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Abstract: In this paper we will summarize some properties of the extended addition
operator on fuzzy numbers, where the interactivity relation between fuzzy numbers is
given by their joint possibility distribution.

1 Introduction

A fuzzy number A is a fuzzy set of the real line R with a normal, fuzzy convex
and continuous membership function of bounded support. Any fuzzy number can be
described with the following membership function,

A(t) =




L

(
a− t

α

)
if t ∈ [a− α, a]

1 if t ∈ [a, b], a ≤ b,

R

(
t− b

β

)
if t ∈ [b, b + β]

0 otherwise

where [a, b] is the peak of A; a and b are the lower and upper modal values; L and R
are shape functions: [0, 1] → [0, 1], with L(0) = R(0) = 1 and L(1) = R(1) = 0
which are non-increasing, continuous mappings. We shall call these fuzzy numbers
of LR-type and use the notation A = (a, b, α, β)LR. If R(x) = L(x) = 1 − x, we
denote A = (a, b, α, β). The family of fuzzy numbers will be denoted by F . A γ-
level set of a fuzzy number A is defined by [A]γ = {t ∈ R|A(t) ≥ γ}, if γ > 0 and
[A]γ = cl{t ∈ R|A(t) > 0} (the closure of the support of A) if γ = 0.



A triangular fuzzy numberA denoted by(a, α, β) is defined as

A(t) =




1−
a− t

α
if a− α ≤ t ≤ a

1 if a ≤ t ≤ b

1−
t− b

β
if a ≤ t ≤ b + β

0 otherwise

wherea ∈ R is the centre andα > 0 is the left spread,β > 0 is the right spread ofA.

If α = β, then the triangular fuzzy number is called symmetric triangular fuzzy num-
ber and denoted by(a, α).

An n-dimensional possibility distributionC is a fuzzy set inRn with a normalized
membership function of bounded support. The family ofn-dimensional possibility
distribution will be denoted byFn.

Let us recall the concept and some basic properties of joint possibility distribution
introduced in [30]. IfA1, . . . , An ∈ F are fuzzy numbers, thenC ∈ Fn is said to be
their joint possibility distribution ifAi(xi) = max{C(x1, . . . , xn) | xj ∈ R, j 
= i},
holds for allxi ∈ R, i = 1, . . . , n. Furthermore,Ai is called thei-th marginal possi-
bility distribution ofC. For example, ifC denotes the joint possibility distribution of
A1, A2 ∈ F , thenC satisfies the relationships

max
y

C(x1, y) = A1(x1), max
y

C(y, x2) = A2(x2),

for all x1, x2 ∈ R. Fuzzy numbersA1, . . . , An are said to be non-interactive if their
joint possibility distributionC satisfies the relationship

C(x1, . . . , xn) = min{A1(x1), . . . , An(xn)},

for all x = (x1, . . . , xn) ∈ Rn.

A functionT : [0, 1]× [0, 1]→ [0, 1] is said to be a triangular norm (t-norm for short)
iff T is symmetric, associative, non-decreasing in each argument, andT (x, 1) = x
for all x ∈ [0, 1]. Recall that a t-normT is Archimedean iffT is continuous and
T (x, x) < x for all x ∈]0, 1[. Every Archimedean t-normT is representable by a
continuous and decreasing functionf : [0, 1]→ [0,∞] with f(1) = 0 and

T (x, y) = f [−1](f(x) + f(y))

wheref [−1] is the pseudo-inverse off , defined by

f [−1](y) =
{

f−1(y) if y ∈ [0, f(0)]
0 otherwise

The functionf is the additive generator ofT . Let T1, T2 be t-norms. We say thatT1

is weaker thanT2 (and writeT1 ≤ T2) if T1(x, y) ≤ T2(x, y) for eachx, y ∈ [0, 1].



The basic t-norms are (i) the minimum:min(a, b) = min{a, b}; (ii) Łukasiewicz:
TL(a, b) = max{a + b− 1, 0}; (iii) the product:TP (a, b) = ab; (iv) the weak:

TW (a, b) =

{
min{a, b} if max{a, b} = 1

0 otherwise

(v) Hamacher [10]:

Hγ(a, b) =
ab

γ + (1− γ)(a + b− ab)
, γ ≥ 0

and (vi) Yager

TYp (a, b) = 1−min{1, p
√

[(1− a)p + (1− b)p]}, p > 0.

Using the concept of joint possibility distribution we introduced the following exten-
sion principle in [3].

Definition 1.1. [3] Let C be the joint possibility distribution of (marginal possibility
distributions) A1, . . . , An ∈ F , and let f : Rn → R be a continuous function. Then

fC(A1, . . . , An) ∈ F ,

will be defined by

fC(A1, . . . , An)(y) = sup
y=f(x1,...,xn)

C(x1, . . . , xn). (1)

We have the following lemma, which can be interpreted as a generalization of Nguyen’s
theorem [28].

Lemma 1. [3] Let A1, A2 ∈ F be fuzzy numbers, let C be their joint possibility
distribution, and let f : Rn → R be a continuous function. Then,

[fC(A1, . . . , An)]γ = f([C]γ),

for all γ ∈ [0, 1]. Furthermore, fC(A1, . . . , An) is always a fuzzy number.

LetC be the joint possibility distribution of (marginal possibility distributions)A1, A2 ∈
F , and letf(x1, x2) = x1 + x2 be the addition operator. ThenA1 + A2 is defined by

(A1 + A2)(y) = sup
y=x1+x2

C(x1, x2). (2)

If A1 andA2 are non-interactive, that is, their joint possibility distribution is defined
by

C(x1, x2) = min{A1(x1), A2(x2)},



then (2) turns into the extended addition operator introduced by Zadeh in 1965 [29],

(A1 + A2)(y) = sup
y=x1+x2

min{A1(x1), A2(x2)}.

Furthermore, if C(x1, x2) = T (A1(x1), A2(x2)), where T is a t-norm then we get
the t-norm-based extension principle,

(A1 + A2)(y) = sup
y=x1+x2

T (A1(x1), A2(x2)). (3)

For example, if A1 and A2 are fuzzy numbers, T is the product t-norm then the sup-
product extended sum of A1 and A2 is defined by

(A1 + A2)(y) = sup
x1+x2=y

A1(x1)A2(x2), (4)

and the sup−Hγ extended addition of A1 and A2 is defined by

(A1 + A2)(y) = sup
x1+x2=y

A1(x1)A2(x2)
γ + (1− γ)(A1(x1) + A2(x2)−A1(x1)A2(x2))

.

If T is an Archimedean t-norm and ã1, ã2 ∈ F then their T -sum

Ã2 := ã1 + ã2

can be written in the form

Ã2(z) = f [−1](f(ã1(x1)) + f(ã2(x2))), z ∈ R,

where f is the additive generator of T . By the associativity of T , the membership
function of the T -sum Ãn := ã1 + · · ·+ ãn can be written as

Ãn(z) = sup
x1+···+xn=z

f [−1]

( n∑
i=1

f(ãi(xi))
)
, z ∈ R.

Since f is continuous and decreasing, f [−1] is also continuous and non-increasing, we
have

Ãn(z) = f [−1]

(
inf

x1+···+xn=z

n∑
i=1

f(ãi(xi))
)
, z ∈ R.

2 Additions of interactive fuzzy numbers

Dubois and Prade published their seminal paper on additions of interactive fuzzy num-
bers in 1981 [5]. Since then the properties of additions of interactive fuzzy numbers,
when their joint possibility distribution is defined by a t-norm have been extensively
studied in the literature [1-3, 5-26]. In 1991 Fullér [6, 7] extended the results presented
in [5] to product-sum and Hamacher-sum of triangular fuzzy numbers.



Theorem 2.1. [6] Let ãi = (ai, α), i ∈ N be symmetrical triangular fuzzy numbers
and let their addition operator be defined by sup-product convolution (4). If

A :=
∞∑
i=1

ai

exists and it isfinite, then with the notations

Ãn := ã1 + · · ·+ ãn, An := a1 + · · ·+ an, n ∈ N,

we have (
lim
n→∞

Ãn

)
(z) = exp(−|A− z|/α), z ∈ R.

Theorem 2.1 can be interpreted as a central limit theorem for mutually product-related
identically distributed fuzzy variables of symmetric triangular form.

Figure 1: Product-sum of two triangular fuzzy numbers.

Theorem 2.2. [7] Let ãi = (ai, α), i ∈ N and let their addition operator be defined
by sup-H0 convolution. Suppose thatA :=

∑∞
i=1 ai exists and it isfinite, then with

the notation
Ãn = ã1 + · · ·+ ãn, An = a1 + · · ·+ an

we have (
lim
n→∞

Ãn

)
(z) =

1
1 + |A− z|/α, z ∈ R.

Theorem 2.3. [7] (Einstein-sum). Let̃ai = (ai, α), i ∈ N and let their addition
operator be defined by sup-H2 convolution IfA :=

∑∞
i=1 ai exists and it isfinite, then

with the notations of Theorem 2.2 we have(
lim
n→∞

Ãn

)
(z) =

2
1 + exp(−2|A− z|/α)

, z ∈ R.

In 1992 Fullér and Keresztfalvi [8] generalized and extended the results presented
in [5, 6, 7]. Namely, they determined the exact membership function of the t-norm-
based sum of fuzzy intervals, in the case of Archimedean t-norm having strictly convex
additive generator function and fuzzy intervals with concave shape functions. They
proved the following theorem,



Theorem 2.4. [8] Let T be an Archimedean t-norm with additive generatorf and
let ãi = (ai, bi, α, β)LR, i = 1, . . . , n, be fuzzy numbers of LR-type. IfL andR are
twice differentiable, concave functions, andf is twice differentiable, strictly convex
function then the membership function of theT -sumÃn = ã1 + · · ·+ ãn is

Ãn(z) =




1 if An ≤ z ≤ Bn

f [−1]

(
n× f

(
L

(
An − z

nα

)))
if An − nα ≤ z ≤ An

f [−1]

(
n× f

(
R

(
z −Bn

nβ

)))
if Bn ≤ z ≤ Bn + nβ

0 otherwise

whereAn = a1 + · · ·+ an andBn = b1 + · · ·+ bn.

We shall illustrate Theorem 2.4 for Yager’s, Dombi’s and Hamacher’s parametrized
t-norm. For simplicity we shall restrict our consideration to the case of symmetric
fuzzy numbers ãi = (ai, ai, α, α)LL, i = 1, . . . , n. Denoting

σn :=
|An − z|

nα

we get the following formulas for the membership function of t-norm-based sum
Ãn = ã1 + · · ·+ ãn:

(i) Yager’s t-norm with p > 1:

TYp (x, y) = 1−min
{

1, p
√

(1− x)p + (1− y)p
}
.

This has additive generator
f(x) = (1− x)p

and then

Ãn(z) =
{

1− n1/p(1− L(σn)) if σn < L−1(1− n−1/p)
0 otherwise.

(ii) Hamacher’s t-norm with p ≤ 2:

Hp(x, y) =
xy

p + (1− p)(x + y − xy)

having additive generator

f(x) = ln
p + (1− p)x

x



Then

Ãn(z) =




p[
(p + (1− p)L(σn))/L(σn)

]n − 1 + p
if σn < 1

0 otherwise.

(iii) Dombi’s t-norm with p > 1:

Dp(x, y) =
1

1 + p
√

(1/x− 1)p + (1/y − 1)p

with additive generator

f(x) =
(

1
x
− 1

)p
.

Then

Ãn(z) =

{ [
1 + n1/p(1/L(σn)− 1)

]−1
if σn < 1

0 otherwise.

(iv) Product t-norm (i.e. the Hamacher’s t-norm with p = 1), that is TP (x, y) = xy
having additive generator f(x) = − lnx Then

Ãn(z) = Ln(σn), z ∈ R.

The results of Theorem 2.4 have been extended to wider classes of fuzzy numbers and
shape functions by many authors.

In 1994 Hong and Hwang [11] provided an upper bound for the membership function
of T -sum of LR-fuzzy numbers with different spreads. They proved the following
theorem,

Theorem 2.5. [11] Let T be an Archimedean t-norm with additive generatorf and
let ãi = (ai, αi, βi)LR, i = 1, 2, be fuzzy numbers of LR-type. IfL andR are concave
functions, andf is a convex function then the membership function of theT -sum
Ã2 = ã1 + ã2 is less than or equal to

A∗2(z) =






f [−1]

(
2f

(
L

(
1/2 +

(A2 − z)− α∗

(2α∗

)))
if A2 − α1 − α2 ≤ z ≤ A2 − α∗

f [−1]

(
2f

(
L

(
A2 − z

2α∗

)))
if A2 − α∗ ≤ z ≤ A2

f [−1]

(
2f

(
R

(
z −A2

2β∗

)))
if A2 ≤ z ≤ A2 + β∗

f [−1]

(
2f

(
R

(
1/2 +

(z −A2)− β∗

2β∗

)))
if A2 + β∗ ≤ z ≤ A2 + β1 + β2

0 otherwise

whereβ∗ = max{β1, β2}, β∗ = min{β1, β2},α∗ = max{α1, α2},α∗ = min{α1, α2}
andA2 = a1 + a2.

The In 1995 Hong [12] proved that Theorem 2.4 remains valid for concave shape
functions and convex additive t-norm generator. In 1996 Mesiar [25] showed that
Theorem 2.4 remains valid if both L ◦ f and R ◦ f are convex functions.

In 1997 Mesiar [26] generaized Theorem 2.4 to the case of nilpotent t-norms (nilpo-
tent t-norms are non-strict continuous Archimedean t-norms). In 1997 Hong and
Hwang [14] gave upper and lower bounds of T -sums of LR-fuzzy numbers ãi =
(ai, αi, βi)LR, i = 1, . . . , n, with different spreads where T is an Archimedean t-
norm. They proved the following two theorems,

Theorem 2.6. [14] Let T be an Archimedean t-norm with additive generatorf and let
ãi = (ai, αi, βi)LR, i = 1, . . . , n, be fuzzy numbers of LR-type. Iff ◦L andf ◦R are
concvex functions, then the membership function of theirT -sumÃn = ã1 + · · ·+ ãn
is less than or equal to

A∗n(z) =




f [−1]

(
nf

(
L

(
1
n
IL (An − z)

)))
if An −

∑n
i=1 αi ≤ z ≤ An

f [−1]

(
nf

(
R

(
1
n
IR (z −An)

)))
if An ≤ z ≤ An +

∑n
i=1 βi

0 otherwise,

where

IL(z) = inf

{
x1

α1
+ · · ·+

xn

αn

∣∣∣∣ x1 + · · ·+ xn = z, 0 ≤ xi ≤ αi, i = 1, . . . , n

}
,

and

IR(z) = inf

{
x1

β1
+ · · ·+

xn

βn

∣∣∣∣ x1 + · · ·+ xn = z, 0 ≤ xi ≤ βi, i = 1, . . . , n

}
.



Theorem 2.7. [14] Let T be an Archimedean t-norm with additive generatorf and
let ãi = (ai, αi, βi)LR, i = 1, . . . , n, be fuzzy numbers of LR-type. Then

Ãn(z) ≥ A∗∗n (z) =


f [−1]

(
nf

(
L

(
An − z

α1 + · · ·+ αn

)))
if An − (α1 + · · ·+ αn) ≤ z ≤ An

f [−1]

(
nf

(
R

(
An − z

β1 + · · ·+ βn

)))
if An ≤ z ≤ An + (β1 + · · ·+ βn)

0 otherwise,

In 1997, generalizing Theorem 2.4, Hwang and Hong [18] studied the membership
function of the t-norm-based sum of fuzzy numbers on Banach spaces and they pre-
sented the membership function of finite (or infinite) sum (defined by the sup-t-norm
convolution) of fuzzy numbers on Banach spaces, in the case of Archimedean t-norm
having convex additive generator function and fuzzy numbers with concave shape
function. In 1998 Hwang, Hwang and An [19] approximated the strict triangular
norm-based addition of fuzzy intervals of L-R type with any left and right spreadss.
In 2001 Hong [15] showed a simple method of computing T -sum of fuzzy intervals
having the same results as the sum of fuzzy intervals based on the weakest t-norm TW .

2.1 Shape preserving arithmetic operations

Shape preserving arithmetic operations of LR-fuzzy intervals allow one to control the
resulting spread. In practical computation, it is natural to require the preservation of
the shape of fuzzy intervals during addition and multiplication. Hong [16] showed that
TW , the weakest t-norm, is the only t-norm T that induces a shape-preserving mul-
tiplication of LR-fuzzy intervals. In 1995 Kolesarova [22, 23] proved the following
theorem,

Theorem 2.8. (a) LetT be an arbitrary t-norm weaker than or equal to the Łukasiewicz
t-normTL; T (x, y) ≤ TL(x, y) = max(0, x+ y− 1), x, y ∈ [0, 1]. Then the addition
⊕ based on T coincides on linear fuzzy intervals with the addition⊕ based on the
weakest t-normTW ; i.e.,

(a1, b1,α1, β1)⊕ (a2, b2, α2, β2) =
(a1 + a2, b1 + b2,max(α1, α2),max(β1, β2)).

(b) Let T be a continuous Archimedean t-norm with convex additive generatorf .
Then the addition⊕ based on T preserves the linearity of fuzzy intervals if and only
if the t-norm T is a member of Yager’s family of nilpotent t-norms with parameter
p ∈ [1,∞), T = TYp , andf(x) = (1− x)p. ThenTY1 = TL and forp ∈ (0,∞),

(a1, b1,α1, β1)⊕ (a2, b2, α2, β2) =

(a1 + a2, b1 + b2, (α
q
1 + αq2)

1/q, (βq1 + βq2)1/q),



where 1/p + 1/q = 1, i.e. q = p/(p− 1).

In 1997 Mesiar [27] studied the triangular norm-based additions preserving the LR-
shape of LR-fuzzy intervals and conjectured that the only t-norm-based additions pre-
serving the linearity of fuzzy intervals are those described in Theorem 2.8. He proved
the following theorem,

Theorem 2.9. [27] Let a continuous t-norm T be not weaker than or equal to TL (i.e.,
there are some x, y ∈ [0, 1] so that T (x, y) > x + y − 1 > 0). Let the addition based
on T preserve the linearity of fuzzy intervals. Then either T is the strongest t-norm,
T = TM , or T is a nilpotent t-norm.

In 2002 Hong [17] proved Mesiar’s conjecture.

Theorem 2.10. [17] Let a continuous t-norm T be not weaker than or equal to TL.
Then the addition ⊕ based on T preserves the linearity of fuzzy intervals if and only
if the t-norm T is either TM or a member of Yager’s family of nilpotent t-norms with
parameter p ∈ (1,∞), T = TYp , and f(x) = (1− x)p.

2.2 Additions of completely correlated fuzzy numbers

Until now we have summarized some properties of the addition operator on interactive
fuzzy numbers, when their joint possibility distribution is defined by a t-norm. It
is clear that in (3) the joint possibility distribution is defined directly and pointwise
from the membership values of its marginal possibility distributions by an aggregation
operator. However, the interactivity relation between fuzzy numbers may be given by
a more general joint possibility distribution, which can not be directly defined from
the membership values of its marginal possibility distributions by any aggregation
operator.

Drawing heavily on [3] we will now consider some properties of the addition operator
on completely correlated fuzzy numbers, where the interactivity relation is given by
their joint possibility distribution.

Let C be a joint possibility distribution with marginal possibility distributions A and
B, and let

f(x1, x2) = x1 + x2,

the addition operator in R2. In [3] we introduced the notation,

A +C B = fC(A,B).

Definition 2.1. [9] Fuzzy numbers A and B are said to be completely correlated, if
there exist q, r ∈ R, q 
= 0 such that their joint possibility distribution is defined by

C(x1, x2) = A(x1) · χ{qx1+r=x2}(x1, x2) = B(x2) · χ{qx1+r=x2}(x1, x2), (5)

where χ{qx1+r=x2}, stands for the characteristic function of the line

{(x1, x2) ∈ R2|qx1 + r = x2}.



In this case we have,

[C]γ =
{
(x, qx + r) ∈ R2

∣∣x = (1− t)a1(γ) + ta2(γ), t ∈ [0, 1]
}

where [A]γ = [a1(γ), a2(γ)]; and [B]γ = q[A]γ + r, for any γ ∈ [0, 1].

We should note here that the interactivity relation between two fuzzy numbers is de-
fined by their joint possibility distribution. Fuzzy numbers A and B with A(x) =
B(x) for all x ∈ R can be non-interactive, positively or negatively correlated depend-
ing on the definition of their joint possibility distribution.

Definition 2.2. [9] Fuzzy numbers A and B are said to be completely positively (neg-
atively) correlated, if q is positive (negative) in (5).

Figure 2: Completely negatively correlated fuzzy numbers with q = −1.

We note that if A,B ∈ F are completely positively correlated then their correlation
coefficient is equal to one, furthermore, if they are completely negatively correlated
then their correlation coefficient is equal to minus one [4, 9]. In the case of complete
positive correlation, if A(u) ≥ γ for some u ∈ R then there exists a unique v ∈ R
that B can take, furthermore, if u is moved to the left (right) then the corresponding
value (that B can take) will also move to the left (right). In case of complete negative
correlation, if A(u) ≥ γ for some u ∈ R then there exists a unique v ∈ R that B can
take, furthermore, if u is moved to the left (right) then the corresponding value (that
B can take) will move to the right (left). It is also clear that in these two cases, given q



and r, the first marginal possibility distribution completely determines the second one,
and vica versa. Finally, if A and B are not completely correlated then if A(u) ≥ γ for
some u ∈ R then there may exist several v ∈ R that B can take (see [9]).

Now let us consider the extended addition of two completely correlated fuzzy numbers
A and B,

(A +C B)(y) = sup
y=x1+x2

C(x1, x2).

That is,
(A +C B)(y) = sup

y=x1+x2

A(x1) · χ{qx1+r=x2}(x1, x2).

Then from (2) and (5) we find,

[A +C B]γ = (q + 1)[A]γ + r, (6)

for all γ ∈ [0, 1]. If A and B are completely negatively correlated with q = −1, that
is, [B]γ = −[A]γ + r, for all γ ∈ [0, 1], then A +C B will be a crisp number. Really,
from (6) we get [A +C B]γ = 0× [A]γ + r = r, for all γ ∈ [0, 1].

Figure 3: Completely negatively correlated fuzzy numbers with q 
= −1.

That is, the interactive sum, A +C B, of two completely negatively correlated fuzzy
numbers A and B with q = −1 and r = 0, i.e.

A(x) = B(−x),∀x ∈ R,



will be (crisp) zero. On the other hand, a γ-level set of their non-interactive sum,
A + B, can be computed as,

[A + B]γ = [a1(γ)− a2(γ), a2(γ)− a1(γ)],

which is a fuzzy number.

In this case (i.e. when q = −1) any γ-level set of C are included by a certain level set
of the addition operator, namely, the relationship,

[C]γ ⊂ {(x1, x2) ∈ R|x1 + x2 = r},

holds for any γ ∈ [0, 1] (see Fig. 2). On the other hand, if q 
= −1 then the fuzziness
of A +C B is preserved, since

[A +C B]γ = (q + 1)[A]γ + r 
= constant,

for all γ ∈ [0, 1] and y ∈ R. (see Fig. 3).

Really, in this case the set {(x1, x2) ∈ [C]γ |x1 +x2 = y} consists of a single point at
most for any γ ∈ [0, 1] and y ∈ R.

Note 2.1. The interactive sum of two completely negatively correlated fuzzy numbers
A and B with A(x) = B(−x) for all x ∈ R will be (crisp) zero.

3 Summary

In this paper we have summarized some properties of the addition operator on inter-
active fuzzy numbers, when their joint possibility distribution is defined by a t-norm
or by a more general type of joint possibility distribution.
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[2] B. De Baets and A. Marková-Stupňanová, Analytical expressions for addition of
fuzzy intervals, Fuzzy Sets and Systems, 91(1997) 203-213.

[3] C. Carlsson, R. Fullér and P. Majlender, Additions of Completely Correlated
Fuzzy Numbers, in: FUZZY IEEE 2004 CD-ROM Conference Proceedings, Bu-
dapest, July 26-29, 2004,

[4] C. Carlsson, R. Fullér and P. Majlender, On possibilistic correlation, Fuzzy Sets
and Systems (submitted).



[5] D. Dubois and H. Prade, Additions of interactive fuzzy numbers, IEEE Transac-
tions on Automatic Control, Vol. AC-26, No.4 1981, 926-936.

[6] R. Fullér, On product-sum of triangular fuzzy numbers, Fuzzy Sets and Systems,
41(1991) 83-87.

[7] R. Fullér, On Hamacher-sum of triangular fuzzy numbers, Fuzzy Sets and Sys-
tems, 42(1991) 205-212.

[8] R. Fullér and T.Keresztfalvi, t-Norm-based addition of fuzzy numbers, Fuzzy
Sets and Systems, 51(1992) 155-159.

[9] R. Fullér and P. Majlender, On interactive fuzzy numbers, Fuzzy Sets and Sys-
tems 143(2004) 355-369.
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