Acta Informatica 36, 295-334 (1999) :

I
Infolyqtica

(© Springer-Verlag 1999

Reasoning algebraically about loops

R.J.R. Back, J. von Wright

Abo Akademi University and Turku Centre for Computer Science (TUCS),
FIN-20520 Turku, Finland (e-maifbackrj,jwright t@abo.fi)

Received: 11 February 1998 / 18 March 1999

Abstract. We show how to formalise different kinds of loop constructs
within the refinement calculus, and how to use this formalisation to derive
general transformation rules for loop constructs. The emphasis is on using
algebraic methods for reasoning about equivalence and refinement of loop
constructs, rather than operational ways of reasoning about loops in terms of
their execution sequences. We apply the algebraic reasoning techniques to
derive a collection of transformation rules for action systems and for guarded
loops. These include transformation rules that have been found important in
practical program derivations: data refinement and atomicity refinement of
action systems; and merging, reordering, and data refinement of loops with
stuttering transitions.

1 Introduction

Loops in imperative programming notations are generally defined using
recursion. For recursion constructs (greatest and least fixpoints) a simple
algebraic theory exists. However, this theory has not been applied to the
correctness of transformation rules and refinement rules for guarded loop
constructs (such as the ordinary while-loop that occurs in most imperative
programming languages) within a total correctness framework. Rules for
transformation and refinement of loop constructs have traditionally been
proved using operational arguments (unless they have only been justified
informally). This means that the proofs are long and hard to follow. Further-

more, they are very difficult to check and (as we shall see) they may make
assumptions that are not really needed.

296 R.J.R. Back, J. von Wright

In this paper we define two simple fixpoint-based iteration operators
— one is a least and the other a greatest fixpoint. We derive a number of
basic properties for the iteration operators and then define the traditional
loop construct in terms of iteration. The main part of the paper shows how
a comprehensive collection of transformation and refinement rules can be
derived from the basic rules for iterations. These rules include a rule for
data refinement with stutteringnd a rule forrefinement of atomicityn
loops. Neither of these has, to our knowledge, been given purely algebraic
proofs before.

The algebraic style of reasoning makes proofs short and easy to read and
to check. Furthermore, it allows conditions (assumptions) of the rules to be
easily identified; they generally arise from the need to commute statements
in a proof step. In particular, many conditions arise from a need to propagate
free guard statements either forward or backward.

We use lambda notation for functions (e.@\z * x = 1)) and an infix
dot for function applicationf. «). Quantifiers are given low precedence and
their scope is delimited by parentheses. We use standard notation for logical
connectives and for boolean truth. Proofs are written in a calculational
style.

The rest of the paper is organised as follows. In Sect. 2 we briefly outline
the basic theory of predicate transformers and refinement that is the basis
for the paper. Section 3 describes two iteration constructs and their basic
properties. In Sect. 6 we show how traditional loop constructs (while- and
do-loops) are defined in terms of the iteration constructs. We give algebraic
proofs for a number of loop transformation rules, including a rule for data
refinement of loops with stuttering. The properties of iterations are applied
to action systems in Sect. 4, and in Sect. 5 we consider the more demanding
task of atomicity refinement. We then consider basic rules for guarded loops
in Sect. 6. In Sect. 7 we derive examples of practically useful transformation
rules for loops and we then finish with some concluding remarks in Sect. 8.

2 Predicate transformers as program statements

We assume that the reader is familiar with the weakest precondition seman-
tics of simple imperative programming languages and with the basic notions
of program refinement [2, 3,14, 15,21, 22]. We here quickly describe the no-
tions of states, predicates and predicate transformers used in this paper, and
how they are formalised.

Reasoning algebraically about loops 297

2.1 Predicate transformers

By a predicate we mean a boolean state function, i.e., a function of type
XY’ — Bool, where the typeX’ models the state space. Since a predicate
represents a set of states, we freely use set notation (intersection, union,
subset) for predicates.

A predicate transformeis a function that maps predicates to predicates.
We useMtran(X, I') for the set omonotonidunctions that map predicates
inI” — Boolto predicatesit’ — Bool. HereX is theinitial state spacand
I" thefinal state spacélVe take predicate transformers to model programs
according to aveakest preconditioimtuition: if S'is a predicate transformer
andq a predicate over its final state spacpgatconditionthen the predicate
S. q describes those initial states from which executiory'a$ guaranteed
to terminate in a state in. If o € S.¢, then we say thab establishes
postconditiony from initial stateo.

The two basic operations on predicate transformers are (sequential) com-
position and (demonic) choice, defined as follows:

(S1;52).q=51.(52.9) (sequential compositign

(S1MS2).q=51.qN S2.¢q (demonic choice

Demonic choice is a meet (greatest lower bound) operator. In fact,
Mtran(X, I") is a complete lattice (though we will not make use of the
join operator here). The bottom elemena®rt = (\q * false) and the top
elementisnagic = (\g * true). The unit of composition iskip = (Ag* ¢q).

The ordering on predicate transformers is definedhy S’ = (Vg+ S.q C
S’.q), therefinement ordering

In the weakest precondition intuition, the choigel S’ establishes post-
conditiong if and only if both.S and .S’ establishg. The bottom element
abort establishes no postcondition, not exeue. Dually, the top element
magic establishes all postconditions, evaise.

Predicate transformers can be classified according to basic homomor-
phism properties (in addition to monotonicity). We will mostly consider
conjunctive predicate transformers; we say thas conjunctiveif it dis-
tributes over nonempty meets, i.e.Sf(Ni € [+ ¢) = (Ni € [+ S.q)
for arbitrary nonempty collectionfy; | ¢ € I'} of predicates. Duallys is
disjunctiveif it distributes over nonempty joins of predicates. Furthermore,
S is strictif S.false = false andterminatingif S.true = true. It is well
known that conjunctivity and disjunctivity each implies monotonicity.

We will also make use of continuity. For that, we define alsetio be
directed(with respect to an ordering) if

Ve,ye Ke3ze KexlUyL 2) (directedness

A function f is said to becontinuousf it distributes over joins of directed
sets. This definition is slightly more general than the traditional definition

298 R.J.R. Back, J. von Wright

in terms of distributivity over limits of sequences. Furthermore, it has the
advantage of not involving the natural numbers. Note that continuity is
related to disjunctivity: if a predicate transformer is strict and disjunctive,
then it is also continuous.

The basic algebraic properties of monotonic predicate transformers can
be summarised by stating thttran(X, 3) is @ monoid with composition
; and unitskip and thatMtran(X', I") is a complete lattice with meet,
top magic and bottormabort. Furthermore, these two structures interact as
follows, for nonempty index sdt

(ﬂiEI'SZ‘);SZ(l_l’iGI’Si;S)
S;(Miel«S;)C(Niel=*S;S;)
S;(Miel=*S;)=(MNiel+S;Ss;) ifSisconjunctive

To avoid excessive parentheses, we give composition higher precedence than
choice.

2.2 Guards and assertions

We do not assume any specific notation for constructing predicate transform-
ers that model basic program statements (typically, some kind of notation
for assignments to program variables would be used). However, we will
use two ways of injecting predicates into predicate transformers, defined as
follows:

[p].q =-pUq (guard)
{p}.a=pnyq (assen

Intuitively, the guard statemerfip] and the assert statemefyi} both test
whether the conditiop holds in the present state. If the condition holds,
then both act askip, i.e., do not change the state. If the condition does not
hold, then the guard statement terminates miraculously (actsridgic)
while the assert statement acts |édgort.

The following basic algebraic properties of guards and assertions will
be used (the proofs are straightforward):

PIElgl=p24q {P}E{dt=pCyq
[p];lal =[pNd {p}i{dt ={png}
[pl Mgl = [pUd] {r} 1 {q} ={png}

2.3 Context information

An assertio{p} at a certain point in a program can be seen as asserting that
p holds at that point. Dually, a guafg] corresponds to an assumption that

Reasoning algebraically about loops 299

p holds. A refinement of the forrfip} ; S C S'; {¢} modelspropagation
of contextual informationit can be interpreted as saying that if we knpw
holds in the initial state then execution §fleads to a final state whete
holds. Similarly, other refinements including assertions and guards can be
interpreted as propagation of information.

The following lemma collects some rules used in this paper.

Lemma 1. Assertions and guards can be propagated according to the fol-
lowing rules:

@ S:{¢tC{p};5 = SqCp

(b) [p];SES;[q] = —-pCS.(mq)

(©) S;[glEp;S = S.truenp C S.qif Sis conjunctive

(d) S;[glE[p];S = S.(—q) C —pU S.falseif S is disjunctive

Proof. We show only the proof of part (b), as the proofs of the other parts
are similar. We have

[p]; ST S5l
= {definitiong
(Vre—-pUS.rCS.(—qUr))
= {specialise’ := —¢}
“pUS. (mg) C 5. (~q)
= {lattice property
—p C S.(~q)

and

[p]; ST S;d]
= {definitiong
(Vre=pUS.r CS.(-qUr))
< {general ruleS.pU S.q C S. (p U q) for monotonicS'}
(Vre—pUS.rCS.(mq)US.7)
< {monotonicity ofU with respect taC }
—p C S.(—q)
O
Using the notion ofdual predicate transformergdefined byS°.q =

- S.(—¢q) we can reformulate Lemma 1 (d) in the following way which
shows the duality with (c) clearly: i is disjunctive then

S;[gClpl;S=5°truenpC S°q

300 R.J.R. Back, J. von Wright

Furthermore, Lemma 1 (c) and (d) have dual formulations in terms of as-
sertions (which we will not use in this paper), using the following general
equivalence:

S:laClpl:S={p}:SCS;{a}

for arbitrary monotonic predicate transformer
By combining Lemma 1 (b) and (c) we immediately get the following:

Lemma 2. Assume tha$ is conjunctive. Then

[p]; SES;[gl = S;[~q] E [-p]; S

3 Iteration constructs

Standard algebraic treatment of recursion and iteration is based on fixpoint
theory. Before we define and investigate the iteration constructs, we recall a
number of basic results from the fixpoint theory of lattices. These are stan-
dard results (“folk theorems”) that appear in the literature in many variations
[1,11,25].

First of all, we assume that thénaster-Tarski theorens known:

Lemma 3. Every monotonic function on a complete lattice has a complete
lattice of fixpoints.

In particular, this means that a monotonic functjoon a complete lattice
has a least fixpoint. f and a greatest fixpoimt f. These are characterised
by the following properties:

fo(uf)=mnf fw.f)=vf (unfolding

feCex=>u fCux zCfx=zCuvf (induction
We also assume that the followingjling rulesfor fixpoints are known:

Lemma 4. Assume thajf and g are monotonic functions on a complete
lattice. Then

fo(u(gof)) = p.(fog) and f.(v.(gof)) = v.(fog)

The following diagonalisation lemmaives a way of moving between
fixpoints over one variable and fixpoints over multiple variables. Here we
use binder notatiofy. = * f. x) for the least fixpoing. f (and similarly for
v. f) and the notatiotiu = y * t) abbreviategp x ¢ (uy * t)).

Lemma 5. Assume thayf is a function of two arguments on a complete
lattice and thatf is monotonic in each of its arguments. Then

@ (pzy*fzy) = (pze fo)

Reasoning algebraically about loops 301

b) (vxyefxy) = (vae f.x.x)

Finally, we assume the followinfusion lemmgattributed to Kleene)
which links least fixpoints and continuity:

Lemma 6. Assume thaf and g are monotonic functions on complete lat-
ticesX’ and " and thath : X — I"is continuous. Then

(@) ifhofC goh,thenh.(u. f)C p.g
(b) ifhof=goh,thenh.(u. f)=p.g

There is also a greatest fixpoint version of the fusion theorem, using duals
of continuity and directedness. However, we omit this, for brevity.

3.1 Iteration operators

Let us now look at the basic iteration constructs that the rest of this paper
builds on. Intuitively, a recursive predicate transformerX * S) is exe-
cuted byunfolding i.e., by executing and replacing any occurrence &f
encountered witliu X « S). Thus, recursion leads to iterated execution of
a piece of code.

By means of the fixpoint constructs we define two explitgtation
constructs

S¥ L (X +S; X skip) (strong iteration)

S* L (yX+S; X skip) (weak iteration

Intuitively, S* is S repeated a (demonically) chosen finite number of times.
S¥ is similar, but it allowsS to be repeated an infinite number of times
(which is semantically equivalent to aborting). These operators themselves
are not new [12,24], and some of the properties in Sects. 3.1-3.4 have been
published before [9, 24].

From the definitions of the iteration operators and the unfolding and in-
duction rules for fixpoints we immediately get the following basic properties
of iterations:

S¥ = S§;85“nmskip (unfold strong iteratioh
S;XnMskipC X = SYLC X (strong iteration inductioh
S* = S§;5*Mnskip (unfold weak iteratioh
XCS;Xnskip = XCgS* (weak iteration inductiohp

We shall now illustrate the intuition behind the two iteration operators.
Both kinds of iterations aranguardedi.e., the termination of an iteration
S or S* is decided by a demonic choice, rather than by evaluation of a
guard predicate. To see the difference between the two iterations, consider

302 R.J.R. Back, J. von Wright

iterating skip. Intuitively, repeatingskip a finite number of times has the
same effect askip, but repeatingkip indefinitely is equivalent to aborting:

skip™ = skip
skip® = abort
The following derivations prove this. First,
skip*
= {unfold}

skip ; skip* M skip
C {general lattice property My C y}
skip
and
skip C skip*
<« {induction}
skip C skip ; skip 1 skip
= {skip is unit, meet is idempoteht
T
which provesskip* = skip. Then,

skip® C abort
<« {induction}
skip ; abort 1 skip C abort
= {skip is unit,abort is bottom elemerjt

T
which provesskip” = abort.

Now let S be the guarded command < 2] ; z := z + 1. If the initial
state haz = 0, thenS* and .S“ both lead tar being assigned one of the
values0, 1 and2. Here the guard statement prevents the strong iteration
from going into an infinite loop.

3.2 Generalised induction principles
Occasionally, we will need the following generalisation of the definition of
iterations.

Lemma 7. Let S and T be arbitrary monotonic predicate transformers.
Then

(WX S; XNT)=5v;T
(XS, XNT)=5";T

Reasoning algebraically about loops 303

Proof. For strong iteration we apply fusion (Lemma 6 (b)) with:=

(AX » X ; T), which is easily proved to be continuous, and wjth=

(AX » S; X skip) andg := (AX S ; X NT). For weak iteration, the
proof makes use of the dual version of the fusion theorem (see the comment
after Lemma 6). O

Lemma 7 and the general induction principles for fixpoints now give us
more general induction rules, of which the induction rules above are special
cases:

Corollary 8. Assume that' andT' are monotonic predicate transformers.
Then

S; XNTCECX=5Y,TCX
XCS; XNT'=XCSs*;T

In what follows, the justification “induction” will refer to these more general
rules.

3.3 Basic properties of iterations

In the following we list a collection of basic properties of iterations. The
proofs are based on induction, unfolding and distributivity properties of
predicate transformers.

Lemma 9. Assume thatS and 7" are monotonic predicate transformers.
Then

@ SCT = SYCTY and SCT = S*CT*
(b) S“CS and S*C S

(c) 5¥;58¥=8% and S*;S* = 5"

(d) (S¥)¥ =abort and (S¥)* =S¥

(e) (S*)“ =abort and (S*)* =5*

Proof. For (a) we have

SYCT™

< {induction}
S;TYnskipcC Tv

= {unfold}
S;T¥nskip C T ;T mskip

= {monotonicity of; andr}
SCT

304 R.J.R. Back, J. von Wright

The argument for weak iteration is similar. Next, (b):

gw

= {unfold twice}
S (S; 8% M skip) rskip

C {monotonicity}
S ; skip M skip

C {monotonicity,skip is unit of sequential compositign
S

with a similar argument fo5*. Now consider (c). For weak iteration we
have

S* ;8"
= {unfold}
S* (S S* nskip)
C {monotonicity}
S* ; skip
C {skip is unit}
g+
and
S*C st s”
<« {induction}
S*Cs;s nst
= {general lattice property C x My = = C y}
S*CS; 8"
= {unfold}
S;S*mskipC S;S*
= {meetis lower boung
T

For strong iteration$S¥; S C S“ is proved as for weak iteration. Refinement
in the opposite direction is proved differently:
SYCsv,sv
< {induction}
S S8Y;SYnskip C S¥;SY
= {unfold}

Reasoning algebraically about loops 305

S;8“;8¥mskip C (S; 8 rskip) ; ¢
= {distributivity}
S;S8Y:SYNMskipt §;58Y;5YMsY
= {unfold rightmostS“’}
S;S8Y:;SYnNskipt §;5Y;5YMS ;S Mskip
= {general lattice property Mz = =}
S;8Y;8YMS;8Y;SYNskipt S5 5YMS ;S Mskip
= {monotonicity of; andr}
S;8vY;8vC S8
= {general rules“ C skip (by unfolding)}
T

Next, we prove (d). We have

(S¥)“ C abort

< {general rules“ C skip, part (a) of this lemmh
skip® C abort

= {general ruleskip” = abort (see Sect. 3.3})
T

and then

S« C (89
< {induction}
S¥ C 8“; S8YMskip
= {part (c) of this lemma
S¥ C S“ nskip
= {general lattice property C z My =x C y}
S¥ C skip
= {general rules“ C skip }
T

where the converse refinement follows directly from (b). Finally (e) is proved
in exactly the same way as (d). O

The monotonicity properties in Lemma 9 (b) are so basic that we will
often use them in proofs without explicit reference. We will also need the
following property in a number of proofs:

306 R.J.R. Back, J. von Wright

Lemma 10. Assume thaf is a monotonic predicate transformer apds
a predicate. Then

[—g]; (Ig] 5)% = [g]
Proof.

(=gl 5 (9] 5 9)

= {unfold, distributivity}
(=gl 5191555 (lg] 5 9)% M [~g]

= {general propertie®| ; [¢] = [p N ¢] and[false] = magic}
magic; S; ([g] ; §)“ 1 [g]

= {general propertynagic ; S = magic, magic is top elemernit
[=9]

3.4 Properties of conjunctive iterations

If we assume conjunctivity, then we can prove two properties that illustrate
the correspondence between the iteration operators and the star operator of
regular languages. First we have thapfrogproperty.

Lemma 11 (Leapfrog). Assume thats and 7' are monotonic predicate
transformers and tha$ is conjunctive. Then

S (T58)°=(8;T);S and S;(T;9)" =(S;T)";S

Proof.

S (T 8)

= {definition}
S;(uX+T;S;XMskip)

= {rolling (Lemma 4) withf := (A X * S; X)

andg := (AX * T'; X nskip)}

(X S;(T; X Nskip))

= {S conjunctivg
(WX *S;T;XnNS)

= {Lemma %
(S:;T)*; 8

and the derivation for weak iteration is similar. O

Reasoning algebraically about loops 307

By choosingl™ := skip in Lemma 11 we get the following as a special
case:

S;8%=8Y:§ and S;8"=85":8
Next we have thelecompositiomproperty.

Lemma 12 (Decomposition)Assume that andT are monotonic predi-
cate transformers and thét is conjunctive. Then

(SAT)* = 8% (T;8) and (SNT)" = S*; (T ;8%

Proof.
(SnT)”
= {definition}
(WX (STT); X nskip)
= {distributivity}
(uX +S;XNT;Xnskip)
= {diagonalisation (Lemma %)
(WX s (pYS;YNT;Xnskip))
= {Lemma %
(u X+ 5% (T; X Mskip))
= {rolling (Lemma 4}
S (pX T ;S; X nskip)
= {definition of strong iteratioh
55 (15 8%)*
Again, the derivation for weak iteration is similar. O

In the conjunctive case there is also a simple connection between the two
iterations:

Lemma 13. Let S be an arbitrary conjunctive predicate transformer. Then
S« ={p.S}; 8"

Proof. First, we show that\q ¢ {¢} ; T) is continuous, for arbitrary mono-
tonic predicate transformdr (we show the stronger fact that it distributes
over arbitrary joins of predicates):

(Age{q};T). (Uiel*q)
= {f reductior}
{Uielsq};T
= {distributivity}

308 R.J.R. Back, J. von Wright

(Viel*{a};T)
= {f reductior}
UielsAg{q};T) a)
Then,

{18} 8% =8
= {f reduction, definition o5« }
(Ape{p};S").(u.S) = (uX+S; X Mskip)
< {fusion (Lemma 6 (b)), continuity
(Ape{p};57) oS = (AX +5; X niskip) o (Ap*{p};S")
= {definition of composition, pointwise extensighreductior}
(Vpe{S.p};S* = S:{p}; S" Nskip)
= {unfold weak iteratioh
(Vpe{S.p}; (5; 8" Mskip) = S;{p};S* Mskip)
= {pointwise extension, statement definitipns
(VpgeS.pnNS.(S*.q)Nng = S.(pNS*.q)Nq)
<« {definition of conjunctivity
S conjunctive
0

Intuitively, Lemma 13 provides a decompaosition reminiscent of the clas-
sical decomposition of total correctness into termination and partial correct-
ness. Itis useful for proving properties about strong iteration by first proving
a corresponding property for weak iteration (this is used in Lemma 14 be-
low). We could also define anfinite repetitionby S = (1 X « S; X) and
find S¥ = S°°M.5* whenS is conjunctive (for a more detailed investigation
of the infinite repetition, we refer to [9]).

3.5 Commutativity properties

Later in this paper, commutativity properties of statements will play an im-
portant role. The following lemma shows how a generalised commutativity
is inherited by assertions and iterations.

Lemma 14. Assume tha$, T'andU are monotonic predicate transformers
withS; T C U ;S. Then

@ S;1T*CU*;S

(b) S;{pu.T}C{u.U};S if Siscontinuous

(c) S;T*CU¥;S if TandU are conjunctive and is continuous.

Reasoning algebraically about loops 309

Proof. First we prove (a):

S:;T*CuU*; S

<« {induction}
S;T*CU:;S8;T*NnS

= {unfold}
S;(T;T"nNskip) EU;S; T NS

< {generalruleS; (T'MU)C S;TNS;U}
S;T:;T*"NSCU;S;T*MS

< {monotonicity of; andr}
S:TCU;S

Now, (b)

Si{nTHT{p.U}; S
= {definitiong
(Vg S.(u.TNgqg) Cp.UNS.q)
< {general ruleS. (pNgq) C S.pN S.q}
(Vg S.(un.T)NS.qCpu.UNS.q)
<« {monotonicity ofn}
S (pn.T)CpU
<« {fusion (Lemma 6 (a))
S;TCZU;S
Finally, for (c) we have, assuming; T C U ; S
ST
= {Lemma 13
Si{w.TH;T"
C {part (b) of this lemma
{p.U}; ST
C {part (a) of this lemma
{p.U}; U8
= {Lemma 13
Uu“;s
O

We now turn to a more specific kind of commutation. We say that
commutesover' if S; T CT;S.

310 R.J.R. Back, J. von Wright

Lemma 15. Assume tha$ is monotonic] is conjunctive, and;T C T';S.
Then

(@ S“;TCT;S
(b) (SMT)¥ =5+,;T¥ if Siscontinuous
() (SNT)w=58v;Tv ifTY =T
Intuitively speaking, Lemma 15 (b) and (c) show under what assumptions
we can execute a mix &f andT so that all executions & come first.
Proof. First, we have
SY.TCT;SY
<« {induction}
S;T;8“nNTCT;S¥
= {unfold, conjunctivity}
S;T,;8“nNTCT;S;8“NT
< {monotonicity of; andri}
S;TCT;S
which proves (a). We then prove (b) and (c) together. First,
(SnT)”
= {general rules¥ ; S« = S¥ (Lemma 9 (c)}
(SnT)y*;(SnT)”
C {general lattice rule M y C x, monotonicity}
Sw.TY
and for the converse refinement we have
SesTYC(SnT)”
<« {induction}
S;(Snm*nT*Cc(SnT)”
= {decomposition (Lemma 12)
S;TY;(S;T)YNTY CTY; (S;TY)”
= {unfold, T conjunctive
ST (S, T NI CTY; S;TY;(S; 7)Y T
<={(9}
S;TY; (S, T)YNTYC ST, TY;(S;T)*NT
< {monotonicity of; andr}
™ CeTY:; T
= {general rules* ; S¥ = S¥ (Lemma 9 (c)}
T

Reasoning algebraically about loops 311

where the justification marked with an asterisk uses the assumgtton
T C T ;S and Lemma 14 (c) for (b), and the assumptidits= T™* and
S;TLCT;SandLemma 14 (a) for (c). O

3.6 Data refinement

Data refinement can at an abstract level be described as a commutativity
property: we say tha$' is data refined throughD by S’ if the following
condition holds:

D;Sc S ;D

whereD : Mtran(X’, X) (thedecoding, S : Mtran(X, Y) (the abstract
statementandS’ : Mtran(Y’,) (theconcrete statemenare monotonic
predicate transformers. Intuitively speakidgmodels a data abstraction in
the sense that it replaces a concrete data structure’dusith an abstract
data structure oveX'. More details about this algebraic view on data refine-
ment can be found elsewhere [17,27]. Here we concentrate on the algebraic
interaction between data refinement and iterations and loops.

From Lemma 14 we immediately see how data refinement is inherited
by iterations:

Theorem 16. Assume tha$, 7' and D are monotonic predicate transform-
erssuchthatD ; S C T ; D. Then

@ D;S*CT*;D
(b) D;S¥CT¥;Dif SandT are conjunctive and is continuous.

Thus we can say that the weak iteration alwaieserves data refinement
while strong (conjunctive) iteration preserves data refinement provided that
the decoding is continuous. We return to an interpretation of this result
when considering data refinement of action systems (Sect. 4.3) and loops
(Sect. 6.3).

4 Action systems

We shall now apply the results for iterations to constructs that are more
directly useful in programming. We begin wi#tttion systemand later (in
Sect. 6) move on to loop constructs that correspond directly to the while-
loops of traditional sequential programming languages.

312 R.J.R. Back, J. von Wright
4.1 Action systems
An action systenis defined as follows

doA;| -] Apod
L (WX *A ;XN MAy; XM [-gd. Ay NN —gd. 4y)])

whereAq, ..., A, (theactiong are conjunctive predicate transformers. The
reason for choosing a least rather than a greatest fixpoint in this definition is
that a least fixpoint corresponds to semantically identifying infinite unfold-
ing with abort.

Using iterations we can rewrite the action system in a more convenient
form:

doAy | - |Apod= (A1 TTA,)Y; [gd.- Ay N - N—gd. Ay

Intuitively, the action system is like a strong iteration of the chofge™

-+ A,, but when no action is enabled, then the action system terminates.
We say that actior is enabledwhen theguardgd. A = — A. false holds.

The guard statement at the end makes sure that the iteration is not terminated
until all actions are disabled.

An action system can be seen as modeling a parallel program, in the
following way. If the guards of both actions are true and there are no read-
write or write-write conflicts between two actions and A;, thenA; and
A; can be executed in any order. This, in turn, means that we can view
them as executed in parallel, with an interleaving semantics for parallelism.
This is the essence of the action system approach to parallel algorithms. The
action system approach is described in more detail in [7]. It is similar to
the UNITY approach [13] but it does not assume fairness and it permits the
action bodies to be arbitrarily complex statements.

Here we concentrate on the algebraic properties of action systems. Since
the action system can be described in terms of a strong iteration, it should be
possible to derive properties for action systems from corresponding prop-
erties of strong iterations. How well this works in practice depends on how
well we can handle the added guard statement at the end.

Before we consider general properties of action systems, we note the
following properties of simple action systems:

Lemma 17. Assume tha#l is a monotonic predicate transformer. Then

(@) (do A od).true = u. A, and
(b) (do A od).false = false.

Reasoning algebraically about loops 313

Proof. For (a) we have

(do Aod).true =p. A
= {definitiong
(WX *A; XM[-gd A]).true = p. A
<« {fusion (Lemma 6 (b)) witth := (AX « X.true)}
(VX » (A; X M [-gd. A]).true = A. (X.true))
= {definitions, simplificatiof
(VX » A.(X.true) N (gd. AUtrue) = A. (X.true))
= {simplification}
T

and for (b):

(do A od).false C false
= {definitiong
A% ; [gd. A] ; abort C abort
<« {induction}
A ; abort [gd. A] ; abort C abort
= {definitions
A.falsengd. A C false
= {definitiongd. A = —A.false}
T

4.2 Basic properties

We start by lifting general properties of strong iterations to action systems.
To keep things simple, we generally consider action systems with one or two
actions. In general, the results that we prove can be generalised directly to
action systems with three or more actions, because of the general property
doA|Bod=do(AMB)od.

We first consider the leapfrog property.

Theorem 18 (Action system leapfrog)Assume thatl and B are conjunc-
tive predicate transformers. Then

A;doB;AodCdoA;Bod; A

314 R.J.R. Back, J. von Wright

Proof. We have

A;doB;Aod

= {rewrite using iteratioh
A;(B; A [~gd. (B A)]

= {leapfrog (Lemma 11)
(A;B)*; As[-gd. (B; A)]

C {see separate derivation belpw
(A;B)*;[~gd. (A5 B)]; A

= {rewrite using iteratioh
doA;Bod; A

The step that is not an equality is justified as follows:

A;[-gd (B;A)C[-gd. (A;B)]; A
< {Lemma 1 (c}
A.truen—gd.(A;B) C A.(—gd.(B; A))
= {definition of guard
A.truen A. (B.false) C A. (B. (A.false))
= {A monotonic, s4.true D A. (B.false)}
A.(B.false) C A.(B. (A.false))
= {A andB are monotonicfalse C A.false}
T

d

An obvious question is now whether the other half of the leapfrog prop-
erty holdsdo A; Bod; A C A;do B; A od. The proof cannot be easily
adjusted, since the refinement

[-gd. (A;B)]; AC A;[-gd. (B; A)]

is notvalid (if A = abortthen the left-hand side magic and the right-hand
side isabort). On the other hand, we do not have a counterexample, so we
leave this as an open guestion.

Next we consider decomposition.

Theorem 19 (Action system decomposition)Assume thatd and B are
conjunctive predicate transformers. Then

doA] Bod=do Bod;do(A;doBod)od
provided thaigd. A N gd. B = false.

Reasoning algebraically about loops 315

Intuitively speaking, the conditiogd. A N gd. B = false states that the
actionsA andB excludesach other; they cannot be enabled simultaneously.

Proof. First we rewrite the conditiogd. A N gd. B = false into a more
easily used form.

gd. Angd. B = false

= {general shuntingruleNng¢ Cr = p C ~qUr}
gd. BC —gd. A

= {definition of guard
gd. B C A.false

= { A is monotoni¢
(Vgegd. BC A.q)

= {general lattice property Cy = y =z Uy}
(Vg* A.q=gd. BUA.q)

= {definitiong
A=[-gd.B];A

Now,

doA|]Bod
= {rewrite using iteratioh
(AN B)Y; [-gd. AN —gd. B]
= {decomposition (Lemma 1)
B¥;(A;B*)”;[-gd. AN —gd. B]
= {property of guard statement
B¥;(A;BY)*;[~gd. B] ; [-gd. A]
= {assumptiorgd. A N gd. B = false, derivation abovg
B ([-gd. B]; A; B¥)” ; [gd. B ; [-gd. A]
= {leapfrog (Lemma 11), guard rules
B ;[-gd. B]; (A; B”; [-gd. B])* ; [gd. 4]
= {see separate subderivation bejow
B ;[-gd. B]; (A; B ; [gd. B])* ; [gd. (A; B¥ ; [gd. B])]
= {rewrite using iteratioh
do B od;do (A;do B od) od

where the guard manipulation is justified by the following derivation:

gd. (A; B¥;[-gd.B]) =gd. A

316 R.J.R. Back, J. von Wright

= {definitiong
-A. ((BY; [-gd. B]).false) = - A.false
<« {functionality,false C p holds trivially for allp}
(B“ ; [-gd. B]).false C false
= {Lemma 17 (b), usin@3“ ; [-gd. B] = do B od}
T
O
The proof of Theorem 19 builds on the leapfrog and decomposition rule

for iterations, but also on guard manipulations. The main proof directly
suggests that the following two assumptions must hold:

A= [ﬂgd. B]) A
[-gd. A] = [-gd. (A; B ; [-gd. B])]

Separate derivations then simplify (and possibly discharge) these guard con-
ditions.

4.3 Data refinement

Now let us consider how the data refinement rules for iterations can be used
to derive rules for action systems. The basic rule for data refinement is as
follows:

Theorem 20. Assume thatl and A" are conjunctive and is continuous.
Furthermore assume thd; A C A’; D andD; [-gd. A] C [—gd. A'] ; D.
Then

D:doAodCdo A od; D

Proof.

D ;do A od

= {rewrite using iteratioh
D; A% [-gd. 4]

C {assumption, data refinement rule (Theorem 16}(b))
(A)?; D [-gd. A]

C {assumptioh
(A)* ; [gd. A'); D

= {rewrite using iteratioh
do A’ od; D

Reasoning algebraically about loops 317

Here the guard conditioD ; [-gd. A] C [-gd. A’] ; D can be simplified
using Lemma 1 (c) or (d). The two basic forms of data refinement are when
D is strict and disjunctive (forward data refinement) and wheis strict,
terminating, and conjunctive (backward data refinement) [27], so we have
the following alternative versions of this condition:

D.(gd.A) C gd. A" if D is strict and disjunctive
-gd. A’ C D.(—gd. A) if D is strict, terminating, and conjunctive

Theorem 20 is easily generalised to the case withctions. There is
then one condition for each actioW(; A; C A, ; D) and one termination
condition O ; [~gg] C [~g4'] ; D), wheregg = gd. A1 U---Ugd. A,.

We can also generalise Theorem 20 to alkiuttering actionsn a data
refinement.

Theorem 21. Assume thatl and B are conjunctive and thab is contin-
uous. Furthermore assume that the following conditions hold:

() D;AC A ;DandD;skipC B;D
(i) D;[-gd Al C [-gd. A’ Nn—gd.B];D
(i) D.trueC u.B

Then
D;doAodCdo A |Bod;D

Proof. We first note the following:

B¥ ;D

= {Lemma 13
{p.B};B*; D

3 {assumption (i), Theorem 16 (akip® = skip (see Sect. 3.3})
{w.B}; D

3 {assumption (iii), Lemma 1 (&)
D ; {true}

= {{true} = skip}
D

We then have
do A" Bod; D
= {rewrite using iteratioh
(A" B)Y; [-gd. A'N —gd. B]; D
3 {decomposition (Lemma 12), assumption(ii)

318 R.J.R. Back, J. von Wright

B (A" B*)”; D [-gd. A]
2 {preceding derivation, Theorem 16 {b)
BY;D; A¥; [—gd. A
1 {preceding derivatioh
D; A% [-gd. 4]
= {rewrite using iteratioh
D ;do Aod
O

The actionB in Theorem 21 is called a stuttering action because it
corresponds to akip step on the abstract level. The guard condition is
similar to the guard condition of Theorem 20 and can be analysed in the same
way. From Lemma 17 (a) we see that the last condition states that execution
of do B od must always terminate if the initial state satisfi@strue (if
the decodingD is described by an abstraction relatidh then D. true
characterises those concrete states for which the rel&tisrdefined, i.e.,
those states that satisfy the concrete invariant).

5 Atomicity refinement

In the action system approach, the loop notation describeatteicity

(the granularity) of the system; the actions are considered to be executed
as atomic units, without interference from other actions. A transformation
that replaces an action with two or more actions reduces the granularity
and is called amtomicity refinementor example, the decomposition rule
(Theorem 19) can be seen as a simple rule of atomicity refinement when it
is read from right to left.

5.1 Properties of actions

Before we formulate the conditions under which the atomicity is refined,
we introduce some intuitively appealing ways of describing conditions:

— A always disable3 if A.true C A.(—gd. B)

— AexcludesB if gd. AN gd. B = false

— A does not enabl® if —gd. B C A.(—gd. B)

— A does not disablé if gd. B C A. (gd. B)

— iteration of A always terminate# (do A od).true = true

In order to carry out manipulation exclusively on the predicate transformer
level (rather than on the predicate level), we reformulate these conditions in
terms of actions directly.

Reasoning algebraically about loops 319

Always disabling A always disable®3 if and only if A ; [gd. B] = A. To
see this, we first have

A;[-gd.B]C A
= {skip = [true]}

A [-gd. B] C [true] ; A
= {Lemma 1 (c}

A.true Ntrue C A. (—gd. B)
= {lattice property

A.true C A. (—gd. B)

The reverse refinement ; [-gd. B] J A always holds trivially, because of
the general rulskip C [p].

Exclusion A excludesB if and only if A = [-gd. B]; A. This was already
shown as part of the proof of Theorem 19.

Nonenabling and nondisabling.emma 1 (b) gives us
[gd. B]; AC A;[gd. B] = —~gd. B C A.(—gd. B)
and

[-gd. B]; AC A;[~gd. B] = gd. B C A. (gd. B)

Terminating iteration If iteration of A always terminates theA“ = A*.
This is seen as follows:

AY = A"
= {Lemma 13
{p A} ;A = A
< {{true} = skip}
w. A = true
< {Lemma 17 (a)
do A od.true = true

Implication in the other direction does not hold in general, but it does hold
whenA is terminating (i.e., whenl. true = true). To see this, we have

AY = A"
= {Lemma 13
{p.A}; A* = A"

320 R.J.R. Back, J. von Wright

= {definitiong
(Vge u. AN A*.q=A".q)
= {general lattice property My =y =y C x}
(Vg+ A*.q C p. A)
= {specialisg; := true}
A*.true C u. A
= {A.true = true = A*.true = true by derivation beloy
true C u. A

where the last step is justified by the following derivation

true C A*.true
= {definitiong
magic C A* ; magic
< {induction}
magic C A ; magic N magic
= {magic is top element, definitior}s
true C A.true

5.2 The atomicity refinement theorem

The atomicity refinement setup involves an initialisatioand five actions:
themajor actionA, theminor actionB, theleft moverL, theright moverR,
and theenvironment actiorr. All of these are assumed to be conjunctive.
The aim is an atomicity refinement of the form

I;do(A;doBod)|[L|R|EodCI;doA]|B|L]|R]|Eod

Note how execution ofA ; do B od) is split up into separate executions of
A andB interleaved with the other actiong/(L, andR). For more details
about the interpretation of this refinement and its application, we refer to
[4].

The conditions for atomicity refinement are the following:

(@) I always disable#3

(b) A andFE both excludeB

(c) L andFE do not enabléB and R does not disablés

(d) L commutes over each of, B andR; and B commutes oveR
(e) iteration ofR always terminates

(f) L is continuous

Reasoning algebraically about loops 321

We call the actiond. and R (left and right) movers because of their com-
mutativity properties. The major and minor actioasgnd B) are the ones
directly involved in the atomicity refinement, while models environment
actions (which are not involved in the atomicity refinement and do not in-
terfere with it).

The derivations in Sect. 5.1 show that the conditions (a)—(e) give us the
following algebraic conditions that can be used in the proof:

(a) I=1;[~gd.B]
(b) A=[-gd.B]; 4
E =[-gd. B]; E
(c) [gd.-B]; LE L; [gd. B]
gd. B]; EC E; [gd. B]
[-gd.B]; RC R;|[—gd. B|
(d L;AC AL
L;BC B;L
L;RCR;L
B;RCR;B
(e) R =R"
Expressed in this way, the conditions can be used efficiently in algebraic
manipulations. The theorem is now as follows.

Theorem 22. Assume thal, A, B, E, L and R are actions satisfying the
conditions (a)—(f) above. Then the following refinement holds:

I;do(A;doBod)|L|R|EodCI;doA]|B|L]|R]|Eod

Proof. We abbreviate-gd. A N —gd. L N —gd. R N —gd. E by ¢ and we
omit the semicolon for sequential composition, to make formulas easier to
handle. We have

I;doA|B|L|R|Eod

= {definition of loop, hide semicolons
I(ANBMNLMNRMNE)?[-gd. BNg]

= {decomposition (Lemma 1)
I(ANBNLNR)*(E(ANBMNLMNR)Y)*[—gd. BN

= {commutativity assumptions fdr, Lemma 15
IL¥(AN BN R)“(ELY(AN B R)*)[~gd. BN]

= {decomposition (Lemma 1)
ILY(BNR)“(A(BMNR))(ELY(BMR)Y(A(BMR)*)“)~

322 R.J.R. Back, J. von Wright

[-gd. BNg]
={BRLC RBandR* = R* and Lemma 1%
IL¥ B°R“(AB“R*)*(EL“ B R*(AB* R*)*)*|-gd. BN]
J{Lemma 23 (&)
IL*B¥R*(AB“R®)“([~gd. BJEL* R*(AB“ R*)*)*|-gd. B N ¢]
= {[-gd. BN q] = [-gd. B] ; [¢], leapfrog (Lemma 11 (b})
IL* BYR*(AB“R®)“|-gd. B|(EL“ R*(AB“ R*)*|~gd. B])*[q]
3 {assumptiod = [—gd. B] A, leapfrog (Lemma 11 (b))
IL¥ B® R*[~gd. B](AB* R®|~gd. B])*
(EL*R*[~gd. B)(AB“ R*[~gd. B))*)*[q]
3 {assumption?[—gd. B] J [-gd. B|R, Lemma 14 (a),
assumptiorkR¥ = R*, [p|] 3 skip}
IL¥ B R®(AB“[~gd. B|R*)*(EL”R*(AB“[~gd. B|R*)*)*[q]
3 {Lemma 23 (b)}
IL¥ R*(AB“[-gd. B]R®)*(EL* R*(AB“|~gd. B]R“)*)*[q]
= {decomposition (Lemma 1)
IL¥(AB“[-gd. BN R)“(ELY(AB*[-gd. B] 1 R)*)*[q|
= {Lemma 23 (c)}
I(AB“[—gd. BjNM LM R)*(E(AB“[—gd. Bl LM R)*)¥[q]
= {decomposition (Lemma 1)
I(AB”[-gd. BjM LM RN E)“[q]
= {Lemma 23 (d), definition of loop
I;do(A;doBod)|L]|R|Eod O

The lemmas used in the proof are then proved as follows.

Lemma 23. Under the assumptions that are made for the atomicity refine-
ment theorem,

(a) FL¥YB* 1 [-gd. BJEL¥

(b) IL¥*BY 3 1L~

(c) LY(AB“[—gd.B]MR)* = (AB“[~gd. BjM LM R)¥

(d) gd.(A;doBod)=gd. A

Proof. For (a) we have
EL¥B*
= {assumption (B)
[-gd. BJELYB*

Reasoning algebraically about loops 323

3{[p] = [p]; [p], assumption (c) and Lemmg 2

[-gd. B|E[-gd. B|L“B*

3 {assumption (c) and (f), Lemmas 2 and 14}(c)

[~gd. B|EL¥[~gd. B|B®

J {general rule$—gd. B| B¥ = [—gd. B] (Lemma 10) andp| 2 skip}
[-gd. B|EL”

Next, (b):

I1L¥B”
= {assumption (&)
I[-gd. B]L* B¥
3 {assumption (c) and (f), Lemmas 2 and 14}(c)
IL¥[~gd. B]B¥
3 {general ruleB = [gd. B] ; B}
IL¥[-gd. B]([gd. B|B)“
2 {Lemma 10, general rulp] 3 skip}
I~

Now, (¢) We have

L(AB“[-gd. B|M R)
C {L conjunctivé
LAB“[-gd. BN LR
C {assumption (d), Lemma 14
AB“L[-gd. B]M RL
C {assumption (c), Lemma}2
AB“[-gd. BILM RL
= {distributivity}
(AB“[-gd. B]M R)L
S0 L¥(AB¥[-gd. B] T R)¥ = (AB“[-gd. B] 1 L N R)* follows by as-
sumption (f) and Lemma 15 (b).
Finally, we prove (d):

gd. (A ;do B od)
= {definitiong

—A. ((do B od).false)
= {Lemma 17 (b)

324 R.J.R. Back, J. von Wright

—A.false
= {definition of action guarfl
gd. A

6 Loops

As noted before, the iteration constructs are unguarded, i.e., the termination
of an iterationS“ or S* is decided by a demonic choice, rather than by
evaluation of a guard predicate. In an action system the iteration is guarded,
but the guard is implicit in the action. We now consider the traditidoah
construct where the guard is explicit in the syntax.

We use the traditional definition of a loop as a least fixpoint:

d0g1—>51|] I]gn—>5nod
L (uX e [q];S1; X MM gn); Sn; X N [=g1 NN =ga))

Intuitively, the loop is executed in the following way. First, all the guayds
are evaluated. If all guards are false, then the loop has terminated.
Otherwise, one of the bodie$; for which the guardy; was true, is
executed. If execution of this body terminates normally, then the guards
are again evaluated etc. Exactly as for action systems, infinite execution
corresponds to aborting, since the definition uses a least fixpoint.
Using iterations, we can rewrite the definition of the loop as follows:

dogl—>5'1|] [Ign—>5'nod
= ([g1] 5811 gn] 5 Sn)“ 5 [mg1 N -+ N =g

This means that we can use the rules for strong iterations to derive rules
for loops. Before we do that, we consider the relationship between action
systems and loops in some more detalil.

6.1 Loops and action systems

The most important difference between a loop and an action system is that
the guard is explicit in the loop. If the body in the loopdo g — S od is
strict, then we have the following:
=([g]; S).false
= {definitions
g N ~S. false
= {S assumed strigt

g

Reasoning algebraically about loops 325

This showsthatd. ([¢];S) = g, which meansthatthe loal g — S od and

the action systerdo [g] ; S od are the same predicate transformer. However,

if the loop body is not strict, then the loop can terminate miraculously which

is something no action system can. A loop with a nonstrict body cannot
be written as an action system, which means that loops are more general
that action systems. However, this does not mean that the rules for action
systems are direct consequences of the corresponding rules for loops, since
some rules for loops are more detailed (they include separate assumptions
on the guard predicate).

6.2 Leapfrog and decomposition for loops

For action systems, only a weak version of the leapfrog rule was proved
(Theorem 18). For loops, however, we can prove a stronger version.

Theorem 24 (Loop leapfrog).Assume tha$ and7" are conjunctive pred-
icate transformers.

(@ IfgCS.hand—g C S.(—h) then
dog—S;Tod;SCS;doh—T;5od
(b) If S.trueng C S.handS.truen —g C S.(—h) then

dog—S;Tod;STJS;doh—T;50od

Proof. For (a) we have

dog— S;Tod;S

= {rewrite using iteratioh
(g1; 55 T) (gl S

C {Lemma 1 (b), assumptions (¥)
(S5 (A T)% 555 [h]

= {leapfrog (Lemma 11)
S5 ([h];T;8) 5 [-h]

= {rewrite using iteratioh
S;doh—T;50od

For (b) the derivation is similar, but in the step marked (*) we get refinement
in the opposite direction from Lemma 1 (c). O

The proof of Theorem 24 builds on the leapfrog rule for iterations and
on propagating guards. The assumptions in both (a) and (b) are derived

326 R.J.R. Back, J. von Wright

directly from the need to propagate guards and Lemma 1. We can also give
an intuitive interpretation to the conditions. For (a) we require that if
(—g) holds beforeS is executed, theh (—h) holds afterwards. For (b) the
conditions are similar, but they do not require tisats terminating. Note
that for action systems we had refinement in one direction only (Theorem
18), but then without guard conditions.

Note that the assumption in Theorem 24 (a) is stronger than the one in
(b). Thus we have an equality rule as an immediate consequence:

Corollary 25. Assume that andT are conjunctive predicate transformers.
If g C S.hand—g C S.(—h) then

dog— S;Tod;S=S;doh—T;50od

The decomposition rule can be directly generalised to loops, in the same
way as for action systems.
Theorem 26 (Loop decomposition)Assume tha$ and7 are conjunctive
predicate transformers. Then
dogN—-h—S|h—Tod
= doh—Tod;dog— (S;doh — T od)od

Proof. doh — T od;dog— (S;doh — T od) od
= {rewrite using iteratioh
([p];)% s [=h] 5 ([g] s S5 ([R] s T) 5 [2R)Y 5 [g]
= {leapfrog (Lemma 11), guard rules
([P T) 5 ([gn=h] ;5 S5 ([R]; T)) 5 [7g N —h]
= {decomposition (Lemma 12)
(lgn=h];SOLRT)®; [mg N =k
= {rewrite using iteratioh
dognN-h—S|h—Tod
0
It is interesting to note that no restrictions on the guardarn(dh) are
needed in Theorem 26. Another interesting fact is that in the proof, both the
leapfrog and the decomposition rules for iterations are used.
A direct consequence of Theorem 26 is the following result, which has

also been proved by Manasse and Nelson [20] and by van de Snepscheut
[24].

Corollary 27. Assume tha$ and7 are conjunctive predicate transformers
and thatg N h = false. Then

dog—S|h—Tod = doh—Tod;dog— (S;doh — T od) od

Reasoning algebraically about loops 327

Manasse and Nelson have a very long and complex proof and they comment
that “the labor involved in the proof seems excessive”. The proof method
of van de Snepscheut is closer to ours, but it involves an auxiliary notion of
thelowest meet closuref a function.

6.3 Data refinement of loops

To end this section, we show how the data refinement rules for iterations
can be used to derive rules for data refinement of loops. We begin with the
basic case [27]:

Theorem 28. Assume thab is continuous and thab ; S C S’ ; D and
D;[g] E[¢']; DandD ; [~g] C [~¢'] ; D. Then

D;dog—SodCdog — S od; D

The proof follows the same line of argument as the proof of the corre-
sponding rule for action systems (Theorem 20), so we omit it. The guard
conditionsD ; [¢] C [¢'] ; D andD ; [-g] C [~¢'] ; D can be simplified
using Lemma 1 (c) or (d). Since the two basic forms of data refinement are
when D is strict and disjunctive (forward data refinement) and wheis
strict, terminating, and conjunctive (backward data refinement), we have the
following versions of this conditionD. g C ¢’ andD. (—g) C —¢' whenD
is strict and disjunctive, ang C D.gand—¢’ C D. (—g) whenD is strict,
terminating, and conjunctive.

Intuitively the conditions can be justified as follow3: [—g] C [~¢']; D
states that the concrete loop must be able to continue whenever the abstract
loop can andD ; [¢] C [¢'] ; D states that the concrete loop must be able
to terminate whenever the abstract loop can. Thus, together they say that
termination of the two loops must happen at corresponding points.

Exactly as for action systems we can allow stuttering actions in a data
refinement.

Theorem 29. Assume thabt andT' are conjunctive and) is continuous.
Furthermore assume that the following conditions hold:

() D;SCS;DandD;skipC [h|;T ;D
(i) D;lg] E[g']; DandD;[~g] C [~g'N~h]; D
(i) D.true C p.([h];T)

Then
D;dog—SodCdog - S |h—Tod;D

Again the proof is similar to the corresponding rule for action systems
(Theorem 21) so we omit it.

328 R.J.R. Back, J. von Wright

7 Loop transformations

We now show how the basic loop rules are used to derive transformation
rules that allow loop constructs in programs to be manipulated. A collection
of basic rules that are useful from a practical program transformation point of
view can be derived in this way. We here consider only two such derived rules
for loops:removing vacuous loo@ndsplitting and merging loopsThese
exemplify the general technique for deriving interesting loop transformation
rules from the basic properties of iterations.

We begin with a rule that removes a vacuous loop. This rule can be seen
as corresponding to the rules for iterations in Lemma 9 (c) (although that
lemma cannot be used directly in the proof).

Theorem 30 (Remove vacuous looppssume tha$' is conjunctive. Then
dogNh—Sod;dog— Sod=dog— Sod

Proof. We first prove the special case whien- true:
dog— Sod;dog— Sod
= {rewrite using iteratioh
(l9]59)% 3 [~gl 5 ([9]: S)* 5 [g]
= {Lemma 10
(lg]59)?: [=gl 5 [g]
= {general guard property] ; [p] = [p]}

(lg]59)% 5 [gl
= {rewrite using iteratioh
dog — Sod
Furthermore we have the following:
dog— Sod
= {rewrite using iteratioh
(l9]59)”; [9]

= {lattice properties
([lgnh)U(gn=h)];5)%;[=(gNh)N=(gN—h)

= {homomorphism and distributivity properties
(lgnh]; ST [gN=h];8); [=(gNh)N—(gN-h)]

= {rewrite using iteratioh
dognh—S]|gn—h—Sod

= {decomposition witl{" := S andh := g N h}
dogNh— Sod;dog— (S;dognNh— Sod)od

Reasoning algebraically about loops 329

Now,

dognNh— Sod;dog— Sod
= {second derivatioh
dogNh— Sod;dogNh— Sod;dog
— (S;dogNh — Sod)od
= {first derivatior}
dogNh— Sod;dog— (S;dognNh— Sod) od
= {second derivatioh
dog— Sod
0
We can now prove a more general rule $piitting and merging loops

Theorem 31 (Split‘/Merge loops).Assume thab andT" are conjunctive
predicate transformers witffi. true N —g C T'. (—g). Then

dog—S|]—-gnNh—Tod=dog— Sod;doh — T od

Proof. We first note that by Lemma 1 (c), the assumptiortrue N —g C
T. (—g) can be restated &; [-g] C [~g] ; T Now we have

dog—S|]|—-gnh—Tod
= {decomposition (Theorem 2p)

dog— Sod;doh — (T;dog— S od)od
= {rewrite using iteratioh

(lg]59) 5 [=gl5 ([0 T (lg] 5 5)* 5 [=g])* 5 [=h]
C {general propertgkip C [p|}
(lg]59)% s [mgl s ([M)5 T 5[] s (l9) 5 9)7 5 [g])* 5 [

= {Lemma 10, general rule| ; [p| = [p|}
(l9]59)% 5 [=gls ([R5 T [~g])™ 5 [A]
C {see separate derivation belpw
(l9]5 8)“ 5 [gl s ([A) s 1) 5 [0
= {rewrite using iteratioh
dog— Sod;doh — T od

Here the fifth step is justified by the following derivation:

[=gl5 ([A]; T 5 [=g])” T [—g] 5 ([R] s T)*
= {general ruldp] ; [p] = [p]}

330 R.J.R. Back, J. von Wright

[=g]; ([P]; T [2g))” E [=g] 5 [2g] 5 ([R5 T)*
< {monotonicity}
([n]; T5 [=g))” E [=g] 5 ([h]; T)*
<« {induction}
(7] 5T 5 [=g] 5 [g) s ([A] s T) Miskip © [~g] 5 ([A] 5 T)
< {general ruldp] ; [p] = [p], assumptioT” ; [~g]; C [~g] ; T}
[A]; [=g] s T ([R]; T)* Miskip C [—g] 5 ([A]; T)
= {general rulesgp| ; [¢] = [q] ; [p] andskip T [p]}
(=gl 5 [h) T ([R] 1) T [2g] E [yl 5 ([A] T)
= {distributivity}
(=95 ([R] 5 T5 ([R] s T)* Miskip) © [~g] 5 ([R5 T)”
= {unfolding}
T

For the refinement in the opposite direction we have

dog—S|—-gnh—Tod
= {decomposition (Theorem 2p)

dog— Sod;doh — (T ;dog— Sod)od
= {rewrite using iteration, guard propejty

(lg]59)% s [mgl s [mgl s ([R5 15 ([g) 5)7 5 [g])* 5 [
= {leapfrog (Lemma 11})

(lg]:8)% 5 [=g] s ([=g) 5 [R] 5 T5 ([9]5.9))* 5 [=g] ; [-h]
= {general ruldp] ; [¢] = [q] ; [p]}

(lg]:8)% 5 [~gl s ([M] 5 [mg) s T5 ([9] 5.9))* 5 [-g] 5 [-h]
3 {Lemma 1 (c), assumpticfi ; [g]; C [~g] ; T}

(l9]59)% 3 [~g] 5 ([A] 5 T 5[] s ([9)5.9)°) 5 [g] 5[]
= {Lemma 10

(lg]59) 5 [=gl 5 ([M)5 T 5 [=g])* 5 (=gl 5 [
= {see mutual refinement proof belpw

(l9159)% 3 [=gl 5 ([A] s T)< 5 [=h]
= {rewrite using iteratioh

dog— Sod;doh — T od

where the mutual refinement proof mentioned in the middle consists of

(g5 ([R5 1) £ [=gl; ([h] T 5 [29])” 5[]

Reasoning algebraically about loops 331

= {general ruleskip C [q]}
T

and
(=915 ((A]5 T 5 [=g])* 5 [=g] E [mgl s ([R]; T)*
= {leapfrog (Lemma 11), general rul@ ; [q] = [¢]}
([~gl s [p]; 1) 5 [mg] E [yl ([R]; T)”
< {induction}
[mgls [R]: T [gl s ([R5 7)Y Mgl E [yl ([R5 T)7
= {unfold, distributivity (¢| is conjunctive}
(=gl [R5 15 [=g]s ([R] 3 T) M [g]
C [mg] 5 (A5 T 5 ([R]; T)* M [g]
<« {componentwise refinement
(=gl (AT 5 [~g] E [ngls5 AT
= {general rulép] ; [¢] = [q] ; [P]}
(75 [=g)5 T 5[] E [h]5[-g]5 T

= {assumptiorY"; [g]; T [~g] ; T, general ruldq] ; [¢] = [q]}

T O

Manasse and Nelson [20] prove a special case of Theorem 31, stating
that

dog—S|h—Tod=dog— Sod;doh — T od

if gnh = false andT.true C T. (—g). The intuition of the second assump-
tion is that if T terminates, then it establisheg (Manasse and Nelson
formulate this assumption in terms of weakest liberal preconditions, but the
intuition is the same). We can give a very short proof of this. First we note
thatT. true C 7. (—g) can be restated &= T'; [-g| (using Lemma 1 (c)).
Then

dog—S[|h—Tod
= {decomposition (Lemma 12), notirig= —g N h}
dog— Sod;doh — (T;dog— S od)od
= {rewrite using iteratioh
(l9159) 5 [=gl 5 ([R5 T 5 ([9]5.9)“ 5 [=g))” 5 [=h]
= {assumptioh
(l9]59)% 5 [gl 5 ([M) 5 T 5[] s ([9)5.9)° 5 [g])* 5[]

332 R.J.R. Back, J. von Wright

= {Lemma 10, general rule] ; [p] = [p|}
(lg]59)% s [mgls ([R5 T 5 [=g])” 5 [-A]
= {assumptioh
(l9]59) 5 [=gl 5 ([M) s T) 5 [-h]
= {rewrite using iteratioh
dog— Sod;doh — T od

From the rules in Theorems 30 and 31 it is possible to derive further, more
specialised rules. An example of such arule is the following explicit merge
of two loops using flag variables:

dog— Sod;doh — T od

C

beginvar f :=T;
dofAg— S
| fA-g—f:=F
| "fAR—>T
od

end

8 Conclusion

We have shown how one can reason about iterations and loops in a purely
algebraic setting, based on just the lattice theoretic properties of loops, as
formalised in the refinement calculus. We have described the strong and
weak iteration operators and their basic properties in more detail elsewhere
[9]. Here we apply the iteration operators to loops and in particular to the
derivation of advanced loop transformation rules. The rules that we have
derived are central ones, which can be used as stepping stones for more
detailed and specific transformation rules. We draw our inspiration from
regular expressions and the way they are formalised in regular algebras. This
has directed our attention to ways of deriving analogous results for iteration
statements and traditional (guarded) loop constructs. The contribution of
the paper is best visible in the proofs of the rules for data refinement with
stuttering (Theorem 29) and the atomicity refinement theorem (Theorem
22). Although neither theorem is new as such, we have proved them in a
purely algebraic style and with weaker assumptions than in previous proofs.
The idea of iteration operators is old, and goes back to applications
of regular algebra to program transformation [10, 16,23]. Back introduced
a version of weak and strong iteration using action sequences [5]. Weak
iteration (calledt...ti) was also used in a predicate transformer setting by

Reasoning algebraically about loops 333

Butler and Morgan [12] while van de Snepscheut has used strong iteration
[24]. Least and greatest fixpoint constructs similar to the iteration operators
described here have also been investigated thoroughly by the Eindhoven
Mathematics of Program Construction group [1]. They make heavy use of
Galois Connections, and do not apply results to refinement or to guarded
loops.

The transformation rules for loops derived in this paper are not new in
themselves. However, they have generally been justified only informally or
given operationally oriented proofs (an exception is the paper by van de
Snepscheut where the leapfrog rule for loops is proved [24]). The rule for
data refinement with stuttering is the basis for s@erpositiormethod of
refinement [8]. It was proved by von Wright [26] but under unnecessarily
strong assumptions and using a number of ad hoc lemmas. The roots of the
atomicity refinement rule go back to Lipton [19] and Lamport [18] and its
practical use in program refinement is demonstrated by Back and Sere [6,
7]. Back has given a purely operational proof of the theorem [4] and one in
a more algebraic style, but still in terms of execution sequences and with
unnecessarily strong assumptions (in the form of extra nonenabling and
nondisabling assumptions) [5]. Here the combination of a purely algebraic
approach and a structured calculational proof style combine to give proofs
that are elegant and easy to check and that show clearly at what points
assumptions are needed for the proof to go through.

AcknowledgementsWe wish to thank the anonymous referees for the detailed comments,
which led to a number of improvements to the original version of this paper.

References

1. C. Aartsetal.: Fixpoint calculus. Information Processing Letters 53(3), February 1995

2. R.J. Back: Correctness Preserving Program Refinements: Proof Theory and Applica-
tions, volume 131 of Mathematical Centre Tracts. Mathematical Centre, Amsterdam,
1980

3. R.J. Back: A calculus of refinements for program derivations. Acta Informatica 25,
593-624 (1988)

4. R.J.Back: Refining atomicity in parallel algorithms. In PARLE Conference on Parallel
Architectures and Languages Europe, Eindhoven, the Netherlands. Berlin Heidelberg
New York: Springer 1989

5. R.J. Back: Atomicity refinement in a refinement calculus framework. Reports on
computer science and mathematics :Iﬁmo Akademi, 1992

6. R.J. Back, K. Sere: Stepwise refinement of parallel algorithms. Science of Computer
Programming 13, 133-180 (1990)

7. R.J. Back, K. Sere: Stepwise refinement of action systems. Structured Programming
12, 17-30 (1991)

8. R.J. Back, K. Sere: Superposition refinement of parallel algorithms. In K.R. Parker,
G.A. Rose, editors, Formal Description Techniques IV, pages 475-493. North-Holland:
Elsevier Science Publishers 1992

334

9.

10.

11.
12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

R.J.R. Back, J. von Wright

R.J. Back, J. von Wright: Refinement Calculus: A Systematic Introduction. Berlin
Heidelberg New York: Springer 1998

R.C. Backhouse, B.A. C&rRegular algebra applied to path finding problems. Journal
Inst. Math. Appl. 15, 161-186 (1975)

G. Birkhoff: Lattice Theory. American Mathematical Society, Providence, 1961

M.J. Butler, C.C. Morgan: Action systems, unbounded nondeterminism and infinite
traces. Formal Aspects of Computing 7(1), 37-53 (1995)

K.M. Chandy, J. Misra: Parallel Program Design: A Foundation. Addison-Wesley
1988

E.W. Dijkstra: A Discipline of Programming. Prentice-Hall 1976

E.W. Dijkstra, C.S. Scholten: Predicate Calculus and Program Semantics. Berlin
Heidelberg New York: Springer 1990

R.M. Dijkstra: Relational calculus and relational program semantics. Tech. Rpt. 9408,
Rijksuniversiteit Groningen, 1994

P.H. Gardiner, C.C. Morgan: Data refinement of predicate transformers. Theoretical
Computer Science 87(1), 143-162 (1991)

L. Lamport: A theorem on atomicity in destributed algorithms. Distributed Computing
4,59-68 (1990)

R.J. Lipton: Reduction: A method of proving properties of parallel programs. Com-
munications of the ACM 18(12), 717-721 (1975)

M.S. Manasse, C.G. Nelson: Correct compilation of control structures. Techn. Memo.
11271-840909-09TM, AT&T Bell Laboratories, September 1984

C.C. Morgan: The specification statement. ACM Transactions on Programming Lan-
guages and Systems 10(3), 403—-419 (1988)

J.M. Morris: Atheoretical basis for stepwise refinement and the programming calculus.
Science of Computer Programming 9, 287-306 (1987)

S. Rnn: On the Regularity Calculus and its Role in Distributed Programming. PhD
thesis, Helsinki University of technology, Helsinki, Finland, 1992

J.L.A. van de Snepscheut: On lattice theory and program semantics. Technical Report
CS-TR-93-19, Caltech, Pasadena, California, USA, 1993

A. Tarski: A lattice theoretical fixed point theorem and its applications. Pacific J.
Mathematics 5, 285—-309 (1955)

J. von Wright: Data refinement with stuttering. Reports on computer science and
mathematics 13Abo Akademi, 1992

J. von Wright: The lattice of data refinement. Acta Informatica 31, 105-135 (1994)

