
Information and Computation 156, 25�45 (2000)

Contracts, Games, and Refinement

Ralph-Johan Back1 and Joakim von Wright

Department of Computer Science, Abo Akademi University,
Lemminkainenkatu 14, Turku SF-20520, Finland

E-mail: backrj�abo.fi

We consider the notion of a contract that governs the behavior of a
collection of agents. In particular, we study the question of whether a
group among these agents can achieve a given goal by following the
contract. We show that this can be reduced to studying the existence of
winning strategies in a two-person game. A notion of correctness and
refinement is introduced for contracts and contracts are shown to form a
lattice and a monoid with respect to the refinement ordering. We define
a weakest precondition semantics for contracts that permits us to com-
pute the initial states from which a group of agents has a winning
strategy to reach their goal. This semantics generalizes the traditional
predicate transformer semantics for program statements to contracts and
games. Ordinary programs and interactive programs are special kinds of
contracts. ] 2000 Academic Press

1. INTRODUCTION

A computation can generally be seen as involving a number of agents (programs,
modules, systems, users, etc.) who carry out actions according to a document
(specification, program) that has been laid out in advance. When reasoning about
a computation, we can view this document as a contract between the agents
involved. In this paper we show how contracts can be used as the starting point for
a theory of program refinement. We describe a notation for contracts and give them
a formal meaning using an operational semantics.

The refinement calculus [2, 4, 11] has traditionally based its reasoning on a
weakest precondition semantics [7] for program statements. This semantics is
based on the notion of total correctness; refinement means preservation of all total
correctness properties. We show that the weakest precondition semantics agrees
with the intuition of contracts. Furthermore, we show how the operational seman-
tics and the weakest precondition semantics are related through the notion of winn-
ing strategies for games.

We use simply typed higher-order logic as the logical framework in the paper. The
type of functions from a type 7 to a type 1 is denoted by 7 � 1 and functions can

doi:10.1006�inco.1999.2820, available online at http:��www.idealibrary.com on

25 0890-5401�00 �35.00
Copyright � 2000 by Academic Press

All rights of reproduction in any form reserved.

1 Corresponding author.



have arguments and results of function type. Functions can be described using
*-abstraction and we write f.x for the application of function f to argument x.

2. STATES AND STATE CHANGES

We assume that the world that contracts talk about is described as a state _.
The state space 7 is the set (type) of all possible states. An agent changes the
state by applying a function f to the present state, yielding a new state f._. We
think of the state as having a number of attributes x1 , ..., xn , each of which can
be observed and changed independently of the others. Such attributes are usually
called program variables. An attribute x of type 1 is really a pair of two functions,
the value function valx: 7 � 1 and the update function setx: 1 � 7 � 7. The func-
tion valx returns the value of the attribute x in a given state, while the function
setx returns a new state where x has a specific value, while the values of all other
attributes are unchanged. Given a state _, valx ._ is thus the value of x in this
state, while _$=setx .# ._ is the new state that we get by setting the value of x
to #.

An expression like x+ y is a function on states described by (x+ y) ._=
valx ._+valy ._. We use expressions to observe properties of the state. They are also
used in assignments like x :=x+ y. This assignment denotes a state changing func-
tion that updates the value of x to the value of the expression x+ y. Thus,

(x :=x+ y) ._=setx . (valx ._+valy ._) ._

A function f : 7 � 7 that maps states to states is called a state transformer. We
also make use of predicates and relations over states. A state predicate is a boolean
function p : 7 � Bool on the state (we use set notation for predicates, writing _ # p
for p ._). Predicates are ordered by inclusion, which is the pointwise extension of
implication on the booleans.

A boolean expression is an expression that ranges over truth values. It gives us a
convenient way of describing predicates. For instance, x� y is a boolean expression
that has value valx ._�valy ._ in a given state _.

A state relation R : 7 � 7 � Bool relates a state _ to a state _$ whenever R ._ ._$
holds. Relations are ordered by pointwise extension from predicates. Thus, R�R$
holds if R ._�R$ ._ for all states _.

We permit a generalized assignment notation for relations. For example,
(x :=x$ | x$>x+ y) relates state _ to state _$ if the value of x in _$ is greater than
the sum of the values of x and y in _ and all other attributes are unchanged. More
precisely, we have that

(x :=x$ | x$>x+ y) ._ ._$#(_x$ } _$=setx .x$ ._ 7 x$>valx ._+valy ._).

This notation generalizes the ordinary assignment; we have that _$=(x :=e) ._ iff
(x :=x$ | x$=e) ._ ._$.

26 BACK AND VON WRIGHT



3. CONTRACTS

Consider a collection of agents, each with the capability to change the state by
choosing between different actions. The behavior of agents is regulated by contracts.

We describe contracts using a notation for contract statements. The syntax for
these is as follows, where p stands for a state predicate and f stands for a state
transformer, both expressed using higher order logic:

S ::=( f ) | [ p] | S1 ; S2 | S1 ? S2 .

Intuitively, an agent carries out a contract statement as follows: The update ( f )
changes the state according to the state transformer f. If the initial state is _0 then
the agent must produce a final state f ._0 . An assignment statement is a special kind
of update where the state transformer is an assignment. For example, the assign-
ment statement (x :=x+ y) (or just x :=x+ y��from now on we will drop the
angle brackets from assignment statements) requires the agent to set the value of
attribute x to the sum of the values of attributes x and y.

In the sequential action S1 ; S2 the action S1 is first carried out, followed by S2 .
A choice S1 ? S2 allows the agent to choose between carrying out S1 or S2 . To
simplify notation, we assume that sequential composition binds stronger than
choice in contracts.

The assertion [ p] is a requirement that the agent must satisfy in a given state.
For instance, [x+ y=0] expresses that the sum of (the values of attributes) x and
y in the state must be zero. If the assertion holds at the indicated place when the
agent carries out the contract, then the state is unchanged, and the agent carries on
with the rest of the contract. If, on the other hand, the assertion does not hold, then
the agent has breached the contract.

The assertion [true] is always satisfied, so adding this assertion anywhere in a
contract has no effect. Dually, [false] is an impossible assertion; it is never satisfied
and always results in the agent breaching the contract.

3.1. Multiple agents

Above we assumed that there is only one agent bound by a contract. In general,
there will be a number of agents that are acting together to change the world and
whose behavior is bound by contracts. We then indicate explicitly which agent is
responsible for the different choices and assertions. To illustrate this, assume that
S is the following contract, binding agent a,

S=x :=0; (T ?a x :=x+1); [ y=x]a ,

where T is the contract

T= y :=1 ?b y :=2

27CONTRACTS, GAMES, AND REFINEMENT



which binds b. Combining these two contracts we get

S=x :=0; (( y :=1 ?b y :=2) ?a x :=x+1); [ y=x]a .

The effect of the update is independent of which agent carries it out, so we allow
this information to be lost when writing contract statements.

3.2. Operational Semantics

We can give a formal meaning to contract statements in the form of a structured
operational semantics [13]. This semantics describes step by step how a contract is
carried out, starting from a given initial state.

The rules of the operational semantics are given in terms of a transition relation
between configurations. A configuration is a pair (S, _), where

v S is either an ordinary contract statement or the empty statement symbol
4, and

v _ is either an ordinary state, or the symbol =a (denoting that agent a has
breached the contract).

The transition relation � (which shows what moves are permitted) is inductively
defined by a collection of axioms and inference rules. It is the smallest relation
which satisfies the following axioms (in the axioms, we assume that _ stands for a
proper state while # stands for either a state or the symbol =x for some agent x):

v Update,

(( f ), _) � (4, f._)
,

(( f ) , =a) � (4, =a)
.

v Assertion,

_ # p
([ p]a , _) �a (4, _)

,
_ � p

([ p]a , _) �a (4, =a)
,

([ p]a , =b) �a (4, =b)
.

v Sequential composition,

(S1 , #) � (S$1 , #$), S$1 {4
(S1 ; S2 , #) � (S$1 ; S2 , #$)

,
(S1 , #) � (4, #$)

(S1 ; S2 , #) � (S2 , #$)
.

v Choice,

(S1 ?a S2 , #) �a (S1 , #)
,

(S1 ?a S2 , #) �a (S2 , #)
.

We have labeled the transition relation with the agent responsible for carrying out
the move. This labeling is really redundant since it can always be recovered from
the configuration in question.

28 BACK AND VON WRIGHT



A scenario for the contract S in initial state _ is a sequence of configurations,

C0 � C1 � C2 � } } } ,

where

1. C0=(S, _),

2. each transition Ci � Ci+1 is permitted by the axiomatization above, and

3. if the sequence is finite with last configuration Cn , then Cn=(4, #), for
some #.

Intuitively, a scenario shows us, step by step, what choices the different agents have
made and how the state is changed when the contract is being carried out. A finite
scenario cannot be extended, since no transitions are possible from an empty
configuration. As a matter of fact, it is easy to show that contract statements as we
have defined them above permit only finite scenarios.

3.3. Generalized Choice

If the language of contracts is to be really useful, we need to be able to describe
potentially infinite computation with contracts. We do this by extending the
language of contracts with generalized choice, relational updates, and recursion. We
describe these constructs briefly below and use them in examples.

The binary choice is generalized to permit generalized choices. We write
�a [Si | i # I ] for the choice that agent a has to do between the elements of a set
of contract statements [S i | i # I ]. Note that this set could be infinite (or empty). If
the index set I is empty, then the agent has no alternative to choose and will have
to breach the contract.

This syntax assumes that we are given a way of constructing the contract state-
ment Si for each i in the set I. For example, if we are given a recursive definition
of a contract Sn for each natural number n, then �a [Sn | n # Nat] means that agent
a chooses which of the contracts Sn is to be followed.

The operational semantics for generalized choice is a direct generalization of the
semantics for binary choice:

i # I
(�a[i # I v S i], #) �a (Si , #)

.

We also introduce special notation for the situation where an agent has a choice
between different ways of directly changing the state, given in terms of a state
relation. The relational update [R]a is a contract statement that permits an agent
to choose between all final states related by state relation R to the initial state (if
no such final state exists, then the agent has breached the contract). For example,
the contract statement

[x :=x$ | x<x$]a

29CONTRACTS, GAMES, AND REFINEMENT



is carried out by agent a by changing the state so that the value of x becomes larger
than the current value without changing the values of any other attributes. The
operational semantics for the relational update is

R ._ ._$
([R]a , _) �a (4, _$)

,
R ._=<

([R]a , _) �a (4, =a)
,

([R]a , =b) �a (4, =b)
.

As an example, consider a contract involving four agents a, b, c, and d. Assume
that a is a user of a program, whereas b is the main module, and c and d are sub-
modules of the program. Agent a chooses some input which must be between 0 and
100. Then b chooses whether to pass on the value to c (which is permitted if the
value is below 50) or d (which is always permitted). For instance, we can think that
the first alternative gives a more efficient computation, but is only available for
small values of x. This is described by the contract statement

[x :=x$ | 0�x$�100]a ; ([x<50]b ; S1 ?b S2)

where we do not show the details of S1 (where agent c makes choices) and S2

(where agent d makes choices).
The relational update [R]a could also be defined in terms of the generalized

choice in the following way. Assume that a state relation R : 7 � 7 � Bool is given.
For each state _ in 7 we define a contract S_ as

S_='
a

[(*_0 v _$) | R ._ ._$];

i.e., S_ changes any initial state _0 to some state _$ such that R._._$ holds. Then we
can define

[R]a=' [[*_0 v _0=_]; S_ | _ # 7]

This corresponds to the intuition that agent a chooses between all state changes to
new states _$ such that R ._0 ._$ holds, where _0 is the current state.

3.4. Recursion

We can make the language of contracts more interesting from a programming
point of view by also permitting recursive contract statements, which introduce the
possibility of infinite scenarios. A recursive contract is defined using an equation of
the form

X=a S,

where S may contain occurrences of the contract variable X. With this definition,
the contract X is intuitively interpreted as the contract statement S, but with each
occurrence of statement variable X in S treated as a recursive invocation of the

30 BACK AND VON WRIGHT



whole contract S. We also permit the syntax (reca X } S) for the contract X defined
by the equation X=a S.

The mention of a specific agent in the recursive contract requires some explana-
tion. We can think of the unfolding of X (i.e., the replacement of X by S) as carried
out by the agent a. Furthermore, we think of this agent as being responsible for
termination��in an infinite scenario a is considered to have breached the contract.
The operational semantics for recursion is

X=a S
(X, #) �a (S, #)

.

4. USING CONTRACTS

Programs can be seen as special cases of contracts, where two agents are
involved, the user and the computer system. In simple batch-oriented programs,
choices are only made by the computer system, which resolves any internal choices
(nondeterminism) in a manner that is unknown to the user of the system.

Our notation for contracts already includes assignment statements and sequential
composition. The abort statement of Dijkstra's guarded commands language can be
expressed as abort=[false]user . If executed, it signifies that there has been a breach
of contract by the user, releasing the computing system from any obligations to
carry out the rest of the contract. We can also introduce the contract skip which
leaves the state unchanged: skip=( id) , where id is the identity function.

We can easily extend the simple language of contracts to include other program
constructs, such as conditionals and iteration. A conditional statement like

if x�0 then x :=x+1 else x :=x+2 fi

is a conditional contract. We define it in terms of previous constructs, as equal to

[x�0]system ; x :=x+1 ?system [x<0]system ; x :=x+2.

The computer can here choose between two options. As described below, we will
in general assume that an agent does not want to breach a contract (but does not
mind being released from a contract). The agent will, therefore, always choose the
alternative for which the guarding assertion is true; choosing the other alternative
would breach the contract.

Iteration (the while loop) is defined in terms of recursion:

while g do S od=(recuser X } if g then S; X else skip fi).

This interpretation means that we consider nontermination of the loop as an error
which the user should try to avoid.

31CONTRACTS, GAMES, AND REFINEMENT



4.1. User Interaction

The program constructs above do not model user interaction during execution.
Once started, execution proceeds to the end if possible, or it fails because the
contract is breached (which allows the computer system to do anything, including
going into an infinite loop).

The contract statements allows us to model interaction between a user and a
computer, by permitting the user to also make choices. The user is an agent who
chooses between alternatives in order to influence the computation in the manner
she requires. The computer system can also make choices based on some internal
decision mechanism, which is unknown to the user, who thus cannot predict the
outcome.

As an example, consider the contract

x :=0; (x :=x+1 ?a x :=x+2); (x :=x&1 ?b x :=x&2).

After initialization, the user (a) chooses to increase the value of x by either one
or two. After this, the system (b) decides to decrease x by either one or two. The
choice of the user depends on what she wants to achieve. If, e.g., she is determined
that x should not become negative, she should choose the second alternative. If,
again, she is determined that x should not become positive, she should choose the
first alternative. We can imagine this user interaction as a menu choice that is
presented to the user after the initialization, where the user is requested to choose
one of the two alternatives.

We could also consider b to be the user and a to be the computing system. In
this case, the system starts by either setting x to one or two. The user can then
inspect the new value of x and choose to reduce it by either 1 or 2, depending on
what she tries to achieve.

4.2. Input Statements and Specifications

A more general way for the user to influence the computation is to give input to
the program during its execution. This can be achieved by a relational assignment.
The contract

[x, e :=x$, e$ | x$�0 7 e$>0]user ; [x :=x$ | &e<x$2&x<e]system

describes how the user gives as input a value x whose square root is to be
computed, as well as the precision e with which the computer is to compute this
square root. The system then computes an approximation to the square root with
precision e. The system may choose any new value for x that satisfies the required
precision.

This simple contract thus specifies the interaction between the user and the
computing system. The first statement specifies the user's responsibility (to give an
input value that satisfies the given conditions) and the second statement specifies
the system's responsibility (to compute a new value for x that satisfies the given
condition).

32 BACK AND VON WRIGHT



The use of contracts allows user and system choices to be intermixed in any way.
In particular, the user choices can depend on previous choices by the system and
vice versa, and the choices can be made repeatedly within a loop, as exemplified by
the Nim game below.

4.3. Playing Games

The use of contracts need not be restricted to ordinary user interaction with
computers. As an example of another kind of application, consider the game of
Nim. Here two players, a and b, take turns removing either one or two sticks from
a pile. The player who takes the last stick has lost. Of course, one of the players
could here also be a computer system and the other a user who tries to beat the
computer in this game, or both players could be computer systems.

Let x stand for the number of sticks in the pile. We can describe the rules of the
game as a contract of the form:

X=c [x{0]b ;

(x :=x&1 ?a x :=x&2);

[x{0]a ;

(x :=x&1 ?b x :=x&2);

X,

where x ranges over the natural numbers. Player a is going to make the first move.
We start by checking whether she already has won. This happens if the number of
sticks is zero to start with, forcing player b to breach his contract. Otherwise, player
a removes either one or two sticks from the pile (since we are talking about natural
numbers, the subtraction operator should be interpreted as ``monus,'' i.e., so that
0&1=0). Then we check whether player b has won, which happens if the pile now
contains zero sticks (forcing player a to breach the contract). If not, player b
removes one or two sticks from the pile. The game is then repeated until either one
of the two players breaches the contract (loses the game). As each move by a player
removes at least one stick, the game will eventually terminate with one of the
players breaking the contract. Agent c acts here as a referee, who takes the blame
if the game does not terminate.

5. CONTRACTS AND GAMES

The operational semantics describes all possible ways of carrying out a contract.
By looking at the state component of a final configuration we can see what
outcomes (final states) are possible, if all agents cooperate. However, in reality the
different agents are unlikely to have the same goals, and the way one agent makes
its choices need not be suitable for another agent. From the point of view of a
specific agent (say a), it is therefore interesting to know what outcomes are
possible, regardless of how the other agents resolve their choices.

33CONTRACTS, GAMES, AND REFINEMENT



5.1. Winning Strategies

Consider the situation where the initial state _ is given and the goal of agent a
is to use contract S to reach a final state in some set q of desired final states. It is
also acceptable that the agent is released from the contract, because some other
agent breaches its contract. This means that the agent should strive to make its
choices in such a way that the scenario starting from (S, _) ends in a configuration
(4, #), where # is either an element in q, or =b , where b{a (indicating that some
other agent has breached the contract).

We can think of agent a as making its choices according to a strategy, i.e., a
function that for every configuration of the form (S1 ?a S2 , #) returns either (S1 , #)
or (S2 , #) (and similarly for generalized choices, if these occur in the contract).
A strategy tells the agent what to do in every possible choice situation.

We say that agent a can use contract S in initial state _ to establish postcondition
q (written _[|S|]a q) if there is a strategy for a that leads from initial configuration
(S, _) to a final configuration (4, #), where # # q _ [=b | b{a]. Such a strategy is
called a winning strategy for a to achieve the goal q. Thus, _[|S|]a q means that a
can (by making the right choices) either achieve postcondition q or be released
from the contract, no matter what the other agents do.

As an aside we note that _[|S|]a q holds if and only if agent a can avoid breaching
the contract S; [q]a when the initial state is _.

5.2. Taking Sides

Assume that we pick out one or more agents whose side we are taking. These
agents are assumed to have a common goal and to coordinate their choices in order
to achieve this goal. Hence, we can regard this group of agents as a single agent.
The other agents need not share the goals of our agents. To prepare for the worst,
we will assume that the other agents are hostile to our goals and try to prevent us
from reaching them and that they conspire in order to achieve this (i.e., they coor-
dinate their choices against us). We will make this a little bit more dramatic and
call our agents collectively the angel and call the other agents collectively the
demon. We talk about an angelic choice when the choice is made by our agents and,
about a demonic choice when the choice is made by the other agents.

Carrying out a contract can thus be seen as a game, where the angel plays
against the demon. The angel tries to achieve its goal, and the demon tries to
prevent the angel from reaching its goal. The angel loses if it breaches the contract,
and wins if the demon breaches the contract. If no breach of contract occurs, then
the angel wins if the last state is in the goal, and loses if it is not.

As an example, consider the game of Nim. This game has two participants, a and
b. Let us now investigate under what conditions agent a can win the game. In this
game it does not matter whether the referee c works with a or b, because the
recursion can only be unfolded a finite number of times. In either case, premature
termination is a thing for c to avoid, since it means losing the game. Only in games
when c cannot avoid an infinitely unfolding recursion does it matter which side c
is on; if c is with a, then an infinite unfolding is a loss for a but if c is with b, then

34 BACK AND VON WRIGHT



an infinite unfolding is a win for a. If we are interested in finding out whether a can
win the game in finite time, then we choose to have the referee c work with a. The
angel is thus formed by a and c, while the demon is b.

The winning strategy for the angel in the game of Nim is to always remove
so many sticks that x mod 3=1 holds afterwards. This will force the demon to
eventually take the last stick. The angel has a winning strategy in Nim, if initially
x mod 3{1, because then she can establish condition x mod 3=1 with her first
move, by either removing one or two sticks. In other words, _[|Nim|]angel q holds
when valx ._ mod 3{1. In fact, q can here be any postcondition. This is because in
this game either no postcondition is achieved or then false is achieved (implying
that any postcondition q can be achieved).

Having taken the side of certain agents, we can simplify the notation for contract
statements. We write � for the angelic choice �angel and � for the demonic choice
�demon . Furthermore, we let [ p] stand for [ p]angel and [ p] (read as ``assumption
p'') stand for [ p]demon . This justifies the following simpler syntax, where the explicit
indications of what agents are responsible for choices and assertions have been
removed:

S ::=( f ) | [ p] | [ p] | S1 ; S2 | S1 ? S2 | S @ S2 .

This notation generalizes in the obvious way to generalized choices: we write
� [Si | i # I ] for the angelic choice and � [Si | i # I ] for the demonic choice. For
relational updates, we write [R] if the next state is chosen by the angel and [R]
if the next state is chosen by the demon. Furthermore, we write (+X v S for
(recangel X v S) and (&X v S) for (recdemon X v S). Finally, we write _[|S|] q for
_[|S|]angel q. Our reason for choosing this notation will become clear in Section 7,
in connection with the predicate transformer semantics.

6. ALGEBRA OF CONTRACTS

We shall now investigate the algebraic properties of contracts with exactly two
agents, the angel and the demon.

If we compare two contract statements for our agent, say S and S$, then we can
say that the latter is at least as good as the former, if any condition that we can
establish with the first contract can also be established with the second contract.
We will then say that S is refined by S$, written S C=S$. Formally, we define S C=S$
to hold if

_[|S|] q O _[|S$|] q for any _ and q.

It is easy to see that refinement is reflexive and transitive. We also postulate
antisymmetry; i.e., two contracts are equal, if each refines the other. In terms of
establishing postconditions, we then have that S=S$ if and only if

_[|S|] q#_[|S$|] q for any _ and q.

35CONTRACTS, GAMES, AND REFINEMENT



For example, from the intuitive description of assertions it is possible to deduce
that [true] is equal to skip.

Reflexivity, transitivity, and antisymmetry together imply that contracts are
partially ordered by the refinement relation.

It is evident that [false] C=S for any contract S, because we cannot use the
contract [false] to establish any final condition in any initial state. Hence, any
contract is an improvement over this worst of all contracts. Dually, S C=[false]:
the assumptions of contract [false] are never satisfied, so this contract is satisfied
in any initial state for any final condition. This means that the partial order of
contracts is bounded; it has a least element [false] and a greatest element [false].

Now consider the contract S=S1 ? S2 . The condition _[|S|] q holds if our agent,
by choosing either S1 or S2 , can establish q in initial state _. Thus, we have that

_[|S1 ? S2 |] q iff _[|S1|] q or [|S2 |] q.

For instance, we have that

x=0[|x :=x+1 ? x :=x+2|] x=1

holds, because

x=0[|x :=x+1|] x=1

holds. A dual argument shows that

_[|S1 @ S2 |] q iff _[|S1|] q and _[|S2 |] q.

This reflects the fact that the angel cannot influence the choice of the demon and,
hence, must be prepared for whichever contract the demon chooses.

The contracts form a lattice with the refinement ordering, where � is the join
operation in the lattice and � is the meet operation. The impossible assertion
[false] is the bottom of the lattice of contracts, and the impossible assumption
[false] is the top of the lattice.

The sequential composition operation is also important here. Contracts form a
monoid with respect to the composition operation, with skip as the identity element.
Contracts as we have described them above thus have a very simple algebraic
structure; i.e., they form a lattice with respect to C= and a monoid with sequential
composition.

A further generalization of contracts permits the initial and final state spaces to
be different. Thus, the contract may be initiated in a state _ in 7 , but we permit
operations in the contract that changes the state space, so that the final state may
be in another state space 1. In this case the simple monoid structure of contracts
is not sufficient, and we need to consider the more general notion of a category of
contracts. The different state spaces form the objects of the category, while the
morphisms of the category are the contracts themselves. The skip action is the
identity morphism, and composition of morphism is the ordinary sequential
composition of actions.

36 BACK AND VON WRIGHT



7. PREDICATE TRANSFORMERS

We shall now link the game-theoretic interpretation with a traditional predicate
transformer semantics for contract statements. In fact, the meet, join, and
composition operators that we identified for contracts correspond directly to the
corresponding operators on predicate transformers.

A predicate transformer is a function that maps predicates to predicates. We
order predicate transformers by pointwise extension of the ordering on predicates,
so F C=F $ for predicate transformers holds if and only if F .q�F $ .q for all
predicates q. The predicate transformers form a complete lattice with this ordering.

7.1. Predicate Transformer Semantics

Assume that S is a contract statement. We want the predicate transformer wp.
S to map postcondition q to the set of all initial states _ such that _[|S|] q holds.
In other words, we want wp .S .q to be the set of initial states from which the angel
has a winning strategy to reach the goal q. Thus, wp .S .q is the weakest precondition
that guarantees that the angel can achieve postcondition q.

The intuitive description of contract statements can be used to justify the
definitions of the weakest precondition semantics:

wp .( f ) .q= f &1 .q

wp .[ p] .q= p & q

wp . [ p] .q=cp _ q

wp . (S1 ; S2) .q=wp .S1 . (wp .S2 .q)

wp . (S1 ? S2) .q=wp .S1 .q _ wp .S2 .q

wp . (S1 @ S2) .q=wp .S1 .q & wp .S2 .q.

Here f &1 .q denotes the inverse image of q: f &1 .q=[_ | f ._ # q]. These definitions
are consistent with Dijkstra's original semantics for the language of guarded
commands [7] and with later extensions to it, corresponding to assertions, assump-
tions, and choices [2, 5, 10]. The weakest precondition semantics is extended to
generalized choices in the obvious way. An important property that wp .S satisfies
for all contracts is that it is monotonic:

p�q O wp .S .q�wp .S .q.

The definition of sequential composition can be written as wp . (S1 ; S2)=
wp .S1 b wp .S2 , so the semantic function wp maps composition of contracts to
functional composition of predicate transformers. Similarly, it maps the demonic
and angelic choice operators for contracts to the meet and join operators on
predicate transformers.

37CONTRACTS, GAMES, AND REFINEMENT



7.2. Semantics for Syntax Extensions

The weakest precondition semantics is easily generalized to account for arbitrary
choice:

wp .\' i # I v Si+ .q=\. i # I v wp .Si .q+
wp .\; i # I v Si+ .q=\, i # I v wp .Si .q+ .

From the description of how relational updates can be defined using generalized
choice we also get the semantics for these updates:

wp .[R] .q=[_ | R ._ & q{<]

wp . [R] .q=[_ | R ._�q].

This agrees with the traditional definitions of the weakest precondition semantics of
(angelic and demonic) nondeterministic state changes. Thus, we have justified con-
sidering [R]a as a syntactic abbreviation, according to the definition above.

Finally we consider recursive contracts of the form (+X v S) and (&X v S). Since
S is built using the syntax of contract statements, we can define a function that
maps any predicate transformer X to the result of replacing every construct except
X in S by its weakest precondition predicate transformer. Let us call this function
f. Then f can be shown to be a monotonic function on the complete lattice of
predicate transformers, and by the well-known Knaster�Tarski fixpoint theorem it
has a complete lattice of fixpoints. We define

wp . (+X v S)=+f

wp . (&X v S)=&f,

where +f is the least and &f the greatest fixpoint of f. The least fixpoint semantics
is traditional and associated with the intuition that an infinite unfolding fails to
establish any postcondition. Dually, the greatest fixpoint semantics is associated
with the intuition that an infinite unfolding establishes any postcondition.

7.3. The Winning Strategy Theorem

We can now prove that the weakest precondition predicate transformer has the
required property:

Theorem 1. Assume that contract statement S, initial state _ and postcondition
q are given. Then _ # wp .S .q if and only if _[|S|] q.

This means that the weakest precondition predicate transformer gives us a way
of computing the set of initial states for which the angel has a winning strategy for
using S to establish postcondition q from initial state _.

38 BACK AND VON WRIGHT



Proof. We prove the theorem for the basic syntax. The extensions (generalized
choices, relational updates, and recursion) are treated in Section 7.4. The proof is
by induction over the structure of the statement S. We let a stand for the angel and
d for the demon. We first need a few additional notions about strategies. Recall that
a strategy for the angel is a function that for every angelic configuration (a
configuration of the form (S1 ? S2 , #)) returns either (S1 , #) or (S2 , #). We define
the domain of interest for a strategy f with respect to configuration (S, _) (written
IDom( f, S, _)) to be the set of all angelic configurations that occur in scenarios for
(S, _) admitted by f. Obviously, the restriction of f to IDom( f, S, _) determines
whether f is a winning strategy or not, since configurations outside IDom( f, S, _)
cannot occur in any scenario.

We now consider the six cases of the inductive proof. Cases (i), (ii), and (iii) are
the base cases (update, assertion, and assumption), while cases (iv), (v), and (vi)
are step cases (sequential composition, demonic choice, and angelic choice):

(i) For the update ( f ) , the domain of interest of any winning strategy is
empty, since there is no choice available to the angel (in the derivations, a is the
angel and d is the demon):

a winning strategy exists for ( f ) in _ with respect to q
#[definition of winning strategy]

for any transition (( f ) , _) � (4, #) we must have # # q _ [=]
#[operational semantics]

f ._ # q
#[set theory]

_ # f &1 .q
#[definition of weakest precondition]

_ # wp .( f ) .q

(ii) For the assertion [ p], the reasoning is similar:

a winning strategy exists for [ p] in _ with respect to q
#[definitions]

for any transition ([ p], _) � (4, #) we must have # # q _ [=]
#[operational semantics]

_ # p 7 _ # q
#[set theory]

_ # p & q
#[definition of weakest precondition]

_ # wp .[ p] .q

(iii) For the assumption [ p], we have

a winning strategy exists for [ p] in a with respect to q
#[definitions]

for any transition ([ p], _) � (4, #) we must have # # q _ [=]
#[operational semantics]

_ � p 6 _ # q

39CONTRACTS, GAMES, AND REFINEMENT



#[set theory]
_ # cp _ q

#[definition of update]
_ # wp . [R] .q

(iv) Next, we consider demonic choice. For this part of the proof, we need to
define a merge of strategies. Assume that two strategies f1 and f2 are given. A
strategy f is a merge of f1 and f2 if the following holds for all configurations (S, _):

(S, _) # Dom . f1 6 (S, _) # Dom . f2 O f . (S, _)= f1 . (S, _) 6 f . (S, _)= f2(S, _).

In other words, we require that if a configuration is in the domain of one or both
of the strategies, then f agrees with one of them.

The following observation is now crucial. Assume that f is a winning strategy for
game S in initial state _ with respect to goal q and that f is undefined outside
IDom( f, S, _). Similarly, assume that f $ is a winning strategy for game S$ in initial
state _$ with respect to the same goal q and that f $ is undefined outside
IDom( f $, S$, _$). Then any merge of f and f $ is also a winning strategy for both S
in _ and S$ in _$ with respect to q. This is true, because if f and f $ disagree on some
configuration that is in the domain of interest of both ( f, S, _) and ( f $, S$, _$), then
both strategies must lead to a win from this configuration.

The induction assumption for the meet is now that there is a winning strategy for
game S1 in initial state _ with respect to postcondition q if and only if _ # wp .S1 .q
holds, and similarly for S2 . Then we have

f is a winning strategy for S1 @ S2 in _ with respect to q
O [operational semantics, definition of winning strategy]

f is winning strategy for S1 and S2 in _ with respect to q
#[induction assumption]

_ # wp .S1 .q 7 _ # wp .S2 .q
#[definition of weakest precondition]

_ # wp . (S1 @ S2) .q

so the existence of a winning strategy for the meet implies _ # wp . (S1 @ S2) .q. For
the reverse implication, the induction assumption tells us that there exists a winning
strategy fi for Si in _ with respect to goal q for i=1, 2. Let f i$ be the result of
restricting strategy fi to the domain of interest of ( fi , S i , _). The observation above
then guarantees that any merge of the strategies f $1 and f $2 is a winning strategy for
S1 @ S2 .

(v) Now consider angelic choice. First,

f is a winning strategy for S1 ? S2 in _ with respect to q
O [operational semantics, definition of winning strategy]

f is winning strategy for S1 or S2 in _ with respect to q
#[induction assumption]

_ # wp .S1 .q 6 _ # wp .S2 .q

40 BACK AND VON WRIGHT



#[definition of weakest precondition]
_ # wp . (S1 ? S2) .q

so the existence of a winning strategy for the angelic choice implies
_ # wp(S1 ? S2) .q. For the opposite implication here, we note that if f is a winning
strategy for Si in _ with respect to q (where i=1 or i=2), then we can adjust f so
that f . (S1 ? S2 , _)=(Si , _) to get a winning strategy for S1 ? S2 . This works
because (S1 ? S2 , _) is necessarily outside IDom( f, Si , _).

(vi) Finally, we consider sequential composition. First, we note from the
definition of the operational semantics that a scenario for S1 ; S2 is of the form

(S1 ; S2 , _0) � } } } � (S2 , _m) � } } } � (4, _n)

and furthermore,

(a) (S1 , _0) � } } } � (4, _m) is a scenario for S1 in initial state _0 , and

(b) (S2 , _m) � } } } � (4, _n) is a scenario for S2 in initial state _m .

The induction assumption is that the statement of the theorem is true for S1 and
S2 . Assume that f is a winning strategy for S1 ; S2 in initial state _ with respect to
q and let p be the set containing all second (state) components of the final
configurations of scenarios for (S1 , _) admitted by f. Then define a strategy f $ by
f $ . (S, #)= f . (S; S2 , #) so that f $ is a winning strategy for S1 in _ with respect to
p. The induction assumption then tells us that _ # wp .S1 .p holds. Furthermore, we
know that f is a winning strategy for S2 in any initial state # # p with respect to q,
so the induction assumption tells us that (\# # p v # # wp .S2 .q). Then

_ # wp .S1 .p 7 (\# # p v # # wp .S2 .q)
#[definition of bounded quantification]

_ # wp .S1 .p 7 (\# v # # p O # # wp .S2 .q)
#[definition of set inclusion]

_ # wp .S1 .p 7 p�wp .S2 .q
O [monotonicity of wp .S1]

_ # wp .S1 . (wp .S2 .q)
O [definition of sequential composition]

_ # wp . (S1 ; S2) .q

For the opposite direction, we assume that _ # wp . (S1 ; S2) .q. Again, this means
that we have, with p=wp .S2 .q,

_ # wp .S1 .p 7 (\# # p v # # wp .S2 .q).

The induction assumption then tells us that there is a winning strategy f for S1 in
initial state _ with respect to p and that for every # # p there is a winning strategy
g# for S2 in initial state # with respect to q. Now define f $ such that f $ . (S; S2 , $)=
(T; S2 , #) whenever f . (S, $)=(T, #) for all S and all $, and f $ is undefined
everywhere else. Next let g$# be the result of restricting g# to IDom(g# , S2 , #), for all
# # p, and let g be a merge of f $ and all the strategies in [g$# | # # p] (we use the

41CONTRACTS, GAMES, AND REFINEMENT



axiom of choice to deduce that such a merge exists). This makes g a winning
strategy for S1 ; S2 in initial state _ with respect to q, and the proof is finished. K

7.4. Strategies and Syntax Extensions

The arguments for angelic and demonic choice in the proof can be directly
generalized to choices with an arbitrary (even infinite) number of alternatives.
Thus, the winning strategy theorem holds also if we choose to include the
generalized choice in our basic syntax. Because relational updates could be defined
as abbreviations for certain generalized choices, the winning strategy theorem holds
also for contracts with relational updates.

The argument for recursion is more elaborate. Consider the recursive contract
(+X v S), where we assume for simplicity that there is no nested recursion. Our
argument is based on the construction of an ordinal-indexed sequence of
approximation contracts for (+X v S). We define

S0=[false]

S:+1=S: ? S[X :=S:] for arbitrary ordinals :,

S:=\' ; } ;<: v S;+ for nonzero limit ordinals :.

Now consider the ordinal-indexed chain of predicate transformers wp .S: . From
traditional theory of program semantics we know that there exists an ordinal # (in
fact there exists an ordinal which depends only on the cardinality of the underlying
state space) such that wp .S$=wp .S# whenever $># and that wp .S#=+ . f, where
f is the function that maps any predicate transformer X to the result of replacing
every construct except X in S by its weakest precondition predicate transformer.

We can now argue that the contracts (+X v S) and S# are equivalent, in the sense
that there is a one-to-one correspondence between the winning strategies of the two,
with respect to any given initial state _0 and any given postcondition q. The initial
unfolding step for (+X v S) (performed by the angel) corresponds to the choice that
the angel makes between the contracts in the set [S; | ;<#]. Similarly, any recur-
sive unfolding corresponds to resolving a choice of the form (� ; | ;<: v S;) for
some ordinal :. The general fixpoint argument guarantees that the original ordinal
# is large enough, so that this choice never becomes empty if the recursive unfolding
terminates.

The following classical example illustrates this argument. Consider the recursion
(reca X v S), where

X=a [x=0]a ; [x :=x$ | x$�1]d ; X �a

[x=1]a �a

[x�1]a ; x :=x+1; X.

42 BACK AND VON WRIGHT



When a stands for the angel and d for the demon, this can be written as the
recursion

(+X v [x=0]; [x :=x$ | x$�1]; X ? [x=1] ? [x�1]; x :=x&1; X )

(this recursion establishes the postcondition x=1, regardless the value of x in the
initial state).

It can be shown that the ordinal # in this case can be chosen to be |+1 (where
| is the first infinite ordinal; for details see [4]). Assume that the value of x is 0.
At the first unfolding, the demon chooses a value for x, and after this, the value of
x is decremented by 1 for each recursive call. Thus, the demon also chooses the
number of recursive calls, which can thus be unboundedly large.

The approximation S|+1 is

S| ? ([x=0]; [x :=x$ | x$�1]; S| ? [x=1] ? [x�1]; x :=x&1; S|).

Here the angel can choose the right-hand side of the top-level choice and is then
forced to choose the contract [x=0]; [x :=x$ | x$�1]; S| , if x has the value 0.
After that, the demon chooses a value for x and only after that does the angel
choose Sn for some n<|, i.e., the number of remaining unfoldings. The use of
ordinals guarantees that the angel does not have to ``play all its cards too early.''

Since there is a one-to-one correspondence between the winning strategies for
(+X v S) and for S# , we know that the winning strategy theorem is also valid for
+-recursion. The argument for the greatest fixpoint semantics of (&X v S) is dual.

7.5. Correctness and Refinement

The predicate transformer semantics is based on total correctness. Intuitively, a
contract S is correct with respect to precondition p and postcondition q, written
p[|S|] q, if _[|S|] q holds for every _ in p. Thus, p[|S|] q expresses that for any initial
state in p, the angel can choose an execution of S that establishes q (or leads to
some assumption being violated). Theorem 1 immediately gives us the following
corollary.

Corollary 2. Assume that contract statement S, precondition p, and postcondition
q are given. Then p�wp .S .q if and only if p[|S|] q.

We can prove p�wp .S .q using standard program verification techniques, such
as using loop invariants to establish that a loop is guaranteed to achieve a specific
postcondition. Most of the techniques in Dijkstra's weakest precondition method
for proving total correctness can be generalized to contracts in this more general
setting (for example, we can use loop invariants to prove correctness of the game
of Nim, as shown in [6]).

We are also interested in refinement of contracts. By Theorem 1, we have the
following corollary.

Corollary 3. Assume that contract statements S and S$ are given. Then S C=S$
if and only if wp .S C=wp .S$.

43CONTRACTS, GAMES, AND REFINEMENT



Given a contract, we can use the predicate transformer formulation to derive
rules that allow us to improve a contract, in the sense that any goals achievable
with the original contract are still achievable with the new contract. These refine-
ment rules can be used for stepwise refinement of contracts, where we start from an
initial high level specification with the aim of deriving a more efficient (and usually
lower level) implementation of the specification.

8. CONCLUSION

We have described a computing system in terms of a (global) state that is
changed by a collection of agents. These agents are bound by contracts that
stipulate their obligations and assumptions. We can study what a specific group of
agents can achieve in such a system by taking sides, partitioning the agents into
friendly and hostile agents. This reduces the computing system to a two-person
game between an angel representing the friendly agents and a demon representing
the hostile agents. Given a specific goal that the angel is requested to achieve, we
can compute the set of initial states from which this can be done with certainty,
in the sense that the angel has a winning strategy to achieve the goal. The
computation rules are given by the weakest precondition semantics. The weakest
precondition semantics can also be used to reason about correctness and refinement
of contracts.

Contracts give an intuition for both angelic and demonic nondeterminism
(choices of different agents), abortion (breaching a contract), and miracles (being
released from a contract) in programs. Miracles and angelic nondeterminism have
been introduced into the refinement calculus for algebraic reasons [3, 10, 12], but
it has not been clear how they could be interpreted intuitively in a consistent way.
The contract approach also means that we handle choices in a way similar to that
of process algebras such as CSP [8] and CCS [9]. A particularly interesting situa-
tion arises when our agent is the environment or user of some system and the other
agents are parts of the system. This view of a system as a game has been considered
by Abadi, Lamport, and Wolper [1]. A more thorough investigation of the notion
of contracts, games, and refinement is presented in [4].

Received January 1998; final manuscript received June 14, 1999

REFERENCES

[1] Abadi, M., Lamport, L., and Wolper, P. (1989), Realizable and unrealizable specifications of
reactive systems, in ``Proc. 16th ICALP, Stresa, Italy'' (G. A. Rozenberg et al., Eds.), Lecture
Notes in Computer Science, Vol. 372, pp. 1�17, Springer-Verlag, New York�Berlin.

[2] Back, R. J. (1980), ``Correctness Preserving Program Refinements: Proof Theory and Applica-
tions,'' Mathematical Centre Tracts, Vol. 131, Mathematical Centre, Amsterdam.

[3] Back, R. J. (1989), Changing data representation in the refinement calculus, in ``21st Hawaii
International Conference on System Sciences.''

[4] Back, R. J., and von Wright, J. (1998), ``Refinement Calculus: A Systematic Introduction,''
Springer-Verlag, New York�Berlin.

44 BACK AND VON WRIGHT



[5] Back, R. J., and von Wright, J. (1990), Duality in specification languages: A lattice-theoretical
approach, Acta Inform. 27, 583�625.

[6] Back, R. J., and von Wright, J., (1995), Games and winning strategies, Inform. Process. Lett. 53(3),
165�172.

[7] Dijkstra, E. W. (1976), ``A Discipline of Programming,'' Prentice�Hall, Englewood Cliffs, NJ.

[8] Hoare, C. A. R. (1985), ``Communicating Sequential Processes,'' Prentice�Hall, Englewood Cliffs,
NJ.

[9] Milner, R. (1989), ``Communication and Concurrency,'' Prentice�Hall, Englewood Cliffs, NJ.

[10] Morgan, C. C. (1988), Data refinement by miracles, Inform. Process. Lett. 26, 243�246.

[11] Morgan, C. C. (1990), ``Programming from Specifications,'' Prentice�Hall, Englewood Cliffs, NJ.

[12] Morris, J. M. (1987), A theoretical basis for stepwise refinement and the programming calculus,
Sci. Comput. Programming 9, 287�306.

[13] Plotkin, G. D. (1981), ``A Structural Approach to Operational Semantics,'' Tech. Rep. DAIMI
FN 19, Computer Science Dept., Aarhus University.

45CONTRACTS, GAMES, AND REFINEMENT


	1. INTRODUCTION 
	2. STATES AND STATE CHANGES 
	3. CONTRACTS 
	4. USING CONTRACTS 
	5. CONTRACTS AND GAMES 
	6. ALGEBRA OF CONTRACTS 
	7. PREDICATE TRANSFORMERS 
	8. CONCLUSION 
	REFERENCES 

