
Formal Aspects of Computing (2000) 12: 313–349
c© 2000 BCS Formal Aspects

of Computing

Encoding, Decoding and Data Refinement

Ralph-Johan Back and Joakim von Wright
Åbo Akademi University and Turku Centre for Computer Science, Turku, Finland

Abstract. Data refinement is the systematic replacement of a data structure with another one in program
development. Data refinement between program statements can on an abstract level be described as a
commutativity property where the abstraction relationship between the data structures involved is represented
by an abstract statement (a decoding). We generalise the traditional notion of data refinement by defining an
encoding operator that describes the least (most abstract) data refinement with respect to a given abstraction.
We investigate the categorical and algebraic properties of encoding and describe a number of special cases,
which include traditional notions of data refinement. The dual operator of encoding is decoding, which we
investigate and give an intuitive interpretation to. Finally we show a number of applications of encoding and
decoding.

Keywords: Abstraction; Data refinement; Galois connection; Predicate transformer semantics

1. Introduction

Data refinement is the systematic replacement of a data structure (abstract data) by another one (concrete
data) in program development. Traditionally, data refinement has been formalised in terms of a data refinement
relation which generalises the (algorithmic) refinement relation between programs. In this paper we consider
data refinement as an operator rather than a relation. The encoding operator ↓ is defined so that S ↓D is
the most general (least refined) data refinement of statement S with respect to an abstraction statement D (an
abstraction statement models the relationship between the concrete and the abstract state space, in a more
general way than is possible with relations). Traditional notions of data refinement (forward, functional and
backward) are special cases of encoding, where the abstraction statement satisfies some additional conditions.
Thus, traditional (syntactic) rules for data refinement of programs can be derived from the general algebraic
properties of the encoding operator.

We work within the refinement calculus framework described in [BaW98]. This is a formalisation using
classical strongly typed higher-order logic of the traditional refinement calculus [Bac80, Bac88, Mor88] which
was based on the weakest precondition semantics of programs [Dij76]. The basis of the refinement calculus
is the predicate transformer hierarchy, where programs are modelled as predicate transformers, which in turn
are built from predicates, functions and relations using homomorphic operators (statement constructors). We
add the encoding operator to this hierarchy and investigate its algebraic properties and its use in calculational

Correspondence and offprint requests to: Joakim von Wright, Åbo Akademi University, Department of Computer Science, FIN-20520
Turku, Finland. Email: Jockum.Wright@.abo.fi

314 R.-J. Back and J. von Wright

data refinement. Using Galois connections we find that under certain restrictions there exists a dual decoding
operator ↑ which allows us to calculate the least general (most refined) abstraction S ↑D of a given (concrete)
statement S with respect to abstraction statement D. We also investigate the properties of this operator and
illustrate its use.

Data refinement has been the subject of many detailed studies, but mostly in a relational framework (for
an overview of different methods and theories of data refinement, see [dRE98]). The relational framework is
less expressive than predicate transformers and does not allow a uniform handling of data refinement in the
form described here. The idea of describing data refinement in terms of general abstraction statements is not
new [Bac80, Bac89, BaW89, GaM91], but our notion of least data refinement (encoding) and its dual have
to our knowledge not been investigated in a predicate transformer framework before. Our encoding operator
can also be seen as a generalisation of the calculational approach to data refinement, where data refinement
of a program statement S with respect to abstraction relation R (or, dually, an abstraction of a concrete
program) is expressed in explicit form [Bac80, Bac89, Mor89, MoG90].

We use higher-order logic as the underlying logic of our investigation, with lambda notation for functions
(e.g., (λx • x = 1)) and an infix dot for function application (f. x). Quantifiers are given low precedence and
their scope is delimited by parentheses. We use standard notation for logical connectives and F,T for Boolean
falsity and truth. Proofs are written in a calculational style, with indented subderivations [BaW98, BGW97].
Most proofs are placed in Appendix B, but a few more important proofs are included in the main text.

The paper is organised as follows. Section 2 gives a short overview of the basic concepts related to the
predicate transformer hierarchy and its use in the refinement calculus, and some other background material.
Then, in Section 3, we introduce the notion of encoding as part of the data refinement method, and study the
algebraic properties of encoding. This study makes only weak assumptions about the abstraction statement
D (assuming only monotonicity). In Section 4 we study the properties of encoding when we consider the
kinds of abstraction statements that would usually be used in program derivations. In particular, we study
encoding in connection with forward and backward data refinement. We show that encodings in such cases
can be calculated explicitly. In Section 5 we consider the dual decoding operation, study its properties, and
show how it is related to encoding. In Section 6, we look at encoding and decoding of recursive statements in
more detail. Finally, in Section 7, we give some examples of how the algebraic results derived in the previous
sections can be translated into more concrete properties about program statements expressed in ordinary
programming language syntax.

2. Background

We begin with a brief overview of the basic concepts related to the predicate transformer hierarchy.

2.1. States, Predicates and Relations

A state space can be any type Σ. In general, we do not assume that this type has any specific internal
structure. An element σ : Σ is called a state. A state function f : Σ → Γ maps states to states (note that the
two state spaces can be different). Function composition is written forward (so (f; g). σ = g. (f. σ)) and the
unit of composition is the identity function id.

A state predicate is a Boolean state function p : Σ → Bool. Since p can be identified with the set of
states σ where p. σ ≡ T (i.e., where p holds), we use set notation for meet (intersection) and join (union) of
predicates. The unit elements of meet and join are the everywhere true predicate true and the everywhere
false predicate false, respectively. The complement (negation) of predicate p is ¬p. Predicates are ordered by
the subset (stronger-than) ordering ⊆.

A state transformer is a function f : Σ→ Σ that changes the state in a deterministic way. A state relation
is a binary Boolean state function R : Σ → Γ → Bool. We think of a relation as a non-deterministic state
transformer, transforming an initial state σ to one of the states γ such that R. σ. γ holds.

When a relation R : Σ → Γ → Bool is applied to a single state, the result R. σ is a set of states, i.e., a
predicate. Extending this partial application of a relation to a set of states, we have a notion of image and

Encoding, Decoding and Data Refinement 315

inverse image of a predicate under relation:

im. R. p
∧
= {γ | ∃σ ∈ p • γ ∈ R. σ} (image)

im. R. q
∧
= {σ | ∀γ ∈ R. σ • γ ∈ q} (inverse image)

Equivalently, we can write

im. R. p. γ ≡ (∃σ • p. σ ∧ R. σ. γ)
im. R. q. σ ≡ (∀γ • R. σ. γ ⇒ q. γ)

which shows the duality between the two operators: im. R. p = ¬im. R−1. (¬p).
Meet (intersection) and join (union) of relations are defined by pointwise extension from predicates, e.g.,

(Q ∩ R). σ
∧
= Q. σ ∩ R. σ

Subset ordering on relations is the extension of the subset ordering on predicates,

Q ⊆ R ∧
= (∀σ • Q. σ ⊆ R. σ)

Composition of relations is also defined as usual:

(Q;R). σ. δ
∧
= (∃γ • Q. σ. γ ∧ R. γ. δ) (composition)

The unit elements of composition, meet and join, are the identity relation Id, the everywhere true relation True
and the everywhere false relation False, respectively.

In addition, we define a quotient operator for relations:

(Q\R). σ. δ
∧
= (∀γ • Q. σ. γ ⇒ R. γ. δ) (quotient)

The quotient operation (Q\R) is similar to the composition Q;R. We have that (Q;R). σ. δ holds when there
exists some intermediate state γ reachable from σ by Q such that R. γ. δ, while (Q\R). σ. δ holds when for
every intermediate state γ reachable from σ by Q, we have that R. γ. δ holds. The following shunting properties
show how these two constructs are related:

P ;Q ⊆ R ≡ P−1 ⊆ R\Q−1 (shunt)
P ;Q ⊆ R ≡ Q ⊆ P−1\R

Predicates and functions can easily be coerced into relations, by the following definitions:

|p|. σ. γ ∧
= p. σ ∧ σ = γ (test relation)

|f|. σ. γ ∧
= γ = f. σ (mapping relation)

Furthermore, the inverse of a function is a relation:

f−1. γ. σ
∧
= γ = f. σ (inverse of function)

2.2. Program Variable Notation

Although most of our investigation is carried out on the algebraic level, we will need a syntactic level with
program variables in the examples that illustrate the concepts and results. For this, we need to show how to
model expressions and assignments with program variables. For this purpose, we assume that in practice the
state space Σ is really a product, Σ = Σ1 × . . .× Σn. The projection function πi : Σ→ Σi, 1 6 i 6 n, gives the
value of the ith component.

A declaration like

var y : Bool, x : Nat, z : Nat

defines a state space and at the same time introduces more convenient names for the projection functions.

316 R.-J. Back and J. von Wright

We are only interested in the set of program variables, not in the order in which they are listed. Hence, we
assume that any declaration of program variables is equivalent to a declaration where the variables are listed
in some standard order (e.g., lexicographical order). In this case, the equivalent declaration with standard
ordering would be

var x : Nat, y : Bool, z : Nat

This declaration denotes the state space Σ = Nat×Bool×Nat. The program variables are identified with the
corresponding projection functions, so that x = π1, y = π2 and z = π3.

An expression in program variables like x ∗ (z + 1) or a Boolean expression like y ⇒ x = z is evaluated in
a state σ by first applying the program variables to the state. Computing the value of the first expressions in
the state σ = (a, b, c), we have that

(x ∗ (z + 1)). σ = x. σ ∗ (z. σ + 1) = π1. σ ∗ (π3. σ + 1) = a ∗ (c+ 1)

A predicate can be described by a Boolean expression over the program variable(s), e.g., x+ z > 0. A relation
can also be described using program variables. For instance, the relation x < x′ + z holds between states σ
and σ′ if x. σ < x. σ′ + z. σ. Thus, we write x′ to denote that the program variable should be applied to the
final state rather than the initial state.

We use the assignment notation for relations in program statements. The basic form is

(x := x′ | b) (relational assignment)

where b is a Boolean expression over primed and unprimed program variables. We have that (x := x′ | b). σ. σ′
holds if b. σ. σ′ holds and state components other than x have the same value in σ and σ′ (i.e., if x = πi,
then π1. σ = π1. σ

′, . . . , πi−1. σ = πi−1. σ
′, πi+1. σ = πi+1. σ

′, . . . , πn. σ = πn. σ
′). For example, (x := x′ | x′ > x) is a

relation that increases the value of x by an arbitrary amount, but does not change y or z. This generalises in
the obvious way to the situation where x is actually a list of program variables.

Consider two state spaces, Σ determined by var x, z and Σ′ determined by var y, z, where x, y and z are
lists of program variables (with type indications). Here the program variables z are common to both state
spaces. We generalise the assignment notation to account for relations over different state spaces, to the form

(y/x := y′ | b) (generalised relational assignment)

This is a relation from initial state space Σ with program variables x, z to final state space Σ′ with program
variables y, z. We have that (y/x := y′ | b). σ. σ′ holds if b. σ. σ′ holds and z. σ = z. σ′ (note that if x and y
have different types then the two occurrences of z here denote differently typed projection functions). The
form y/x shows that the program variables y are added to the state space and that the program variables x
are deleted from the state space. This avoids the need to keep explicit track of the state spaces involved in a
program statement, even when we are changing the state space in the middle of a statement.

As an example, the assignment (y/x := y′ | x = y′ + 1) has the following intuition: the program variable
x is replaced by program variable y which gets a new value y′ related to the old value of x by x = y′ + 1.

Note also that the simple relational assignment above is a special case of this more general relational
assignment, where the same variable is removed and introduced:

(x := x′ | b) = (x/x := x′ | b)
The ordinary (functional, or deterministic) assignment (x := e) is also a special case, which we can define as
follows:

|x := e| = (x := x′ | x′ = e) (functional assignment)

Thus (x := e) denotes a state transformer that changes the value of x to the value of e in the initial state.
The generalisation to a deterministic assignment (y/x := e) that replaces variables is straightforward:

|y/x := e| = (y/x := y′ | y′ = e) (generalised functional assignment)

In Appendix A we give a number of rules for manipulating assignments.
This way of modelling program variables in the refinement calculus is quite simple and straightforward.

A disadvantage is that the number of program variables in a state is always fixed. Thus, var x : Nat, y : Nat
denotes a state space with two components, whereas var x : Nat, y : Nat, z : Bool is a different state space with

Encoding, Decoding and Data Refinement 317

three components. The transformation between these two state spaces has to be done explicitly, with coercion
functions. In [BaW98] we present a more general and flexible approach to modelling program variables,
which avoids the need for coercion functions and is therefore better suited for programming logics. For the
purposes of this paper, that added flexibility is not, however, needed, so we will use the simple model here
instead.

2.3. Predicate Transformers

A predicate transformer is a function that maps predicates to predicates. We use the abbreviation Σ 7→ Γ for the
predicate transformer type (Γ → Bool) → (Σ → Bool). The intuition is that S : Σ 7→ Γ maps postconditions
over state space Γ to preconditions over state space Σ. Predicate transformers have a weakest precondition
interpretation. Thus, S. q is a predicate that characterises those initial states from which execution of S is
guaranteed to terminate in a final state where postcondition q holds. The refinement ordering on Σ 7→ Γ is
defined by pointwise extension of the ordering on predicates:

S v S ′ ∧
= (∀p • S. p ⊆ S ′. p) (refinement)

Programs are modelled by monotonic predicate transformers Σ 7→m Γ. These form a complete lattice with
respect to the refinement ordering. In the rest of this paper we will assume monotonicity without usually
mentioning this fact explicitly. The algebraic structure of predicate transformers gives us three basic program
operators (composition, meet and join) and three corresponding basic constants (the unit element skip, the
top element magic and the bottom element abort):

(S1; S2). q
∧
= S1. (S2. q) (composition)

(ui ∈ I • Si). q
∧
= (∩i ∈ I • Si. q) (meet, demonic choice)

(ti ∈ I • Si). q
∧
= (∪i ∈ I • Si. q) (join, angelic choice)

skip. q
∧
= q (skip)

magic. q
∧
= true (magic)

abort. q
∧
= false (abort)

In addition, we will work with fixpoint constructs (to be explained later) and with four homomorphic
embedding operators. Two of them embed predicates in predicate transformers and the other two embed
relations:

{p}. q ∧
= p ∩ q (assertion)

[p]. q
∧
= ¬p ∪ q (guard)

{R}. q ∧
= im. R−1. q (angelic update)

[R]. q
∧
= im. R. q (demonic update)

for predicates p and relations R. Using the definitions of images, the two update statements are characterised
as follows:

{R}. q. σ ≡ R. σ ∩ q 6= ∅ and [R]. q. σ ≡ R. σ ⊆ q
A special case of demonic update is the chaotic update chaos = [True]. Note also that assertions and guards
are special cases of updates:

{p} = {λσ σ′ • p. σ ∧ σ′ = σ} and [p] = [λσ σ′ • p. σ ∧ σ′ = σ]

We also introduce an embedding of state transformers:

〈f〉. q ∧
= f; q (functional update)

We will not consider the functional update to be a primitive notion here, since it is a special case of both the
other updates: {|f|} = 〈f〉 = [|f|]. However, we will occasionally comment on how results for the angelic and
demonic updates carry over to functional updates.

318 R.-J. Back and J. von Wright

There is a strong duality built into the constructs described above. We define the duality operator on
predicate transformers by

S◦. q ∧
= ¬S. (¬q) (dual)

Then {R} and [R] are duals, as are [p] and {p}, while 〈f〉 is self-dual.
In practice, we use assignments to express state changes. For instance, 〈x := x + z〉; 〈y, z := T, x〉 is a

sequence of two assignment statements (functional updates), the second one being a multiple assignment state-
ment. A demonic assignment is a demonic update where the relation is an assignment, e.g., [x := x′ | x′ > x].

We can introduce more traditional program constructs using the basic statements. For instance, a con-
ditional statement is defined by

if b then S1 else S2 fi
∧
= {b}; S1 t {¬b}; S2

and a block with local variables is defined by

begin var x := c; S end
∧
= 〈x/ := c〉; S; 〈/x〉

Here we first introduce a new variable x that is initialised to the constant c (without removing any variables),
then we execute S , and finally we remove x (without introducing any new variables).

The well-known Knaster-Tarski theorem guarantees that every monotonic function f on a complete lattice
has a least fixpoint µ. f and a greatest fixpoint ν. f. This allows us to define predicate transformers by
recursion. For instance, a simple while loop is defined by

while b do S od
∧
= µ. (λX • if b then S;X else skip fi)

The above should be sufficient to indicate that the statements that we can construct from our basic predicate
transformer constructs are very general, and allow us to model both specifications as well as executable
statements within the same framework. For more details, we refer to [BaW98].

A number of useful algebraic properties can be proved about the basic predicate transformer constructs.
As an example, the basic predicate transformer constructs are homomorphic with respect to composition
(considering ∩ as the composition of predicates). Thus we have

{p}; {q} = {p ∩ q} [p]; [q] = [p ∩ q]

{Q}; {R} = {Q;R} [Q]; [R] = [Q;R]

〈f〉; 〈g〉 = 〈f; g〉
for arbitrary predicates p and q, relations Q and R and functions f and g. A more thorough treatment of the
homomorphic properties of statements is also given in [BaW98].

2.4. Homomorphic Predicate Transformers and Normal Forms

Predicate transformers can be classified according to basic homomorphism properties (in addition to mono-
tonicity). We say that S is conjunctive if it distributes over non-empty meets, i.e., if S. (∩ i ∈ I • qi) = (∩ i ∈
I • S. qi) for arbitrary non-empty collections {qi | i ∈ I} of predicates. Dually, S is disjunctive if it distributes
over non-empty joins of predicates. Furthermore, S is strict if S. false = false and terminating if S. true = true.

If a predicate transformer S is both terminating and conjunctive (i.e., if S distributes over arbitrary meets)
then it is said to be universally conjunctive. Dually, S is said to be universally disjunctive if it is both strict and
disjunctive.

It is well known that conjunctivity and disjunctivity each implies monotonicity. Furthermore, universal
disjunctivity implies continuity (i.e., distributivity over joins of directed sets; see Section 6) and dually, universal
conjunctivity implies cocontinuity.

The basic notation that we introduced above provides normal forms for different classes of predicate
transformers. The following lemma summarises the normal forms that will be used in this paper.

Lemma 1. Assume that S is a predicate transformer.

(a) If S is monotonic then it can be written in the form {Q}; [R] for some relations Q and R.

Encoding, Decoding and Data Refinement 319

(b) If S is conjunctive then it can be written in the form {p}; [R] for some predicate p and some relation R.

(c) If S is universally conjunctive then it can be written in the form [R] for some relation R.

(d) If S is universally disjunctive then it can be written in the form {R} for some relation R.

(e) If S is conjunctive and universally disjunctive then it can be written in the form {p}; 〈f〉 for some predicate
p and some function f.

This normal form theorem is proved in [vWr94].

2.5. Galois Connections and Inverse Statements

Assume that (A,v) and (B,v) are partially ordered sets and that functions f : A → B and g : B → A are
given. We say that the pair (f, g) is a Galois connection if the following condition holds for all x and y:

f. x v y ≡ x v g. y (Galois connection)

For example, the connection between the composition and quotient operations on relations show that
((λX • P ;X), (λY • P−1\Y)) is a Galois connection. Another example of a Galois connection is the pair
(im. R, im. R), for arbitrary relation R:

im. R. p ⊆ q
≡ {definitions of image and predicate ordering}

(∀γ • (∃σ • R. σ. γ ∧ p. σ)⇒ q. γ)

≡ {quantfier rules}
(∀σ • p. σ ⇒ (∀γ • R. σ. γ ⇒ q. γ))

≡ {definitions of inverse image and predicate ordering}
p ⊆ im. R. q

When the functions f and g are monotonic, the notion of a Galois connection can be expressed algebraically
on the level of the functions themselves: (f, g) is a Galois connection if and only if

f ◦ g v id and id v g ◦ f
When the partially ordered sets involved are complete lattices, we can say even more about Galois connections.

Lemma 2. Assume that A and B are complete lattices.

(a) If the pair of monotonic functions (f : A→ B, g : B → A) is a Galois connection, then f is a (universal)
join homomorphism and g is a (universal) meet homomorphism.

(b) If g : B → A is a meet homomorphism, then there exists a unique monotonic function f : A → B such
that (f, g) is a Galois connection.

(c) If f : A → B is a join homomorphism, then there exists a unique monotonic function g : B → A such
that (f, g) is a Galois connection.

When (f, g) is a Galois connection, then f is called the left adjoint of g and g the right adjoint of f.
The following shunting properties show how functions in a Galois connection can be manipulated al-

gebraically.

Lemma 3. Assume that the pair of monotonic functions (f, g) is a Galois connection. Then

(a) f; h v h′ ≡ h v g; h′
(b) h; g v h′ ≡ h v h′; f
for arbitrary monotonic functions h and h′.

Since statements are seen here as monotonic predicate transformers on a complete lattice of predicates, we
can apply the theory of Galois connections directly to statements. From the normal form theorem (Lemma 1)
we know that a Galois connection (S, T) of statements must be of the form ({P }, [Q]) for some state relations
P and Q. The following lemma makes this even clearer.

320 R.-J. Back and J. von Wright

Σ �
S ′

Σ

6
D

6
D

Σ �
S

Σ

Fig. 1. Data refinement.

Lemma 4. Let state relation R, predicate r and state function f be arbitrary. Then

(a) {R} and [R−1] form a Galois connection, and

(b) {r}; 〈f〉 and [f−1]; [r] form a Galois connection.

When a statement pair (S, T) is a Galois connection we will refer to T as the inverse statement of S , denoted
by S . The use of the term ‘inverse’ can be justified by the properties S; S v skip and skip v S; S (for details,
see [BaW93]). Lemma 4 gives us a general rule for inverse statements. In program variable notation, these
rules amount to the following:

{x := x′ | b} = [x := x′ | b[x, x′ := x′, x]]

{p}; 〈x := e〉 = [x := x′ | x = e[x := x′]]; [p]

In addition to this, we will use the fact that

S1; S2 = S2; S1

Inverse statements are investigated in more detail in [BaW93].
A simple example can illustrate the idea of inversion. Consider the statement S = 〈x := x + 1〉 where x

ranges over the natural numbers. The inverse S of this statement is

〈x := x+ 1〉 = [x > 0]; 〈x := x− 1〉
Executing S; S from an initial state where x = x0 leads to an intermediate state where x = x0 + 1 and a final
state where x = x0, so S; S = skip. On the other hand, S; S is miraculous when executed in initial state where
x = 0, but from any other initial state it terminates in the initial state, so S; S w skip.

3. Data Refinement and Encoding

The basis for encoding is data refinement, which can on an abstract level be described as a commutativity
property: we define the relation vD as follows:

S vD S ′ ∧
= D; S v S ′;D (data refinement)

and when S vD S ′ holds we say that S is data refined through D by S ′ (or that S is D-refined by S ′). Here
D : Γ 7→ Σ (the abstraction statement), S : Σ 7→ Σ (the abstract statement) and S ′ : Γ 7→ Γ (the concrete
statement) are monotonic predicate transformers. Data refinement can be illustrated by a subcommuting
diagram where a path lower down is always a refinement of a path higher up with the same end points (see
Fig. 1).

3.1. Abstraction Category

Data refinement gives us a category, where there is an arrow D (an abstraction) with source S ′ and target S
exactly when S vD S ′ holds. Identity morphisms are of the form skip (note that vskip is ordinary algorithmic

refinement v, which is reflexive) and the composition of morphisms is sequential composition; if S vD S ′ and

Encoding, Decoding and Data Refinement 321

S �
D

S ′ �
D′

S ′′
?

D′;D

Fig. 2. Abstraction category.

S ′ vD′ S ′′, then

D′;D; S

v {assumption S vD S ′, D′ monotonic}
D′; S ′;D

v {assumption S ′ vD′ S ′′}
S ′′;D′;D

so S vD′;D S ′′. This is illustrated in the diagram in Fig. 2.
It is well known that data refinement can be handled in category-theoretic terms [JiH90]. However,

we prefer to work in the simpler partial order framework where data refinement is expressed in terms of
algorithmic refinement. How this is done is shown in the next subsection.

3.2. Encoding

A typical situation in data refinement is that the abstract statement S and the abstraction D are given. The
problem is then to find a monotonic predicate transformer S ′ such that S vD S ′ holds. Furthermore, we are
interested in making S ′ as small as possible (with respect to the refinement ordering), giving us maximal
freedom in subsequent refinement steps. Or, to put it in another way, we are interested in the smallest
D-refinement of S .

Consider therefore D; S v X;D as an equation in unknown monotonic predicate transformer X. This
equation obviously has a solution (set X = magic). Furthermore, if {Si | i ∈ I} is a set of solutions, then
(u i ∈ I • Si) is monotonic and

(u i ∈ I • Si);D

= {distributivity}
(u i ∈ I • Si;D)

w {assumption D; S v Si;D for all i ∈ I}
(u i ∈ I • D; S)

= {vacuous meet}
D; S

so there always exists a least solution, which is u {X ∈ Σ 7→m Σ | D; S v X;D}. This is obviously the smallest
D-refinement of S . We introduce the notation S ↓D for this solution, and call it the encoding of S with D.
This means that S ↓D is characterised by the following two conditions:

S vD (S ↓D) (encode1)
S vD X ⇒ S ↓D v X (encode2)

The following alternative characterisation of encoding is generally more useful:

Theorem 5. The encoding S ↓D is uniquely defined by the following property:

S ↓D v S ′ ≡ S vD S ′

322 R.-J. Back and J. von Wright

S ↓D � S ′

6
D

S

Fig. 3. Factoring out data refinement.

Proof. First assume that conditions (encode1) and (encode2) hold. Then

(S ↓D) v S ′
⇒ {monotonicity}

(S ↓D);D v S ′;D
⇒ {property (encode1), refinement is transitive}
D; S v S ′;D

and (encode2) with X := S ′ gives implication in the opposite direction. Now assume that S ↓D v S ′ ≡ S vD S ′
for arbitrary S ′. Then

D; S v (S ↓D);D

≡ {assumption with S ′ := S ↓D}
S ↓D v S ↓D

⇐ {refinement is reflexive}
T

and

D; S v X;D

≡ {assumption with S ′ := X}
S ↓D v X

and the proof is finished. q

Assume that monotonic predicate transformer S : Σ 7→ Σ and monotonic abstraction D : Γ 7→ Σ are given.
Then S ↓D has type Γ 7→ Γ. We think of S ↓D as the translation of S to the state space Γ, such that only
the data representation is changed. Thus, a data refinement S vD S ′ can be decomposed so that the pure
data refinement is ‘factored out’, and followed by the ‘remaining’ algorithmic refinement (i.e., the change in
non-determinism, miraculousness and termination that is not inherent in the data refinement)

S vD S ↓D v S ′

This is illustrated in Fig. 3, where the horizontal arrow stands for algorithmic refinement (decoding with skip)
and the vertical arrow for data refinement.

3.3. Homomorphism Properties of Encoding

Encoding is a binary operator on predicate transformers. We shall now investigate its homomorphism and
other algebraic properties, in both arguments.

Theorem 6. Encoding is monotonic in its first argument:

S v S ′ ⇒ S ↓D v S ′ ↓D
The encoding operation is not, however, monotonic in its second argument. From Theorem 8 below we get

Encoding, Decoding and Data Refinement 323

the following three encodings:

skip ↓ abort = abort

skip ↓ skip = skip

skip ↓magic = chaos

Since abort < chaos < skip (provided that the underlying state space has at least two elements) we have
skip v magic but skip ↓ skip 6v skip ↓magic (and abort v skip but skip ↓ abort 6w skip ↓ skip). Thus, encoding
is neither monotonic nor antimonotonic in its second argument.

Now let us consider how encoding distributes into basic statement constructs. Distribution is important,
because it gives rise to structure-preserving encodings, i.e., refinements of the form S ↓D v S ′, where S and S ′
have the same statement structure.

Theorem 7. Encoding can be refined to preserve the structure of its first argument as follows:

(a) abort ↓D = abort, if D is strict,

(b) skip ↓D v skip,

(c) magic ↓D = magic, if D is strict and terminating,

(d) {p} ↓D v {p′} ≡ D. p ⊆ p′,
(e1) [p] ↓D v [p′] ≡ p′ ⊆ D◦. p, if D is universally disjunctive,

(e2) [p] ↓D v [p′] ≡ p′ ⊆ D. p, if D is universally conjunctive,

(f) (S1; S2) ↓D v (S1 ↓D); (S2 ↓D),

(g) (u i ∈ I • Si) ↓D v (u i ∈ I • Si ↓D), and

(h) (t i ∈ I • Si) ↓D = (t i ∈ I • Si ↓D), if D is universally disjunctive.

The restriction in Theorem 7 (h) may seem to indicate that we should in general require abstraction D
to be universally disjunctive. However, as long as we work within a framework of conjunctive predicate
transformers (where the join operator is not included), this restriction need not be made.

Theorem 7 illustrates three different levels of rules for encoding. The equality rules in (a), (c) and (h) have
the strongest form. They tell us that abort and magic is each the least D-refinement of abort and magic,
respectively. The equivalence rules in (d) and (e) are slightly weaker. For example, (d) tells us that {D. p} is
the least structure-preserving D-refinement of {p}. However, this does not exclude the possibility that {p} ↓D is
strictly less (with respect to the refinement ordering) than {D. p}. Finally, the rules in (b), (f) and (g) are even
weaker, not excluding the possible existence of strictly smaller D-refinements that preserves the structure of
the original statement.

3.4. The Abstraction Argument of Encoding

The preceding theorems describe the homomorphism properties of encoding with respect to the first argument.
For completeness, it we also investigate the homomorphism properties in the second argument.

Theorem 8. An encoding can be refined to preserve the structure of its second argument, as follows:

(a) S ↓ abort = abort,

(b) S ↓ skip = S ,

(c) S ↓magic = chaos,

(d) S ↓ (D1 t D2) v (S ↓D1) t (S ↓D2).

From Theorem 8 we see that encoding is very weakly homomorphic in its second argument. However, for a
sequential composition of decodings we have an important result.

Theorem 9. Encodings can be composed as follows:

S ↓ (D1;D2) v (S ↓D2) ↓D1

324 R.-J. Back and J. von Wright

Proof.

S ↓ (D1;D2) v (S ↓D2) ↓D1

⇐ {Theorem 5}
D1;D2; S v ((S ↓D2) ↓D1);D1;D2

⇐ {property (encode1), monotonicity}
D1;D2; S v D1; (S ↓D2);D2

⇐ {property (encode1), monotonicity}
D1;D2; S v D1;D2; S

≡ {reflexivity}
T

q

The importance of Theorem 9 is illustrated as follows. Assume that we encode S with D1 and refine this to
S1:

S ↓D1 v S1

Now assume that we continue, encoding S1 with D2 and refine this to S2:

S1 ↓D2 v S2

Then

D2;D1; S

v {definition of encoding}
D2; (S ↓D1);D1

v {first assumption, D1 monotonic}
D2; S1;D1

v {definition of encoding}
(S1 ↓D2);D2;D1

v {second assumption}
S2;D2;D1

and we can use Theorem 5 to conclude

S ↓ (D2;D1) v S2

Theorem 9 is sufficient to justify encoding in a stepwise manner. In Section 4.1 we shall see that in an
important special case the refinement in Theorem 9 can be strengthened to an equality.

4. Calculating Encodings

So far, we have assumed only that the abstraction D in an encoding is monotonic. From the normal form
theorem (Lemma 1 (a)) we know that an abstraction D can be decomposed into a sequential composition

D = {Ra}; [Rd]

(in fact, if D is required to be strict and continuous, then a similar decomposition is possible where Rd is total
and image-finite, so [Rd] is strict and continuous [vWr94]). In fact, if S vD S ′′, then it is possible to find S ′
such that

S ↓ [Rd] v S ′ and S ′ ↓ {Ra} v S ′′
(for details, see [GaM93, vWr94]; S ′ can be taken to be S ↓ [Rd]). Thus it is reasonable to consider the
following two special cases of encoding:

Encoding, Decoding and Data Refinement 325

• forward data refinement – encoding with a universally disjunctive abstraction, and

• backward data refinement – encoding with a universally conjunctive abstraction.

This was noted by Gardiner and Morgan [GaM93], who show that a similar combination of forward and
backward data refinement provide a single method that is sound and complete for refinement of abstract data
types.

In a relational framework forward and backward data refinement must be defined separately. The more
expressive predicate transformer framework permits a single definition of data refinement, with forward and
backward data refinement as special cases. In practical program development, forward data refinement is
sufficient for most cases. Then the relation R in the abstraction statement can be written as an assignment
(we shall see examples of this in Section 7).

4.1. Forward Data Refinement

When the abstraction D is universally disjunctive, encoding can be expressed explicitly.

Theorem 10. Assume that S and T are monotonic predicate transformers and that D is universally disjunctive.
Then

S ↓D = D; S;D

Theorem 10 expresses the encoding S ↓D explicitly, so it can be calculated. Since a universally disjunctive
predicate transformer can always be written as an angelic update, we can rewrite the result as follows:

S ↓D = {R}; S; [R−1]

This shows how our general statement notation allows us to express the least D-refinement of statement S in
statement form, when D is universally disjunctive. Thus, encoding reduces to a well-known construction in
this special case when the abstraction statement is universally disjunctive (data refinement of S was described
as {R}; S; [R−1] already in [BaW89]).

We now show how Theorem 9 can be strengthened to an equality:

Theorem 11. Assume that either D1 or D2 is universally disjunctive. Then

S ↓ (D2;D1) = (S ↓D1) ↓D2

Theorem 11 gives us a basis for decomposing data refinements:

Corollary 12. Assume that the data refinement S vD2;D1
S ′′ is known, where either D1 or D2 is universally

disjunctive. Then there exists S ′ with

S vD1
S ′ vD2

S ′′

(for the proof, choose S ′ to be S ↓D1). In fact, it is easily shown that S ↓D1 is the smallest solution to the
‘equation’ S vD1

X vD2
S ′′ (in Section 5.4 we shall see that in certain situations this equation also has a

greatest solution). Corollary 12 generalises the result mentioned in the introduction to Section 4.

4.2. Calculating Encodings

Theorem 10 gives a closed expression for encodings when the abstraction involved is universally disjunctive.
This means that it is possible to calculate the encoding S ↓D of a program statement S . In a sense, we already
have an explicit description (D; S;D) of S ↓D, but if the abstraction D involves a change of state space, then
we want to express D; S;D (or some refinement of it) purely in terms of statements that do not change the
state space.

Inverse statements give us a way of calculating the data refinement of any statement S . However, in
practice we want to calculate data refinements in a structure-preserving way. In this, we can improve on
Theorem 7, using the fact that the decoding D is of the form {R}. As a result, we get rules that are essentially
equivalent to traditional rules for data refinement [Bac80, Bac89, MoG90, Mor89, vWr94]. We number the
rules in the same way as in Theorem 7, but we only state the cases where the assumption that D is universally
disjunctive gives us a better result than before.

326 R.-J. Back and J. von Wright

Theorem 13. Assume that D is the universally disjunctive decoding D = {R}. Then

(c) magic ↓D = {dom. R}; magic,

(d) {p} ↓D v {p′} ≡ im. R−1. p ⊆ p′, and

(e) [p] ↓D v [p′] ≡ p′ ⊆ im. R. p.

Theorem 13 (c) is an example of a rule that is not structure-preserving (of course, the structure-preserving
rule magic ↓D v magic holds trivially). Similarly, the following rule for the guard statement is valid:

[p] ↓D v {dom. R}; [im. R. p]

4.3. Rules for Relational Updates

When the form of the abstraction is known, it is also possible to give rules for encoding relational updates.

Theorem 14. Assume that D is the universally disjunctive abstraction {R}. Then

(a) [P] ↓D v [P ′] ≡ P ′ ⊆ R\(P ;R−1), and

(b) {P } ↓D v {P ′} ≡ R;P ⊆ P ′;R.

Proof. For (a), we have

[P] ↓ {R} v [P ′]
≡ {Theorem 10}
{R}; [P]; [R−1] v [P ′]

≡ {Galois connection}
[P]; [R−1] v [R−1]; [P ′]

≡ {homomorphism}
[P ;R−1] v [R−1;P ′]

≡ {embedding}
P ;R−1 ⊇ R−1;P ′

≡ {property of relational quotient}
(R−1)−1\(P ;R−1) ⊇ P ′

≡ {property of inverse relation}
R\(P ;R−1) ⊇ P ′

and for (b),

{P } ↓ {R} v {P ′}
≡ {Theorem 5}
{R}; {P } v {P ′}; {R}

≡ {homomorphism, embedding}
R;P ⊆ P ′;R

q

Theorem 14 (a) shows that the least structure-preserving encoding of [P] under {R} is [R\(P ;R−1)]. On the
other hand, (b) does not allow explicit calculation of the encoding for an angelic update. Instead, the rule
can be used as a proof rule, to check whether a suggested encoding {P } ↓D v {P ′} holds. It can also be used
for an implicit calculation of the encoding. If we can do a stepwise calculation of the form

R;P

⊆ · · ·
P ′;R

Encoding, Decoding and Data Refinement 327

then we have calculated a relation P ′ such that {P } ↓D v {P ′} holds (an example of this is given in Section
7.4).

The functional update is handled by rewriting according to 〈f〉 = [|f|]. Thus the rule is

〈g〉 ↓D v 〈g′〉 ≡ |g′| ⊆ R\(|g|;R−1)

In practical program development, a program is often specified as a general conjunctive specification {p}; [Q],
in terms of a precondition p and a next-state relation Q. The following generalisation of Theorem 14 (c) gives
a rule for encoding such a specification.

Theorem 15. Assume that D is the universally disjunctive abstraction {R}. Then

{p}; [Q] ↓D v {p′}; [Q′] ≡ (im. R−1. p ⊆ p′) ∧ (Q′ ⊆ (R; |p|)\(Q;R−1))

A direct consequence of Theorem 15 is the following calculational rule for encoding a conjunctive specification:

{p}; [Q] ↓D v {im. R−1. p}; [(R; |p|)\(Q;R−1)]

4.4. Functional Data Refinement

An important special case of data refinement is functional data refinement where the decoding is of the form
{r}; 〈f〉. Here, r is a concrete invariant on Γ and f : Γ → Σ is an abstraction function which computes the
unique abstract state σ corresponding to any concrete state γ in r. Functional data refinement was studied
previously by Hoare [Hoa72] in Hoare logic and by Back [Bac80] in the refinement calculus.

The structural rules are the same for functional data refinement as for data refinement in general, noting
that the inverse of {r}; 〈f〉 is [f−1]; [r] (i.e, a demonic update followed by a guard). Thus we have

S ↓D = {r}; 〈f〉; S; [f−1]; [r]

where D = {r}; 〈f〉. Here the assertion {r} at the beginning and the guard [r] at the end express the requirement
that r is an invariant. It then remains to find a way of simplifying 〈f〉; S; [f−1]. In fact, we get useful special
cases of the rules in Theorems 13 and 14:

Theorem 16. Assume that p and r are predicates, f is a function, P is a relation, and D = {r}; 〈f〉. Then

(a) {p} ↓D v {r}; {p′}; [r], if f; p ⊆ p′,
(b) [p] ↓D v {r}; [p′]; [r], if p′ ⊆ f; p,

(c) [P] ↓D = {r}; [|f|;P ; f−1]; [r], and

(d) {P } ↓D v {r}; {P ′}; [r], if |f|;P ⊆ P ′; |f|.
Again, a functional update is handled by rewriting it into a demonic update first, as 〈g〉 = [|g|]. However, if
f is bijective, then we get a simpler rule:

Corollary 17. Assume that D = {r}; 〈f〉 where f is a bijective function, and let f−1 (temporarily) stand for
the inverse function of f. Then

〈g〉 ↓D = {r}; 〈f; g; f−1〉; [r]

4.5. Backward Data Refinement

In the backward data refinement case (i.e., when the abstraction of an encoding is universally conjunctive),
we do not get such strong rules as in the forward case. However, we still get a complete collection of rules
that allow us to verify encoding of statements. As before, we only show the cases that improve on the general
result in Theorem 7.

Theorem 18. Assume that D is the universally conjunctive abstraction D = [R]. Then

(a) abort ↓D = abort, if R is total,

(c) magic ↓D = magic, if R is total,

328 R.-J. Back and J. von Wright

(d) {p} ↓D v {p′} ≡ im. R. p ⊆ p′, and

(e) [p] ↓D v [p′] ≡ p′ ⊆ im. R. p.

For the demonic update, the rule is similar to the forward case.

Theorem 19. Assume that D is the universally conjunctive abstraction [R]. Then

[P] ↓D v [P ′] ≡ P ′−1 ⊆ R\(R;P)−1

However, for the angelic update there seems to be no simple rule; there are no algebraic laws that allow us
to manipulate the expression [R]; {P } v {P ′}; [R].

5. Data Refinement and Decoding

Since the encoding S ↓D was defined as the least solution to the equation D; S v X;D, it makes sense to
consider the dual situation also. We refer to greatest solution to the equation D;X v T ;D as the decoding
of T by D, written T ↑D. Essentially, T ↑D is the greatest statement that is D-refined to T . However, this
equation does not necessarily have a solution at all (set D = magic and T = abort). Furthermore, even if it
has solutions, no greatest solution need exist.

If T ↑D does exist, then it satisfies the following properties:

T ↑D vD T (decode1)
X vD T ⇒ X v T ↑D (decode2)

5.1. Conditions for Decoding

Before considering in more detail under what conditions the decoding actually exists, let us show its relationship
to D-refinement.

Theorem 20. The definition of T ↑D can equivalently be expressed by requiring that

S v T ↑D ≡ S vD T
holds for arbitrary S .

It is also interesting to note that from Theorems 5 and 20 we directly find that

((λX • X ↓D), (λY • Y ↑D))

is a Galois connection: Thus, by Lemma 2 we know that this condition can be satisfied only if (λX • X ↓D)
distributes over arbitrary joins. We have

(λX • X ↓D). (t i ∈ I • Si) = (t i ∈ I • (λX • X ↓D). Si)

≡ {beta reduction}
(t i ∈ I • Si) ↓D = (t i ∈ I • Si ↓D)

and this was in Theorem 7 shown to hold if D is universally disjunctive.
Thus we can summarise: the decoding T ↑D exists for arbitrary monotonic predicate transformer T

whenever the decoding D is universally disjunctive.
Theorem 20 indicates that decoding is essentially reverse encoding. We can interpret the decoding S ↑D

as translating the statement S into a more abstract state space, without changing the non-determinism,
termination or strictness of the statement. In Section 7 we will see an example of how decoding can be used
to reduce a correctness condition to a more abstract one.

Applying the rules f ◦ f v id and id v f ◦ f to the Galois connection ((λX • X ↓D), (λY • Y ↑D)) we get
the following result which shows that encoding and decoding each undoes the effect of the other, thus giving
further justification for the naming of these operators:

Corollary 21. Assume that abstraction D is universally disjunctive. Then

(a) S v (S ↓D) ↑D,

(b) (T ↑D) ↓D v T .

Encoding, Decoding and Data Refinement 329

S

6

D

S ↓D

� S ′ ↑D

�

6

D

S ′

�
�

�
�

�
�

�	

D

Fig. 4. Relationships derived from S vD T .

5.2. Decoding and the Abstraction Category

An interesting duality between encoding and decoding (for universally disjunctive abstraction statement D) is
the following. Assume that the data refinement S vD T is given. Recall from Section 3.2 that we have

S vD S ↓D v T

which factors out the pure data refinement first, and then the remaining algorithmic refinement. On the other
hand, Theorem 20 shows that we can also reverse the order and factor out the algorithmic refinement first:

S v T ↑D vD T

This raises the question whether S ↓D and T ↑D are related in the abstraction category. We have

D; (S ↓D)

= {Theorem 10}
D;D; S;D

v {assumption S vD T }
D;T ;D;D

= {Theorem 24, below}
(T ↑D);D

which shows that S ↓D vD T ↑D. Figure 4 illustrates all the relationships that can be deduced once S vD T
is known, for universally disjunctive D.

5.3. Properties of Decoding

The characterisation of decoding in Theorem 20 allows us to deduce homomorphism properties for decoding
similar to those of encoding. First, we consider monotonicity:

Theorem 22. Decoding is monotonic in its first argument:

T v T ′ ⇒ T ↑D v T ′ ↑D
for universally disjunctive D.

Next, we collect other basic homomorphism properties.

Theorem 23. Assume that D is universally disjunctive. Then

(a) abort = abort ↑D if D is terminating,

(b) skip v skip ↑D,

(c) magic = magic ↑D,

330 R.-J. Back and J. von Wright

(d) {p} v {p′} ↑D ≡ p ⊆ D. p′,
(e) [p] v [p′] ↑D ≡ D

◦
. p′ ⊆ p,

(f) (S1 ↑D); (S2 ↑D) v (S1; S2) ↑D,

(g) (u i ∈ I • Si ↑D) = (u i ∈ I • Si) ↑D,

(h) (t i ∈ I • Si ↑D) v (t i ∈ I • Si) ↑D.

The refinements in Theorem 23 may seem to go the wrong way, but the intuition can be explained as follows.
Decoding is a kind of reverse refinement, so S ↑D is a less refined version of S (with respect to the abstraction
D). If S ′ and D are known, then finding a statement S such S v S ′ ↑D means finding some statement S that
is D-refined by S ′.

5.4. Decoding with Inverse Statements

Decoding can also be expressed explicitly when the abstraction D is universally disjunctive.

Theorem 24. Assume that S and T are monotonic predicate transformers and that D is universally disjunctive.
Then

T ↑D = D;T ;D

Theorems 10 and 24 and the shunting properties of inverse statements now allow us to characterise forward
data refinement in a number of ways:

Corollary 25. All the following conditions are equivalent, for monotonic S and S ′ and universally disjunctive D:

(a) S ↓D v S ′ (d) S v S ′ ↑D
(b) D; S;D v S ′ (e) S v D; S ′;D
(c) D; S v S ′;D (f) S;D v D; S ′

The rule for composing encodings has a counterpart for decodings.

Theorem 26. Decoding can be composed as follows:

(S ↑D1) ↑D2 = S ↑ (D1;D2)

In connection with Corollary 12 we stated that if S vD2;D1
T where either D1 or D2 is universally disjunctive,

then S ↓D1 is the smallest solution to the equation S vD1
X vD2

T . In fact, if D2 is universally disjunctive
then T ↑D2 is the greatest solution to this same equation (which has a complete lattice of solutions), and we
have

S vD1
S ↓D1 v T ↑D2 vD2

T

5.5. Calculating Decodings

When the abstraction D is explicitly given as an angelic update, we can improve slightly on the results in
Theorem 23.

Corollary 27. Assume that D is the universally disjunctive abstraction D = {R}. Then

(a) abort = abort ↑D if R is total, and

(d) {p} v {p′} ↑D ≡ p ⊆ im. R−1. p′.
For the relational updates, we get duals from the results in Theorem 14.

Theorem 28. Assume that D is the universally disjunctive decoding {R}. Then

(a) [P] v [P ′] ↑D ≡ P ;R−1 ⊇ R−1;P ′, and

(b) {P } v {P ′} ↑D ≡ P ⊆ R−1\(P ′;R).

Again, we do not give a separate rule for functional update; it is handled by rewriting according to 〈f〉 = {|f|}.
Exactly as for encoding, we can try to get simpler special cases when the abstraction D used in an decoding

is functional, i.e., when D is of the form {r}; 〈f〉.

Encoding, Decoding and Data Refinement 331

Theorem 29. Assume that D is the abstraction D = {r}; 〈f〉. Then

(a) {p} v {p′} ↑D ≡ r ∩ f; p ⊆ p′,
(b) [p] v [p′] ↑D ≡ r ∩ p′ ⊆ f; p, and

(c) 〈g〉 v 〈g′〉 ↑D ≡ r ⊆ g; r ∧ f; g = g′; f.

For the relational updates we do not get simpler rules that those in Theorem 28.

6. Recursive Statements

Before looking in more detail on how encoding works with recursive statements, let us state the following
very useful fusion theorem (attributed to Kleene).

Lemma 30. Assume that f : Σ → Σ and g : Γ → Γ are monotonic functions on complete lattices and that
h : Σ→ Γ is continuous and k : Σ→ Γ is co-continuous. Then

(a) h ◦ f v g ◦ h ⇒ h. (µ. f) v µ. g,

(b) k ◦ f w g ◦ k ⇒ k. (ν. f) w ν. g.

Here a function f is continuous if f. (tA) = (t a ∈ A | f. a) for every directed set A (the set A is directed if
(∀x, y ∈ A • ∃z ∈ A • x t y v z), i.e., if every pair of elements in A has an upper bound in A). Dually, a
function f is co-continuous if f. (uA) = (u a ∈ A | f. a) for every co-directed set A (and the set A is co-directed
if (∀x, y ∈ A • ∃z ∈ A • z v x u y)).

6.1. Encoding Recursive Statements

Encoding also distributes into the recursive constructs:

Theorem 31. Assume that f : (Σ 7→ Σ)→ (Σ 7→ Σ) and g : (Γ 7→ Γ)→ (Γ 7→ Γ) are monotonic functions that
map monotonic predicate transformers to monotonic predicate transformers, and that

(∀S ∈ Σ→m Σ • f. S ↓D v g. (S ↓D))

Then

(a) µ. f ↓D v µ. g if D is strict and continuous, and

(b) ν. f ↓D v ν. g.

Proof. For (a) we first note that continuity of D implies that the function (λX • X ↓D) is continuous (the
proof for this follows a straightforward pointwise extension argument). Then,

(µ. f) ↓D v µ. g
⇐ {fusion (Lemma 30 (a))}

(λX • X ↓D) ◦ f v g ◦ (λX • X ↓D)

⇐ {definitions, beta conversion}
(∀S • f. S ↓D v g. (S ↓D))

The proof of (b) is more direct:

(ν. f) ↓D v ν. g
⇐ {fixed-point induction}

(ν. f) ↓D v g. ((ν. f) ↓D)

≡ {unfold fixed point}
f. (ν. f) ↓D v g. ((ν. f) ↓D)

⇐ {specialisation}
(∀S • f. S ↓D v g. (S ↓D))

q

332 R.-J. Back and J. von Wright

Since any useful programming notation will include facilities for µ-recursion (or some form of iteration, which
is semantically a special case of recursion), the result in Theorem 31 shows that it makes sense to require that
abstraction be strict and continuous.

For the fixpoint constructs, we also get calculational rules:

Theorem 32. Assume that f : (Σ 7→ Σ) → (Σ 7→ Σ) is a monotonic function that maps monotonic predicate
transformers to monotonic predicate transformers, and that D is universally disjunctive. Then

(a) µ. f ↓D v (µX • f. (X ↑D) ↓D), and

(b) ν. f ↓D v (ν X • f. (X ↑D) ↓D).

6.2. Iterations and Loops

As an illustration of Theorem 32 we show how a weak iteration S∗ is encoded. This construct is defined as
follows [BaW98]:

S∗ ∧
= (νX • S;X u skip)

and the operational intuition of S∗ is that S is repeated some (demonically chosen) finite number of times.
When D is universally disjunctive we have the following derivation:

(νX • S;X u skip) ↓D
v {Theorem 32 (b)}

(νX • (S; (X ↑D) u skip) ↓D)

v {Theorem 7}
(νX • (S ↓D); ((X ↑D) ↓D) u (skip ↓D))

v {Theorem 7 and Corollary 21}
(νX • (S ↓D);X u skip)

so we get

S∗ ↓D v (S ↓D)∗

This illustrates how Theorem 32 is applied: when the encoding is distributed all the way into the recursion
expression, the decoding X ↑D disappears, by Corollary 21 (the last step of the derivation).

A similar derivation can be used to derive the encoding rule for while-loops. First, we use the basic
encoding rules to find that

(if b then S1 else S2 fi) ↓D v if b′ then (S1 ↓D) else (S2 ↓D) fi

provided that D. b ⊆ b′ ⊆ D◦. b. A derivation like the one for weak iteration then gives

(while b do S od) ↓D v while b′ do (S ↓D) od

provided that D. b ⊆ b′ ⊆ D◦. b.

6.3. Decoding Recursive Statements

From the rules for encoding of fixpoints we also get rules for decoding.

Theorem 33. Assume that f : (Σ 7→ Σ)→ (Σ 7→ Σ) and g : (Γ 7→ Γ)→ (Γ 7→ Γ) are monotonic functions that
map monotonic predicate transformers to monotonic predicate transformers, and that

(∀S • f. (S ↑D) v g. S ↑D)

Then

(a) µ. f v µ. g ↑D, if D is strict and continuous, and

(b) ν. f v ν. g ↑D.

Encoding, Decoding and Data Refinement 333

7. Examples and Applications

We shall now illustrate the concepts and rules developed in this paper with a number of examples.

7.1. Encoding with Context Information

The rules above tell us how assertions and guards are transformed in encodings and decodings. However,
we are often interested in using assertions and guards as context information, to help calculate the encoding
or decoding of an associated statement. For details about how assertions and guards can be introduced,
propagated and eliminated from a program text, we refer to [BaW98].

In an encoding or decoding transformation of the form S ↓D v S ′ or S v S ′ ↑D we call S the source and
S ′ the target of the transformation. If the source has the form {p}; S , then the state information represented
by predicate p can be used as an assumption in the calculation of {p}; S ↓D. Consider as an example the rule
from Theorem 14 (a):

[Q] ↓D v [Q′] ≡ Q′ ⊆ R\(Q;R−1)

where D = {R}. The condition on the right-hand side of this rule can be rewritten as follows:

(∀σ γ γ′ • R. γ. σ ∧ Q′. γ. γ′ ⇒ (∃σ′ • Q. σ. σ′ ∧ R. γ′. σ′))
If the source instead had the form {p}; [Q], then the rule would have the form

{p}; [Q] ↓D v [Q′] ≡ Q′ ⊆ R\(|p|;Q;R−1)

and the condition on the right-hand side could be rewritten as

(∀σ γ γ′ • p. σ ∧ R. γ. σ ∧ Q′. γ. γ′ ⇒ (∃σ′ • Q. σ. σ′ ∧ R. γ′. σ′))
Note how the context information p has become an added assumption (a conjunct in the antecedent) that
can help in the proof. The same argument holds for all other rules: an assertion in the source of an encoding
or decoding transformation can be used as an assumption in the proof of the transformation.

The use of guards is dual to the use of assertions: a guard statement in the target of a transformation
can be used as context information. Consider the same example as for assertions above. If the target has the
form [p′]; [Q′], then the rule becomes

[Q] ↓D v [p]; [Q′] ≡ Q′ ⊆ (|p′|;R)\(Q;R−1)

where the condition on the right-hand side can be rewritten as

(∀σ γ γ′ • p′. γ ∧ R. γ. σ ∧ Q′. γ. γ′ ⇒ (∃σ′ • Q. σ. σ′ ∧ R. γ′. σ′))
Again, the context information appears in the antecedent of the condition, i.e., as an assumption.

7.2. Encoding with Program Variables

The rules for encoding and decoding that we have given so far have reduced reasoning on the predicate
transformer level to reasoning on the lower levels in the predicate transformer hierarchy: predicates, functions
and relations. These rules are often elegant and algebraic. However, if we want to apply the rules in program
derivation, then we need to translate the rules to the level of program variables. It is not our aim to derive a
complete collection of such rules, but we shall give an example of how such rules are derived. In practice, what
we get are syntactic rules for data refinement, much like those that have been described in detail elsewhere
[Bac80, ChU89, MoG90, Mor89].

As an example, consider the rule for encoding a demonic assignment with a functional abstraction
(Theorem 16 (c)):

[P] ↓ ({r}; 〈f〉) = {r}; [|f|;P ; f−1]; [r]

In assignment notation, we have

[x := x′ | b] ↓ ({c}; 〈x/y := e〉)
= {rule above}
{c}; [(x/y := x | x = e); (x := x′ | b); (y/x := y | x = e)]; [c]

334 R.-J. Back and J. von Wright

�
�
�
�
��〈x/ := e〉

@
@
@
@
@R

〈y/ := e′〉

6

D

6

D

-S

-
S ′

6

D

6

D

@
@
@
@
@R

〈 /x〉

�
�
�
�
��

〈 /x〉

Fig. 5. Simulation between blocks.

= {merge assignments and simplify}
{c}; [(x/y := x′ | b[x := e]); (y/x := y | x = e)]; [c]

= {merge assignments and simplify}
{c}; [y := y′ | b[x, x′ := e, e[y := y′]]]; [c]

= {rewrite guard as update and merge}
{c}; [y := y′ | b[x, x′ := e, e[y := y′]] ∧ c[y := y′]]

Thus we get the following rule for encoding in terms of program variables:

[x := x′ | b] ↓ ({c}; 〈x/y := e〉) = {c}; [y := y′ | b[x, x′ := e, e′] ∧ c′]
where e′ abbreviates e[y := y′] and c′ abbreviates c[y := y′].

A similar derivation gives the following rule for forward data refinement when the abstraction is of
the form {x/y := x | c} where c is a Boolean expression relating the abstract variable x and the concrete
variable y:

[x := x′ | b] ↓ {x/y := x | c} v {∃x • c}; [y := y′ | (∀x • c⇒ (∃x′ • c′ ∧ b))]
where c′ abbreviates c[x, y := x′, y′]. In this case the derivation is as follows:

[x := x′ | b] ↓ {x/y := x | c}
= {encoding rule (Theorem 15)}
{im. (y/x := y | c)−1. true}; [((x/y := x | c); |true|)\((x := x′ | b); (y/x := y | c)])

= {merge assignments and simplify}
{∃x • c ∧ T}; [(x/y := x | c)\(y/x := y | (∃x′ • b ∧ c[x := x′]])

= {quotient with assignments, simplify}
{∃x • c}; [y := y′ | (∀x • c⇒ (∃x′ • b ∧ c[x, y := x′, y′]))]

As before, we have used the rules from Appendix A to manipulate assignments.

7.3. Example: Block Refinement

Consider a block refinement of the form

begin var x := e; S end v begin var y := e′; S ′ end

A standard method for proving such a refinement is by simulation, which in our framework amounts to
finding an abstraction statement D such that the following three conditions hold:

〈x/ := e〉 v 〈y/ := e′〉;D (initialisation simulation)
D; S v S ′;D (body simulation)

D; 〈 /x〉 v 〈 /y〉 (finalisation simulation)

Encoding, Decoding and Data Refinement 335

The block refinement can then be illustrated by a subcommuting diagram, as in Fig. 5. The results of this
paper show that the body simulation condition is equivalent to S ↓D v S ′. The initialisation and finalisation
conditions can also be simplified when the abstraction statement is an (angelic or demonic) assignment, as
the following example shows.

We show some details of a simple block refinement, to illustrate data refinement with program variables.
Consider the block

begin var x := ∅; . . . ; 〈x := x ∪ {z}〉; . . . end

where the ellipses stand for statements that we do not consider further. The set (x) is to be implemented by
an array (variables n and y), according to the abstraction statement

D = 〈x/n, y := arrset. n. y〉
where arrset. n. y stands for the set {a | ∃i < n • y[i] = a} (we assume that y is a potentially infinite array,
indexed by the natural numbers). This abstraction statement can be justified if elements are never removed
from the set.

First we use the rule derived in Section 7.2 to calculate the data refinement of the assignment 〈x := x∪{z}〉.
We have

〈x := x ∪ {a}〉 ↓D
= {rewrite deterministic assignment as demonic assignment}

[x := x′ | x′ = x ∪ {z}] ↓ 〈x/n, y := arrset. n. y〉
= {rule from Section 7.2}

[n, y := n′, y′ | arrset. n′. y′ = arrset. n. y ∪ {z}]
v {standard refinement derivation}
〈n, y[n] := n+ 1, z〉

Note that we do not need to manipulate assignments that replace variables; this is taken care of by the rule
for encoding. Thus, the resulting derivation follows the same outline as traditional data refinement derivations
in the calculational style [MoG90, BaW89]. Other statements inside the block body can be encoded by means
of similar calculations.

The block initialisation is calculated by noting that

〈x/ := e〉 v 〈y/ := e′〉;D ≡ 〈x/ := e〉;D v 〈y/ := e′〉
when D is universally disjunctive. We have

〈x/ := ∅〉;D
= {rewrite assignment, rule for inverses}

[x/ := x | x = ∅]; [n, y/x := n, y | x = arrset. n. y]

= {homomorphism, merge assignments (see Appendix A)}
[n, y/ := n, y | arrset. n. y = ∅]

v {make assignment deterministic}
〈n, y/ := 0, arb〉

where arb stands for some arbitrary element (it does not matter how y is initialised). A similar calculation
shows that

〈 /x〉;D v 〈 /y〉
and we have the refinement

begin var x := ∅; . . . ; 〈x := x ∪ {z}〉; . . . end

v begin var n, y := 0, arb; . . . ; 〈n, y[n] := n+ 1, z〉; . . . end

336 R.-J. Back and J. von Wright

7.4. Least Data Refinement

The following example illustrates the difference between the least structure-preserving data refinement and the
all-over least data refinement. It also shows the calculation of an encoding using the definition. We consider
the assignment 〈a := a+ 1〉 under abstraction {a/c := a | c = a div 2}. We have

〈a := a+ 1〉 ↓ {a/c := a | c = a div 2}
= {Theorem 10}
{a/c := a | c = a div 2}; 〈a := a+ 1〉; [c/a := c | c = a div 2]

= {rewrite demonic update as a deterministic statement}
{a/c := a | c = a div 2}; 〈a := a+ 1〉; 〈c/a := a div 2〉

= {merge assignments}
{a/c := a | c = a div 2}; 〈c/a := (a+ 1) div 2〉

= {rewrite deterministic statement as angelic update}
{a/c := a | c = a div 2}; {c/a := c | c = (a+ 1) div 2}

= {homomorphism}
{(a/c := a | c = a div 2); (c/a := c | c = (a+ 1) div 2)}

= {merge assignments}
{c := c′ | ∃a • c = a div 2 ∧ c′ = (a+ 1) div 2}

= {arithmetic, predicate calculus}
{c := c′ | ∃a • (a = 2c ∧ c′ = c) ∨ (a = 2c+ 1 ∧ c′ = c+ 1)}

= {predicate calculus}
{c := c′ | c′ = c ∨ c′ = c+ 1}

= {rewrite angelic update as angelic choice}
skip t 〈c := c+ 1〉

Here we have used the rules in Appendix A to manipulate assignments.

Thus the least data refinement of 〈a := a + 1〉 is an angelic choice between skip and 〈c := c + 1〉. If we
apply Theorem 14 (b) (in its syntactic form as given in Section 7.2) then we get

〈a := a+ 1〉 ↓ {a/c := a | c = a div 2}
v {syntactic rule for encoding}

[c := c′ | (∀a • c = a div 2⇒ (∃a′ • c′ = a′ div 2 ∧ a′ = a+ 1))]

= {predicate calculus}
[c := c′ | (∀a • c = a div 2⇒ c′ = (a+ 1) div 2)]

= {arithmetic, predicate calculus}
[c := c′ | (∀a • (a = 2c⇒ c′ = (a+ 1) div 2) ∧ (a = 2c+ 1⇒ c′ = (a+ 1) div 2))]

= {predicate calculus}
[c := c′ | c′ = (2c+ 1) div 2 ∧ c′ = (2c+ 2) div 2]

= {arithmetic}
[c := c′ | F]

= {definition of magic}
magic

which shows that the least structure-preserving data refinement (and in fact, the least conjunctive data
refinement) is magic.

Encoding, Decoding and Data Refinement 337

7.5. Abstracting Properties

As an application of decoding, we shall now show how a correctness property can be translated to a more
abstract level.

Theorem 34. Assume that D is a universally disjunctive abstraction. Then

p {| S ↑D |} D. q ⇒ D. p {| S |} q
Theorem 34 gives us the following rule for reducing a correctness condition using decoding:

p′ ⊆ D. p p {| S |} q q ⊆ D. q′ S v S ′ ↑D
p′ {| S ′ |} q′

The idea is that we are free to choose an abstraction D that suits the situation. As a small example, consider
the correctness condition

true {| if x < y then x, y := y, x else x := y fi |} (x > y) (*)

Since the exact values of x and y are not important, it should be possible to reduce this to a correctness
condition where the unnecessary details about x and y are abstracted away.

Recall from Section 2.3 that the conditional statement in (*) can be written as

S ′ = {x < y}; 〈x, y := y, x〉 t {x > y}; 〈x := y〉
Next, we introduce the abstraction D = 〈b/x, y := , x > y)〉 and start calculating the decoding. For the first
assertion we have

(x < y)

= {arithmetic}
¬(x > y)

= {predicate calculus}
(¬b)[b := (x > y)]

= {assignment property (Appendix A)}
true ∩ (b/x, y := (x > y)); (¬b)

so {¬b} v {x < y} ↑D by Theorem 29 (a). For the first assignment we then have (with context assumption
x < y)

(x, y := y, x); (b/x, y := (x > y))

= {merge assignments}
(b/x, y := (y > x))

= {assumption x < y}
(b/x, y := T)

= {split assignment}
(b/x, y := (x > y); (b := T)

so 〈b := T〉 v ([x < y]; 〈x, y := y, x〉) ↑D by Theorem 29 (c) (where the guard statement is context
information).

For the second assertion we similarly find {b} v {x > y} ↑D and then skip v [x > y]; 〈x := y〉 ↑D (where
the guard statement is again context information). Thus we have

{¬b}; 〈b := T〉 t {b}; skip v S ′ ↑D
by Theorem 23 (f) and (g). Furthermore, we find true ⊆ D. true and also D. (x > y) = b. Thus by the rule
derived from Theorem 34 we have reduced the correctness condition (*) to the following:

true {| if ¬b then b := T else skip fi |} b
which is then easy to verify. This illustrates how a correctness condition can be reduced to a finite-state level,
where automatic verification methods can be used.

338 R.-J. Back and J. von Wright

8. Conclusion

We have defined an encoding and a decoding operator on predicate transformers and investigated their place
in the predicate transformer hierarchy. In particular, we investigated the algebraic properties of encoding
and decoding and their application to data refinement. The investigation has led to proliferation of similar
and linked results. In order to see the structure, we can consider the results in the light of three independent
dichotomies:

1. Encoding vs. decoding: Encoding translates an abstract program into a concrete one, so that encoding steps
can be included in calculational program derivations. The dual operation is decoding, which translates a
concrete program into a more abstract one.

2. Semantics vs. syntax: The rules for encoding and decoding are first developed on a semantic level, as
properties of predicate transformers that are reduced to properties of the predicates, functions and
relations that the predicate transformers are built from. From these rules we then derive syntactic rules
that allow us to apply encoding and decoding to programs that are described in terms of program variables
and assignments to them.

3. Forward vs. backward data refinement: At the abstract level, encoding is defined as a single concept, using
the notion of a data refinement with a general abstraction statement. However, in order to derive rules that
reduce encoding to the lower levels in the predicate transformer hierarchy there was a need to separate
forward data refinement (disjunctive abstraction statements) and backward data refinement (conjunctive
abstraction statements).

The idea of calculating data refinements is not new, but most existing work has concentrated on the syntactic
level, with rules that explicitly talk about the program variables and the Boolean expressions involved
[Bac80, GaM91, Mor89]. Hoare, He and Sanders [HoHS87] make use of the weakest pre-specification [HH87]
and a dual strongest post-specification to calculate data refinements at an algebraic level. However, they work
in a relational framework, which means that they do not model non-termination properly, and they have to
handle forward and backward data refinement separately. Data refinement of a statement S with respect to
a relation R is expressed by Back and von Wright as {R}; S; [R−1] [BaW89]. These formulations correspond
to encoding in the special case of forward data refinement, as does the data refinement calculator approach
of Morris [Mor89] and Gardiner and Morgan [MoG90]. An analogue of our decoding of a statement S
was considered previously by Back [Bac80] in the form x/y.R; S; y/x.R (in a framework without miracles or
angelic non-determinism).

Traditionally, theories and methods of data refinement have only considered the standard (forward) notion
of data refinement. Gardiner and Morgan were the first to handle forward and backward data refinement in a
single rule [GaM93], but they did not consider the calculation of data refinement in this general framework.
As noted above, the problem of finding the most general data refinement (also referred to as the weakest
simulation) has also been handled extensively in a relational framework [dRE98], but the dual problem (which
we solve by decoding) does not have a general solution when programs are modelled as relations. Our use of
inverse statements in data refinement goes back to older work [Bac89, BaW89, vWr94], but the combination
of all the three dichotomies mentioned above has to our knowledge not been considered before.

References

[Bac80] Back, R.: Correctness Preserving Program Refinements: Proof Theory and Applications, Mathematical Centre Tracts, vol. 131.
Mathematical Centre, Amsterdam, 1980.

[Bac88] Back, R.: A calculus of refinements for program derivations. Acta Informatica, 25:593–624, 1988.
[Bac89] Back, R.: Changing data representation in the refinement calculus. In 21st Hawaii International Conference on System

Sciences, 1989.
[BGW97] Back, R., Grundy, J. and von Wright, J.: Structured calculational proof. Formal Aspects of Computing, 9:469–483, 1997.
[BaW89] Back, R. and von Wright, J.: Refinement calculus, Part I: Sequential programs. In REX Workshop for Refinement of

Distributed Systems, Vol. 430 of Lecture Notes in Computer Science, Springer, Berlin, 1989.
[BaW93] Back, R. and von Wright, J.: Statement inversion and strongest postcondition. Science of Computer Programming, 20:223–

251, 1993.
[BaW98] Back, R. and von Wright, J.: Refinement Calculus: A Systematic Introduction. Springer, Berlin, 1998.
[ChU89] Chen, W. and Udding, J.: Towards a calculus of data refinement. In Mathematics of Program Construction, Vol. 375 of

Lecture Notes in Computer Science, Springer, Berlin, 1989.
[Dij76] Dijkstra, E.: A Discipline of Programming. Prentice-Hall International, Englewood Cliffs, NJ, 1976.

Encoding, Decoding and Data Refinement 339

[dRE98] de Roever, W.-P. and Engelhardt, K.: Data Refinement: Model-Oriented Proof Methods and their Comparison, Cambridge
Tracts in Theoretical Computer Science 47. Cambridge University Press, Cambridge, UK, 1998.

[GaM91] Gardiner, P. and Morgan, C.: Data refinement of predicate transformers. Theoretical Computer Science, 87:143–162, 1991.
[GaM93] Gardiner, P. and Morgan, C.: A single complete rule for data refinement. Formal Aspects of Computing, 5:367–383, 1993.
[HH87] Hoare, C. and He, J.: The weakest prespecification. Information Processing Letters, 24:127–132, 1987.
[HoHS87] Hoare, C., He, J., and Sanders, J.: Prespecification in data refinement. Information Processing Letters, 25:71–76, 1987.
[Hoa72] Hoare, C.: Proofs of correctness of data representation. Acta Informatica, 1:271–281, 1972.
[JiH90] Jifeng, H. and Hoare, C.: Data refinement in a categorical setting. Techn. Rep. PRG 90, Oxford University Computing

Laboratory, 1990.
[MoG90] Morgan, C. and Gardiner, P.: Data refinement by calculation. Acta Informatica, 27:481–503, 1990.
[Mor88] Morgan, C.: The specification statement. ACM Transactions on Programming Languages and Systems, 10:403–419, 1988.
[Mor89] Morris, J.: Laws of data refinement. Acta Informatica, 26:287–308, 1989.
[vWr94] von Wright, J.: The lattice of data refinement. Acta Informatica, 31:105–135, 1994.

A. Manipulating Assignments

The basic rules for merging and splitting assignments are essentially syntactic versions of the definitions of
basic operators on relations and of functions. For the ordinary relational assignment we have the following
merge/split rules, one for the simple case and one for the general case:

(x := x′ | b); (x := x′ | c) = (x := x′ | (∃x′′ • b[x′ := x′′] ∧ c[x := x′′]))
(y/x := y′ | b); (z/y := z′ | c) = (z/x := z′ | (∃y′ • b ∧ c[y := y′]))

In addition to relational composition, relational quotient will be used in a number of rules. Thus, we need
rules for working with quotients in the assignment notation as well:

(x := x′ | b)\(x := x′ | c) = (x := x′ | (∀x′′ • b[x′ := x′′]⇒ c[x := x′′]))
(y/x := y′ | b)\(z/y := z′ | c) = (z/x := z′ | (∀y′ • b⇒ c[y := y′]))

For functional assignments, we get the following special cases of the merge/split rules:

(x := d); (x := e) = (x := e[x := d])

(y/x := d); (z/y := e) = (z/x := e[y := d])

All these rules require that all assignments involved have the same target (the target of an assignment is the
collection of variables to which values are assigned). We can use the following frame rules to make the targets
of two assignments equal.

(x := x′ | b) = (x, z := x′, z′ | b ∧ z′ = z)

(y/x := y′ | b) = (y, z/x, z := y′, z′ | b ∧ z′ = z)

(x := e) = (x, z := e, z)

(y/x := e) = (y, z/x, z := e, z)

By using the merge/split rules twice in succession, we can reorder assignments. For example, the following
commutativity rule can be proved using merge/split and frame rules:

(y/x := y′ | d); (z/w := z′ | e) = (z/w := z′ | e); (y/x := y′ | d)
provided that w does not occur free in d and x does not occur free in e. Finally, we note the following rule
for evaluation of an expression after an assignment to a variable:

(x := d); e = e[x := d]

Note that an expression is really a function that maps states to values; thus it can be composed with an
assignment (which is a function that maps states to states).

340 R.-J. Back and J. von Wright

B. Additional Proofs

Proof of Lemma 4

Since the pair (im. R, im. R) is a Galois connection the definitions immediately give us that [R−1] is the inverse
of {R}. Now (b) follows from this, by setting R = |r|; |f|.

Proof of Theorem 6

Assume that S v S ′ holds. Then

S ↓D v S ′ ↓D
⇐ {property (encode2)}
D; S v (S ′ ↓D);D

⇐ {assumption S v S ′}
D; S ′ v (S ′ ↓D);D

≡ {property (encode1)}
T

Proof of Theorem 7

The proofs of the different parts of this theorem all follow the same general pattern, making use of the specific
algebraic properties of the statement in question. For (a) we assume that D is strict. Then

abort ↓D v abort

≡ {Theorem 5}
D; abort v abort;D

≡ {D strict implies D; abort = abort, general rule abort;D = abort}
abort v abort

≡ {refinement is reflexive}
T

which shows that abort ↓D = abort. For (b) we have

skip ↓D v skip

≡ {Theorem 5}
D; skip v skip;D

≡ {skip is unit}
D v D

≡ {refinement is reflexive}
T

For (c) we assume that D is strict and terminating. We then have for arbitrary S:

magic ↓D v S
≡ {Theorem 5}
D; magic v S;D

≡ {D terminating implies D; magic = magic}
magic v S;D

≡ {D is strict}
S = magic

Encoding, Decoding and Data Refinement 341

which shows that magic ↓D = magic. For (d) we have

{p} ↓D v {p′}
≡ {Theorem 5}
D; {p} v {p′};D

≡ {definitions}
(∀q • D. (p ∩ q) ⊆ p′ ∩ D. q)

≡ {mutual implication}
• (∀q • D. (p ∩ q) ⊆ p′ ∩ D. q)
⇒ {specialise q := p}

D. p ⊆ p′ ∩ D. p
≡ {lattice property}

D. p ⊆ p′
• (∀q • D. (p ∩ q) ⊆ p′ ∩ D. q)
⇐ {general rule S. (p ∩ q) ⊆ S. p ∩ S. q}

(∀q • D. p ∩ D. q ⊆ p′ ∩ D. q)
⇐ {monotonicity}

D. p ⊆ p′
• D. p ⊆ p′

Next, for (e) when D is universally disjunctive:

[p] ↓D v [p′]
≡ {Theorem 5}
D; [p] v [p′];D

≡ {definitions}
(∀q • D. (¬p ∪ q) ⊆ ¬p′ ∪ D. q)

≡ {D assumed disjunctive}
(∀q • D. (¬p) ∪ D. q ⊆ ¬p′ ∪ D. q)

≡ {mutual implication}
• (∀q • D.¬p ∪ D. q ⊆ ¬p′ ∪ D. q)
⇒ {specialise q := false}

D. (¬p) ∪ D. false ⊆ ¬p′ ∪ D. false
≡ {D assumed strict}

D. (¬p) ⊆ ¬p′
≡ {antimonotonicity of negation, definition of dual}

D◦. p ⊆ p′
• (∀q • D. (¬p) ∪ D. q ⊆ ¬p′ ∪ D. q)
⇐ {monotonicity}

D. (¬p) ⊆ ¬p′
≡ {antimonotonicity of negation, definition of dual}

D◦. p ⊆ p′
• D. p ⊆ p′

Now consider (e). Before the main proof we note the following for arbitrary conjunctive S:

S. (¬p ∪ q) ⊆ ¬S. p ∪ S. q
≡ {shunting rule}
S. p ∩ S. (¬p ∪ q) ⊆ S. q

≡ {S conjunctive}
S. (p ∩ (¬p ∪ q)) ⊆ S. q

342 R.-J. Back and J. von Wright

≡ {lattice properties}
S. (p ∩ q) ⊆ S. q

≡ {S monotonic}
T

Now assume that D is universally conjunctive. Then we have

[p] ↓D v [p′]
≡ {Theorem 5}
D; [p] v [p′];D

≡ {definitions}
(∀q • D. (¬p ∪ q) ⊆ ¬p′ ∪ D. q)

≡ {mutual implication}
• (∀q • D. (¬p ∪ q) ⊆ ¬p′ ∪ D. q)
⇒ {specialise q := p}

D. true ⊆ ¬p′ ∪ D. p)
≡ {D terminating implies D. true = true, shunting}

p′ ⊆ D. p
• (∀q • D. (¬p ∪ q) ⊆ ¬p′ ∪ D. q)
⇐ {derivation above, D assumed conjunctive}

(∀q • ¬D. p ∪ D. q ⊆ ¬p′ ∪ D. q)
⇐ {monotonicity}

¬D. p ⊆ ¬p′
≡ {property of complement}

p′ ⊆ D. p
• p′ ⊆ D. p

For (f) we have

(S1; S2) ↓D v (S1 ↓D); (S2 ↓D)

≡ {Theorem 5}
D; S1; S2 v (S1 ↓D); (S2 ↓D);D

⇐ {property (encode1)}
D; S1; S2 v (S1 ↓D);D; S2

⇐ {monotonicity}
D; S1 v (S1 ↓D);D

≡ {property (encode1)}
T

Now, for (g) we have

(u i ∈ I • Si) ↓D v (u i ∈ I • Si ↓D)

≡ {Theorem 5}
D; (u i ∈ I • Si) v (u i ∈ I • Si ↓D);D

≡ {distributivity}
D; (u i ∈ I • Si) v (u i ∈ I • (Si ↓D);D)

⇐ {D monotonic implies D; (u i ∈ I • Si) v (u i ∈ I • D; Si)}
(u i ∈ I • D; Si) v (t i ∈ I • (Si ↓D);D)

≡ {property (encode1)}
T

Encoding, Decoding and Data Refinement 343

Finally, for (h) we have

(t i ∈ I • Si) ↓D v (t i ∈ I • Si ↓D)

⇐ {property (encode2)}
D; (t i ∈ I • Si) v (t i ∈ I • Si ↓D);D

≡ {distributivity; D universally disjunctive}
(t i ∈ I • D; Si) v (t i ∈ I • (Si ↓D);D)

≡ {property (encode1)}
T

Proof of Theorem 8

For (a) we have

S ↓ abort v abort

≡ {Theorem 5}
abort; S v abort; abort

≡ {properties of abort}
T

Next, for (b) we have

S ↓ skip v S
≡ {Theorem 5}

skip; S v S; skip

≡ {skip is unit}
T

and

S v S ↓ skip

≡ {skip is unit}
skip; S v (S ↓ skip); skip

≡ {property (encode1)}
T

For (c) we have

S ↓magic v S ′
≡ {Theorem 5}

magic; S v S ′; magic

≡ {definitions}
(∀q • true ⊆ S ′. true)

≡ {chaos is the least of all terminating predicate transformers}
chaos v S ′

which shows that S ↓magic = chaos. Finally, for (d) we have

S ↓ (D1 t D2) v (S ↓D1) t (S ↓D2)

≡ {Theorem 5}
(D1 t D2); S v ((S ↓D1) t (S ↓D2)); (D1 t D2)

≡ {distributivity}
D1; S t D2; S v (S ↓D1);D1 t (S ↓D1);D2 t (S ↓D2);D1 t (S ↓D2);D2

344 R.-J. Back and J. von Wright

⇐ {monotonicity of join}
D1; S t D2; S v (S ↓D1);D1 t (S ↓D2);D2

≡ {property (encode1)}
T

Proof of Theorem 10

S ↓D v D; S;D

≡ {Theorem 5}
D; S v D; S;D;D

≡ {property of inverses: skip v D;D}
T

and

D; S;D v S ↓D
≡ {shunting (Lemma 3)}
D; S v (S ↓D);D

≡ {property (encode1)}
T

Proof of Theorem 11

If D1 is universally disjunctive, then

(S ↓D1) ↓D2 v S ↓ (D2;D1)

≡ {Theorems 10 and 5}
D2;D1; S;D1 v (S ↓ (D2;D1));D2

≡ {shunting}
D2;D1; S v (S ↓ (D2;D1));D2;D1

≡ {Theorem 5}
T

Similarly, if D2 is universally disjunctive, then

(S ↓D1) ↓D2 v S ↓ (D2;D1)

≡ {Theorem 5, shunting}
S ↓D1 v D2; (S ↓ (D2;D1));D2

≡ {Theorem 5, shunting back}
D2;D1; S v S ↓ (D2;D1);D2;D1

≡ {Theorem 5}
T

Refinement in the other direction was proved in Theorem 9.

Proof of Theorem 13

For (c) we have

(magic ↓D). q. γ

≡ {D is the decoding {R}, Theorem 10}
({R}; magic; [R−1]). q. γ

Encoding, Decoding and Data Refinement 345

≡ {definition of magic}
{R}. true. γ

≡ {definition of angelic update}
(∃σ • R. γ. σ)

≡ {definition of domain}
dom. R. γ

≡ {definitions}
({dom. R}; magic). q. γ

The other two cases follow directly from the corresponding results in Theorem 7.

Proof of Theorem 15

The proof follows the same idea as the proof of Theorem 14 but it uses a number of algebraic properties of
conjunctive specifications, so we omit it for brevity.

Proof of Theorem 16

We have

{p} ↓D v {r}; {p′}; [r]

≡ {definition of encoding, assumption D = {r}; 〈f〉}
{r}; 〈f〉; {p}; [f−1]; [r] v {r}; {p′}; [r]

⇐ {monotonicity of ;}
〈f〉; {p}; [f−1] v {p′}

⇐ {definition of encoding}
{p} ↓ 〈f〉 v {p′}

≡ {Theorem 13 (d)}
im. f−1. p ⊆ p′

≡ {definitions of subset, of image, and of f−1}
(∀γ • (∃σ • p. σ ∧ σ = f. γ)⇒ p′. γ)

≡ {one-point rule}
(∀γ • p. (f. γ)⇒ p′. γ)

≡ {definition of composition and subset}
f; p ⊆ p′

which proves (a). The proofs of (b) and (d) are similar. For (c) we have

[P] ↓D
= {definition of encoding, assumption D = {r}; 〈f〉}
{r}; 〈f〉; [P]; [f−1]; [r]

= {rewrite 〈f〉 = [|f|], homomorphism}
{r}; [|f|;P ; f−1]; [r]

Proof of Theorem 18

For (c) we assume that R is total. Then

magic ↓D v S ′
≡ {Theorem 5}

[R]; magic v S ′; [R]

346 R.-J. Back and J. von Wright

≡ {definitions}
(∀q γ • (∀σ • R. γ. σ ⇒ T)⇒ S ′. (λγ′ • ∀σ′ • R. γ′. σ′ ⇒ q. σ′). γ)

≡ {predicate calculus}
(∀q γ • S ′. (λγ′ • ∀σ′ • R. γ′. σ′ ⇒ q. σ′). γ)

⇒ {specialise q := false, simplify}
(∀γ • S ′. (λγ′ • ∀σ′ • ¬R. γ′. σ′). γ)

≡ {R assumed total}
(∀γ • S ′. false. γ)

≡ {definition of magic}
S ′ = magic

which shows that magic ↓D = magic. All the other cases follow directly from the corresponding results in
Theorem 7 and from the definitions of duals, images and inverse images.

Proof of Theorem 19

[P] ↓ [R] v [P ′]
≡ {Lemma 25}

[R]; [P] v [P ′]; [R]

≡ {homomorphism}
[R;P] v [P ′;R]

≡ {embedding}
R;P ⊇ P ′;R

≡ {property of relation quotient}
P ′−1 ⊆ R\(R;P)−1

Proof of Theorem 20

First, assume that conditions (decode1) and (decode2) hold. Then

S v T ↑D
⇒ {monotonicity}
D; S v D;T ↑D

⇒ {property (decode1), transitivity}
D; S v T ;D

and (decode2) with X := S gives implication in the opposite direction. Now assume that S v T ↑D ≡ S vD T
for arbitrary S . Then

D; (T ↑D) v T ;D

≡ {assumption with S := T ↑D}
T ↑D v T ↑D

≡ {refinement is reflexive}
T

and

D;X v T ;D

≡ {assumption with S := X}
X v T ↑D

Encoding, Decoding and Data Refinement 347

Proof of Theorem 22

T ↑D v T ′ ↑D
≡ {Galois connection}

(T ↑D) ↓D v T ′
⇐ {Corollary 21 (b)}
T v T ′

Proof of Theorem 23
We prove (d) as an example of how to use the corresponding properties for encoding. The proofs for the
other parts are not hard (and they are even simpler if the result in Theorem 24 is used).

{p} v {p′} ↑D
≡ {Galois connection}
{p} ↓D v {p′}

≡ {Theorem 7 (d)}
D. p ⊆ p′

≡ {characterisation of Galois connection}
p ⊆ D. p′

Proof of Theorem 24
We have, for arbitrary S ,

S v T ↑D
≡ {Galois connection}
S ↓D v T

≡ {Theorem 10}
D; S;D v T

≡ {shunting (Lemma 3)}
S v D;T ;D

which shows T ↑D = D;T ;D.

Proof of Theorem 26

(S ↑D1) ↑D2

= {Theorem 24}
D2;D1; S;D1;D2

= {property of inverses}
D1;D2; S;D1;D2

= {Theorem 24}
S ↑ (D1;D2)

Proof of Theorem 28
For (a), we have

[P] v [P ′] ↑D
≡ {Galois connection}

[P] ↓D v [P ′]
≡ {as in proof of Theorem 14}
P ;R−1 ⊇ R−1;P ′

348 R.-J. Back and J. von Wright

and for (b),

{P } v {P ′} ↑D
≡ {Galois connection}
{P } ↓D v {P ′}

≡ {Theorem 14}
R;P ⊆ P ′;R

≡ {property of relation quotient}
P ⊆ R−1\(P ′;R)

Proof of Theorem 29

For (a) we have

{p} v {p′} ↑D
≡ {property of encoding, assumption D = {r}; 〈f〉}
{r}; 〈f〉; {p} v {p′}; {r}; 〈f〉

≡ {rewrite as angelic updates, homomorphism}
{|r|; |f|; |p|} v {|p′|; |r|; |f|}

≡ {homomorphism}
|r|; |f|; |p| ⊆ |p′|; |r|; |f|

≡ {definitions}
(∀γ σ • r. γ ∧ σ = f. γ ∧ p. σ ⇒ p′. γ ∧ r. γ ∧ σ = f. γ)

≡ {one-point rule}
(∀γ • r. γ ∧ p. (f. γ)⇒ p′. γ)

≡ {definitions}
r ∩ f; p ⊆ p′

and the proof of (b) is similar. Finally, for (c) we have

〈g〉 v 〈g′〉 ↑D
≡ {property of encoding, assumption D = {r}; 〈f〉}
{r}; 〈f〉; 〈g〉 v 〈g〉; {r}; 〈f〉

≡ {rewrite as angelic updates, homomorphisms, definitions}
(∀γ σ′ • (∃σ • r. γ ∧ σ = f. γ ∧ σ′ = g. σ)⇒ (∃γ′ • γ′ = g′. γ ∧ r. γ′ ∧ σ′ = f. γ′))

≡ {one-point rule}
(∀γ • r. γ ⇒ r. (g. γ) ∧ g. (f. γ) = f. (g′. γ))

≡ {quantifier rules}
(∀γ • r. γ ⇒ r. (g. γ)) ∧ (∀γ • r. γ ⇒ g. (f. γ) = f. (g′. γ))

≡ {definitions}
r ⊆ g; r ∧ f; g = g′; f

Proof of Theorem 32

For (a) we have

µ. f ↓D v (µX • f. (X ↑D) ↓D)

⇐ {Theorem 31}
(∀S • f. S ↓D v f. ((S ↓D) ↑D) ↓D)

Encoding, Decoding and Data Refinement 349

⇐ {monotonicity of encoding (Theorem 6) and of f}
(∀S • S v (S ↓D) ↑D)

≡ {Corollary 21}
T

and the derivation for the greatest fixpoint is similar.

Proof of Theorem 33

For (a) we have

µ. f v µ. g ↑D
≡ {Galois connection}

(µ. f) ↓D v µ. g
⇐ {Theorem 31}

(∀S • f. S ↓D v g. (S ↓D))

⇐ {generalisation (∀ introduction)}
f. S ↓D v g. (S ↓D)

≡ {Galois connection}
f. S v g. (S ↓D) ↑D

⇐ {Corollary 21 (a), monotonicity}
f. ((S ↓D) ↑D) v g. (S ↓D) ↑D

⇐ {specialise S := S ↓D}
(∀S • f. (S ↑D) v g. S ↑D

• (∀S • f. (S ↑D) v g. S ↑D)

The proof for (b) is similar.

Proof of Theorem 34

D. p {| S |} q
≡ {definition of correctness}
D. p ⊆ S. q

⇐ {property of inverses, monotonicity}
D. p ⊆ (D;D; S;D;D). q

≡ {decoding in terms of inverses}
D. p ⊆ D. ((S ↑D). (D. q))

⇐ {monotonicity}
p ⊆ (S ↑D). (D. q)

≡ {definition of correctness}
p {| S ↑D |} D. q

Received May 1999

Accepted in revised form November 2000 by B. C. Pierce

