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A 1D Reversible Cellular Automata (RCA) with forward and
backward radius-1

2 neighborhoods is called Rectangular. It was
previously conjectured that the conservation laws in 1D Rectan-
gular RCA can be described as linear combinations of indepen-
dent constant-speed flows to the right or to the left. This is indeed
the case; so is a similar statement about a more general class of
Rectangular RCA in any dimension.
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1 INTRODUCTION

In classical formulations of physical systems, an understanding of a phe-
nomenon in terms of causes and effects is used to obtain a functional of
the evolution of the state variables of the system through time (i.e., the ac-
tion), whose stationary point singles out a particular trajectory for the sys-
tem as the one which, according to the model, actually happens in reality
(cf. [6]). Noether’s Theorem establishes a one-to-one correspondence be-
tween the conservation laws of the system and the symmetries of this func-
tional, in virtually every formalism of this type. In cellular automata, in con-
trast, the dynamical rules of the system are given explicitly, in a matter-of-fact
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FIGURE 1
(a) A Rectangular RCA with forward rule f and backward rule g. (b) Transforming
an arbitrary RCA into a rectangular one.

manner. Therefore, it is not clear how one can find a similar structural inter-
pretation of the conservation laws in cellular automata.

We suggest a structural interpretation for the range-1 additive conserva-
tion laws in one-dimensional reversible cellular automata. The significance
of the Noether’s Theorem in classical physics is two-fold: On the one hand
it identifies all the additive conservation laws of a system described in terms
of partial differential equations. On the other hand it provides a geometric in-
sight into the nature of conservation laws in such a system. Our interpretation
addresses only this latter. Note that for any k, all range-k additive conserva-
tion laws of a CA are already identified as the solution space of a set of linear
equations [4].

2 THE SETUP

Let A = (S, f, g) be a one-dimensional reversible CA (RCA) with state set
S, and forward and backward local rules f, g : S × S → S, respectively,
where f is applied on the neighborhood (0, 1) and g on the neighborhood
(−1, 0) (Figure 1a). Any RCA can be transformed into such form, possibly
by grouping blocks of consecutive cells into super-cells of a new CA and
composing with a suitable translation (Figure 1b). However, our discussion
below then gives information only about the cumulative value of a conserved
quantity over these super-cells. The details of the dynamics of the conserved
quantity within such super-cells remains to be investigated.

An RCA of the above form has the property that the pre-image of each
state under the (forward or backward) local rule is the product of the left and
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right Welch sets (see e.g. [1, 3]). That is, whenever f(a, b) = f(c, d) = x,
we also have f(a, d) = f(c, b) = x. Hence, it is appropriate to call such a
CA, rectangular, echoing McLean’s use of the term in the associative case
for rectangular semigroups [5].

Combining with a permutation of the states, every RCA A can be turned
into an idempotent one; i.e., one with f(x, x) = x for all states x. Namely,
for each x ∈ S, let π(x) , f(x, x). The RCA Â defined by the local rule
f̂ , π−1 ◦ f is idempotent. We call Â, the idempotent lifting of A.

A mapping µ : S → R is seen as the local distribution of a quantity
such as energy, mass, etc. For a set K ⊆ Z of cells, and a configuration
c ∈ SZ, MK(c) ,

∑
i∈K µ (c (i)) is the µ-content of K under c, whenever

it converges. To avoid irrelevant technicalities we always assume that there
is a state e ∈ S with µ(e) = 0. If not, we can simply consider the mapping
µ̂(x) , µ(x) − µ(e) instead.

If µ(e) = 0, the function MZ converges on any configuration c that con-
tains e almost everywhere. Then, we can say µ is conserved by a CA A, if
MZ(f(c)) = MZ(c) for all such configurations. Equivalently, conservation
of µ by A can be expressed by the local condition

µ(x) − µ(f(e, x)) + µ(f(e, y)) − µ(f(x, y)) = 0

for all x, y ∈ S [4]. This gives a system of linear equations whose solutions
are the conserved quantities of A.

Let A = (S, f, g) be a rectangular RCA as above. If a quantity µ is con-
served by A, it is also conserved by its idempotent lifting Â. Conversely, any
quantity µ which is conserved by the idempotent lifting Â is also conserved
by A, provided that µ is constant over each of the cycles of the permutation
π (see [2]). Therefore, hereafter we assume that A is idempotent. Otherwise
we can study its idempotent lifting Â. The conservation laws of A, then,
are obtained simply by ruling out the quantities that are not constant over the
cycles of the lifting permutation.

In summary, we only need to study the CA that are normalized in the sense
that, are rectangular and idempotent. The conserved quantities are normalized
so that they map at least one state to zero.

3 THE FLOW INTERPRETATION

Let A and A ′ be 1D idempotent rectangular RCA, and h : A → A ′ a state-
to-state morphism. Then any conserved quantity µ for A ′ gives a conserved
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FIGURE 2
(a) Shift-to-the-left CA. (b) Shift-to-the-right CA.

quantity µ ◦ h for A. It was conjectured that all the conservation laws of a
rectangular RCA A are linearly generated by those that are obtained this way
from the binary factors of A, i.e., the factors A ′ with S ′ = {0, 1}, and had
been argued that this would somehow resemble the Noether’s theorem [2].

Note that shift-to-the-left (Figure 2a) and shift-to-the-right (Figure 2b) are
the only 1D binary idempotent rectangular RCA. The conserved quantities in
a binary shift are exactly the multiples of the identity mapping µ(x) = k.x

(k ∈ R) (modulo an additive constant).
Let A = (S, f, g) be an idempotent rectangular RCA, and µ a conserved

quantity with µ(e) = 0. For any x ∈ S, define the left flow µL(x) ,
µ(f(e, x)) and the right flow µR(x) , µ(f(x, e)). We have µ = µL + µR.
Note also that µL(e) = µR(e) = 0. For the inverse rule, we define the left
and right flows ηL(x) , µ(g(e, x)) and ηR(x) , µ(g(x, e)) analogously.

Clearly for all x, y, z ∈ S, if z = f(x, y), then µ(z) = µR(x) + µL(y).
(Just consider the configuration · · · e x y e · · · .) Similarly, µ(x) = ηR(u)+

ηL(v), whenever x = g(u, v).

Lemma 1. If z = f(x, y), then µR(x) = ηL(z).

Proof. Look at the consecutive configurations

(t = 0) · · · e e x y · · ·
(t = 1) · · · e u z · · ·

where u = f(e, x). We have

µ(x) = µL(x) + µR(x) = ηR(u) + ηL(z)

and
µ(u) = µL(x) = ηR(u)

from which the claim follows immediately.
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Since z = f(z, z) (we assumed that the CA is idempotent), it follows:

Corollary 1. µR(z) = µR(x), whenever z = f(x, y).

Hence the right flow µR is itself a conserved quantity. Analogous results
for the left flow µL. Now, observe that for a fixed number k the mapping

hk : S → {0, 1}

hk(x) ,

{
1 if µR(x) = k

0 otherwise,

is a morphism to the binary shift-to-the-right CA (besides being a conserved
quantity). It can be seen that µR is a linear combination of such mappings:

µR(x) =
∑

k

k.hk(x)

Similarly, µL(x) can be written as a linear combination of morphisms to the
binary shift-to-the-left CA. Therefore we see the validity of the conjecture. In
other words:

Theorem 1. In every 1D idempotent rectangular RCA, every conserved quan-
tity is a sum of non-interacting constant-speed flows to the left and to the
right.

4 RECTANGULAR RCA

The above argument does not readily work in higher dimensions. But it can
be generalized to a class of RCA over arbitrary lattices which have a similar
rectangularity property.

Let us now define such a rectangularity property, in a more general setting,
for the CA over an arbitrary lattice L? and with arbitrary neighborhoods. Let
F : SL → SL be the global mapping of a CA with state set S and local rule f.
We say the CA (or simply F) is rectangular if for every state x ∈ S and every
cell i ∈ L, there is a set Si(x) ⊆ S of states, such that the pre-image of the
set

A(x) , { c | c is a configuration with c(0) = x }

is the Cartesian product of the sets Si(x); i.e.,

F−1(A(x)) =
∏
i∈L

Si(x) .

?L can be Zd, or more generally, any finitely generated group.
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Note that Si(x)  S may happen only for a finite number of cells i. In fact, i

is in the neighborhood of the cell 0, if and only if Si(x)  S for some x.
It turns out that for the reversible CA the rectangularity is a symmetric

property:

Lemma 2. If an RCA is rectangular, so is its inverse. If the minimal forward
neighborhood is N, the minimal inverse neighborhood is −N.

Proof. Let A be an RCA over a lattice L, S its state set, and F,G : SL → SL

its forward and backward global mappings. Suppose that F is rectangular, and
define the sets Si(x) as before.

Let F(a1) = a2 and F(b1) = b2, where a1(0) = b1(0) = x. For a fixed
k ∈ L, let c2 be a configuration obtained from a2 by switching only the state
of the cell k to its value in b2:

c2(i) ,

{
b2(k) if i = k,
a2(i) otherwise,

and define c1 = G(c2). For any i ∈ L, we know that x is in S−i(c2(i)).
Therefore, we must have c1(0) = x, since F is rectangular. (Otherwise we
could switch the c1(0) to x, and the state of all cells remained unchanged in
F(c1)—a contradiction!) This implies that if for each k ∈ L we define

Tk(x) , { y | there exist c1 and c2 with F(c1) = c2,
and c1(0) = x and c2(k) = y } ,

then the image F(A(x)) is the Cartesian product of the sets Tk(x), and hence
G is rectangular, too.

Furthermore, for each i ∈ L and x, y ∈ S, we have

x ∈ Si(y) if and only if y ∈ T−i(x) ,

which means that the minimal neighborhoods of F and G are the reflections
of each other with respect to i = 0.

Consider a rectangular reversible CA with the above notations, and let
µ : S → R be a conserved quantity. As before assume that µ(e) = 0 for some
state e. Observe that we can actually assume µ to be also non-negative: if not,
simply take e to be the state that minimizes µ and study µ̂(.) , µ(.) − µ(e).

The good point about rectangular RCA is that, similar to the 1D case,
we can decompose any conserved quantity into non-interacting flows, each
moving with constant speed on a straight line.
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For any state x, let us define a configuration δx : L→ S with

δx(k) ,

{
x if k = 0,
e otherwise.

The flows in direction i ∈ L, for the forward and backward CA, are defined
as

µi(x) , µ
(
F(δx)(i)

)
,

ηi(x) , µ
(
G(δx)(i)

)
.

Our claim is that these indeed have a flow-like behavior.

Lemma 3. Whenever y is in Ti(x), we have µi(x) = η−i(y).

Proof. Let y ∈ Ti(x). Choose configurations a1 and a2 such that the follow-
ing conditions hold:

i) F(a1) = a2,

ii) a1(0) = x and a2(i) = y,

iii) ML converges over a1, and ML(a1) has the minimum possible value.

Define m , ML(a1) = ML(a2).
It is easy to see that, for any j 6= i, we have a2(j) ∈ Tj(x), and

µ (a2(j)) = min { µ(z) | z ∈ Tj(x) } . (1)

Similarly, for any j 6= i, we have a1(j) ∈ Sj−i(y), and

µ (a1(j)) = min { µ(z) | z ∈ Sj−i(y) } . (2)

Now let b2 , F(δx). From equations (1) and (2) it is clear that µ(b2(j)) ≥
µ(a2(j)), for any j 6= i. If µ(b2(j)) > µ(a2(j)) for some j, define a new
configuration c2 with

c2(k) ,

{
a2(j) if k = j,
b2(k) otherwise,

and let c1 = G(c2). Clearly c1(0) = x (the CA is rectangular), but

ML(c1) = ML(c2) < ML(b2) = ML(δx) = µ(x),

which is a contradiction. Therefore we must have µ(b2(j)) = µ(a2(j)) for
any j 6= i.
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Now, writing the conservation law for δx we have

µ(x) = m − µ(y) + µ(b2(i))

which implies

µi(x) = µ(b2(i)) = µ(x) + µ(y) − m

Due to symmetry, we also have

η−i(y) = µ(x) + µ(y) − m

which gives the required result.

This, of course, implies that in general, the value of µ on each cell is
equal to the sum of flows coming from its neighbors one step before. If we
further require idempotency (i.e., every homogeneous configuration to be a
fixed point of F), similar to the 1D case we can argue that for each i, the flow
µi in direction i is conserved by its own.

Theorem 2. In every idempotent rectangular RCA, every conserved quantity
is a sum of non-interacting constant-speed flows each streaming to a cell from
one of its neighbors.

5 CONCLUSION

We have seen that the form of conserved quantities in idempotent one-dimensional
rectangular RCA reduce to the sum of non-interacting flows, confirming a
conjecture based upon experiments. We have then extended this result to a
more general case without the dimensionality constraint.

The non-idempotent case (in 1D) allows flows to interact. This is similar
to the case in Margolus neighborhood scheme [7]. Their two-step model has
such an idempotent flow step followed by a cell-internal permutation step,
similar to the general situation described above in section 2.

In general we conjecture that a form of general “idempotence” can be de-
fined and that “idempotent” rectangular RCA will have non-interacting flows.
Then general rectangular RCA have “context-independent” (a generalization
of idempotent) flows over single time steps and that a form of density sum-
mation is possible. However this remains work for the future.
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