
T F L T C


A S

Turku Centre for Computer Science and,
Department of Mathematics, University of Turku

FIN-20014 Turku, Finland
asalomaa@utu.fi

A Short Survey on Watson-Crick Automata

Elena Czeizler Eugen Czeizler
Department of Mathematics, University of Turku and

Turku Centre for Computer Science
Turku 20520, Finland

elpetr@utu.fi,euczei@utu.fi

Abstract

This paper surveys some known results in Watson-Crick automata the-
ory. In particular, we concentrate on the computational power, complex-
ity measures, decidability problems, and systems of Watson-Crick automata
working together on the same input. This selection of topics is not exhaus-
tive, reflecting the research interests of the authors. A series of open prob-
lems and questions is also included.

1 Introduction

The remarkable progress witnessed by molecular biology andbiotechnology in
the last couple of decades, particularly in sequencing, synthesizing, and manip-
ulating DNA molecules, raised the possibility of using DNA as a support for



computation. The computer science community was quick to react to this chal-
lenge and many computational models were build attempting to exploit the ad-
vantages of nano-level biomolecular computing. One of themis the Watson-Crick
automata, the focus of this survey.

Watson-Crick automata, introduced in [8], represent one instance of mathe-
matical model abstracting biological properties for computational purposes. They
are finite automata with two reading heads, working on doublestranded sequen-
ces. One of the main features of these automata is that characters on correspond-
ing positions from the two strands of the input are related bya complementar-
ity relation similar with the Watson-Crick complementarityof DNA nucleotides.
The two strands of the input are separately scanned from leftto right by read
only heads controlled by a common state. Over the time, several variants and
restrictions of Watson-Crick automata were introduced and investigated. For ex-
ample, initial stateless Watson-Crick finite automata, reverse Watson-Crick au-
tomata, Watson-Crick two-way finite automata, Watson-Crick automata with a
Watson-Crick memory, and Watson-Crick transducers were considered in [14].
Also, simple and 1-limited Watson-Crick automata with bounded number of leaps
between the two strands were investigated in [12], while Watson-Crickω-automa-
ta were discussed in [15].

In this survey we concentrate only on the basic form of Watson-Crick au-
tomata and its subclasses: simple, 1-limited, stateless, and all-final. We present an
overview of the results, mainly concentrating on the computational power, com-
plexity measures, decidability problems, and systems of Watson-Crick automata
working together on the same input.

Section 3 is devoted to the computational power of these automata and their
position in the Chomsky hierarchy. We start by presenting a result from [10]
showing that the structure of the complementarity relationplays no actual role for
Watson-Crick automata, i.e., any language accepted by a Watson-Crick automa-
ton is also accepted by one with a one-to-one complementarity relation. We also
present here the representation theorem for languages accepted by Watson-Crick
automata from [18], as well as a series of characterizationsof recursively enu-
merable languages starting from languages accepted by Watson-Crick automata
considered in [14].

In Section 4 we present some complexity measures and severalrelated de-
cidability problems investigated in [13]. We also present how these complexi-
ties give a measure of comparison between the efficiency of finite automata and
Watson-Crick automata when recognizing regular languages.

When considering DNA molecules as a possible support for computations, we
may use two key features: the Watson-Crick complementarity and the massive
parallelism. However, Watson-Crick finite automata exploitonly the first feature.
One of the first questions of this field was how to create a mathematical model



efficiently using both features of DNA computations. Parallel communicating
Watson-Crick automata systems, introduced and investigated in [6] and [7], rep-
resent a possible solution for this problem. In Section 5 we present several results
concerning the computation power of these systems, some closure properties of
the family of accepted languages, as well as some interesting examples. Contrary
to the result presented in Section 3, in this case the structure of the complemen-
tarity relation plays an active role. While only regular one-letter languages are
accepted when using injective complementarity relations,with non-injective ones
we can accept more; an original example illustrating this feature is given in this
section. Distributed Watson-Crick automata systems, introduced and investigated
in [9], are also shortly presented here.

In the following section we give some basic definitions and notations further
used in the paper.

2 Preliminaries

We start by assuming the reader is familiar with the fundamental concepts from
formal languages and automata theory; for more details we refer to [17].

Let V be a finite alphabet. We denote byV∗ the set of all finite words over
V, by λ the empty word, and byV+ the set of all nonempty finite words overV,
V+ = V∗\{λ}. Forw ∈ V∗ we denote by|w| the length ofw. For a finite setQ, let
us denote bycard(Q) and 2Q the cardinality and the power set ofQ, respectively.

Given two finite alphabetsV and U, we define amorphismas a function
h : V → U∗, extended toh : V∗ → U∗ by h(λ) = λ andh(w1w2) = h(w1)h(w2), for
w1,w2 ∈ V∗. If h(a) , λ for eacha ∈ V, then we say thath is aλ-free morphism. A
projectionassociated to the alphabetV is the morphismprV : (V∪U)∗ → V∗ such
that prV(a) = a for all a ∈ V andprV(a) = λ otherwise. A morphismh : V∗ → U∗

is called acodingif h(a) ∈ U for eacha ∈ V and aweak codingif h(a) ∈ U ∪ {λ}
for eacha ∈ V. Theequality setof two morphismsh1,h2 : V∗ → U∗ is defined as:

EQ(h1,h2) = {w ∈ V∗ | h1(w) = h2(w)}.

Let us define now a symmetric relationρ ⊆ V × V, calledthe Watson-Crick
complementarity relation on V, inspired by the Watson-Crick complementarity of
nucleotides in the double stranded DNA molecule. We say thatρ is injective if
for anya ∈ V there exists a unique complementary symbolb ∈ V with (a,b) ∈ ρ.
In accordance with the representation of DNA molecules, viewed as two strings

written one over the other, we write

(

V∗

V∗

)

instead ofV∗ × V∗ and

(

w1

w2

)

instead of

the element (w1,w2) ∈ V∗ × V∗.



We denote
[V
V

]

ρ

= {

[a
b

]

| a,b ∈ V, (a,b) ∈ ρ} andWKρ(V) =
[V
V

]∗

ρ

. The set

WKρ(V) is calledthe Watson-Crick domainassociated toV andρ.

The essential difference between

(

w1

w2

)

and

[

w1

w2

]

is that

(

w1

w2

)

is just an al-

ternative notation for the pair (w1,w2), whereas

[

w1

w2

]

implies that the stringsw1

andw2 have the same length and the corresponding letters are connected by the
complementarity relation.

A Watson-Crick finite automatonis a 6-tuple

M = (V, ρ,Q,q0, F, δ),

where: V is the (input) alphabet,ρ ⊆ V × V is the complementarity relation,Q
is a finite set of states,q0 ∈ Q is the initial state,F ⊆ Q is the set of final states,

andδ : Q ×

(

V∗

V∗

)

→ 2Q is a mapping, called thetransition function, such that

δ(q,

(

w1

w2

)

) , ∅ only for finitely many triples (q,w1,w2) ∈ Q × V∗ × V∗. We can

replace the transition function with rewriting rules, by using s

(

w1

w2

)

→

(

w1

w2

)

s′

instead ofs′ ∈ δ(s,

(

w1

w2

)

).

We define transitions in a Watson-Crick finite automaton as follows. For
(

v1

v2

)

,

(

u1

u2

)

,

(

w1

w2

)

∈

(

V∗

V∗

)

such that

[

v1u1w1

v2u2w2

]

∈WKρ(V) ands, s′ ∈ Q we write

(

v1

v2

)

s

(

u1

u2

) (

w1

w2

)

⇒

(

v1

v2

) (

u1

u2

)

s′
(

w1

w2

)

if and only if s′ ∈ δ(s,

(

u1

u2

)

). If we denote by⇒∗ the reflexive and transitive

closure of⇒, then the language accepted by a Watson-Crick automaton is:

L(M) = {w1 ∈ V∗ | q0

[

w1

w2

]

⇒∗
[

w1

w2

]

s, with s ∈ F, w2 ∈ V∗,

[

w1

w2

]

∈WKρ(V)}.

Let us illustrate now the previous definition of a Watson-Crick automaton by
considering the following simple example.

Example 1. LetM = ({a,b, c}, ρ, {q0,q1,q2,qf },q0, {qf }, δ) be a Watson-Crick
automaton whereρ is the identity relation and the transition function is given
in Table 1. It is easy to see that the automatonM accepts the non context-free
language{anbncn | n ≥ 1}.



δ(q0,

(a
λ

)

) = q0 δ(q0,

(

b
a

)

) = q1

δ(q1,

(

b
a

)

) = q1 δ(q1,

(c
b

)

) = q2

δ(q2,

(c
b

)

) = q2 δ(q2,

(

λ

c

)

) = qf

δ(qf ,

(

λ

c

)

) = qf

Table 1: The transition function of Example 1

Another type of language accepted by a Watson-Crick automaton can be de-
fined by considering the set of rewriting rules instead of therecognized sequences,
see [8], [12], and [14]. Each rewriting rule is labelled and the accepted language
is defined as the set of sequences of labels of rules used when accepting a word
w ∈ L(M). Although interesting results are obtained for this type of languages,
here we are not considering them at all.

Depending on the type of the states and of the rewriting rulesthere are four
subclasses of Watson-Crick automata. We say that a Watson-Crick automaton
M = (V, ρ,Q,q0, F, δ) is

• statelessif it has only one state, i.e.,Q = F = {q0};

• all-final if all the states are final, i.e.,Q = F;

• simpleif at each step the automaton reads either from the upper or from the

lower strand, i.e., for any rewriting rules

(

w1

w2

)

→

(

w1

w2

)

s′ we have either

w1 = λ or w2 = λ;

• 1-limited if it is simple and at every step the automaton reads only one letter,

i.e., for any rewriting rules

(

w1

w2

)

→

(

w1

w2

)

s′ we have|w1w2| = 1.

3 The Computational Power of Watson-Crick Fini-
te Automata

In this section we discuss the accepting power of Watson-Crick automata. The
essential difference between these and finite automata is in the data structure they
process: while finite automata work on finite words, Watson-Crick automata work
on double stranded words where characters on correspondingpositions from the
two strands are connected by the complementarity relation.Thus, it is only natural



to ask in what way the structure of the complementarity relation influences the
accepting power. This question was recently answered in [10].

Theorem 1. LetM = (V, ρ,Q,q0, F, δ) be a Watson-Crick automaton with an
arbitrary complementarity relationρ ⊆ V × V. Then, we can construct a Watson-
Crick automatonM′ = (V,∆V,Q,q0, F, δ′) with the identity complementarity re-
lation ∆V = {(a,a) | a ∈ V} such that L(M) = L(M′).

The automatonM′ is constructed such that it accepts an input
[u
u

]

∈WK∆V(V)

if there exists a wordv ∈ V∗ for which
[u
v

]

∈ WKρ(V) is accepted byM. More

precisely, any rewriting rules

(

w1

w2

)

→

(

w1

w2

)

s′ from M is replaced inM′ by

s

(

w1

w′2

)

→

(

w1

w′2

)

s′ where

[

w′2
w2

]

∈ WKρ(V). Actually, this result holds for any one-

to-one complementarity relationρ′ ⊆ V × V instead of∆V. Moreover, this result
is valid for all the subclasses of Watson-Crick automata defined in Section 2, i.e.,
stateless, all final, simple, and 1-limited, as well as for Watson-Crickω-automata
introduced in [15].

The relations between the families of languages accepted bythe subclasses of
Watson-Crick automata and their position in the Chomsky hierarchy were com-
prehensively investigated in [14]. A synthesis of these relations is given in the
following result.

Theorem 2.

i) Simple and 1-limited Watson-Crick automata accept the same family of lan-
guages, i.e., the family of languages accepted by Watson-Crick automata
with arbitrary rewriting rules.

ii) There is a strict inclusion between the families of languages accepted by
stateless Watson-Crick automata, all final Watson-Crick automata, and Wa-
tson-Crick automata with arbitrary rewriting rules, respectively.

iii) The family of languages accepted by Watson-Crick automata with arbitrary
rewriting rules is strictly included in the family of context-sensitive lan-
guages.

iv) Watson-Crick automata with arbitrary rewriting rules are more powerful
than finite automata when considering arbitrary alphabets, but they are
equivalent on one-letter languages.



v) Watson-Crick automata with arbitrary rewriting rules are equivalent with
two-head finite automata and parallel communicating finite automata sys-
tems with two components, see [2].

Recently, a representation theorem for languages accepted by Watson-Crick
automata with arbitrary rules was given in [18].

Theorem 3. Let L be a language accepted by a Watson-Crick automaton with
arbitrary rules. Then, L= g(h−1(L1 ∩ L2) ∩ R)) where L1 is a linear language,
L2 is an even linear language, R is a regular language, and g and hare two
morphisms.

One of the most investigated subjects in formal language theory concentrates
on finding characterizations of recursively enumerable languages starting from
languages in a proper subfamily and using certain operations. In [14], this was
done starting from the family of languages accepted by Watson-Crick automata,
using only some projections or weak codings.

Theorem 4. Let L be a recursively enumerable language. Then, we have the
following representations:

i) L is the weak coding of a language accepted by a Watson-Crick automa-
ton from any of the subclasses all-final, simple, 1-limited,or with arbitrary
rules.

ii) L = h(L1 ∩R) where L1 is a language accepted by a stateless Watson-Crick
automaton, R is a regular language, and h is a projection.

iii) L = h(L1) where L1 is a language accepted by a Watson-Crick automaton
with arbitrary rules and h is a projection.

iv) L = h(L1 ∩ R) where L1 is a language accepted by an all-final, simple
Watson-Crick automaton, R is a regular language, and h is a projection.

Since the family of recursively enumerable languages is closed under the ap-
plied operations, the previous theorem gives in fact a series of characterizations
of recursively enumerable languages.

4 Complexity Measures and Decidability Problems

Defining and investigating complexity measures for Watson-Crick automata was
proposed in [14] as another important class of problems for this field. In [13]
three such measures are considered: the classical state andtransition complexity



measures are extended from automata theory while the maximal distance between
the two reading heads is a specific dynamical one.

For a Watson-Crick automatonM = (V, ρ,Q,q0, F, δ), we defineState(M)
and Trans(M) as the number of states and rewriting rules ofM, respectively.
These measures can be naturally extended to languages by defining State(L) and
Trans(L), respectively, as the minimal number of states and transitions, respec-
tively, needed by a Watson-Crick automaton in order to acceptthe languageL.
Although 1-limited Watson-Crick automata are equivalent with Watson-Crick au-
tomata with arbitrary rewriting rules,StateandTranscomplexities give different
results for these subclasses; hence, we useState1, Trans1 andStatea, Transa, re-
spectively depending on the subclass of Watson-Crick automata considered.

Let ∆ : q0

[

w1

w2

]

⇒∗
[

w1

w2

]

sf with sf ∈ F be asuccessful computationinM.

We define

Dist(∆) = max{||w′1| − |w
′
2|| | ∆ : q0

[

w1

w2

]

⇒∗
(

w′1
w′2

)

s

(

w′′1
w′′2

)

⇒∗
[

w1

w2

]

sf },

i.e., the maximal distance between the two reading heads during the computation
∆. For any wordw ∈ L(M) we define

Dist(w,M) = min{Dist(∆) | ∆ : q0

[ w
w′

]

⇒∗
[ w
w′

]

sf , sf ∈ F}.

Let us define now the third complexity measure for Watson-Crick automata,

Dist(M) = sup{Dist(w,M) | w ∈ L(M)},

which can be naturally extended to languages as

Dist(L) = in f {Dist(M) | L = L(M)}.

The next result from [13] proves that if the distance betweenthe two reading
heads is always bounded, then the behavior of the Watson-Crick automaton can
be described using only the states and a "window" of bounded length. Hence
the two reading heads can be eliminated and the Watson-Crick automaton can be
simulated by a finite automaton.

Theorem 5. REG = {L | ∃c > 0 with Dist(L) < c}, where REG is the set of
regular languages.

At the beginning of a computation both reading heads are placed on the first
symbols of the two input strands. It is natural to ask whetheror not the two heads
find themselves again on the same position during a computation. This question
was investigated in [12], relating it to thePost Correspondence Problem.



Theorem 6. Given a simple Watson-Crick automatonM, it is undecidable wether
or not there are computations inM where the two heads ofM are placed on the
same position at least twice; the same is true if we look for having the two heads
on the same position infinitely many times.

The following result, from [13], proves that state and transition complexity
measures are non-trivial for 1-limited Watson-Crick automata, i.e., there exist lan-
guages of arbitrary complexity.

Theorem 7. For any n≥ 0 there exist languages Ln and L′n accepted by 1-limited
Watson-Crick automata such that State1(Ln) ≥ n and Trans1(L′n) ≥ n.

This problem remains open in the case of Watson-Crick automata with arbi-
trary rules. Moreover, the connectedness problem remains open in both cases: it
is still not known whether for each natural numbern grater than a given threshold
there is a language with complexityn.

Several decision and computational problems related to complexity measures
are investigated in [13]. Although in the case of finite automata some problems
are easily decidable, they prove to be undecidable in the case of Watson-Crick
automata. The following result gives a synthesis of the problems discussed in
[13].

Theorem 8.

i) For any given positive integer n, it is not decidable whether CompX(L(M))=
n, where Comp∈ {State,Trans}, X ∈ {1,a}, andM is either an 1-limited
Watson-Crick automaton or a Watson-Crick automaton with arbitrary rules.

ii) None of the measures State1(L),Statea(L),Trans1(L), and Transa(L) can be
algorithmically computed, where L is a language recognizable by an appro-
priate Watson-Crick automaton.

iii) For any Watson-Crick automatonM there is no algorithm able to construct
M0 such that L(M0) = L(M) and Comp(M0) = CompX(L(M)), where
Comp∈ {State,Trans} and X∈ {1,a}, i.e., there is no algorithm computing
the minimal Watson-Crick automaton.

iv) Dist(M) is not algorithmically computable.

The complexitiesStateandTransalso give a measure of comparison between
the efficiency of finite automata and Watson-Crick automata when recognizing
regular languages. In [13] it is proved that Watson-Crick automata can recognize
regular languages significantly more efficient than finite automata. For instance,
there exists a family of languagesLn, with n ≥ 1, such thatState(Ln) ≥ n when



Ln is recognized by a finite automaton, whileState(Ln) ≤ k for some constant
k when Ln is recognized by a Watson-Crick automaton with arbitrary rewriting
rules. Similar results are also given using the complexityTrans.

5 Watson-Crick Automata Systems

An automata system consists of a set of automata of the same type, working to-
gether on the same input according to a predefined protocol. Depending on the
protocol used there are two classes of such systems:sequentialandparallel. Both
classes were investigated for different types of automata, see for example [4], [5],
[9], and [11].

The sequential class is represented bycooperating distributedsystems. In this
case, all components work on the same input tape and at each moment only one
component is active. There are several ways in which the control is transferred
from one component to another: depending on the number of steps performed,
i.e.,= k-mode,≤ k-mode, and≥ k-mode, as long as a component can continue
the computation, i.e.,t-mode, or arbitrary, i.e.,∗-mode; for more details see [3].
Cooperating distributed Watson-Crick automata systems wereinvestigated in [1],
where it was proved that distribution does not bring any change in the acceptance
power of Watson-Crick finite automata, except for the case of the stateless sub-
class.

On the other hand,parallel communicating Watson-Crick automata systems,
PCWKS for short, introduced in [6], proved to be more powerful.A PCWKS
consists of a set of Watson-Crick automata working independently on their own
input tape and communicating states on request. Specialquery statesare provided,
each pointing to exactly one component of the system. When thei-th component
enters the query stateK j, the current state of thej-th component is transmitted
to componenti and the computation continues. There are two important classifi-
cations of parallel communicating systems concerning thecommunication graph
and thereturning feature. A system is calledcentralizedif only one component,
themaster, may introduce query states, andnon-centralizedotherwise. A system
is calledreturning if after communicating, a component resumes the computation
from its initial state, andnon-returningif it remains in its current state. While the
non-centralized and non-returning PCWKS are investigated in[6] and [7], all the
other cases are still open.

Formally, a PCWKS of degreen is a (n+ 3)-tuple

A = (V, ρ,A1,A2, . . . ,An,K),

where



• V is the input alphabet;

• ρ is the complementarity relation;

• Ai = (V, ρ,Qi ,qi , Fi , δi), 1 ≤ i ≤ n, are Watson-Crick finite automata, where
the setsQi are not necessarily disjoint;

• K = {K1,K2, . . . ,Kn} ⊆ ∪
n
i=1Qi is the set of query states.

The automataA1,A2, . . . ,An are called thecomponentsof the systemA. Note that
any Watson-Crick finite automaton is a PCWKS of degree 1.

A configuration of a PCWKS is a 2n-tuple (s1,

(

u1

v1

)

, s2,

(

u2

v2

)

, . . . , sn,

(

un

vn

)

)

wheresi is the current state of the componenti and

(

ui

vi

)

is the part of the input

word which has not been read yet by the componenti, for all 1 ≤ i ≤ n. We define
a binary relation⊢ on the set of all configurations by setting

(s1,

(

u1

v1

)

, s2,

(

u2

v2

)

, . . . , sn,

(

un

vn

)

) ⊢ (r1,

(

u′1
v′1

)

, r2,

(

u′2
v′2

)

, . . . , rn,

(

u′n
v′n

)

)

if and only if one of the following two conditions holds:

• K ∩ {s1, s2, . . . , sn} = ∅,

(

ui

vi

)

=

(

xi

yi

) (

u′i
v′i

)

, andr i ∈ δi(si ,

(

xi

yi

)

), 1 ≤ i ≤ n;

• for all 1 ≤ i ≤ n such thatsi = K j i andsj i < K we haver i = sj i , whereas

for all the other 1≤ l ≤ n we haver l = sl. In this case

(

u′i
v′i

)

=

(

ui

vi

)

, for all

1 ≤ i ≤ n.

If we denote by⊢∗ the reflexive and transitive closure of⊢, then the language
recognized by a PCWKS is defined as:

L(A) = {w1 ∈ V∗ | (q1,

[

w1

w2

]

,q2,

[

w1

w2

]

, . . . ,qn,

[

w1

w2

]

) ⊢∗

(s1,

[

λ

λ

]

, s2,

[

λ

λ

]

, . . . , sn,

[

λ

λ

]

), si ∈ Fi , 1 ≤ i ≤ n}.

Intuitively, the language accepted by such a system consists of all wordsw1 such

that in every component we reach a final state after reading all input

[

w1

w2

]

. More-

over, if one of the components stops before the others, the system halts and rejects
the input.

Let us continue by considering a simple example from [6] illustrating the com-
munication between components.



δ1(q1,

( xy
z

)

) = q1 for anyx, y, z ∈ V δ2(q2,

(xy
λ

)

) = q2 for anyx, y ∈ V

δ1(q1,

(

#
x

)

) = qx for anyx ∈ V δ2(q2,

(

#
λ

)

) = K1

δ1(qx,

(

λ

λ

)

) = K2 δ2(qx,

(

λ

x

)

) = q3 for anyx ∈ V

δ1(q3,

(

λ

x

)

) = qx for anyx ∈ V δ2(q3,

(

λ

λ

)

) = K1

δ1(q3,

(

λ

#

)

) = qf1 δ2(qf1,

(

λ

x

)

) = qf2 for anyx ∈ V

δ1(qf1,

(

λ

λ

)

) = qf1 δ2(qf2,

(

λ

x

)

) = qf2 for anyx ∈ V ∪ {#}

Table 2: The transition functions of Example 2

Example 2. LetA = (V ∪ {#}, ρ,A1,A2,K) be a parallel communicating Watson-
Crick automata system whereρ = {(a,a) | a ∈ V} ∪ {(#,#)}, K = {K1,K2}, A1 =

(V∪{#}, ρ,Q1,q1, {qf1}, δ1), and A2 = (V∪{#}, ρ,Q2,q2, {qf2}, δ2). The sets of states
are Q1 = {q1,q3,qf1,K2}∪ {qx | x ∈ V} and Q2 = {q2,q3,qf1,qf2,K1}∪ {qx | x ∈ V},
while the transition functions are defined in Table 2.

The first component finds the middle of the input word, by placing the two
reading heads one at the end and the other in the middle of the input word. In
parallel, to preserve the synchronization, the second component moves one read-
ing head to the end of the input while the other one remains unmoved. At the same
time we also check that the input has even length. Then, by using communication
between components we check letter by letter that the input is indeed of the form
[

ww#
ww#

]

.

Although for Watson-Crick automata it is enough to consider only one-to-one
complementarity relations, for PCWKS the structure of this relation is very im-
portant. In [6] it is proved that if the complementarity relation is injective, then
PCWKS accept only regular one-letter languages. However, using non-injective
complementarity relations PCWKS can accept also non-regularone-letter lan-
guages such asL = {an2

| n ≥ 2}, see [7].
Using a similar technique, let us construct now a PCWKS recognizing the

non-regular languageL = {a2n
| n ≥ 1}.

Example 3. LetA = ({a,b, c}, ρ,A1,A2,K) be a PCWKS of degree 2, where:

• ρ = {(a,b), (a, c)},

• A1 = ({a,b, c}, ρ, {q1, rb, rc, rbc, rcb},q1, {rb, rc, rbc, rcb}, δ1),

• A2 = ({a,b, c}, ρ, {q2, s1, rb, rc, rbc, rcb, f2,K1},q2, { f2}, δ2).



ComponentA1 ComponentA2

q1

(a
b

)

→ rb q2

(aa
bc

)

→ s1

rb

(a
c

)

→ rbc s1

(

λ

λ

)

→ K1

rbc

(a
c

)

→ rc rbc

(

λ

λ

)

→ f2

rbc

(a
b

)

→ rcb rcb

(

λ

λ

)

→ f2

rb

(a
b

)

→ rb f2
(

λ

λ

)

→ f2

rc

(a
c

)

→ rc rbc

(aa
bb

)

→ K1

rc

(a
b

)

→ rcb rc

(aa
bb

)

→ K1

rcb

(a
b

)

→ rb rb

(aa
cc

)

→ K1

rcb

(aa
cc

)

→ K1

Table 3: The rewriting rules of Example 3

The rewriting rules of the two components are given in Table 3.
The starting point of the previous construction is the identity

2n = 1+ 20 + 21 + 22 + . . . + 2n−1.

Thus, our PCWKS accepts a word a2n
if and only if its complement is of the form

bcbbccccb. . ., i.e., consisting of consecutive blocks of b’s and c’s such that, start-
ing from the third one, the length of a block is double the length of the previous
one. During a computation the second component of the systemis always one
block ahead of the first component. By permanent communication between the
two components the system verifies that any two consecutive blocks, except the
first two, fulfill the length condition: each time the first component reads a char-
acter from a block the second component reads two characters from the following
one. Moreover, the second component can enter its final stateonly at the end of a
block. Since in the final state the second component does not continue to read the
input, a word is accepted if and only if it is of the form a2n

.

The following theorem synthesizes the results from [6] and [7] illustrating the
accepting power of PCWKS.

Theorem 9.

i) Parallel communicating Watson-Crick automata systems are more powerful
than Watson-Crick finite automata. E.g. the language{a2n

| n ≥ 1} from
Example 3 cannot be accepted by a Watson-Crick automaton.



ii) The family of languages accepted by parallel communicating Watson-Crick
automata systems is included in the family of context-sensitive languages.

iii) Every one-letter language accepted by a parallel communicating Watson-
Crick automata system with injective complementarity relation is regular.
However, using non-injective complementarity relations they accept also
non-regular one-letter languages.

iv) For each recursively enumerable language L⊆ V∗, there exists a projec-
tion prV such that L= prV(L(A)), whereA is a parallel communicating
Watson-Crick automata system of degree 2.

We end this section by discussing the closure of the family oflanguages rec-
ognized by PCWKS under intersection, union, and Kleene∗ given in [6]. In all
these cases a special delimiter # is needed in order to preserve the overall synchro-
nization between the components of the system. Thus, we extend the alphabetV
to V ∪ {#} and the complementarity relation toρ ∪ {(#,#)}.

Theorem 10. Let L1, L2 ⊆ V∗ be two languages accepted by some parallel com-
municating Watson-Crick automata systems of degrees n1 and n2, respectively,
using the same complementarity relation. Then the followingstatements hold.

i) The language(L1#)
⋂

(L2#) is accepted by a system of degree n1 + n2.

ii) The language L1#L2# is accepted by a system of degree n1 + n2.

iii) The language(L1#)∗ is accepted by a system of degree n1.

6 Open Problems

Recently introduced, Watson-Crick automata are thoroughly investigated in many
papers. Different aspects of these systems are considered, creating a vast and
interesting subject. Moreover, many of the proofs distinguish themselves by the
beauty of their constructions.

In this survey we put together only some of the known results concerning the
computational power and complexity measures of Watson-Crick automata. We
also discuss different problems concerning distributed and parallel communicating
Watson-Crick automata systems. Moreover, several open problems and questions
are mentioned throughout the paper.

In Section 4 we discuss three complexity measures for Watson-Crick auto-
mata: State, Trans, and Dist. Although it is known that state and transition
complexity measures are non-trivial for 1-limited Watson-Crick automata, this



problem remains open for Watson-Crick automata with arbitrary rules. That is,
it is not known whether for anyn ≥ 0 there exist languagesLn andL′n such that
Statea(Ln) ≥ n andTransa(L′n) ≥ n. Also, the connectedness problem remains
open for both 1-limited and Watson-Crick automata with arbitrary rules, i.e., it is
not known whether for each natural numbern greater than a given threshold there
is a language with complexityn.

One of the early open problems proposed in [14] concerns the efficient use of
the massive parallelism feature of DNA molecules. Althoughparallel communi-
cating Watson-Crick automata systems were introduced as a possible answer to
this question, it is still worth looking for other, maybe better approaches. Also,
several interesting problems concerning PCWKS are still open. Depending on the
communication graph and the returning feature there are twotypes of classifica-
tions for PCWKS: centralized/non-centralized and returning/non-returning. Until
now, only non-centralized and non-returning PCWKS were considered while all
the other cases remain open. Finally, it would be also interesting to investigate
other closure properties for the family of languages accepted by PCWKS, with or
without the special delimiter # used in Theorem 10.
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