
The application of morphological algorithms on 3-dimensional porous
structures for identifying pores and gathering statistical data

Thomas Byholm, Martti Toivakka, Jan Westerholm

Laboratory of Paper Coating and Converting and TUCS
Åbo Akademi University

Porthansgatan 3, 20500 Åbo
FINLAND

tbyholm@abo.fi http://www.abo.fi/fak/tkf/pap/

Abstract: - Thinning algorithms and related methods have been used to examine the void structure of porous
materials. While the goal is to divide the porous media into separate entities called pores, these algorithms tend to
introduce problems with robustness and falsely identified pores due to digitalisation errors. In this paper we apply
methods from mathematical morphology and studies on voids in sedimentary rocks to pore structure
characterization of pigment coated paper. The Maximal Balls algorithm is subjected to various modifications and
additions in order to make it more suitable for the needs of coated paper research, where porosities are typically
relatively high. These modifications include methods for the removal of falsely identified pores inside the media,
caused by digitalisation problems. Furthermore, we present different approaches to improve speed, such as the use
of pre-calculated data and removal of unnecessary calculations. It is also evident that the previously proposed
algorithms consume vast amounts of memory and in order to overcome this we present an approach that removes
redundant information and avoids using objects for data representation. The most CPU-intense subalgorithm was
reduced from O(n2) complexity to O(1) for nested calculations. Basic memory optimisations done allowed for a
decrease in memory usage to around one half while a fundamental improvement was found in changing data
structures. This allows for a closer to linear increase in memory consumption as a function of data size, while the
original algorithm showed an unpredictable behaviour linking memory consumption to porosity of the set and the
hierarchical structure and used data structures of considerable size.

Key-Words: - pore structure, porous media, morphology, statistics, image analysis, optimisation, memory
consumption

1 Introduction
The optimal set of end-use properties of coated paper
is a function of its intended application. The
microscopic structure of a coating contributes to both
physical and functional properties such as light
scattering, fluid absorption, surface strength, ink-
setting and printer runnability.

In this paper we improve computer
algorithms used to analyse the microstructures by
dividing the porous media into separate entities
called pores thus enabling the extraction of statistical
data of the void structure such as pore size, pore
connectivity, throat area, etc. . Various algorithms for
accomplishing this task already exist, mainly
different types of thinning algorithms [1,2,3,4] or
closely related skeletonisation algorithms, which
mostly depend on different types of erosion
methodologies. These algorithms often show

problems concerning robustness due to digitalisation
problems, resulting in unpredictable results as
pointed out by the authors of the Maximal Balls
algorithm [4]. One of the main challenges of erosion
types of algorithms is to ensure that the erosion
process is proceeding with equal speed in all
directions, since voxels diagonally offset from a
central voxel are representing a larger distance than
do voxels horizontally or vertically offset from the
centre point. The maximal balls algorithm and
skeletonisation algorithms using the same principles
based on spherical volumes show promising results
regarding these problems [4], therefore this path was
chosen as a starting point for our research.

Although it is possible to analyse an arbitrary
3-dimensional structure using the methods described
in this paper, we will focus on the problems specific
to the particle shapes and porosities found in
pigmented paper coatings. We suggest improvements
to the original Maximal Balls algorithms [4] in order

to increase efficiency on large scale problems and to
customize it for paper coating requirements. Our aim
is to successfully analyse the pore structure of
complex random packings of arbitrarily shaped
particles and considerable amounts of data (up to
40003 voxels). We take advantage of some
fundamental geometric properties for avoiding
unnecessary calculations and to enable pre-
calculation of data. Furthermore, we use altered data
representations for introducing significant memory
optimisations by simplification and flattening of
hierarchical structures essential to the algorithm.
Moreover we introduce a straightforward solution to
the false maxima and finally outline how to measure
surface areas of voxel objects.

We briefly recall the central ideas behind the
Maximal Balls algorithm in chapter 2. In chapter 3
we propose a simplified hierarchy to link the
maximal balls and discuss various methods of
speeding up the calculation and diminishing the
memory consumption of the algorithm. And finally
in chapter 4 we introduce an improved way of
estimating pore surface area from a pore volume
made up from voxels.

2 The Maximal Balls algorithm
The basic methodology of the maximal balls
algorithm (hereafter referred to as MBA) will be
presented in this section, for more detail, please refer
to D. Silin et al[4]. Analysing porous structures
statistically requires a division of the porous structure
into separate entities. Essentially it is important to
distinguish between two different types of entities,
the pore bodies and the throats or necks between the
pore bodies. The original definition of the MBA
describes pores as being the larger bodies in the
porous media with the main function of storing liquid
whereas the throats are referred to as the smaller 3-
dimensional bodies forming connections between
pores. In this paper a slightly different approach is
taken. While the pores are still defined as the larger
bodies storing liquid, the throats are redefined as an
area describing the minimum of hydraulic radius
between two pore entities.

Basically, the MBA creates a hierarchical
structure of so called maximal balls. A maximal ball
is calculated for each point (x,y,z) inside a pore of a
porous media by finding the maximum radius of a
sphere centred at the point which is fully inside the
porous volume. This process resembles inflating
rubber balloons in hollow space until they touch a
surrounding wall, without allowing the balloon to

deform. These maximal balls, which will fill the
porous media completely, are ordered hierarchically
according to their radius compared to neighbouring
balls. A ball is considered hierarchically lower if its
centre point is contained in a ball with larger radius.
Following this, the hierarchical structure is used to
identify how to divide the pore space into separate
entities. When the algorithm has refined the
hierarchical structures, three classes of maximal balls
remain, which can be used in the process of
identifying pores. Firstly, we have spheres which
have a locally maximal radius; a sphere of this class
is a local master and describes the centre of a pore.
The second class of balls is the slave of a locally
maximal ball. This class of balls describes how the
pore is decreasing in size towards a corner of a pore
or towards a throat of another pore. The third class of
balls consists of the balls which are slaves under at
least two other locally maximal balls. These are
lowest in rank, and they will describe the volume of
the throat connecting two or more pores. As
mentioned earlier we propose to define this throat as
an area and the algorithm is modified accordingly. At
this point, we assume that the number of pores
connected through a single neck will not exceed two,
and this has proven to be the case in the random
packings analysed so far. If a different structure is
found, it will certainly be identified as a pore of its
own, as it would be difficult to avoid a local
maximum to be created inside an connection of three
or more pores.

3 Dividing the pore space
In this section most effort will go into describing in
what way our implementation essentially differs from
the original MBA implementation and in some cases
defining how different parts of the algorithms not
clearly specified in the original paper were
implemented. In order to evaluate the robustness of
the algorithm we used simple cubic packings and
hexagonal close-packed spheres with varying
rotations, as well as randomly packed sets to some
extent. The space that we are analysing is represented
as a matrix of voxels. A voxel is a cubic volume that
represents one sample point of our digitalised
material. A voxel can either be a solid phase voxel,
representing a volume belonging to the solid material
or a void phase voxel which represents the empty
space between solid particles.

Fig. 1 (Left) The blue spheres represent the solid phase.
The red dot with its maximal ball in black shows that it
will hit particle 1 much before having a chance to reach
the others. (Right) Illustration of the digitalisation of a
sphere in 2D. A voxel subdivision is also illustrated

3.1 The creation of the maximal balls
The first part of the algorithm generates maximal
balls for every voxel belonging to the pore space.
The most straightforward method for accomplishing
this task is a stepwise increase of the ball size,
ensuring that there does not exist any position within
the ball that overlaps any of the solid phase before
continuing to the next step. To increase the efficiency
of this procedure we generated a set of different size
balls beforehand, say from radius 1 to 10. These balls
ought to be generated on demand and stored for later
use. In order to optimise this process, coordinates
belonging to a ball are stored in a simple array and
only one quadrant of the ball is generated at first. The
other 7 quadrants are created by mirroring the
original with respect to the centre point and the
coordinate axes. When creating the array of
coordinates it is straightforward to interleave the
coordinates from the different quadrants in such a
way that the corresponding point in every quadrant
will be automatically checked before continuing to
the next point. The reasoning behind this decision is
that it is efficient to exit the algorithm checking for
collision as rapidly as possible, and a conflict is more
probable to occur if we spread out the coordinates
that we are checking since we do not know a priori in
which direction we will first hit a solid phase voxel.
This is illustrated in Fig. 1.

Nevertheless, interleaving will not help us to
any greater extent when using an algorithm which is
incrementing the radius by one and then rechecking
for collision. We would only benefit from the
interleaving when checking the size where the first
collision occurs. It is preferable to use a smarter
algorithm that makes use of the well known binary
search algorithm [6] and apply this basic philosophy
on our problem. The algorithm then begins by

searching for the correct maximal ball size within
specified limits, say between 0 and 50. The binary
algorithm checks if the radius 25 is too large or too
small. If it is too large, the next size to check is 13
and if it is too small, the algorithm will go on to 19
and so forth recursively. This will essentially result in
an O(log n) complexity, and especially when trying
spheres with radii exceeding the maximal size, the
spreading of coordinates around the sphere when
testing will ensure breaking out of the tests as swiftly
as possible.

Another decision to be taken is how to
estimate the shape of the balls used. A digital
representation of a sphere will always result in a
more or less rough spatial estimate, depending on
resolution. The easiest method is to include all voxels
with a distance less than or equal to r from the centre
point, where r is the radius. The question is: what
kind of estimation does this result in? We argue that
it is a fairly rough estimate and it also depends on
how we define a voxel to be included in the domain
of the sphere. In reality a sphere with a certain radius
will always have the same volume, but when creating
a digital representation the resulting volume will
depend on how we define a voxel to be included in
the domain of the ball. Especially when representing
balls using a fairly low resolution the resulting
volume will be poorly estimated. We need to
consider if all of the voxel has to be inside or if it is
enough that the centre point is included or any
similar approach. A more accurate method would be
to calculate the total voxel volume included in the
domain of the sphere. Especially regarding curved
surfaces this would make sense. Nevertheless, it
might be considered cumbersome to use raw
mathematics to accomplish this task, and there are
certainly easier ways. Inspiration from the field of
ray tracing, where it is common to use sub-pixel
accuracy [7] for anti-aliasing effects and similar, was
used to overcome this challenge easily. To solve our
problem the idea of sub pixels can be applied to
divide voxels found on the border area into sub-
voxels of an arbitrary subdivision, say 10 x 10 x 10.
This makes it easy to check how many of the sub-
voxels are included inside the ball. This effectively
gives an estimate of the volume of the voxel on the
inside of the ball and the accuracy can be varied by
specifying what subdivision of the voxel to use. This
method tends to give us smoother spherical shapes
with a volume that represents the true volume of a
sphere with the same radius more accurately. This
will also affect the connectivity between

4

1

3

2

neighbouring spheres when setting up the hierarchy,
thus we chose to make use of the voxel sub-division.

3.2 Elimination of inscribed maximal balls
Once all maximal balls
have been calculated, the
next step is to remove
balls that are completely
inscribed in larger balls.
Essentially these inscribed
balls do not represent
anything of the pore space
that we did not already
know from the larger ball.
To achieve this removal,
the domain of all maximal
balls in the set is sought through, the domain
essentially being the voxels inside the body of the
ball. For every such voxel, its corresponding
maximal ball will be removed if all voxels in its
domain are inside the domain of the current ball. In
the original MBA algorithm it was suggested that the
maximal balls are sorted in a list according to their
maximal radii and that a reference table with the
same dimensions as the input data should be used for
helping the search. We use a simplified approach,
using only one representation for the maximal ball
radii. A 3-dimensional matrix is used, where voxels
belonging to particles or void space are defined with
separate ids and maximal balls are identifed with a
number representing their corresponding radii. In this
approach we lose the benefit of scanning through
larger balls, and thus removing many of the inscribed
balls at an early stage and avoiding processing them
later on. Instead we scan through all of the matrix
once analysing all maximal balls. This means saving
a considerable amount of memory and at the same
time we avoid the process of building up a sorted list
of the maximal balls as this may prove reasonably
time consuming, especially when dealing with larger
sets.

When eliminating an inscribed maximal ball,
the most straightforward method would be to ensure
that all voxels belonging to the inscribed ball is
inside the domain of the larger ball. It is feasible to
apply some easy and effective optimisations here.
Firstly, if a ball is inside a certain quadrant of the
larger ball, it is sufficient to check that all the voxels
of the same quadrant in the inscribed ball are also
included in the domain of the larger ball. This
argument follows from how the ball is shifted
towards the quadrant in question as seen in Fig. 2.

Thus, we remove 7/8 of the voxels that need to be
tested. Another important observation is that it is
only the outermost shell of the inscribed ball that
need to be checked if it is completely inside; if it is
then all the other parts of the ball will also be inside.

The inclusion of these optimisations we save
considerable amounts of processing. Still, the
elimination of the maximal balls has proved to be one
of the most expensive tasks in the whole set of
algorithms. There is another optimisation that can be
done which will save us notable amounts of
calculations: our problem is limited to the size of the
larger ball, the size of the inscribed ball and the
position of the two balls relative to each other. This
observation enables us to use pre-calculated tests as
long as the shapes of the balls remain the same, in
other words, as long as the algorithm for generating
the sphere remains the same. The basic idea is to
create a datafile where for every ball size up to a
certain limit, all possible positions and sizes of
inscribed balls are calculated. This means that for a
ball of size x, x-1 arrays containing all possible
positions (using the quadrant optimisation) for the
balls with the sizes varying from 0 to x-1 will be
generated. Every position in the array defines only if
it is a valid position or not, in other words, it tells us
if a ball of size y is completely inscribed if it is
centered at a given point (a,b,c). These calculations
do not require considerable amounts of
computational time if we include only sizes of 0-20,
but the required processing needed increases
cubically with increasing radius of the sphere. When
running the pre-calculation on a computer cluster of
around 20 nodes it was possible to calculate the
positions of a radius up to around 60 in roughly 50
days. The data file storing this data is closer to 60 Mb
when calculating such a set and we would prefer to
keep it fairly small. It is reasonably safe to claim that
a maximal ball with a radius larger than around 50 is
not likely to exist in most situations, since that would
result in a pore with the diameter of 100. This is of
course in principle possible but it is better to handle
those few cases separately. When the pre-calculated
data is not covering the sizes needed, the algorithm is
allowed to fall back to the basic method. In the end,
this gives us a radical improvement in speed since we
only need to do an array lookup O(1) to check if a
ball is included, instead of an O(n2) algorithm for
testing it manually. Manual testing requires testing
all voxels a in the master sphere for collision with all
voxels b in the slave sphere, this gives us O(a*b)
which is essentially O(n2)

Fig. 2 Only one
quadrant needs to be
checked

3.3 Elimination of problems in the hierarchy
The original implementation [4] does not mention
any specific problems in the hierarchy; this might
possibly be due to the reasonably low porosities that
were analysed, typically below 20%. In our structures
the porosities found are often around 30-50% and we
found related problems that need to be dealt with.
These high porosities introduced the possibility for so
called false local maxima. They are often formed in
narrow throats which are reasonably long, creating a
row of maximal balls of equal size as in Fig 3B. This
results in the following problem: the algorithm never
adds balls of the same size to the hierarchy, but it
allows these equally sized balls to form their own
local maxima. The easiest solution to this problem
seems to be to use the information gathered in the

Fig. 3 (A) Extension of pores into an unoccupied
intersection. (B) Three false maxima caused by a
narrow throat. All three smaller balls have the same
radius. (C) Pores evenly divided in a simple cubic
packing

hierarchical structure to remove the false maxima.
All the maximal balls are scanned through once
identifying those masters without any masters higher
up in the hierarchy. If a maximal ball is found in its
domain with an equal radius and subordination to
another ball, it means that the current ball ought to be
classified as a slave under it. When scanning through
once, the false maxima closest to the normal structure

will be included, and the same procedure will be
repeated until there are no more false maxima to be
added. In some occasions, though, the set of false
maximal balls are separated too much from each
other. To account for this, the algorithm is rerun
scanning a larger volume around the false maxima in
order to enable the joining of all false maxima into
the hierarchy. After this modification was made, no
false maxima were found on inspection of the test
sets, although this is sometimes difficult to judge on
random packings.

3.4 The final division of pores
When the hierarchy has been refined so that all local
maxima are masters over all maximal balls in its
pore, it is possible to use the structure to divide the
pores. The idea of the original MBA-algorithm was
to use balls with two or more masters as a volume
defining pore throats. As previously mentioned, we
will define this as an area. This is easily done by
ignoring the balls with two masters when defining
which voxels belong to which pore. This will leave
us with an empty volume between pores which could
essentially be seen as the intersection between two
pores. This empty space is filled up by stepwise
growing all pores towards the empty space.
Essentially this is done by stepwise finding voxels
that do not belong to any pore and assigning them to
the closest neighbouring pore voxels. Thus, all pores
will be expanded towards each other until all
intersections are filled up as in Fig 3A. Since the
throat volume tends to be reasonably small and
uniform the algorithm does surprisingly well at
dividing the volume evenly.

3.5 Reduction of memory consumption
The application of hierarchy is straightforward, but
we also have to consider how to use less memory. It
is difficult to give exact estimates of memory
consumption because it varies significantly
depending on the porous structure. Typically a 200^3
matrix with a particle volume concentration of
around 60% might easily use up to 1GB of memory.
The algorithm is supposed to build a list of masters
and a list of slaves to every node or maximal ball.
When adding a slave to a master, the master-list of
the new slave also gets an element linking it to the
new master. This means that for every master-slave
link there will also be a slave-master link. The latter
is actually not necessary since the only information
needed is if the ball is a slave under another ball or
not. The links themselves are not used in any part of

PP PPPPP S PPP S

A

B C

the algorithm. A Boolean value is
thus adequate for this purpose.

Although the optimisation
above helps us to some extent, it is
possible to make further
improvements. There are basically
two important observations that
can be made, when aiming for a
radical decrease in memory
consumption. Firstly, the authors
of the maximal balls algorithm
suggest the use of objects for
representing the hierarchical
structure. This helps creating easy
to understand code, but tends to
consume more memory. We
replace these objects with simple
arrays. Furthermore, the

initialisation of the hierarchy is a two step process.
First, we analyse all maximal balls, and then we
assign as their slaves balls inside their domain with a
lesser radius. Following this, the hierarchy is refined,
ensuring that only the balls highest up in the
hierarchy will be masters of their subordinate balls.
This latter operation removes significant amounts of
master-slave relations, since the first step creates
considerable amounts of extraneous downward
relations to the same balls. It might as first seem as
though this would be an unusual phenomenon but
especially balls with smaller radii tend to be
incorporated many times into the hierarchy. It is a
waste of memory since all balls in the same pore will
belong to the same local maximum or cluster of local
maxima after refining the structure. Moreover, if we
succeed in flattening the hierarchy from the
beginning, it will be much easier to represent the
hierarchical structure. An array map the same size as
the one representing the size of the maximal balls
could be used. This map contains the id of the
maximal ball that it belongs to. We only have to
handle separately balls with two masters. This will
occur only in the thinner neck areas, and on those
occasions a negative id that will point to a list of
masters for the maximal ball in question can be used.
Fig. 5 illustrates how memory consumption is
affected by the improved algorithm.
 To apply the memory optimisation, we need
to identify all pores that are local maxima, in other
words, those that reside in the centre of a pore. This
process is easy to undertake when removing
inscribed balls. When removing all smaller balls
inscribed in a ball, we assign negative radii to those
balls that are not removed but have a smaller radius.

Thus, only balls with a locally maximal radius will
have positive radii after this process. We then join
clusters of local maxima and use those as a starting
point for creating the hierarchy. We select one local
maximum at a time and then recursively add their
slaves to their slave list. This can be implemented as
an array map, making further analysis quick and
efficient. The arrays can easily be kept only partly in
memory by temporarily storing them onto the hard
disk if we need to analyse very large sets of data.

Memory usage

80

472

5500

30800

10

100

1000

10000

100000

100 200 300 400

Voxels3

M
B Old

New

Fig. 5 Memory consumption presented with a
logarithmic scale on the y-axis, illustrating the increase
in memory usage for the original and the improved
maximal balls algorithm

Fig. 6 (A) Different classes of voxel configurations
used. (B) It is easy to see in the 2D case that the length
of a line would be overestimated if one would add the
side lengths of the pixels

4 Statistical analysis
After dividing all pores into separate entities, it is
reasonably straightforward to extract statistical data.
As of now, the algorithm extracts porosity (void
volume / total volume), pore volume, surface area,
throat area and connectivity. It is trivial to extract
pore volume but when it comes to areas, we need a
good method for estimating the area from a digital
surface.

c1 c1
k2

c1
k3

c1
k4 k5 k6

k7

k1

k8 k9

A B

Fig. 4 Three
balls will
create slave-
to-master
relations for
the same
smaller ball
in the middle

4.1 Estimating area in a voxel data set
It is easy to understand that it is not possible to get a
realistic area estimate of a voxel surface by adding
the sides of the voxels together. This will in most
cases overestimate the area. This is illustrated in the
2-dimensional example in Fig 6B. If we count the
length as the sum of the sides of the pixels, we will
clearly end up with an overestimation of the red
lines. One way of achieving a better estimate would
be to use an algorithm that estimates the curvature of
the surface more precisely. One solution is to apply
the marching cubes algorithm [8]. Every voxel is
converted to a set of triangles by using neighbouring
voxels. It results in a smoother surface giving a more
correct estimate.

Although the marching cubes algorithm
could be a good choice, it forces us to modify the
input data before the area calculation; this will be
time consuming and use extra memory. Furthermore
the algorithm has problems with more odd shapes
like narrow stick-like particles. It would be better to
be able to scan through the voxel matrix once,
quickly determining the surface areas.

To achieve this, a method based on statistical
data was chosen [9], [10]. There are basically nine
standard configurations of neighbouring voxels,
which are all assigned a weight of their own. The
weight is the area that they add to the whole set and
the weights are statistically obtained. This allows
scanning through the data only once checking all the
26 neighbours of every voxel to decide its weight.
Basic testing of shapes with known areas showed that
the algorithm returned values close enough to the real
values, typically with much less than 1% deviation
for radii greater than 10 when calculating the surface
area of spheres.

5 Conclusions
As was shown in [4], the Maximal Balls algorithm is
a robust tool for extracting vital information from
porous structures. Its capability to store the complete
porous structure in the hierarchy of maximal balls
helps us to enhance the stability of the algorithm. We
have added straightforward extensions to the
algorithm that enable the removal of false maxima
and the identification of the throat as an area, and this
will further increase the robustness of the algorithm.
Furthermore, improvements in algorithm speed were
found using different optimisation techniques, such
as pre-calculation of data and reductions of
calculations. Most improvements show a radical
reduction in algorithmic complexity, from cubical to

constant time in the most extreme case. Furthermore,
we have suggested how to reduce memory
consumption considerably, primarily by flattening
the hierarchy.

The greatest challenges regarding the
algorithm is the management of resources, both
memory and computational power. The extreme
amounts of data that would be needed to realistically
capture the properties of a poly-disperse particle
packing with large particle size distribution give rise
to the need for processing considerable amounts of
data. It is interesting to see that these kinds of
algorithms can be used in very diverse fields of
science as petroleum science, medicine and paper
science.

References:
[1] M. Toivakka, and K. Nyfors, “Pore space

characterization of coating layers”, TAPPI
Journal, 2001, Vol. 84(3).

[2] Al-Raoush, and R. Ibrahim: “Extraction of
Physically-Realistic Pore Network Properties
from Three-Dimensional Synchrotron Micro-
tomography Images of Unconsolidated Porus
Media”, Louisina State Univerity 2002.

[3] L. Lam, S-W Lee, and C.Y. Suen, “Thinning
Methodologies – A Comprehensive Survey”,
IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol 14, No 9, Sept 1992

[4] D.Silin, G. Jin and T.Patzek, “Robust
Determination of the Pore Space Morphology in
Sedimentary Rocks,” SPE 84296, ATCE,
Denver 2003

[5] D. Vidal, X. Zou, and T. Uesaka, “Modelling
coating structure development using a Monte-
Carlo deposition method”

[6] Robert Sedgewick, Algorithms in C++, 3rd ed.
Addison-Wesley 1998

[7] J.D. Foley, A. van Dam, S.K. Feiner, J.F.
Hughes, “Computer Graphics: Principles and
Practice in C,” 2nd ed., Addison-Wesley
1996

[8] W.E. Lorensen and H.E. Cline, “Marching
cubes: a high resolution 3D surface construction
algorithm,” ACM Computer Graphics 21 (1987)
63 -169.

[9] G. Windreich, N. Kiryati and G. Lohmann,
“Voxel-based Surface Area Estimation: From
Theory to Practice,” Elsevier, Amsterdam 2003-

[10] J.C. Mullikin and P.W. Verbeek, “Surface area
estimation of digitized planes,” Bioimaging 1
(1993)

