v x ⇒ µ. f v x x v f. x ⇒ x v ν. f (induction)

We also assume that the followingrolling rules for fixpoints are known:

Lemma 4. Assume thatf and g are monotonic functions on a complete
lattice. Then

f. (µ. (g ◦ f)) = µ. (f ◦ g) and f. (ν. (g ◦ f)) = ν. (f ◦ g)

The following diagonalisation lemmagives a way of moving between
fixpoints over one variable and fixpoints over multiple variables. Here we
use binder notation(µ x • f. x) for the least fixpointµ. f (and similarly for
ν. f ) and the notation(µ x y • t) abbreviates(µ x • (µ y • t)).

Lemma 5. Assume thatf is a function of two arguments on a complete
lattice and thatf is monotonic in each of its arguments. Then

(a) (µ x y • f. x. y) = (µ x • f. x. x)
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(b) (ν x y • f. x. y) = (ν x • f. x. x)

Finally, we assume the followingfusion lemma(attributed to Kleene)
which links least fixpoints and continuity:

Lemma 6. Assume thatf andg are monotonic functions on complete lat-
ticesΣ andΓ and thath : Σ → Γ is continuous. Then

(a) if h ◦ f v g ◦ h, thenh. (µ. f) v µ. g
(b) if h ◦ f = g ◦ h, thenh. (µ. f) = µ. g

There is also a greatest fixpoint version of the fusion theorem, using duals
of continuity and directedness. However, we omit this, for brevity.

3.1 Iteration operators

Let us now look at the basic iteration constructs that the rest of this paper
builds on. Intuitively, a recursive predicate transformer(µ X • S) is exe-
cuted byunfolding, i.e., by executingS and replacing any occurrence ofX
encountered with(µ X • S). Thus, recursion leads to iterated execution of
a piece of code.

By means of the fixpoint constructs we define two explicititeration
constructs:

Sω ∧= (µ X • S ; X u skip) (strong iteration)

S∗ ∧= (ν X • S ; X u skip) (weak iteration)

Intuitively, S∗ is S repeated a (demonically) chosen finite number of times.
Sω is similar, but it allowsS to be repeated an infinite number of times
(which is semantically equivalent to aborting). These operators themselves
are not new [12,24], and some of the properties in Sects. 3.1–3.4 have been
published before [9,24].

From the definitions of the iteration operators and the unfolding and in-
duction rules for fixpoints we immediately get the following basic properties
of iterations:

Sω = S ; Sω u skip (unfold strong iteration)
S ; X u skip v X ⇒ Sω v X (strong iteration induction)
S∗ = S ; S∗ u skip (unfold weak iteration)
X v S ; X u skip ⇒ X v S∗ (weak iteration induction)

We shall now illustrate the intuition behind the two iteration operators.
Both kinds of iterations areunguarded, i.e., the termination of an iteration
Sω or S∗ is decided by a demonic choice, rather than by evaluation of a
guard predicate. To see the difference between the two iterations, consider
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iteratingskip. Intuitively, repeatingskip a finite number of times has the
same effect asskip, but repeatingskip indefinitely is equivalent to aborting:

skip∗ = skip

skipω = abort

The following derivations prove this. First,

skip∗

= {unfold}
skip ; skip∗ u skip

v {general lattice propertyx u y v y}
skip

and

skip v skip∗

⇐ {induction}
skip v skip ; skip u skip

≡ {skip is unit, meet is idempotent}
T

which provesskip∗ = skip. Then,

skipω v abort

⇐ {induction}
skip ; abort u skip v abort

≡ {skip is unit,abort is bottom element}
T

which provesskipω = abort.
Now let S be the guarded command[x < 2] ; x := x + 1. If the initial

state hasx = 0, thenS∗ andSω both lead tox being assigned one of the
values0, 1 and2. Here the guard statement prevents the strong iteration
from going into an infinite loop.

3.2 Generalised induction principles

Occasionally, we will need the following generalisation of the definition of
iterations.

Lemma 7. Let S and T be arbitrary monotonic predicate transformers.
Then

(µ X • S ; X u T ) = Sω ; T

(ν X • S ; X u T ) = S∗ ; T
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Proof. For strong iteration we apply fusion (Lemma 6 (b)) withh :=
(λX • X ; T ), which is easily proved to be continuous, and withf :=
(λX • S ; X u skip) andg := (λX • S ; X u T ). For weak iteration, the
proof makes use of the dual version of the fusion theorem (see the comment
after Lemma 6). 2

Lemma 7 and the general induction principles for fixpoints now give us
more general induction rules, of which the induction rules above are special
cases:

Corollary 8. Assume thatS andT are monotonic predicate transformers.
Then

S ; X u T v X ⇒ Sω ; T v X
X v S ; X u T ⇒ X v S∗ ; T

In what follows, the justification “induction” will refer to these more general
rules.

3.3 Basic properties of iterations

In the following we list a collection of basic properties of iterations. The
proofs are based on induction, unfolding and distributivity properties of
predicate transformers.

Lemma 9. Assume thatS and T are monotonic predicate transformers.
Then

(a) S v T ⇒ Sω v Tω and S v T ⇒ S∗ v T ∗
(b) Sω v S and S∗ v S
(c) Sω ; Sω = Sω and S∗ ; S∗ = S∗
(d) (Sω)ω = abort and (Sω)∗ = Sω

(e) (S∗)ω = abort and (S∗)∗ = S∗

Proof. For (a) we have

Sω v Tω

⇐ {induction}
S ; Tω u skip v Tω

≡ {unfold}
S ; Tω u skip v T ; Tω u skip

≡ {monotonicity of; andu}
S v T
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The argument for weak iteration is similar. Next, (b):

Sω

= {unfold twice}
S ; (S ; Sω u skip) u skip

v {monotonicity}
S ; skip u skip

v {monotonicity,skip is unit of sequential composition}
S

with a similar argument forS∗. Now consider (c). For weak iteration we
have

S∗ ; S∗

≡ {unfold}
S∗ ; (S ; S∗ u skip)

v {monotonicity}
S∗ ; skip

v {skip is unit}
S∗

and

S∗ v S∗ ; S∗

⇐ {induction}
S∗ v S ; S∗ u S∗

≡ {general lattice propertyx v x u y ≡ x v y}
S∗ v S ; S∗

≡ {unfold}
S ; S∗ u skip v S ; S∗

≡ {meet is lower bound}
T

For strong iteration,Sω;Sω v Sω is proved as for weak iteration. Refinement
in the opposite direction is proved differently:

Sω v Sω ; Sω

⇐ {induction}
S ; Sω ; Sω u skip v Sω ; Sω

≡ {unfold}
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S ; Sω ; Sω u skip v (S ; Sω u skip) ; Sω

≡ {distributivity}
S ; Sω ; Sω u skip v S ; Sω ; Sω u Sω

≡ {unfold rightmostSω}
S ; Sω ; Sω u skip v S ; Sω ; Sω u S ; Sω u skip

≡ {general lattice propertyx u x = x}
S ; Sω ; Sω u S ; Sω ; Sω u skip v S ; Sω ; Sω u S ; Sω u skip

≡ {monotonicity of; andu}
S ; Sω ; Sω v S ; Sω

≡ {general ruleSω v skip (by unfolding)}
T

Next, we prove (d). We have

(Sω)ω v abort

⇐ {general ruleSω v skip, part (a) of this lemma}
skipω v abort

≡ {general ruleskipω = abort (see Sect. 3.1)}
T

and then

Sω v (Sω)∗

⇐ {induction}
Sω v Sω ; Sω u skip

≡ {part (c) of this lemma}
Sω v Sω u skip

≡ {general lattice propertyx v x u y ≡ x v y}
Sω v skip

≡ {general ruleSω v skip }
T

where the converse refinement follows directly from (b). Finally (e) is proved
in exactly the same way as (d). 2

The monotonicity properties in Lemma 9 (b) are so basic that we will
often use them in proofs without explicit reference. We will also need the
following property in a number of proofs:
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Lemma 10. Assume thatS is a monotonic predicate transformer andg is
a predicate. Then

[¬g] ; ([g] ; S)ω = [¬g]

Proof.

[¬g] ; ([g] ; S)ω

= {unfold, distributivity}
[¬g] ; [g] ; S ; ([g] ; S)ω u [¬g]

= {general properties[p] ; [q] = [p ∩ q] and[false] = magic}
magic ; S ; ([g] ; S)ω u [¬g]

= {general propertymagic ; S = magic, magic is top element}
[¬g]

2

3.4 Properties of conjunctive iterations

If we assume conjunctivity, then we can prove two properties that illustrate
the correspondence between the iteration operators and the star operator of
regular languages. First we have theleapfrogproperty.

Lemma 11 (Leapfrog). Assume thatS and T are monotonic predicate
transformers and thatS is conjunctive. Then

S ; (T ; S)ω = (S ; T )ω ; S and S ; (T ; S)∗ = (S ; T )∗ ; S

Proof.
S ; (T ; S)ω

= {definition}
S ; (µ X • T ; S ; X u skip)

= {rolling (Lemma 4) withf := (λX • S ; X)
andg := (λX • T ; X u skip)}

(µ X • S ; (T ; X u skip))
= {S conjunctive}

(µ X • S ; T ; X u S)
= {Lemma 7}

(S ; T )ω ; S

and the derivation for weak iteration is similar. 2
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By choosingT := skip in Lemma 11 we get the following as a special
case:

S ; Sω = Sω ; S and S ; S∗ = S∗ ; S

Next we have thedecompositionproperty.

Lemma 12 (Decomposition).Assume thatS andT are monotonic predi-
cate transformers and thatS is conjunctive. Then

(S u T )ω = Sω ; (T ; Sω)ω and (S u T )∗ = S∗ ; (T ; S∗)∗

Proof.
(S u T )ω

= {definition}
(µ X • (S u T ) ; X u skip)

= {distributivity}
(µ X • S ; X u T ; X u skip)

= {diagonalisation (Lemma 5)}
(µ X • (µ Y • S ; Y u T ; X u skip))

= {Lemma 7}
(µ X • Sω ; (T ; X u skip))

= {rolling (Lemma 4)}
Sω ; (µ X • T ; Sω ; X u skip)

= {definition of strong iteration}
Sω ; (T ; Sω)ω

Again, the derivation for weak iteration is similar. 2

In the conjunctive case there is also a simple connection between the two
iterations:

Lemma 13. LetS be an arbitrary conjunctive predicate transformer. Then
Sω = {µ. S} ; S∗.

Proof. First, we show that(λq • {q} ; T ) is continuous, for arbitrary mono-
tonic predicate transformerT (we show the stronger fact that it distributes
over arbitrary joins of predicates):

(λq • {q} ; T ). (∪ i ∈ I • qi)
= {β reduction}

{∪ i ∈ I • qi} ; T

= {distributivity}
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(∪ i ∈ I • {qi} ; T )
= {β reduction}

(∪ i ∈ I • (λq • {q} ; T ). qi)

Then,

{µ. S} ; S∗ = Sω

≡ {β reduction, definition ofSω}
(λp • {p} ; S∗). (µ. S) = (µ X • S ; X u skip)

⇐ {fusion (Lemma 6 (b)), continuity}
(λp • {p} ; S∗) ◦ S = (λX • S ; X u skip) ◦ (λp • {p} ; S∗)

≡ {definition of composition, pointwise extension,β reduction}
(∀p • {S. p} ; S∗ = S ; {p} ; S∗ u skip)

≡ {unfold weak iteration}
(∀p • {S. p} ; (S ; S∗ u skip) = S ; {p} ; S∗ u skip)

≡ {pointwise extension, statement definitions}
(∀p q • S. p ∩ S. (S∗. q) ∩ q = S. (p ∩ S∗. q) ∩ q)

⇐ {definition of conjunctivity}
S conjunctive

2

Intuitively, Lemma 13 provides a decomposition reminiscent of the clas-
sical decomposition of total correctness into termination and partial correct-
ness. It is useful for proving properties about strong iteration by first proving
a corresponding property for weak iteration (this is used in Lemma 14 be-
low). We could also define aninfinite repetitionbyS∞ = (µ X • S ;X) and
findSω = S∞ uS∗ whenS is conjunctive (for a more detailed investigation
of the infinite repetition, we refer to [9]).

3.5 Commutativity properties

Later in this paper, commutativity properties of statements will play an im-
portant role. The following lemma shows how a generalised commutativity
is inherited by assertions and iterations.

Lemma 14. Assume thatS, T andU are monotonic predicate transformers
with S ; T v U ; S. Then

(a) S ; T ∗ v U∗ ; S
(b) S ; {µ. T} v {µ. U} ; S if S is continuous
(c) S ; Tω v Uω ; S if T andU are conjunctive andS is continuous.
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Proof. First we prove (a):

S ; T ∗ v U∗ ; S

⇐ {induction}
S ; T ∗ v U ; S ; T ∗ u S

≡ {unfold}
S ; (T ; T ∗ u skip) v U ; S ; T ∗ u S

⇐ {general ruleS ; (T u U) v S ; T u S ; U}
S ; T ; T ∗ u S v U ; S ; T ∗ u S

⇐ {monotonicity of; andu}
S ; T v U ; S

Now, (b)

S ; {µ. T} v {µ. U} ; S

≡ {definitions}
(∀q • S. (µ. T ∩ q) ⊆ µ. U ∩ S. q)

⇐ {general ruleS. (p ∩ q) ⊆ S. p ∩ S. q}
(∀q • S. (µ. T ) ∩ S. q ⊆ µ. U ∩ S. q)

⇐ {monotonicity of∩}
S. (µ. T ) ⊆ µ. U

⇐ {fusion (Lemma 6 (a))}
S ; T v U ; S

Finally, for (c) we have, assumingS ; T v U ; S

S ; Tω

= {Lemma 13}
S ; {µ. T} ; T ∗

v {part (b) of this lemma}
{µ. U} ; S ; T ∗

v {part (a) of this lemma}
{µ. U} ; U∗ ; S

= {Lemma 13}
Uω ; S

2

We now turn to a more specific kind of commutation. We say thatS
commutes overT if S ; T v T ; S.
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Lemma 15. Assume thatS is monotonic,T is conjunctive, andS ;T v T ;S.
Then

(a) Sω ; T v T ; Sω

(b) (S u T )ω = Sω ; Tω if S is continuous
(c) (S u T )ω = Sω ; Tω if Tω = T ∗.

Intuitively speaking, Lemma 15 (b) and (c) show under what assumptions
we can execute a mix ofS andT so that all executions ofS come first.

Proof. First, we have

Sω ; T v T ; Sω

⇐ {induction}
S ; T ; Sω u T v T ; Sω

≡ {unfold, conjunctivity}
S ; T ; Sω u T v T ; S ; Sω u T

⇐ {monotonicity of; andu}
S ; T v T ; S

which proves (a). We then prove (b) and (c) together. First,

(S u T )ω

≡ {general ruleSω ; Sω = Sω (Lemma 9 (c))}
(S u T )ω ; (S u T )ω

v {general lattice rulex u y v x, monotonicity}
Sω ; Tω

and for the converse refinement we have

Sω ; Tω v (S u T )ω

⇐ {induction}
S ; (S u T )ω u Tω v (S u T )ω

≡ {decomposition (Lemma 12)}
S ; Tω ; (S ; Tω)ω u Tω v Tω ; (S ; Tω)ω

≡ {unfold,T conjunctive}
S ; Tω ; (S ; Tω)ω u Tω v Tω ; S ; Tω ; (S ; Tω)ω u Tω

⇐ {(*)}
S ; Tω ; (S ; Tω)ω u Tω v S ; Tω ; Tω ; (S ; Tω)ω u Tω

⇐ {monotonicity of; andu}
Tω v Tω ; Tω

≡ {general ruleSω ; Sω = Sω (Lemma 9 (c))}
T
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where the justification marked with an asterisk uses the assumptionS ;
T v T ; S and Lemma 14 (c) for (b), and the assumptionsTω = T ∗ and
S ; T v T ; S and Lemma 14 (a) for (c). 2

3.6 Data refinement

Data refinement can at an abstract level be described as a commutativity
property: we say thatS is data refined throughD by S′ if the following
condition holds:

D ; S v S′ ; D

whereD : Mtran(Σ′, Σ) (the decoding), S : Mtran(Σ, Σ) (the abstract
statement) andS′ : Mtran(Σ′, Σ′) (theconcrete statement) are monotonic
predicate transformers. Intuitively speaking,D models a data abstraction in
the sense that it replaces a concrete data structure overΣ′ with an abstract
data structure overΣ. More details about this algebraic view on data refine-
ment can be found elsewhere [17,27]. Here we concentrate on the algebraic
interaction between data refinement and iterations and loops.

From Lemma 14 we immediately see how data refinement is inherited
by iterations:

Theorem 16. Assume thatS, T andD are monotonic predicate transform-
ers such thatD ; S v T ; D. Then

(a) D ; S∗ v T ∗ ; D
(b) D ; Sω v Tω ; D if S andT are conjunctive andD is continuous.

Thus we can say that the weak iteration alwayspreserves data refinement
while strong (conjunctive) iteration preserves data refinement provided that
the decoding is continuous. We return to an interpretation of this result
when considering data refinement of action systems (Sect. 4.3) and loops
(Sect. 6.3).

4 Action systems

We shall now apply the results for iterations to constructs that are more
directly useful in programming. We begin withaction systemsand later (in
Sect. 6) move on to loop constructs that correspond directly to the while-
loops of traditional sequential programming languages.
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4.1 Action systems

An action systemis defined as follows

do A1 [] · · · [] An od
∧= (µX • A1 ; X u · · · u An ; X u [¬gd. A1 ∩ · · · ∩ ¬gd. An])

whereA1, . . . , An (theactions) are conjunctive predicate transformers. The
reason for choosing a least rather than a greatest fixpoint in this definition is
that a least fixpoint corresponds to semantically identifying infinite unfold-
ing with abort.

Using iterations we can rewrite the action system in a more convenient
form:

do A1 [] · · · [] An od = (A1 u · · · u An)ω ; [¬ gd. A1 ∩ · · · ∩ ¬ gd. An]

Intuitively, the action system is like a strong iteration of the choiceA1 u
· · · u An, but when no action is enabled, then the action system terminates.
We say that actionA is enabledwhen theguardgd. A = ¬A. false holds.
The guard statement at the end makes sure that the iteration is not terminated
until all actions are disabled.

An action system can be seen as modeling a parallel program, in the
following way. If the guards of both actions are true and there are no read-
write or write-write conflicts between two actionsAi andAj , thenAi and
Aj can be executed in any order. This, in turn, means that we can view
them as executed in parallel, with an interleaving semantics for parallelism.
This is the essence of the action system approach to parallel algorithms. The
action system approach is described in more detail in [7]. It is similar to
the UNITY approach [13] but it does not assume fairness and it permits the
action bodies to be arbitrarily complex statements.

Here we concentrate on the algebraic properties of action systems. Since
the action system can be described in terms of a strong iteration, it should be
possible to derive properties for action systems from corresponding prop-
erties of strong iterations. How well this works in practice depends on how
well we can handle the added guard statement at the end.

Before we consider general properties of action systems, we note the
following properties of simple action systems:

Lemma 17. Assume thatA is a monotonic predicate transformer. Then

(a) (do A od). true = µ. A, and
(b) (do A od). false = false.
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Proof. For (a) we have

(do A od). true = µ. A

≡ {definitions}
(µ X • A ; X u [¬ gd. A]). true = µ. A

⇐ {fusion (Lemma 6 (b)) withh := (λX • X. true)}
(∀X • (A ; X u [¬ gd. A]). true = A. (X. true))

≡ {definitions, simplification}
(∀X • A. (X. true) ∩ (gd. A ∪ true) = A. (X. true))

≡ {simplification}
T

and for (b):

(do A od). false ⊆ false

≡ {definitions}
Aω ; [gd. A] ; abort v abort

⇐ {induction}
A ; abort u [gd. A] ; abort v abort

≡ {definitions}
A. false ∩ gd. A ⊆ false

≡ {definitiongd. A = ¬A. false}
T

2

4.2 Basic properties

We start by lifting general properties of strong iterations to action systems.
To keep things simple, we generally consider action systems with one or two
actions. In general, the results that we prove can be generalised directly to
action systems with three or more actions, because of the general property
do A [] B od = do (A u B) od .

We first consider the leapfrog property.

Theorem 18 (Action system leapfrog).Assume thatA andB are conjunc-
tive predicate transformers. Then

A ; do B ; A od v do A ; B od ; A
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Proof. We have

A ; do B ; A od
= {rewrite using iteration}

A ; (B ; A)ω ; [¬ gd. (B ; A)]
= {leapfrog (Lemma 11)}

(A ; B)ω ; A ; [¬ gd. (B ; A)]
v {see separate derivation below}

(A ; B)ω ; [¬ gd. (A ; B)] ; A

= {rewrite using iteration}
do A ; B od ; A

The step that is not an equality is justified as follows:

A ; [¬ gd. (B ; A)] v [¬ gd. (A ; B)] ; A

⇐ {Lemma 1 (c)}
A. true ∩ ¬ gd. (A ; B) ⊆ A. (¬ gd. (B ; A))

≡ {definition of guard}
A. true ∩ A. (B. false) ⊆ A. (B. (A. false))

≡ {A monotonic, soA. true ⊇ A. (B. false)}
A. (B. false) ⊆ A. (B. (A. false))

≡ {A andB are monotonic,false ⊆ A. false}
T

2

An obvious question is now whether the other half of the leapfrog prop-
erty holds:do A ; B od ; A v A ; do B ; A od. The proof cannot be easily
adjusted, since the refinement

[¬ gd. (A ; B)] ; A v A ; [¬ gd. (B ; A)]

is not valid (ifA = abort then the left-hand side ismagic and the right-hand
side isabort). On the other hand, we do not have a counterexample, so we
leave this as an open question.

Next we consider decomposition.

Theorem 19 (Action system decomposition).Assume thatA andB are
conjunctive predicate transformers. Then

do A [] B od = do B od ; do (A ; do B od) od

provided thatgd. A ∩ gd. B = false.
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Intuitively speaking, the conditiongd. A ∩ gd. B = false states that the
actionsA andB excludeeach other; they cannot be enabled simultaneously.

Proof. First we rewrite the conditiongd. A ∩ gd. B = false into a more
easily used form.

gd. A ∩ gd. B = false

≡ {general shunting rulep ∩ q ⊆ r ≡ p ⊆ ¬q ∪ r}
gd. B ⊆ ¬gd. A

≡ {definition of guard}
gd. B ⊆ A. false

≡ {A is monotonic}
(∀q • gd. B ⊆ A. q)

≡ {general lattice propertyx v y ≡ y = x t y}
(∀q • A. q = gd. B ∪ A. q)

≡ {definitions}
A = [¬gd. B] ; A

Now,

do A [] B od
= {rewrite using iteration}

(A u B)ω ; [¬gd. A ∩ ¬gd. B]
= {decomposition (Lemma 12)}

Bω ; (A ; Bω)ω ; [¬gd. A ∩ ¬gd. B]
= {property of guard statement}

Bω ; (A ; Bω)ω ; [¬gd. B] ; [¬gd. A]
= {assumptiongd. A ∩ gd. B = false, derivation above}

Bω ; ([¬gd. B] ; A ; Bω)ω ; [¬gd. B] ; [¬gd. A]
= {leapfrog (Lemma 11), guard rules}

Bω ; [¬gd. B] ; (A ; Bω ; [¬gd. B])ω ; [¬gd. A]
= {see separate subderivation below}

Bω ; [¬gd. B] ; (A ; Bω ; [¬gd. B])ω ; [¬gd. (A ; Bω ; [¬gd. B])]
= {rewrite using iteration}

do B od ; do (A ; do B od) od

where the guard manipulation is justified by the following derivation:

gd. (A ; Bω ; [¬gd. B]) = gd. A



316 R.J.R. Back, J. von Wright

≡ {definitions}
¬A. ((Bω ; [¬gd. B]). false) = ¬A. false

⇐ {functionality,false ⊆ p holds trivially for allp}
(Bω ; [¬gd. B]). false ⊆ false

≡ {Lemma 17 (b), usingBω ; [¬gd. B] = do B od}
T

2

The proof of Theorem 19 builds on the leapfrog and decomposition rule
for iterations, but also on guard manipulations. The main proof directly
suggests that the following two assumptions must hold:

A = [¬gd. B] ; A

[¬gd. A] = [¬gd. (A ; Bω ; [¬gd. B])]

Separate derivations then simplify (and possibly discharge) these guard con-
ditions.

4.3 Data refinement

Now let us consider how the data refinement rules for iterations can be used
to derive rules for action systems. The basic rule for data refinement is as
follows:

Theorem 20. Assume thatA andA′ are conjunctive andD is continuous.
Furthermore assume thatD ;A v A′ ;D andD ; [¬gd. A] v [¬gd. A′] ;D.
Then

D ; do A od v do A′ od ; D

Proof.

D ; do A od
= {rewrite using iteration}

D ; Aω ; [¬gd. A]
v {assumption, data refinement rule (Theorem 16 (b))}

(A′)ω ; D ; [¬gd. A]
v {assumption}

(A′)ω ; [¬gd. A′] ; D

= {rewrite using iteration}
do A′ od ; D

2
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Here the guard conditionD ; [¬gd. A] v [¬gd. A′] ;D can be simplified
using Lemma 1 (c) or (d). The two basic forms of data refinement are when
D is strict and disjunctive (forward data refinement) and whenD is strict,
terminating, and conjunctive (backward data refinement) [27], so we have
the following alternative versions of this condition:

D. (gd. A) ⊆ gd. A′ if D is strict and disjunctive
¬gd. A′ ⊆ D. (¬gd. A) if D is strict, terminating, and conjunctive

Theorem 20 is easily generalised to the case withn actions. There is
then one condition for each action (D ; Ai v A′

i ; D) and one termination
condition (D ; [¬gg] v [¬gg′] ; D), wheregg = gd. A1 ∪ · · · ∪ gd. An.

We can also generalise Theorem 20 to allowstuttering actionsin a data
refinement.

Theorem 21. Assume thatA andB are conjunctive and thatD is contin-
uous. Furthermore assume that the following conditions hold:

(i) D ; A v A′ ; D andD ; skip v B ; D
(ii) D ; [¬gd. A] v [¬gd. A′ ∩ ¬gd. B] ; D
(iii) D. true ⊆ µ. B

Then

D ; do A od v do A′ [] B od ; D

Proof. We first note the following:

Bω ; D

= {Lemma 13}
{µ. B} ; B∗ ; D

w {assumption (i), Theorem 16 (a),skip∗ = skip (see Sect. 3.1)}
{µ. B} ; D

w {assumption (iii), Lemma 1 (a)}
D ; {true}

= {{true} = skip}
D

We then have

do A′ [] B od ; D

= {rewrite using iteration}
(A′ u B)ω ; [¬gd. A′ ∩ ¬gd. B] ; D

w {decomposition (Lemma 12), assumption (ii)}
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Bω ; (A′ ; Bω)ω ; D ; [¬gd. A]
w {preceding derivation, Theorem 16 (b)}

Bω ; D ; Aω ; [¬gd. A]
w {preceding derivation}

D ; Aω ; [¬gd. A]
= {rewrite using iteration}

D ; do A od

2

The actionB in Theorem 21 is called a stuttering action because it
corresponds to askip step on the abstract level. The guard condition is
similar to the guard condition of Theorem 20 and can be analysed in the same
way. From Lemma 17 (a) we see that the last condition states that execution
of do B od must always terminate if the initial state satisfiesD. true (if
the decodingD is described by an abstraction relationR, then D. true
characterises those concrete states for which the relationR is defined, i.e.,
those states that satisfy the concrete invariant).

5 Atomicity refinement

In the action system approach, the loop notation describes theatomicity
(the granularity) of the system; the actions are considered to be executed
as atomic units, without interference from other actions. A transformation
that replaces an action with two or more actions reduces the granularity
and is called anatomicity refinement. For example, the decomposition rule
(Theorem 19) can be seen as a simple rule of atomicity refinement when it
is read from right to left.

5.1 Properties of actions

Before we formulate the conditions under which the atomicity is refined,
we introduce some intuitively appealing ways of describing conditions:

– A always disablesB if A. true ⊆ A. (¬gd. B)
– A excludesB if gd. A ∩ gd. B = false
– A does not enableB if ¬gd. B ⊆ A. (¬gd. B)
– A does not disableB if gd. B ⊆ A. (gd. B)
– iteration ofA always terminatesif (do A od). true = true

In order to carry out manipulation exclusively on the predicate transformer
level (rather than on the predicate level), we reformulate these conditions in
terms of actions directly.
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Always disabling A always disablesB if and only if A ; [gd. B] = A. To
see this, we first have

A ; [¬gd. B] v A

≡ {skip = [true]}
A ; [¬gd. B] v [true] ; A

≡ {Lemma 1 (c)}
A. true ∩ true ⊆ A. (¬gd. B)

≡ {lattice property}
A. true ⊆ A. (¬gd. B)

The reverse refinementA ; [¬gd. B] w A always holds trivially, because of
the general ruleskip v [p].

Exclusion A excludesB if and only if A = [¬gd. B] ;A. This was already
shown as part of the proof of Theorem 19.

Nonenabling and nondisablingLemma 1 (b) gives us

[gd. B] ; A v A ; [gd. B] ≡ ¬gd. B ⊆ A. (¬gd. B)

and

[¬gd. B] ; A v A ; [¬gd. B] ≡ gd. B ⊆ A. (gd. B)

Terminating iteration If iteration of A always terminates thenAω = A∗.
This is seen as follows:

Aω = A∗

≡ {Lemma 13}
{µ. A} ; A∗ = A∗

⇐ {{true} = skip}
µ. A = true

⇐ {Lemma 17 (a)}
do A od. true = true

Implication in the other direction does not hold in general, but it does hold
whenA is terminating (i.e., whenA. true = true). To see this, we have

Aω = A∗

≡ {Lemma 13}
{µ. A} ; A∗ = A∗
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≡ {definitions}
(∀q • µ. A ∩ A∗. q = A∗. q)

≡ {general lattice propertyx u y = y ≡ y v x}
(∀q • A∗. q ⊆ µ. A)

⇒ {specialiseq := true}
A∗. true ⊆ µ. A

≡ {A. true = true ⇒ A∗. true = true by derivation below}
true ⊆ µ. A

where the last step is justified by the following derivation

true ⊆ A∗. true

≡ {definitions}
magic v A∗ ; magic

⇐ {induction}
magic v A ; magic u magic

≡ {magic is top element, definitions}
true ⊆ A. true

5.2 The atomicity refinement theorem

The atomicity refinement setup involves an initialisationI and five actions:
themajor actionA, theminor actionB, theleft moverL, theright moverR,
and theenvironment actionE. All of these are assumed to be conjunctive.
The aim is an atomicity refinement of the form

I ; do (A ; do B od) [] L [] R [] E od v I ; do A [] B [] L [] R [] E od

Note how execution of(A ; do B od) is split up into separate executions of
A andB interleaved with the other actions (E, L, andR). For more details
about the interpretation of this refinement and its application, we refer to
[4].

The conditions for atomicity refinement are the following:

(a) I always disablesB
(b) A andE both excludeB
(c) L andE do not enableB andR does not disableB
(d) L commutes over each ofA, B andR; andB commutes overR
(e) iteration ofR always terminates
(f) L is continuous
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We call the actionsL andR (left and right) movers because of their com-
mutativity properties. The major and minor actions (A andB) are the ones
directly involved in the atomicity refinement, whileE models environment
actions (which are not involved in the atomicity refinement and do not in-
terfere with it).

The derivations in Sect. 5.1 show that the conditions (a)–(e) give us the
following algebraic conditions that can be used in the proof:

(a) I = I ; [¬gd. B]
(b) A = [¬gd. B] ; A

E = [¬gd. B] ; E

(c) [gd. B] ; L v L ; [gd. B]
[gd. B] ; E v E ; [gd. B]
[¬gd. B] ; R v R ; [¬gd. B]

(d) L ; A v A ; L

L ; B v B ; L

L ; R v R ; L

B ; R v R ; B

(e) Rω = R∗

Expressed in this way, the conditions can be used efficiently in algebraic
manipulations. The theorem is now as follows.

Theorem 22. Assume thatI, A, B, E, L andR are actions satisfying the
conditions (a)–(f) above. Then the following refinement holds:

I ; do (A ; do B od) [] L [] R [] E od v I ; do A [] B [] L [] R [] E od

Proof. We abbreviate¬gd. A ∩ ¬gd. L ∩ ¬gd. R ∩ ¬gd. E by q and we
omit the semicolon for sequential composition, to make formulas easier to
handle. We have

I ; do A [] B [] L [] R [] E od
= {definition of loop, hide semicolons}

I(A u B u L u R u E)ω[¬gd. B ∩ q]
= {decomposition (Lemma 12)}

I(A u B u L u R)ω(E(A u B u L u R)ω)ω[¬gd. B ∩ q]
= {commutativity assumptions forL, Lemma 15}

ILω(A u B u R)ω(ELω(A u B u R)ω)ω[¬gd. B ∩ q]
= {decomposition (Lemma 12)}

ILω(B u R)ω(A(B u R)ω)ω(ELω(B u R)ω(A(B u R)ω)ω)ω
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[¬gd. B ∩ q]
= {BR v RB andRω = R∗ and Lemma 15}

ILωBωRω(ABωRω)ω(ELωBωRω(ABωRω)ω)ω[¬gd. B ∩ q]
w {Lemma 23 (a)}

ILωBωRω(ABωRω)ω([¬gd. B]ELωRω(ABωRω)ω)ω[¬gd. B ∩ q]
= {[¬gd. B ∩ q] = [¬gd. B] ; [q], leapfrog (Lemma 11 (b))}

ILωBωRω(ABωRω)ω[¬gd. B](ELωRω(ABωRω)ω[¬gd. B])ω[q]
w {assumptionA = [¬gd. B]A, leapfrog (Lemma 11 (b))}

ILωBωRω[¬gd. B](ABωRω[¬gd. B])ω

(ELωRω[¬gd. B](ABωRω[¬gd. B])ω)ω[q]
w {assumptionR[¬gd. B] w [¬gd. B]R, Lemma 14 (a),

assumptionRω = R∗, [p] w skip}
ILωBωRω(ABω[¬gd. B]Rω)ω(ELωRω(ABω[¬gd. B]Rω)ω)ω[q]

w {Lemma 23 (b)}
ILωRω(ABω[¬gd. B]Rω)ω(ELωRω(ABω[¬gd. B]Rω)ω)ω[q]

= {decomposition (Lemma 12)}
ILω(ABω[¬gd. B] u R)ω(ELω(ABω[¬gd. B] u R)ω)ω[q]

= {Lemma 23 (c)}
I(ABω[¬gd. B] u L u R)ω(E(ABω[¬gd. B] u L u R)ω)ω[q]

= {decomposition (Lemma 12)}
I(ABω[¬gd. B] u L u R u E)ω[q]

= {Lemma 23 (d), definition of loop}
I ; do (A ; do B od) [] L [] R [] E od 2

The lemmas used in the proof are then proved as follows.

Lemma 23. Under the assumptions that are made for the atomicity refine-
ment theorem,

(a) ELωBω w [¬gd. B]ELω

(b) ILωBω w ILω

(c) Lω(ABω[¬gd. B] u R)ω = (ABω[¬gd. B] u L u R)ω

(d) gd. (A ; do B od) = gd. A

Proof. For (a) we have

ELωBω

= {assumption (b)}
[¬gd. B]ELωBω



Reasoning algebraically about loops 323

w {[p] = [p] ; [p], assumption (c) and Lemma 2}
[¬gd. B]E[¬gd. B]LωBω

w {assumption (c) and (f), Lemmas 2 and 14 (c)}
[¬gd. B]ELω[¬gd. B]Bω

w {general rules[¬gd. B]Bω = [¬gd. B] (Lemma 10) and[p] w skip}
[¬gd. B]ELω

Next, (b):

ILωBω

= {assumption (a)}
I[¬gd. B]LωBω

w {assumption (c) and (f), Lemmas 2 and 14 (c)}
ILω[¬gd. B]Bω

w {general ruleB = [gd. B] ; B}
ILω[¬gd. B]([gd. B]B)ω

w {Lemma 10, general rule[p] w skip}
ILω

Now, (c) We have

L(ABω[¬gd. B] u R)
v {L conjunctive}

LABω[¬gd. B] u LR

v {assumption (d), Lemma 14}
ABωL[¬gd. B] u RL

v {assumption (c), Lemma 2}
ABω[¬gd. B]L u RL

= {distributivity}
(ABω[¬gd. B] u R)L

so Lω(ABω[¬gd. B] u R)ω = (ABω[¬gd. B] u L u R)ω follows by as-
sumption (f) and Lemma 15 (b).

Finally, we prove (d):

gd. (A ; do B od)
= {definitions}

¬A. ((do B od). false)
= {Lemma 17 (b)}
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¬A. false

= {definition of action guard}
gd. A

2

6 Loops

As noted before, the iteration constructs are unguarded, i.e., the termination
of an iterationSω or S∗ is decided by a demonic choice, rather than by
evaluation of a guard predicate. In an action system the iteration is guarded,
but the guard is implicit in the action. We now consider the traditionalloop
construct where the guard is explicit in the syntax.

We use the traditional definition of a loop as a least fixpoint:

do g1 → S1 [] · · · [] gn → Sn od
∧= (µX • [g1] ; S1 ; X u · · · u [gn] ; Sn ; X u [¬g1 ∩ · · · ∩ ¬gn])

Intuitively, the loop is executed in the following way. First, all the guardsgi

are evaluated. If all guards are false, then the loop has terminated.
Otherwise, one of the bodiesSi for which the guardgi was true, is

executed. If execution of this body terminates normally, then the guards
are again evaluated etc. Exactly as for action systems, infinite execution
corresponds to aborting, since the definition uses a least fixpoint.

Using iterations, we can rewrite the definition of the loop as follows:

do g1 → S1 [] · · · [] gn → Sn od
= ([g1] ; S1 u · · · u [gn] ; Sn)ω ; [¬g1 ∩ · · · ∩ ¬gn]

This means that we can use the rules for strong iterations to derive rules
for loops. Before we do that, we consider the relationship between action
systems and loops in some more detail.

6.1 Loops and action systems

The most important difference between a loop and an action system is that
the guard is explicit in the loop. If the bodyS in the loopdo g → S od is
strict, then we have the following:

¬([g] ; S). false

= {definitions}
g ∩ ¬S. false

= {S assumed strict}
g
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This shows thatgd. ([g];S) = g, which means that the loopdo g → S od and
the action systemdo [g] ;S od are the same predicate transformer. However,
if the loop body is not strict, then the loop can terminate miraculously which
is something no action system can. A loop with a nonstrict body cannot
be written as an action system, which means that loops are more general
that action systems. However, this does not mean that the rules for action
systems are direct consequences of the corresponding rules for loops, since
some rules for loops are more detailed (they include separate assumptions
on the guard predicate).

6.2 Leapfrog and decomposition for loops

For action systems, only a weak version of the leapfrog rule was proved
(Theorem 18). For loops, however, we can prove a stronger version.

Theorem 24 (Loop leapfrog).Assume thatS andT are conjunctive pred-
icate transformers.

(a) If g ⊆ S. h and¬g ⊆ S. (¬h) then

do g → S ; T od ; S v S ; do h → T ; S od

(b) If S. true ∩ g ⊆ S. h andS. true ∩ ¬g ⊆ S. (¬h) then

do g → S ; T od ; S w S ; do h → T ; S od

Proof. For (a) we have

do g → S ; T od ; S

= {rewrite using iteration}
([g] ; S ; T )ω ; [¬g] ; S

v {Lemma 1 (b), assumptions (*)}
(S ; [h] ; T )ω ; S ; [¬h]

= {leapfrog (Lemma 11)}
S ; ([h] ; T ; S)ω ; [¬h]

= {rewrite using iteration}
S ; do h → T ; S od

For (b) the derivation is similar, but in the step marked (*) we get refinement
in the opposite direction from Lemma 1 (c). 2

The proof of Theorem 24 builds on the leapfrog rule for iterations and
on propagating guards. The assumptions in both (a) and (b) are derived
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directly from the need to propagate guards and Lemma 1. We can also give
an intuitive interpretation to the conditions. For (a) we require that ifg
(¬g) holds beforeS is executed, thenh (¬h) holds afterwards. For (b) the
conditions are similar, but they do not require thatS is terminating. Note
that for action systems we had refinement in one direction only (Theorem
18), but then without guard conditions.

Note that the assumption in Theorem 24 (a) is stronger than the one in
(b). Thus we have an equality rule as an immediate consequence:

Corollary 25. Assume thatS andT are conjunctive predicate transformers.
If g ⊆ S. h and¬g ⊆ S. (¬h) then

do g → S ; T od ; S = S ; do h → T ; S od

The decomposition rule can be directly generalised to loops, in the same
way as for action systems.

Theorem 26 (Loop decomposition).Assume thatS andT are conjunctive
predicate transformers. Then

do g ∩ ¬h → S [] h → T od
= do h → T od ; do g → (S ; do h → T od) od

Proof. do h → T od ; do g → (S ; do h → T od) od
= {rewrite using iteration}

([h] ; T )ω ; [¬h] ; ([g] ; S ; ([h] ; T )ω ; [¬h])ω ; [¬g]
= {leapfrog (Lemma 11), guard rules}

([h] ; T )ω ; ([g ∩ ¬h] ; S ; ([h] ; T )ω)ω ; [¬g ∩ ¬h]
= {decomposition (Lemma 12)}

([g ∩ ¬h] ; S u [h] ; T )ω ; [¬g ∩ ¬h]
= {rewrite using iteration}

do g ∩ ¬h → S [] h → T od
2

It is interesting to note that no restrictions on the guards (g andh) are
needed in Theorem 26. Another interesting fact is that in the proof, both the
leapfrog and the decomposition rules for iterations are used.

A direct consequence of Theorem 26 is the following result, which has
also been proved by Manasse and Nelson [20] and by van de Snepscheut
[24].

Corollary 27. Assume thatS andT are conjunctive predicate transformers
and thatg ∩ h = false. Then

do g → S [] h → T od = do h → T od ; do g → (S ; do h → T od) od
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Manasse and Nelson have a very long and complex proof and they comment
that “the labor involved in the proof seems excessive”. The proof method
of van de Snepscheut is closer to ours, but it involves an auxiliary notion of
the lowest meet closureof a function.

6.3 Data refinement of loops

To end this section, we show how the data refinement rules for iterations
can be used to derive rules for data refinement of loops. We begin with the
basic case [27]:

Theorem 28. Assume thatD is continuous and thatD ; S v S′ ; D and
D ; [g] v [g′] ; D andD ; [¬g] v [¬g′] ; D. Then

D ; do g → S od v do g′ → S′ od ; D

The proof follows the same line of argument as the proof of the corre-
sponding rule for action systems (Theorem 20), so we omit it. The guard
conditionsD ; [g] v [g′] ; D andD ; [¬g] v [¬g′] ; D can be simplified
using Lemma 1 (c) or (d). Since the two basic forms of data refinement are
whenD is strict and disjunctive (forward data refinement) and whenD is
strict, terminating, and conjunctive (backward data refinement), we have the
following versions of this condition:D. g ⊆ g′ andD. (¬g) ⊆ ¬g′ whenD
is strict and disjunctive, andg′ ⊆ D. g and¬g′ ⊆ D. (¬g) whenD is strict,
terminating, and conjunctive.

Intuitively the conditions can be justified as follows:D ; [¬g] v [¬g′] ;D
states that the concrete loop must be able to continue whenever the abstract
loop can andD ; [g] v [g′] ; D states that the concrete loop must be able
to terminate whenever the abstract loop can. Thus, together they say that
termination of the two loops must happen at corresponding points.

Exactly as for action systems we can allow stuttering actions in a data
refinement.

Theorem 29. Assume thatS andT are conjunctive andD is continuous.
Furthermore assume that the following conditions hold:

(i) D ; S v S′ ; D andD ; skip v [h] ; T ; D
(ii) D ; [g] v [g′] ; D andD ; [¬g] v [¬g′ ∩ ¬h] ; D
(iii) D. true ⊆ µ. ([h] ; T )

Then

D ; do g → S od v do g′ → S′ [] h → T od ; D

Again the proof is similar to the corresponding rule for action systems
(Theorem 21) so we omit it.
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7 Loop transformations

We now show how the basic loop rules are used to derive transformation
rules that allow loop constructs in programs to be manipulated. A collection
of basic rules that are useful from a practical program transformation point of
view can be derived in this way. We here consider only two such derived rules
for loops:removing vacuous loopsandsplitting and merging loops. These
exemplify the general technique for deriving interesting loop transformation
rules from the basic properties of iterations.

We begin with a rule that removes a vacuous loop. This rule can be seen
as corresponding to the rules for iterations in Lemma 9 (c) (although that
lemma cannot be used directly in the proof).

Theorem 30 (Remove vacuous loop).Assume thatS is conjunctive. Then

do g ∩ h → S od ; do g → S od = do g → S od

Proof. We first prove the special case whenh = true:

do g → S od ; do g → S od
= {rewrite using iteration}

([g] ; S)ω ; [¬g] ; ([g] ; S)ω ; [¬g]
= {Lemma 10}

([g] ; S)ω ; [¬g] ; [¬g]
= {general guard property[p] ; [p] = [p]}

([g] ; S)ω ; [¬g]
= {rewrite using iteration}

do g → S od

Furthermore we have the following:

do g → S od
= {rewrite using iteration}

([g] ; S)ω ; [¬g]
= {lattice properties}

([(g ∩ h) ∪ (g ∩ ¬h)] ; S)ω ; [¬(g ∩ h) ∩ ¬(g ∩ ¬h)]
= {homomorphism and distributivity properties}

([g ∩ h] ; S u [g ∩ ¬h] ; S)ω ; [¬(g ∩ h) ∩ ¬(g ∩ ¬h)]
= {rewrite using iteration}

do g ∩ h → S [] g ∩ ¬h → S od
= {decomposition withT := S andh := g ∩ h}

do g ∩ h → S od ; do g → (S ; do g ∩ h → S od) od
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Now,

do g ∩ h → S od ; do g → S od
= {second derivation}

do g ∩ h → S od ; do g ∩ h → S od ; do g

→ (S ; do g ∩ h → S od) od
= {first derivation}

do g ∩ h → S od ; do g → (S ; do g ∩ h → S od) od
= {second derivation}

do g → S od

2

We can now prove a more general rule forsplitting and merging loops.

Theorem 31 (Split/Merge loops).Assume thatS and T are conjunctive
predicate transformers withT. true ∩ ¬g ⊆ T. (¬g). Then

do g → S [] ¬g ∩ h → T od = do g → S od ; do h → T od

Proof. We first note that by Lemma 1 (c), the assumptionT. true ∩ ¬g ⊆
T. (¬g) can be restated asT ; [¬g] v [¬g] ; T Now we have

do g → S [] ¬g ∩ h → T od
= {decomposition (Theorem 26)}

do g → S od ; do h → (T ; do g → S od) od
= {rewrite using iteration}

([g] ; S)ω ; [¬g] ; ([h] ; T ; ([g] ; S)ω ; [¬g])ω ; [¬h]
v {general propertyskip v [p]}

([g] ; S)ω ; [¬g] ; ([h] ; T ; [¬g] ; ([g] ; S)ω ; [¬g])ω ; [¬h]
= {Lemma 10, general rule[p] ; [p] = [p]}

([g] ; S)ω ; [¬g] ; ([h] ; T ; [¬g])ω ; [¬h]
v {see separate derivation below}

([g] ; S)ω ; [¬g] ; ([h] ; T )ω ; [¬h]
= {rewrite using iteration}

do g → S od ; do h → T od

Here the fifth step is justified by the following derivation:

[¬g] ; ([h] ; T ; [¬g])ω v [¬g] ; ([h] ; T )ω

≡ {general rule[p] ; [p] = [p]}
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[¬g] ; ([h] ; T ; [¬g])ω v [¬g] ; [¬g] ; ([h] ; T )ω

⇐ {monotonicity}
([h] ; T ; [¬g])ω v [¬g] ; ([h] ; T )ω

⇐ {induction}
[h] ; T ; [¬g] ; [¬g] ; ([h] ; T )ω u skip v [¬g] ; ([h] ; T )ω

⇐ {general rule[p] ; [p] = [p], assumptionT ; [¬g]; v [¬g] ; T}
[h] ; [¬g] ; T ; ([h] ; T )ω u skip v [¬g] ; ([h] ; T )ω

≡ {general rules[p] ; [q] = [q] ; [p] andskip v [p]}
[¬g] ; [h] ; T ; ([h] ; T )ω u [¬g] v [¬g] ; ([h] ; T )ω

≡ {distributivity}
[¬g] ; ([h] ; T ; ([h] ; T )ω u skip) v [¬g] ; ([h] ; T )ω

≡ {unfolding}
T

For the refinement in the opposite direction we have

do g → S [] ¬g ∩ h → T od
= {decomposition (Theorem 26)}

do g → S od ; do h → (T ; do g → S od) od
= {rewrite using iteration, guard property}

([g] ; S)ω ; [¬g] ; [¬g] ; ([h] ; T ; ([g] ; S)ω ; [¬g])ω ; [¬h]
= {leapfrog (Lemma 11)}

([g] ; S)ω ; [¬g] ; ([¬g] ; [h] ; T ; ([g] ; S)ω)ω ; [¬g] ; [¬h]
= {general rule[p] ; [q] = [q] ; [p]}

([g] ; S)ω ; [¬g] ; ([h] ; [¬g] ; T ; ([g] ; S)ω)ω ; [¬g] ; [¬h]
w {Lemma 1 (c), assumptionT ; [¬g]; v [¬g] ; T}

([g] ; S)ω ; [¬g] ; ([h] ; T ; [¬g] ; ([g] ; S)ω)ω ; [¬g] ; [¬h]
= {Lemma 10}

([g] ; S)ω ; [¬g] ; ([h] ; T ; [¬g])ω ; [¬g] ; [¬h]
= {see mutual refinement proof below}

([g] ; S)ω ; [¬g] ; ([h] ; T )ω ; [¬h]
= {rewrite using iteration}

do g → S od ; do h → T od

where the mutual refinement proof mentioned in the middle consists of

[¬g] ; ([h] ; T )ω v [¬g] ; ([h] ; T ; [¬g])ω ; [¬g]
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≡ {general ruleskip v [q]}
T

and

[¬g] ; ([h] ; T ; [¬g])ω ; [¬g] v [¬g] ; ([h] ; T )ω

≡ {leapfrog (Lemma 11), general rule[q] ; [q] = [q]}
([¬g] ; [h] ; T )ω ; [¬g] v [¬g] ; ([h] ; T )ω

⇐ {induction}
[¬g] ; [h] ; T ; [¬g] ; ([h] ; T )ω u [¬g] v [¬g] ; ([h] ; T )ω

≡ {unfold, distributivity ([q] is conjunctive)}
[¬g] ; [h] ; T ; [¬g] ; ([h] ; T )ω u [¬g]

v [¬g] ; [h] ; T ; ([h] ; T )ω u [¬g]
⇐ {componentwise refinement}

[¬g] ; [h] ; T ; [¬g] v [¬g] ; [h] ; T

≡ {general rule[p] ; [q] = [q] ; [p]}
[h] ; [¬g] ; T ; [¬g] v [h] ; [¬g] ; T

≡ {assumptionT ; [¬g]; v [¬g] ; T , general rule[q] ; [q] = [q]}
T

2

Manasse and Nelson [20] prove a special case of Theorem 31, stating
that

do g → S [] h → T od = do g → S od ; do h → T od

if g∩h = false andT. true ⊆ T. (¬g). The intuition of the second assump-
tion is that if T terminates, then it establishes¬g (Manasse and Nelson
formulate this assumption in terms of weakest liberal preconditions, but the
intuition is the same). We can give a very short proof of this. First we note
thatT. true ⊆ T. (¬g) can be restated asT = T ; [¬g] (using Lemma 1 (c)).
Then

do g → S [] h → T od
= {decomposition (Lemma 12), notingh = ¬g ∩ h}

do g → S od ; do h → (T ; do g → S od) od
= {rewrite using iteration}

([g] ; S)ω ; [¬g] ; ([h] ; T ; ([g] ; S)ω ; [¬g])ω ; [¬h]
= {assumption}

([g] ; S)ω ; [¬g] ; ([h] ; T ; [¬g] ; ([g] ; S)ω ; [¬g])ω ; [¬h]
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= {Lemma 10, general rule[p] ; [p] = [p]}
([g] ; S)ω ; [¬g] ; ([h] ; T ; [¬g])ω ; [¬h]

= {assumption}
([g] ; S)ω ; [¬g] ; ([h] ; T )ω ; [¬h]

= {rewrite using iteration}
do g → S od ; do h → T od

From the rules in Theorems 30 and 31 it is possible to derive further, more
specialised rules. An example of such a rule is the following explicit merge
of two loops using flag variables:

do g → S od ; do h → T od
v
begin var f := T ;

do f ∧ g → S

[] f ∧ ¬g → f := F

[] ¬f ∧ h → T

od
end

8 Conclusion

We have shown how one can reason about iterations and loops in a purely
algebraic setting, based on just the lattice theoretic properties of loops, as
formalised in the refinement calculus. We have described the strong and
weak iteration operators and their basic properties in more detail elsewhere
[9]. Here we apply the iteration operators to loops and in particular to the
derivation of advanced loop transformation rules. The rules that we have
derived are central ones, which can be used as stepping stones for more
detailed and specific transformation rules. We draw our inspiration from
regular expressions and the way they are formalised in regular algebras. This
has directed our attention to ways of deriving analogous results for iteration
statements and traditional (guarded) loop constructs. The contribution of
the paper is best visible in the proofs of the rules for data refinement with
stuttering (Theorem 29) and the atomicity refinement theorem (Theorem
22). Although neither theorem is new as such, we have proved them in a
purely algebraic style and with weaker assumptions than in previous proofs.

The idea of iteration operators is old, and goes back to applications
of regular algebra to program transformation [10,16,23]. Back introduced
a version of weak and strong iteration using action sequences [5]. Weak
iteration (calledit...ti) was also used in a predicate transformer setting by
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Butler and Morgan [12] while van de Snepscheut has used strong iteration
[24]. Least and greatest fixpoint constructs similar to the iteration operators
described here have also been investigated thoroughly by the Eindhoven
Mathematics of Program Construction group [1]. They make heavy use of
Galois Connections, and do not apply results to refinement or to guarded
loops.

The transformation rules for loops derived in this paper are not new in
themselves. However, they have generally been justified only informally or
given operationally oriented proofs (an exception is the paper by van de
Snepscheut where the leapfrog rule for loops is proved [24]). The rule for
data refinement with stuttering is the basis for thesuperpositionmethod of
refinement [8]. It was proved by von Wright [26] but under unnecessarily
strong assumptions and using a number of ad hoc lemmas. The roots of the
atomicity refinement rule go back to Lipton [19] and Lamport [18] and its
practical use in program refinement is demonstrated by Back and Sere [6,
7]. Back has given a purely operational proof of the theorem [4] and one in
a more algebraic style, but still in terms of execution sequences and with
unnecessarily strong assumptions (in the form of extra nonenabling and
nondisabling assumptions) [5]. Here the combination of a purely algebraic
approach and a structured calculational proof style combine to give proofs
that are elegant and easy to check and that show clearly at what points
assumptions are needed for the proof to go through.

Acknowledgements.We wish to thank the anonymous referees for the detailed comments,
which led to a number of improvements to the original version of this paper.
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