On additions of interactive fuzzy numbers

Christer Carlsson

IAMSR, Åbo Akademi University, Lemminkäinengatan 14B, FIN-20520 Åbo, Finland
e-mail: christer.carlsson@abo.fi

Robert Fullér

Department of Operations Research, Eötvös Loránd University, Pázmány Péter sétány 1C, H-1117 Budapest, Hungary
e-mail: rfuller@mail.abo.fi

Abstract: In this paper we will summarize some properties of the extended addition operator on fuzzy numbers, where the interactivity relation between fuzzy numbers is given by their joint possibility distribution.

1 Introduction

A fuzzy number A is a fuzzy set of the real line \mathbb{R} with a normal, fuzzy convex and continuous membership function of bounded support. Any fuzzy number can be described with the following membership function,

$$
A(t)= \begin{cases}L\left(\frac{a-t}{\alpha}\right) & \text { if } t \in[a-\alpha, a] \\ 1 & \text { if } t \in[a, b], a \leq b \\ R\left(\frac{t-b}{\beta}\right) & \text { if } t \in[b, b+\beta] \\ 0 & \text { otherwise }\end{cases}
$$

where $[a, b]$ is the peak of A; a and b are the lower and upper modal values; L and R are shape functions: $[0,1] \rightarrow[0,1]$, with $L(0)=R(0)=1$ and $L(1)=R(1)=0$ which are non-increasing, continuous mappings. We shall call these fuzzy numbers of LR-type and use the notation $A=(a, b, \alpha, \beta)_{L R}$. If $R(x)=L(x)=1-x$, we denote $A=(a, b, \alpha, \beta)$. The family of fuzzy numbers will be denoted by \mathcal{F}. A $\gamma-$ level set of a fuzzy number A is defined by $[A]^{\gamma}=\{t \in \mathbb{R} \mid A(t) \geq \gamma\}$, if $\gamma>0$ and $[A]^{\gamma}=\operatorname{cl}\{t \in \mathbb{R} \mid A(t)>0\}$ (the closure of the support of A) if $\gamma=0$.

A triangular fuzzy number A denoted by (a, α, β) is defined as

$$
A(t)= \begin{cases}1-\frac{a-t}{\alpha} & \text { if } a-\alpha \leq t \leq a \\ 1 & \text { if } a \leq t \leq b \\ 1-\frac{t-b}{\beta} & \text { if } a \leq t \leq b+\beta \\ 0 & \text { otherwise }\end{cases}
$$

where $a \in \mathbb{R}$ is the centre and $\alpha>0$ is the left spread, $\beta>0$ is the right spread of A. If $\alpha=\beta$, then the triangular fuzzy number is called symmetric triangular fuzzy number and denoted by (a, α).
An n-dimensional possibility distribution C is a fuzzy set in \mathbb{R}^{n} with a normalized membership function of bounded support. The family of n-dimensional possibility distribution will be denoted by \mathcal{F}_{n}.
Let us recall the concept and some basic properties of joint possibility distribution introduced in [30]. If $A_{1}, \ldots, A_{n} \in \mathcal{F}$ are fuzzy numbers, then $C \in \mathcal{F}_{n}$ is said to be their joint possibility distribution if $A_{i}\left(x_{i}\right)=\max \left\{C\left(x_{1}, \ldots, x_{n}\right) \mid x_{j} \in \mathbb{R}, j \neq i\right\}$, holds for all $x_{i} \in \mathbb{R}, i=1, \ldots, n$. Furthermore, A_{i} is called the i-th marginal possibility distribution of C. For example, if C denotes the joint possibility distribution of $A_{1}, A_{2} \in \mathcal{F}$, then C satisfies the relationships

$$
\max _{y} C\left(x_{1}, y\right)=A_{1}\left(x_{1}\right), \quad \max _{y} C\left(y, x_{2}\right)=A_{2}\left(x_{2}\right)
$$

for all $x_{1}, x_{2} \in \mathbb{R}$. Fuzzy numbers A_{1}, \ldots, A_{n} are said to be non-interactive if their joint possibility distribution C satisfies the relationship

$$
C\left(x_{1}, \ldots, x_{n}\right)=\min \left\{A_{1}\left(x_{1}\right), \ldots, A_{n}\left(x_{n}\right)\right\}
$$

for all $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.
A function $T:[0,1] \times[0,1] \rightarrow[0,1]$ is said to be a triangular norm (t -norm for short) iff T is symmetric, associative, non-decreasing in each argument, and $T(x, 1)=x$ for all $x \in[0,1]$. Recall that a t-norm T is Archimedean iff T is continuous and $T(x, x)<x$ for all $x \in] 0,1[$. Every Archimedean t-norm T is representable by a continuous and decreasing function $f:[0,1] \rightarrow[0, \infty]$ with $f(1)=0$ and

$$
T(x, y)=f^{[-1]}(f(x)+f(y))
$$

where $f^{[-1]}$ is the pseudo-inverse of f, defined by

$$
f^{[-1]}(y)= \begin{cases}f^{-1}(y) & \text { if } y \in[0, f(0)] \\ 0 & \text { otherwise }\end{cases}
$$

The function f is the additive generator of T. Let T_{1}, T_{2} be t-norms. We say that T_{1} is weaker than T_{2} (and write $T_{1} \leq T_{2}$) if $T_{1}(x, y) \leq T_{2}(x, y)$ for each $x, y \in[0,1]$.

The basic t -norms are (i) the minimum: $\min (a, b)=\min \{a, b\}$; (ii) Łukasiewicz: $T_{L}(a, b)=\max \{a+b-1,0\}$; (iii) the product: $T_{P}(a, b)=a b$; (iv) the weak:

$$
T_{W}(a, b)= \begin{cases}\min \{a, b\} & \text { if } \max \{a, b\}=1 \\ 0 & \text { otherwise }\end{cases}
$$

(v) Hamacher [10]:

$$
H_{\gamma}(a, b)=\frac{a b}{\gamma+(1-\gamma)(a+b-a b)}, \gamma \geq 0
$$

and (vi) Yager

$$
T_{p}^{Y}(a, b)=1-\min \left\{1, \sqrt[p]{\left[(1-a)^{p}+(1-b)^{p}\right]}\right\}, p>0
$$

Using the concept of joint possibility distribution we introduced the following extension principle in [3].

Definition 1.1. [3] Let C be the joint possibility distribution of (marginal possibility distributions) $A_{1}, \ldots, A_{n} \in \mathcal{F}$, and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous function. Then

$$
f_{C}\left(A_{1}, \ldots, A_{n}\right) \in \mathcal{F}
$$

will be defined by

$$
\begin{equation*}
f_{C}\left(A_{1}, \ldots, A_{n}\right)(y)=\sup _{y=f\left(x_{1}, \ldots, x_{n}\right)} C\left(x_{1}, \ldots, x_{n}\right) . \tag{1}
\end{equation*}
$$

We have the following lemma, which can be interpreted as a generalization of Nguyen's theorem [28].

Lemma 1. [3] Let $A_{1}, A_{2} \in \mathcal{F}$ be fuzzy numbers, let C be their joint possibility distribution, and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous function. Then,

$$
\left[f_{C}\left(A_{1}, \ldots, A_{n}\right)\right]^{\gamma}=f\left([C]^{\gamma}\right)
$$

for all $\gamma \in[0,1]$. Furthermore, $f_{C}\left(A_{1}, \ldots, A_{n}\right)$ is always a fuzzy number.
Let C be the joint possibility distribution of (marginal possibility distributions) $A_{1}, A_{2} \in$ \mathcal{F}, and let $f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$ be the addition operator. Then $A_{1}+A_{2}$ is defined by

$$
\begin{equation*}
\left(A_{1}+A_{2}\right)(y)=\sup _{y=x_{1}+x_{2}} C\left(x_{1}, x_{2}\right) . \tag{2}
\end{equation*}
$$

If A_{1} and A_{2} are non-interactive, that is, their joint possibility distribution is defined by

$$
C\left(x_{1}, x_{2}\right)=\min \left\{A_{1}\left(x_{1}\right), A_{2}\left(x_{2}\right)\right\},
$$

then (2) turns into the extended addition operator introduced by Zadeh in 1965 [29],

$$
\left(A_{1}+A_{2}\right)(y)=\sup _{y=x_{1}+x_{2}} \min \left\{A_{1}\left(x_{1}\right), A_{2}\left(x_{2}\right)\right\}
$$

Furthermore, if $C\left(x_{1}, x_{2}\right)=T\left(A_{1}\left(x_{1}\right), A_{2}\left(x_{2}\right)\right)$, where T is a t-norm then we get the t -norm-based extension principle,

$$
\begin{equation*}
\left(A_{1}+A_{2}\right)(y)=\sup _{y=x_{1}+x_{2}} T\left(A_{1}\left(x_{1}\right), A_{2}\left(x_{2}\right)\right) . \tag{3}
\end{equation*}
$$

For example, if A_{1} and A_{2} are fuzzy numbers, T is the product t -norm then the supproduct extended sum of A_{1} and A_{2} is defined by

$$
\begin{equation*}
\left(A_{1}+A_{2}\right)(y)=\sup _{x_{1}+x_{2}=y} A_{1}\left(x_{1}\right) A_{2}\left(x_{2}\right) \tag{4}
\end{equation*}
$$

and the sup $-H_{\gamma}$ extended addition of A_{1} and A_{2} is defined by

$$
\left(A_{1}+A_{2}\right)(y)=\sup _{x_{1}+x_{2}=y} \frac{A_{1}\left(x_{1}\right) A_{2}\left(x_{2}\right)}{\gamma+(1-\gamma)\left(A_{1}\left(x_{1}\right)+A_{2}\left(x_{2}\right)-A_{1}\left(x_{1}\right) A_{2}\left(x_{2}\right)\right)}
$$

If T is an Archimedean t-norm and $\tilde{a}_{1}, \tilde{a}_{2} \in \mathcal{F}$ then their T-sum

$$
\tilde{A}_{2}:=\tilde{a}_{1}+\tilde{a}_{2}
$$

can be written in the form

$$
\tilde{A}_{2}(z)=f^{[-1]}\left(f\left(\tilde{a}_{1}\left(x_{1}\right)\right)+f\left(\tilde{a}_{2}\left(x_{2}\right)\right)\right), z \in \mathbb{R}
$$

where f is the additive generator of T. By the associativity of T, the membership function of the T-sum $\tilde{A}_{n}:=\tilde{a}_{1}+\cdots+\tilde{a}_{n}$ can be written as

$$
\tilde{A}_{n}(z)=\sup _{x_{1}+\cdots+x_{n}=z} f^{[-1]}\left(\sum_{i=1}^{n} f\left(\tilde{a}_{i}\left(x_{i}\right)\right)\right), z \in \mathbb{R} .
$$

Since f is continuous and decreasing, $f^{[-1]}$ is also continuous and non-increasing, we have

$$
\tilde{A}_{n}(z)=f^{[-1]}\left(\inf _{x_{1}+\cdots+x_{n}=z} \sum_{i=1}^{n} f\left(\tilde{a}_{i}\left(x_{i}\right)\right)\right), z \in \mathbb{R} .
$$

2 Additions of interactive fuzzy numbers

Dubois and Prade published their seminal paper on additions of interactive fuzzy numbers in 1981 [5]. Since then the properties of additions of interactive fuzzy numbers, when their joint possibility distribution is defined by a t-norm have been extensively studied in the literature [1-3, 5-26]. In 1991 Fullér [6, 7] extended the results presented in [5] to product-sum and Hamacher-sum of triangular fuzzy numbers.

Theorem 2.1. [6] Let $\tilde{a}_{i}=\left(a_{i}, \alpha\right), i \in \mathbf{N}$ be symmetrical triangular fuzzy numbers and let their addition operator be defined by sup-product convolution (4). If

$$
A:=\sum_{i=1}^{\infty} a_{i}
$$

exists and it is finite, then with the notations

$$
\tilde{A}_{n}:=\tilde{a}_{1}+\cdots+\tilde{a}_{n}, A_{n}:=a_{1}+\cdots+a_{n}, n \in \mathbf{N}
$$

we have

$$
\left(\lim _{n \rightarrow \infty} \tilde{A}_{n}\right)(z)=\exp (-|A-z| / \alpha), z \in \mathbb{R}
$$

Theorem 2.1 can be interpreted as a central limit theorem for mutually product-related identically distributed fuzzy variables of symmetric triangular form.

Figure 1: Product-sum of two triangular fuzzy numbers.

Theorem 2.2. [7] Let $\tilde{a}_{i}=\left(a_{i}, \alpha\right), i \in N$ and let their addition operator be defined by sup- H_{0} convolution. Suppose that $A:=\sum_{i=1}^{\infty} a_{i}$ exists and it is finite, then with the notation

$$
\tilde{A}_{n}=\tilde{a}_{1}+\cdots+\tilde{a}_{n}, \quad A_{n}=a_{1}+\cdots+a_{n}
$$

we have

$$
\left(\lim _{n \rightarrow \infty} \tilde{A}_{n}\right)(z)=\frac{1}{1+|A-z| / \alpha}, z \in \mathbb{R}
$$

Theorem 2.3. [7] (Einstein-sum). Let $\tilde{a}_{i}=\left(a_{i}, \alpha\right), i \in N$ and let their addition operator be defined by sup $-H_{2}$ convolution If $A:=\sum_{i=1}^{\infty} a_{i}$ exists and it is finite, then with the notations of Theorem 2.2 we have

$$
\left(\lim _{n \rightarrow \infty} \tilde{A}_{n}\right)(z)=\frac{2}{1+\exp (-2|A-z| / \alpha)}, z \in \mathbb{R}
$$

In 1992 Fullér and Keresztfalvi [8] generalized and extended the results presented in $[5,6,7]$. Namely, they determined the exact membership function of the t-normbased sum of fuzzy intervals, in the case of Archimedean t-norm having strictly convex additive generator function and fuzzy intervals with concave shape functions. They proved the following theorem,

Theorem 2.4. [8] Let T be an Archimedean t-norm with additive generator f and let $\tilde{a}_{i}=\left(a_{i}, b_{i}, \alpha, \beta\right)_{L R}, i=1, \ldots, n$, be fuzzy numbers of $L R$-type. If L and R are twice differentiable, concave functions, and f is twice differentiable, strictly convex function then the membership function of the T-sum $\tilde{A}_{n}=\tilde{a}_{1}+\cdots+\tilde{a}_{n}$ is

$$
\tilde{A}_{n}(z)= \begin{cases}1 & \text { if } A_{n} \leq z \leq B_{n} \\ f^{[-1]}\left(n \times f\left(L\left(\frac{A_{n}-z}{n \alpha}\right)\right)\right) & \text { if } A_{n}-n \alpha \leq z \leq A_{n} \\ f^{[-1]}\left(n \times f\left(R\left(\frac{z-B_{n}}{n \beta}\right)\right)\right) & \text { if } B_{n} \leq z \leq B_{n}+n \beta \\ 0 & \text { otherwise }\end{cases}
$$

where $A_{n}=a_{1}+\cdots+a_{n}$ and $B_{n}=b_{1}+\cdots+b_{n}$.
We shall illustrate Theorem 2.4 for Yager's, Dombi's and Hamacher's parametrized t -norm. For simplicity we shall restrict our consideration to the case of symmetric fuzzy numbers $\tilde{a}_{i}=\left(a_{i}, a_{i}, \alpha, \alpha\right)_{L L}, i=1, \ldots, n$. Denoting

$$
\sigma_{n}:=\frac{\left|A_{n}-z\right|}{n \alpha}
$$

we get the following formulas for the membership function of t-norm-based sum $\tilde{A}_{n}=\tilde{a}_{1}+\cdots+\tilde{a}_{n}$:
(i) Yager's t-norm with $p>1$:

$$
T_{p}^{Y}(x, y)=1-\min \left\{1, \sqrt[p]{(1-x)^{p}+(1-y)^{p}}\right\}
$$

This has additive generator

$$
f(x)=(1-x)^{p}
$$

and then

$$
\tilde{A}_{n}(z)= \begin{cases}1-n^{1 / p}\left(1-L\left(\sigma_{n}\right)\right) & \text { if } \sigma_{n}<L^{-1}\left(1-n^{-1 / p}\right) \\ 0 & \text { otherwise }\end{cases}
$$

(ii) Hamacher's t-norm with $p \leq 2$:

$$
H_{p}(x, y)=\frac{x y}{p+(1-p)(x+y-x y)}
$$

having additive generator

$$
f(x)=\ln \frac{p+(1-p) x}{x}
$$

Then

$$
\tilde{A}_{n}(z)= \begin{cases}\frac{p}{\left[\left(p+(1-p) L\left(\sigma_{n}\right)\right) / L\left(\sigma_{n}\right)\right]^{n}-1+p} & \text { if } \sigma_{n}<1 \\ 0 & \text { otherwise }\end{cases}
$$

(iii) Dombi's t-norm with $p>1$:

$$
D_{p}(x, y)=\frac{1}{1+\sqrt[p]{(1 / x-1)^{p}+(1 / y-1)^{p}}}
$$

with additive generator

$$
f(x)=\left(\frac{1}{x}-1\right)^{p} .
$$

Then

$$
\tilde{A}_{n}(z)= \begin{cases}{\left[1+n^{1 / p}\left(1 / L\left(\sigma_{n}\right)-1\right)\right]^{-1}} & \text { if } \sigma_{n}<1 \\ 0 & \text { otherwise }\end{cases}
$$

(iv) Product t-norm (i.e. the Hamacher's t-norm with $p=1$), that is $T_{P}(x, y)=x y$ having additive generator $f(x)=-\ln x$ Then

$$
\tilde{A}_{n}(z)=L^{n}\left(\sigma_{n}\right), z \in \mathbb{R}
$$

The results of Theorem 2.4 have been extended to wider classes of fuzzy numbers and shape functions by many authors.
In 1994 Hong and Hwang [11] provided an upper bound for the membership function of T-sum of $L R$-fuzzy numbers with different spreads. They proved the following theorem,

Theorem 2.5. [11] Let T be an Archimedean t-norm with additive generator f and let $\tilde{a}_{i}=\left(a_{i}, \alpha_{i}, \beta_{i}\right)_{L R}, i=1,2$, be fuzzy numbers of $L R$-type. If L and R are concave functions, and f is a convex function then the membership function of the T-sum $\tilde{A}_{2}=\tilde{a}_{1}+\tilde{a}_{2}$ is less than or equal to

$$
A_{2}^{*}(z)=
$$

$$
\begin{cases}f^{[-1]}\left(2 f\left(L\left(1 / 2+\frac{\left(A_{2}-z\right)-\alpha^{*}}{\left(2 \alpha_{*}\right.}\right)\right)\right) & \text { if } A_{2}-\alpha_{1}-\alpha_{2} \leq z \leq A_{2}-\alpha^{*} \\ f^{[-1]}\left(2 f\left(L\left(\frac{A_{2}-z}{2 \alpha^{*}}\right)\right)\right) & \text { if } A_{2}-\alpha^{*} \leq z \leq A_{2} \\ f^{[-1]}\left(2 f\left(R\left(\frac{z-A_{2}}{2 \beta^{*}}\right)\right)\right) & \text { if } A_{2} \leq z \leq A_{2}+\beta^{*} \\ f^{[-1]}\left(2 f\left(R\left(1 / 2+\frac{\left(z-A_{2}\right)-\beta^{*}}{2 \beta_{*}}\right)\right)\right) & \text { if } A_{2}+\beta^{*} \leq z \leq A_{2}+\beta_{1}+\beta_{2} \\ 0 & \text { otherwise }\end{cases}
$$

where $\beta^{*}=\max \left\{\beta_{1}, \beta_{2}\right\}, \beta_{*}=\min \left\{\beta_{1}, \beta_{2}\right\}, \alpha^{*}=\max \left\{\alpha_{1}, \alpha_{2}\right\}, \alpha_{*}=\min \left\{\alpha_{1}, \alpha_{2}\right\}$ and $A_{2}=a_{1}+a_{2}$.

The In 1995 Hong [12] proved that Theorem 2.4 remains valid for concave shape functions and convex additive t-norm generator. In 1996 Mesiar [25] showed that Theorem 2.4 remains valid if both $L \circ f$ and $R \circ f$ are convex functions.
In 1997 Mesiar [26] generaized Theorem 2.4 to the case of nilpotent t-norms (nilpotent t-norms are non-strict continuous Archimedean t-norms). In 1997 Hong and Hwang [14] gave upper and lower bounds of T-sums of $L R$-fuzzy numbers $\tilde{a}_{i}=$ $\left(a_{i}, \alpha_{i}, \beta_{i}\right)_{L R}, i=1, \ldots, n$, with different spreads where T is an Archimedean tnorm. They proved the following two theorems,
Theorem 2.6. [14] Let T be an Archimedean t-norm with additive generator f and let $\tilde{a}_{i}=\left(a_{i}, \alpha_{i}, \beta_{i}\right)_{L R}, i=1, \ldots, n$, be fuzzy numbers of LR-type. If $f \circ L$ and $f \circ R$ are concvex functions, then the membership function of their T-sum $\tilde{A}_{n}=\tilde{a}_{1}+\cdots+\tilde{a}_{n}$ is less than or equal to

$$
A_{n}^{*}(z)= \begin{cases}f^{[-1]}\left(n f\left(L\left(\frac{1}{n} I_{L}\left(A_{n}-z\right)\right)\right)\right) & \text { if } A_{n}-\sum_{i=1}^{n} \alpha_{i} \leq z \leq A_{n} \\ f^{[-1]}\left(n f\left(R\left(\frac{1}{n} I_{R}\left(z-A_{n}\right)\right)\right)\right) & \text { if } A_{n} \leq z \leq A_{n}+\sum_{i=1}^{n} \beta_{i} \\ 0 & \text { otherwise, }\end{cases}
$$

where

$$
I_{L}(z)=\inf \left\{\left.\frac{x_{1}}{\alpha_{1}}+\cdots+\frac{x_{n}}{\alpha_{n}} \right\rvert\, x_{1}+\cdots+x_{n}=z, 0 \leq x_{i} \leq \alpha_{i}, i=1, \ldots, n\right\}
$$

and

$$
I_{R}(z)=\inf \left\{\left.\frac{x_{1}}{\beta_{1}}+\cdots+\frac{x_{n}}{\beta_{n}} \right\rvert\, x_{1}+\cdots+x_{n}=z, 0 \leq x_{i} \leq \beta_{i}, i=1, \ldots, n\right\}
$$

Theorem 2.7. [14] Let T be an Archimedean t-norm with additive generator f and let $\tilde{a}_{i}=\left(a_{i}, \alpha_{i}, \beta_{i}\right)_{L R}, i=1, \ldots, n$, be fuzzy numbers of LR-type. Then

$$
\begin{gathered}
\tilde{A}_{n}(z) \geq A_{n}^{* *}(z)= \\
\begin{cases}f^{[-1]}\left(n f\left(L\left(\frac{A_{n}-z}{\alpha_{1}+\cdots+\alpha_{n}}\right)\right)\right) & \text { if } A_{n}-\left(\alpha_{1}+\cdots+\alpha_{n}\right) \leq z \leq A_{n} \\
f^{[-1]}\left(n f\left(R\left(\frac{A_{n}-z}{\beta_{1}+\cdots+\beta_{n}}\right)\right)\right) & \text { if } A_{n} \leq z \leq A_{n}+\left(\beta_{1}+\cdots+\beta_{n}\right) \\
0 & \text { otherwise, }\end{cases}
\end{gathered}
$$

In 1997, generalizing Theorem 2.4, Hwang and Hong [18] studied the membership function of the t-norm-based sum of fuzzy numbers on Banach spaces and they presented the membership function of finite (or infinite) sum (defined by the sup-t-norm convolution) of fuzzy numbers on Banach spaces, in the case of Archimedean t-norm having convex additive generator function and fuzzy numbers with concave shape function. In 1998 Hwang, Hwang and An [19] approximated the strict triangular norm-based addition of fuzzy intervals of L-R type with any left and right spreadss. In 2001 Hong [15] showed a simple method of computing T-sum of fuzzy intervals having the same results as the sum of fuzzy intervals based on the weakest t-norm T_{W}.

2.1 Shape preserving arithmetic operations

Shape preserving arithmetic operations of LR-fuzzy intervals allow one to control the resulting spread. In practical computation, it is natural to require the preservation of the shape of fuzzy intervals during addition and multiplication. Hong [16] showed that T_{W}, the weakest t -norm, is the only t -norm T that induces a shape-preserving multiplication of LR-fuzzy intervals. In 1995 Kolesarova [22, 23] proved the following theorem,
Theorem 2.8. (a) Let T be an arbitrary t-norm weaker than or equal to the Lukasiewicz t-norm $T_{L} ; T(x, y) \leq T_{L}(x, y)=\max (0, x+y-1), x, y \in[0,1]$. Then the addition \oplus based on T coincides on linear fuzzy intervals with the addition \oplus based on the weakest t-norm T_{W}; i.e.,

$$
\begin{aligned}
& \left(a_{1}, b_{1}, \alpha_{1}, \beta_{1}\right) \oplus\left(a_{2}, b_{2}, \alpha_{2}, \beta_{2}\right)= \\
& \quad\left(a_{1}+a_{2}, b_{1}+b_{2}, \max \left(\alpha_{1}, \alpha_{2}\right), \max \left(\beta_{1}, \beta_{2}\right)\right)
\end{aligned}
$$

(b) Let T be a continuous Archimedean t-norm with convex additive generator f. Then the addition \oplus based on T preserves the linearity of fuzzy intervals if and only if the t-norm T is a member of Yager's family of nilpotent t-norms with parameter $p \in[1, \infty), T=T_{p}^{Y}$, and $f(x)=(1-x)^{p}$. Then $T_{1}^{Y}=T_{L}$ and for $p \in(0, \infty)$,

$$
\begin{aligned}
& \left(a_{1}, b_{1}, \alpha_{1}, \beta_{1}\right) \oplus\left(a_{2}, b_{2}, \alpha_{2}, \beta_{2}\right)= \\
& \quad\left(a_{1}+a_{2}, b_{1}+b_{2},\left(\alpha_{1}^{q}+\alpha_{2}^{q}\right)^{1 / q},\left(\beta_{1}^{q}+\beta_{2}^{q}\right)^{1 / q}\right)
\end{aligned}
$$

where $1 / p+1 / q=1$, i.e. $q=p /(p-1)$.
In 1997 Mesiar [27] studied the triangular norm-based additions preserving the LRshape of LR-fuzzy intervals and conjectured that the only t-norm-based additions preserving the linearity of fuzzy intervals are those described in Theorem 2.8. He proved the following theorem,

Theorem 2.9. [27] Let a continuous t-norm T be not weaker than or equal to T_{L} (i.e., there are some $x, y \in[0,1]$ so that $T(x, y)>x+y-1>0)$. Let the addition based on T preserve the linearity of fuzzy intervals. Then either T is the strongest t-norm, $T=T_{M}$, or T is a nilpotent t-norm.

In 2002 Hong [17] proved Mesiar's conjecture.
Theorem 2.10. [17] Let a continuous t-norm T be not weaker than or equal to T_{L}. Then the addition \oplus based on T preserves the linearity of fuzzy intervals if and only if the t-norm T is either T_{M} or a member of Yager's family of nilpotent t-norms with parameter $p \in(1, \infty), T=T_{p}^{Y}$, and $f(x)=(1-x)^{p}$.

2.2 Additions of completely correlated fuzzy numbers

Until now we have summarized some properties of the addition operator on interactive fuzzy numbers, when their joint possibility distribution is defined by a t-norm. It is clear that in (3) the joint possibility distribution is defined directly and pointwise from the membership values of its marginal possibility distributions by an aggregation operator. However, the interactivity relation between fuzzy numbers may be given by a more general joint possibility distribution, which can not be directly defined from the membership values of its marginal possibility distributions by any aggregation operator.

Drawing heavily on [3] we will now consider some properties of the addition operator on completely correlated fuzzy numbers, where the interactivity relation is given by their joint possibility distribution.
Let C be a joint possibility distribution with marginal possibility distributions A and B, and let

$$
f\left(x_{1}, x_{2}\right)=x_{1}+x_{2},
$$

the addition operator in \mathbb{R}^{2}. In [3] we introduced the notation,

$$
A+_{C} B=f_{C}(A, B)
$$

Definition 2.1. [9] Fuzzy numbers A and B are said to be completely correlated, if there exist $q, r \in \mathbb{R}, q \neq 0$ such that their joint possibility distribution is defined by

$$
\begin{equation*}
C\left(x_{1}, x_{2}\right)=A\left(x_{1}\right) \cdot \chi_{\left\{q x_{1}+r=x_{2}\right\}}\left(x_{1}, x_{2}\right)=B\left(x_{2}\right) \cdot \chi_{\left\{q x_{1}+r=x_{2}\right\}}\left(x_{1}, x_{2}\right), \tag{5}
\end{equation*}
$$

where $\chi_{\left\{q x_{1}+r=x_{2}\right\}}$, stands for the characteristic function of the line

$$
\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid q x_{1}+r=x_{2}\right\} .
$$

In this case we have,

$$
[C]^{\gamma}=\left\{(x, q x+r) \in \mathbb{R}^{2} \mid x=(1-t) a_{1}(\gamma)+t a_{2}(\gamma), t \in[0,1]\right\}
$$

where $[A]^{\gamma}=\left[a_{1}(\gamma), a_{2}(\gamma)\right]$; and $[B]^{\gamma}=q[A]^{\gamma}+r$, for any $\gamma \in[0,1]$.
We should note here that the interactivity relation between two fuzzy numbers is defined by their joint possibility distribution. Fuzzy numbers A and B with $A(x)=$ $B(x)$ for all $x \in \mathbb{R}$ can be non-interactive, positively or negatively correlated depending on the definition of their joint possibility distribution.

Definition 2.2. [9] Fuzzy numbers A and B are said to be completely positively (negatively) correlated, if q is positive (negative) in (5).

Figure 2: Completely negatively correlated fuzzy numbers with $q=-1$.
We note that if $A, B \in \mathcal{F}$ are completely positively correlated then their correlation coefficient is equal to one, furthermore, if they are completely negatively correlated then their correlation coefficient is equal to minus one [4, 9]. In the case of complete positive correlation, if $A(u) \geq \gamma$ for some $u \in \mathbb{R}$ then there exists a unique $v \in \mathbb{R}$ that B can take, furthermore, if u is moved to the left (right) then the corresponding value (that B can take) will also move to the left (right). In case of complete negative correlation, if $A(u) \geq \gamma$ for some $u \in \mathbb{R}$ then there exists a unique $v \in \mathbb{R}$ that B can take, furthermore, if u is moved to the left (right) then the corresponding value (that B can take) will move to the right (left). It is also clear that in these two cases, given q
and r, the first marginal possibility distribution completely determines the second one, and vica versa. Finally, if A and B are not completely correlated then if $A(u) \geq \gamma$ for some $u \in \mathbb{R}$ then there may exist several $v \in \mathbb{R}$ that B can take (see [9]).
Now let us consider the extended addition of two completely correlated fuzzy numbers A and B,

$$
(A+C B)(y)=\sup _{y=x_{1}+x_{2}} C\left(x_{1}, x_{2}\right) .
$$

That is,

$$
(A+C B)(y)=\sup _{y=x_{1}+x_{2}} A\left(x_{1}\right) \cdot \chi_{\left\{q x_{1}+r=x_{2}\right\}}\left(x_{1}, x_{2}\right) .
$$

Then from (2) and (5) we find,

$$
\begin{equation*}
\left[A+{ }_{C} B\right]^{\gamma}=(q+1)[A]^{\gamma}+r \tag{6}
\end{equation*}
$$

for all $\gamma \in[0,1]$. If A and B are completely negatively correlated with $q=-1$, that is, $[B]^{\gamma}=-[A]^{\gamma}+r$, for all $\gamma \in[0,1]$, then $A+_{C} B$ will be a crisp number. Really, from (6) we get $\left[A+{ }_{C} B\right]^{\gamma}=0 \times[A]^{\gamma}+r=r$, for all $\gamma \in[0,1]$.

Figure 3: Completely negatively correlated fuzzy numbers with $q \neq-1$.
That is, the interactive sum, $A+{ }_{C} B$, of two completely negatively correlated fuzzy numbers A and B with $q=-1$ and $r=0$, i.e.

$$
A(x)=B(-x), \forall x \in \mathbb{R}
$$

will be (crisp) zero. On the other hand, a γ-level set of their non-interactive sum, $A+B$, can be computed as,

$$
[A+B]^{\gamma}=\left[a_{1}(\gamma)-a_{2}(\gamma), a_{2}(\gamma)-a_{1}(\gamma)\right],
$$

which is a fuzzy number.
In this case (i.e. when $q=-1$) any γ-level set of C are included by a certain level set of the addition operator, namely, the relationship,

$$
[C]^{\gamma} \subset\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R} \mid x_{1}+x_{2}=r\right\}
$$

holds for any $\gamma \in[0,1]$ (see Fig. 2). On the other hand, if $q \neq-1$ then the fuzziness of $A+{ }_{C} B$ is preserved, since

$$
\left[A+{ }_{C} B\right]^{\gamma}=(q+1)[A]^{\gamma}+r \neq \text { constant }
$$

for all $\gamma \in[0,1]$ and $y \in \mathbb{R}$. (see Fig. 3).
Really, in this case the set $\left\{\left(x_{1}, x_{2}\right) \in[C]^{\gamma} \mid x_{1}+x_{2}=y\right\}$ consists of a single point at most for any $\gamma \in[0,1]$ and $y \in \mathbb{R}$.

Note 2.1. The interactive sum of two completely negatively correlated fuzzy numbers A and B with $A(x)=B(-x)$ for all $x \in \mathbb{R}$ will be (crisp) zero.

3 Summary

In this paper we have summarized some properties of the addition operator on interactive fuzzy numbers, when their joint possibility distribution is defined by a t-norm or by a more general type of joint possibility distribution.

References

[1] B. De Baets and A. Markova, Addition of LR-fuzzy intervals based on a continuous t-norm, in: Proceedings of IPMU'96 Conference, (July 1-5, 1996, Granada, Spain), 1996 353-358
[2] B. De Baets and A. Marková-Stupňanová, Analytical expressions for addition of fuzzy intervals, Fuzzy Sets and Systems, 91(1997) 203-213.
[3] C. Carlsson, R. Fullér and P. Majlender, Additions of Completely Correlated Fuzzy Numbers, in: FUZZY IEEE 2004 CD-ROM Conference Proceedings, Budapest, July 26-29, 2004,
[4] C. Carlsson, R. Fullér and P. Majlender, On possibilistic correlation, Fuzzy Sets and Systems (submitted).
[5] D. Dubois and H. Prade, Additions of interactive fuzzy numbers, IEEE Transactions on Automatic Control, Vol. AC-26, No. 4 1981, 926-936.
[6] R. Fullér, On product-sum of triangular fuzzy numbers, Fuzzy Sets and Systems, 41(1991) 83-87.
[7] R. Fullér, On Hamacher-sum of triangular fuzzy numbers, Fuzzy Sets and Systems, 42(1991) 205-212.
[8] R. Fullér and T.Keresztfalvi, t-Norm-based addition of fuzzy numbers, Fuzzy Sets and Systems, 51(1992) 155-159.
[9] R. Fullér and P. Majlender, On interactive fuzzy numbers, Fuzzy Sets and Systems 143(2004) 355-369.
[10] H. Hamacher, Über logische Aggregationen nicht binär explizierter Entschei-dung-kriterien (Rita G. Fischer Verlag, Frankfurt, 1978).
[11] D. H. Hong and S.Y.Hwang, On the compositional rule of inference under triangular norms, Fuzzy Sets and Systems, 66(1994) 25-38.
[12] D. H. Hong, A note on t-norm-based addition of fuzzy intervals, Fuzzy Sets and Systems, 75(1995) 73-76.
[13] D. H. Hong and C. Hwang, Upper bound of T-sum of LR-fuzzy numbers, in: Proceedings of IPMU'96 Conference, (July 1-5, 1996, Granada, Spain), 1996 343-346.
[14] D. H. Hong and C. Hwang, A T-sum bound of LR-fuzzy numbers, Fuzzy Sets and Systems, 91(1997) 239-252.
[15] D. H. Hong, Some results on the addition of fuzzy intervals Fuzzy Sets and Systems, 122(2001) 349-352.
[16] D. H. Hong, Shape preserving multiplications of fuzzy numbers, Fuzzy Sets and Systems, 123(2001) 81-84.
[17] D. H. Hong, On shape-preserving additions of fuzzy intervals, Journal of Mathematical Analysis and Applications, 267(2002) 369-376.
[18] S.Y.Hwang and D.H.Hong, The convergence of T-sum of fuzzy numbers on Banach spaces, Applied Mathematics Letters 10(1997) 129-134.
[19] S. Y. Hwang, J. J. Hwang, J. H. An The triangular norm-based addition of fuzzy intervals, Applied Mathematics Letters 11(1998) 9-13.
[20] S. Y. Hwang and Hyo Sam Lee, Nilpotent t-norm-based sum of fuzzy intervals, Fuzzy Sets and Systems, 123(2001) 73-80.
[21] M. F. Kawaguchi and T. Da-te, Some algebraic properties of weakly noninteractive fuzzy numbers, Fuzzy Sets and Systems, 68(1994) 281-291.
[22] A. Kolesarova, Triangular norm-based addition of linear fuzzy numbers, Tatra Mt. Math. Publ., 6(1995), 75-82.
[23] A. Kolesarova, Triangular norm-based addition preserving linearity of t-sums of fuzzy intervals, Mathware Soft Computing, 5(1998), 97-98.
[24] A. Markova, T-sum of L-R fuzzy numbers, Fuzzy Sets and Systems, 85(1997) 379-384.
[25] R. Mesiar, A note to the T-sum of L-R fuzzy numbers, Fuzzy Sets and Systems, 79(1996) 259-261.
[26] R. Mesiar, Triangular-norm-based addition of fuzzy intervals, Fuzzy Sets and Systems, 91(1997) 231-237.
[27] R. Mesiar, Shape preserving additions of fuzzy intervals, Fuzzy Sets and Systems 86(1997), 73-78.
[28] H. T. Nguyen, A note on the extension principle for fuzzy sets, Journal of Mathematical Analysis and Applications, 64(1978) 369-380.
[29] L. A. Zadeh, Fuzzy sets, Information and Control, 8(1965) 338-353.
[30] L. A. Zadeh, The concept of linguistic variable and its applications to approximate reasoning, Parts I,II,III, Information Sciences, 8(1975) 199-251; 8(1975) 301-357; 9(1975) 43-80.

