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We propose a fuzzy ontology for human activity representation, which allows us to model and reason
about vague, incomplete, and uncertain knowledge. Some relevant subdomains found to be missing in
previous proposed ontologies for this domain were modelled as well. The resulting fuzzy OWL 2 ontology
is able to model uncertain knowledge and represent temporal relationships between activities using an
underlying fuzzy state machine representation. We provide a proof of concept of the approach in work
scenarios such as the office domain, and also make experiments to emphasize the benefits of our
approach with respect to crisp ontologies. As a result, we demonstrate that the inclusion of fuzzy con-
cepts and relations in the ontology provide benefits during the recognition process with respect to crisp
approaches.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Human activity study is a complex but key aspect in the devel-
opment of Ambient Intelligence (AmI) systems. Different tech-
niques have been developed for activity and user modelling, and
they may be classified as data-driven [1] and knowledge-based
[2] approaches. The methods in the first category are aimed at pro-
viding robust models for handling human behaviour specific fea-
tures using statistical and machine learning techniques. The best
strengths of these models are their ability to handle noise, uncer-
tainty, or incomplete sensor data [3], and they have proven to be
accurate in different domains where semantics are not key. How-
ever, the need for training data and the time and performance
required for these models are limitations in dynamic environments
and situations where context-aware data prevail. Furthermore,
data-driven algorithms do not offer abstract reasoning mecha-
nisms that allow inferring the meaning of the actions according
to their semantics [4].

On the other hand, knowledge-based techniques have been
applied in pervasive computing environments to improve interop-
erability and adaptation to different context situations. Usually,
context data sources are dynamic, continuously changing depend-
ing on the environment, not always mobile, known, nor taken into
account in advance. For this reason, these methods show advanta-
ges with respect to data-driven models due to the inclusion of con-
text management tools. Further features of knowledge-based
techniques that are interesting for human activity representation
are the possibility of providing both the environment and the user
with semantics to aid in the context definition process, facilitate
the definition and comprehension of human behaviours (e.g.
machine readable and easier to interpret), and consequently, ease
the development of new learning and recognition models able to
better understand the meaning of human actions and execute logic
reasoning about future needs, situations, or actions. In addition, all
this can occur considering the context information where the
activity is performed. Examples of knowledge-based techniques
contain logic-based approaches [5,6], rule-based systems [7], and
ontological models [8].

Despite the fact that most of the approaches about human
activity recognition are focused in Ambient Assisted Living and
Smart Home assistance [2,9,10], another emerging scenario is the
office/work domain and public buildings environments. In this
case, the goals are aimed at improving energy efficiency and work
assistance [11–14]. For instance, MOSES [15] localizes work staff
and identifies the tasks they are doing at any moment, being able
in this way to give advice on the remaining tasks to be carried
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out and warn about potential oversights or forgotten actions.
Another example is iShopFloor [16], a multi-agent architecture to
plan and control industry processes. However, semantic technolo-
gies have not been generally included into these models, although
there are exceptions such as in intelligent meeting rooms [17] or
maintenance of large buildings [16,18]. AmI scenarios in offices
or work environments focus on easing the work in groups and opti-
mizing the office space. For example, EasyMeeting [19] is an intel-
ligent meeting room system that builds on the design of CoBrA
[20]. RFID sensors embedded in the walls and furniture detect
the presence of the users’ devices and clothing. On receiving infor-
mation about the user’s context and intention, the broker sharing
platform allows the activation of the projector, slide downloading,
and lighting control. In [18], ontology-based interoperability is
applied to Smart Spaces for a context-aware maintenance of large
buildings, monitoring environmental variables, automatically
detecting building-related faults, and executing multi-modal inter-
ventions. An architecture for an ubiquitous group decision support
system, WebMeeting [21], is able to consider the emotional factors
of participants and their associated argumentation processes. The
system shows available information to the participants, analyses
the meeting trends, and suggests arguments to be exchanged with
others. Further interesting projects regarding activity recognition
in the office domain are the AIRE project [12], the SmartOffice or
Monica project [14], the Interactive Room (iRoom) [22], or the NIST
Smart Space and Meeting Recognition projects, which develop
tools for assistance in meeting rooms [13].

The most widely used tool to integrate semantics into activity
recognition systems are ontologies [4]. However, there are current
limitations of ontology-based activity recognition techniques that
must be tackled: they require good knowledge engineering skills
to model the domain, OWL DL does not allow interval (i.e. overlap-
ping) temporal reasoning, ontological reasoning can be computa-
tionally expensive [23], and they cannot deal with uncertainty
[4]. In this work, we provide advances to solve this last limitation
and propose a fuzzy ontology to give support for imprecision and
uncertainty, typical of everyday life situations. For instance, a sen-
sor can give readings with a certain degree of reliability, or work
only at specific times or in certain conditions; users may perform
subtle changes in the way they perform their activities, the execu-
tion of an activity may be detected with a certainty or satisfiability
degree, and all this information should be taken into account into
the reasoning process. Unfortunately, classic crisp ontology pro-
posals cannot handle this type of information. In our approach, dif-
ferent levels of granularity are designed so that incremental
context acquisition allows behaviour abstraction and a more accu-
rate, i.e., low-level recognition. By setting a behaviour specification
structure, a set of rules can define how to recognize a human
behaviour out of a sequence of observations. And, since fuzzy
ontologies can handle uncertainty, our approach is able to solve
this limitation with respect to crisp approaches. Fuzzy logic was
already proposed as an argument to ‘‘reject the maximality rule,
according to which only altogether true sentences are true, and
embracing instead the rule of endorsement, which means that
whatever is more or less true is true’’ [24]. As argued in [24], pos-
iting fuzzy predicates usually simplifies theories in most scientific
fields; fuzzy predicates are much more plausible and give a more
cohesive world view than their crisp counterpart. In this way, clas-
sical ontologies are not suitable to deal with imprecise and vague
knowledge, which is inherent to real world domains [25]. On the
other hand, fuzzy ontologies have the advantage of extending
information queries, allowing the search to also cover related
results. This makes the decisions about relatedness based on mod-
elled domain knowledge, i.e., instead of just offering exact
matches, the search can be extended to cover also related concepts,
so that precise wording is not needed to get a useful hit (as the
Please cite this article in press as: N. Díaz Rodríguez et al., A fuzzy ontology for s
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context of a document does not have to be exactly the same one
for the user to benefit from it) [26]. This results on more effective
retrieval. Likewise, another advantage of fuzzy ontologies is the
fuzzy semantics, as they are more flexible towards mapping
between different ontologies [26].

Let us put an example to show the benefits of fuzzy ontologies
versus crisp ones. Because in a fuzzy ontology we can define that
the CoffeeBreak activity is recognized accounting for different
weights on the actions that compose it (e.g. 0.3 TakeMug, 0.3 Take-
CoffeePan, 0.4 TakeMilk), thus, when one action has been skipped
due to an exception (e.g. milk run out) or a missing sensor reading,
the activity can still be recognized to a lower degree. In contrast,
the same activity formalized in a crisp ontology could not be recog-
nized if any of the exclusive elements that compose it is missing.

The rest of the paper is organized as follows: the following sec-
tion describes related work on ontologies for human activity recog-
nition and introduces fuzzy ontologies as the main tool for the rest
of the manuscript. After that, in Section 3, we present a novel
ontology for human activity modelling and its extension to Fuzzy
OWL 2 with support for the fuzzyDL reasoner. We detail concepts
and relationships in the fuzzy ontology as well as Section 4.1 pre-
sents the use case on domain specific entities for the office envi-
ronment. Section 4.2 describes an evaluation of the approach
with respect to the crisp case, and finally, conclusions and future
work are shown in Section 5.
2. Related work

2.1. Ontologies for human behaviour recognition

The literature offers a wide range of ontology definitions [27],
although the most extended one is that a ontology is a ‘‘formal
specification of a shared conceptualization’’ [28]. It offers a formal-
ism to represent classes or concepts, individuals, relations, func-
tions, and attributes. As providers of a format for exchanging
knowledge, they promote interoperability, knowledge reuse, and
information integration with automatic validation. Ontologies sep-
arate declarative and procedural knowledge, making the modular-
ity of the knowledge base (KB) [29] easier. They also allow
information to become not only human but also machine-readable
by agents. Ontologies have been used in heterogeneous problems
such as intelligent m-Government emergency response services
(e.g., disasters and attacks) through case-based reasoning [30] or
detecting information system conflicts in requirement analysis
phase [31], just to name a few. Using ontologies in human activity
recognition provides a number of advantages [32]: it supports
incremental progressive activity recognition, state based model-
ling, and a robust reasoning mechanism. Other benefits are the
ability to discriminate the significance and urgency of activities
through semantic descriptions, and the support for course-grained
and fine-grained activity assistance and the possibility for data
fusion and semantic reasoning, including activity recognition,
activity learning, and activity assistance.

In order to model human activity and behaviour in AmI, the con-
text needs to be modelled. With respect to other context models
such as key-value models, object oriented or logic based models
[33], ontology-based context modelling excels as regards simplicity,
flexibility, extensibility, generality, expressiveness, and automatic
code generation [34]. Approaches based on ontology reasoning
[2,3] represent activities and each data that can be used to recognize
them, from sensors to actors. There are also hybrid approaches com-
bining data-driven and knowledge-based approaches for activity
recognition, e.g., evidential network-based activity inference [10]
or COSAR [35]. The COSAR system retrieves information about sim-
ple human activities using hybrid ontological/statistical reasoners.
emantic modelling and recognition of human behaviour, Knowl. Based Syst.
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Ontological reasoning with OWL 2 serves to recognize complex
activities based on elementary sensor data and simple activities rec-
ognized through statistical reasoning [8]. In COSAR, the PalSPOT
ontology [23] is used within the context aggregation middleware
CARE [36]. Another hybrid approach incorporates ontology-based
context reasoning together with computer vision research and inte-
grates a scene tracking system with an ontological layer to avoid
issues that make classical object tracking procedures fail in complex
scenarios [37].

There is a set of ontologies for modelling context in human
activity. CoBrA-Ont (from Context Broker Architecture) [20] is an
extension from SOUPA. It particularly handles locations, people,
and activities. The CoDAMoS [38] ontology focuses on modelling
roles, hardware, and software services around four main core enti-
ties: user, environment, platform, and service. Delivery Context
[39] is another ontology, from W3C, that treats hardware and soft-
ware interfaces and networks. SOUPA [40] (Standard Ontologies for
Ubiquitous and Pervasive Applications) concerns rely on time,
agents, actions, locations, and policies. The mIO! network ontology
[41] applies the NeOn re-engineering methodology to reuse other
ontologies and stress different concepts around services and device
interaction. CONON [42] (CONtext ONtology) provides an upper
ontology with environmental conditions as well as diverse exten-
sions such as activity planning (deduced and scheduled activities)
and services. In PiVOn [43] (Pervasive Information Visualization
Ontology), location models and device-based services can be high-
lighted as one of their focus, while the Situation Ontology [44]
mainly considers the modelling of situation and context layers,
as well as hardware and software interfaces and networks. A more
in-depth survey of ontologies for human behaviour representation
may be found in [4].

The common lacking element found in existing ontologies is the
support for modelling uncertain, vague, and imprecise information
[4], which is an inherent feature of activity recognition. For this
reason, in the next sections, we propose a solution to this problem
based on fuzzy ontologies.

2.2. Fuzzy Ontologies

In many scenarios, and particularly in the human behaviour
representation domain, we find elements whose nature is impre-
cise. A classic crisp ontology cannot represent this type of informa-
tion, since they can only model relations between entities that may
be either true or false. For instance, in the statement ‘‘User has-
Event Event planned in Location L at Time T’’, T does not have to
be exact in practice. In another example, ‘‘User isPerforming Cof-
feeBreak’’, the activity CoffeeBreak could be recognized with some
degree of truth depending on the sensor data acquired and how
the user is performing the activity. Fortunately, fuzzy and possibi-
listic logic have proved to be suitable formalisms to handle impre-
cise/vague and uncertain knowledge, respectively [29]. Contrary to
classical set theory, where elements either belong to a set or not, in
the fuzzy set theory, elements can belong to a set with some
degree. Formally, a fuzzy subset A of X is defined by a membership
function lA(x), or simply A(x), which assigns any x 2 X to a value in
the real interval between 0 and 1. Fuzzy logic allows to perform
approximate reasoning involving inference rules with premises,
consequences, or both of them containing fuzzy propositions [45].

Up to 17 formal definitions can be found for fuzzy ontology
[29]. However, one of the most accepted definitions is an ontology
that uses fuzzy logic to provide a natural representation of imprecise
and vague knowledge, and eases reasoning over it. Fuzzy Description
Logic (DL) is the most developed formalism to work with fuzzy
ontologies [29]. Formally, a Fuzzy Knowledge Base (FKB) or fuzzy
ontology can be considered as a finite set of axioms that comprises
a fuzzy ABox A and a fuzzy TBox T [46]. A fuzzy ABox consists of a
Please cite this article in press as: N. Díaz Rodríguez et al., A fuzzy ontology for s
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finite set of fuzzy (concept or role) assertions, while a fuzzy
TBox consists of a finite set of fuzzy General Concept Inclusions
(Fuzzy GCIs), with a minimum fuzzy degree of subsumption. Fuzzy
ontologies and fuzzy extensions of DL have shown to be useful in
applications from information retrieval and image interpretation
to Semantic Web and others [46]. In [47], a fuzzy keyword ontol-
ogy serves to annotate and search events in reports by superimpos-
ing a fuzzy partonomy2 on fuzzy classifications.

Given a crisp ontology, elements that can be fuzzified include
datatypes, object properties (through fuzzy modifiers), and data
properties (through fuzzy modified data types). Furthermore,
depending on the application domain, it can be frequent to have
assertions of axioms about concrete individuals and classes, as well
as (data and object) property assertions with a fuzzy degree.
Among different approaches for fuzzifying an ontology, we can find
Fuzzy OWL 2 mappings [45] or value discretization approaches
[48]. To fuzzify a crisp ontology, it needs to be translated into a lan-
guage supported by a fuzzy ontology reasoner. Fuzzy OWL 2 pars-
ers convert Fuzzy OWL 2 ontologies into DeLorean [29] and fuzzyDL
[45] reasoners’ syntax. DeLorean3 [29] is a fuzzy rough DL reasoner
that supports fuzzy rough extensions of the fuzzy DLs SROIQðDÞ
and SHOINðDÞ (equivalent to OWL and OWL 2) and it is based on
a discretization of the fuzzy ontology using a-cuts [29]. DeLorean
computes an equivalent non-fuzzy representation in OWL or OWL
2. However, we consider fuzzyDL to be the most convenient existing
tool for ontological reasoning with uncertainty. Next, we motivate
our needs and its usage.

2.2.1. fuzzyDL reasoner
fuzzyDL4 [45] reasoner’s main features are the extension of the

classical description logic SHIFðDÞ to the fuzzy case. It allows fuzzy
concepts with left-shoulder, right-shoulder, triangular, and trapezoi-
dal membership functions, general inclusion axioms and concept
modifiers. Fuzzy modifiers apply to fuzzy sets to change their mem-
bership function. FuzzyDL supports crisp intervals that can serve to
define fuzzy concrete predicates. In fuzzy rule based systems (e.g.
Mamdani IF-THEN system), fuzzy IF-THEN rules are fired to a degree
which is a function of the degree of match between their antecedent
and the input. The deduction rule is generalized Modus Ponens. Fuzz-
yDL’s reasoning algorithm [45] uses a combination of a tableau algo-
rithm and a MILP (Mixed Integer Linear Programming) optimization
problem.

By adopting fuzzy reasoners, we can accept axioms (of activities
or behaviours) happening with a certain degree of truth, complete-
ness or certainty. In fuzzyDL, the notion of satisfaction of a fuzzy
axiom E by a fuzzy interpretation I , denoted I � E, is defined in
[45] as follows:

� I � hs P ai iff sI P a,
� I � (trans R) iff 8x;y2DI ;R

I ðx; yÞP supz2DIRI ðx; zÞ � RI ðz; yÞ,
� I � R1 v R2 iff 8x; y 2 DI � RI1ðx; yÞ 6 RI2ðx; yÞ,
� I � (inv R1R2Þ iff 8x; y 2 DI � RI1ðx; yÞ ¼ RI2ðy; xÞ.

In fuzzyDL, concept C is satisfiable iff there is an interpretation I
and an individual x 2 DI such that CI ðxÞ > 0 [45]. For a set of axi-
oms E, we say that I satisfies E iff I satisfies each element in E. I
is a model of E (resp. E) iff I � E (resp. I � E). I satisfies (is a
model of) a fuzzy KB K ¼ hA; T ;Ri, denoted I � K, iff I is a model
of each component A; T and R, respectively.

An axiom E is a logical consequence of a knowledge base K,
denoted K � E iff every model of K satisfies E. Given K and a fuzzy
emantic modelling and recognition of human behaviour, Knowl. Based Syst.
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axiom s of the forms hx : C;ai; hðx; yÞ : R;ai or hC v D;ai, it is of
interest to compute s’s best lower degree value bound.

The greatest lower bound of s w.r.t. K (denoted glbðK; sÞÞ is
glbðK; sÞ = sup fnjK � hs P nig, where sup ; = 0. Determining
the glb, i.e., the Best Degree Bound (BDB) problem, consists of
determining the best satisfiability bound of a concept C:

glbðK;CÞ ¼ supI supx2DI fC
I ðxÞjI � Kg:

Reasoning tasks allowed by fuzzyDL are typical BDB, concept
satisfiability and subsumption problems, optimization of variables
and defuzzifications.

In the next section, we detail the components of our proposal on
a crisp ontology for human behaviour modelling and how its fuzz-
ification is performed by using fuzzyDL.
Fig. 1. Excerpt of User subclasses in the ontology (partial).
3. A fuzzy ontology for human activity modelling

In this section, we first describe the design principles used to
represent human behaviour in a crisp subset/core of the ontology
and then, the fuzzification procedure to obtain the proposed fuzzy
approach. Among the different knowledge engineering methodolo-
gies, we mostly followed NeOn Ontology engineering methodology
[49] to make our approach. Some highlighted aspects of this meth-
odology are the ontology resource reuse, requirements specifica-
tion, development of required scenarios, and dynamic ontology
evolution. NeOn targets software developers and ontology practi-
tioners, it has dynamic guidelines for ontology evolution and treats
context dimension and distributed collaboration. As human activ-
ity recognition requires constant update of input sensor data and
the ability to adapt to changes in behaviour, NeOn allows the evo-
lution of the ontology.

3.1. A (crisp) human behaviour ontology

First we modelled a basic (crisp) ontology that gathers concepts
from different basic subdomains. We can distinguish among four
main entities: Users, Environment, Activities, and the correspond-
ing interactions among them. The three first elements can be con-
sidered the core of the ontology, and all together define the what,
who, when, and where for each relevant event to be annotated:

1. Users. Users can be divided into two categories: A Single User is
used to represent a unique user performing activities. Aspects
to consider when learning behaviours contain the user’s loca-
tion, role/position, calendar, the user social network, etc. On
the other hand, the second category Multi-user/Generic User
involves a group of users sharing a common behaviour or objec-
tive (meeting attendants, visitors, students, etc.). Since this kind
of behaviour embraces a group of people performing the same
action, they are not considered individually. We define a Gen-
eric User class as a way to represent an abstraction of a group
of users. The Generic User shares some properties with Single
User actions and activities, such as roles or access rights. This
class is also useful when personal data about users is not
known, but is relevant as an observed entity in the
environment.

2. Environment. It is an organized hierarchy of locations, models,
and generic and specific features of each kind of space. For
example, in the office domain, environments are offices, meet-
ing and lecture rooms, auditoriums, kitchen, toilets, etc. Differ-
ent levels to track indoors positioning may include floor and
room numbers, while outdoor locations may refer to open
spaces or means of transport. A location can have associated
measurements such as Humidity, Temperature, Lighting, Noise-
Level, or Pressure. For a finer grained environment, objects
Please cite this article in press as: N. Díaz Rodríguez et al., A fuzzy ontology for s
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(e.g. doors, curtains, windows) can have, e.g., an Aperture state
and rooms and locations a (seating) Capacity.

3. Actions, Activities, and Behaviours. We distinguish among three
types of events or activity granularity levels.
� Actions or atomic events with a timestamp, e.g.: OpenDoor,

MoveObject, TurnLightOff, WalkBy, BeObservedInLocation, etc.
This is the lowest granularity degree of representation.

� Activities, considered as single actions with an inherent ‘‘pur-
pose’’, or composed by a set of different actions. An activity
represents an intermediate granularity level of representa-
tion and has a startDatetime and endDatetime. E.g.: TakeCof-
fee, AttendConference, GroupMeeting, VideoCall, SendEmail,
etc. An activity is defined by a set of compulsory actions plus
a set of optional actions, where some of them can have tem-
poral execution interdependencies, e.g. MakeCoffee, SpeakAt-
Conference, VisitLocation, etc.

� Behaviours, a sequence of activities and/or actions. A behav-
iour is defined by a set of compulsory actions or activities
plus a set of optional actions or activities, where some of
them can have temporal execution interdependencies. E.g.,
the behaviour CoffeeBreak includes the Action ExitOffice, the
Activity MakeCoffee or TakeCoffee, and the Action EnterOffice
in this order. The difference between activity and behaviour
is that an activity is always the same regardless the context,
while a behaviour is always defined and valid within a con-
crete context. For instance the activity Running is always
defined in the same way. However, if Running has a specific
meaning or goal within a context, then it can be (part of) a
specific behaviour.

Any user can perform (atomic) actions, activities and/or behav-
iours. These are structured in a hierarchy of ascending abstrac-
tion. Depending on the actors in the environment, they will be
individual or collective (social) activities. It is important to
mention the possibility of recursion in the definition of activities
and behaviours: both can be defined semantically (through the
involves property) as a set of actions and (sub) activities. For
instance, the activity going to bed is composed by the activities
having infusion and taking pills, and the actions putting pyjama
and brushing teeth. This design allows us to work in different
degrees of granularity and to decompose complex activity and
behaviour recognition stages into simpler procedures.

4. Relationships. Object and data properties model interaction
among users and the environment that can serve to specify
behaviours. Relationships can link Single Users, Generic User/
Multi-users, or users and environment elements.

An excerpt of types of users, locations, and a subset of Actions
and Activities, as well as object and data properties can be seen
in Figs. 1–4. In addition, Fig. 5 represents a systematic relationship
among the activity, user, and environment context. Since the full
proposal cannot be shown due to space limitations, we make the
emantic modelling and recognition of human behaviour, Knowl. Based Syst.
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complete ontology available through web.5 Our approach is focused
on the office domain and reuses some hierarchy concepts from exist-
ing ontologies, e.g., the indoor/outdoor hierarchy from the CONON
ontology [42] or environment features from CoDAMos ontology
[38]. We also include other features of interest that we considered
relevant in a human activity ontology:

� Activity duration and concurrency: Several activities can be per-
formed, by the same or different people, at the same or overlap-
ping times. Also, some events resulting from user actions,
remain done for another user later, e.g., turn the lights on. The
next users may not have to perform that action in order to com-
plete the same activity as the first user. To model these situa-
5 Fuzzy Human Behaviour Ontology and experiments: http://users.abo.fi/ndiaz/
public/FuzzyHumanBehaviourOntology/.
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tions, the Boolean data property remainDone of the class
Action indicates when an action required by an activity can
remain done or ‘‘active’’ to someone else.
� Activity characterization and indispensable actions: Not all users

carry out a given behaviour or activity on the same way. There-
fore, an activity can be performed according to more than one
behaviour model, one per user. In order to know, in an efficient
manner, if certain action is absolutely required to perform a
given activity, the object property isIndispensableForActivity
(Action, Activity) can be set to avoid further computations. The
property isIndispensableForBehaviour (Action OR Activity, Behav-
iour) works in the same way for behaviours.
� Messages or alerts: Alerts are useful as reminders of forgotten

actions or to warn about potentially hazardous situations. Types
of messages are Error, Alarm, Information, or Suggestion; model-
ling the message recipients happens through Sender and Addres-
see Device, and User classes, respectively.

3.2. Fuzzification of the ontology

To represent our fuzzy entities in the created human activity
ontology, we use Fuzzy OWL2 2.1.1 plug-in6 in Protégé 4.1, jre 1.6,
that provides support in creating Fuzzy OWL 2 ontologies. The
plug-in does not translate fuzzy representations into OWL 2, but
rather eases their representation by allowing specification of the
type of fuzzy logic used, definition of fuzzy data types, fuzzy modi-
fied concepts, weighted concepts, weighted sum concepts, fuzzy
nominals, fuzzy modifiers, fuzzy modified roles and data types,
and fuzzy axioms [46]. In Fuzzy OWL 2, three main alphabets of sym-
bols are assumed: concepts (fuzzy sets of individuals), roles, and
individuals [46]. These are represented in an ontology as classes,
relations, and individuals, respectively. The degree of truth of a fuzzy
assertion is equal to the proportion of observers who think that the
crisp assertion is true [29].

Considering the designed human activity ontology, we can
identify data types, concepts, properties, and relations that are sus-
ceptible of being fuzzy. A fuzzy data type D is a pair hDD;UDiwhere
DD is a concrete interpretation domain, and UD is a set of fuzzy con-
crete predicates d with an arity n and an interpretation
dI : Dn

D ! ½0;1�, which is an n-ary fuzzy relation over DD [46]. For
fuzzy data types, the functions allowed in Fuzzy OWL 2, defined
over an interval ½k1; k2�# Q, are d! fleftðk1; k2; a; bÞ (Fig. 6c),
rightðk1; k2; a; bÞ (Fig. 6d), triangularðk1; k2; a; b; cÞ (Fig. 6b),
trapezoidalðk1; k2; a; b; c; dÞ (Fig. 6a), linearðk1; k2; cÞ (Fig. 6e),
modðdÞ}. More specifically, the fuzzification of each element in
the ontology is done as follows:

� Fuzzy data types and fuzzy concrete roles (data properties).
Data properties in the original ontology can be transformed into
fuzzy data types. Their range is expressed through data range
expressions such as ðdouble½>¼ �100:0� and double½<¼ 100:0�Þ
(e.g. for hasTemperature data property range). We use as range
the referential set over which the fuzzy membership functions
associated are defined. On the other hand, fuzzy concrete role
is defined in Fuzzy OWL 2 by setting its range data type to a pre-
viously defined fuzzy data type. Examples of membership func-
tions used are:
– LowTemperature: fuzzy data type with left shoulder mem-

bership function (a = �5, b = 5).
– MediumTemperature: fuzzy data type with trapezoidal mem-

bership function (a = 5, b = 10, c = 20, d = 25).
– HighTemperature: fuzzy data type with right shoulder mem-

bership function (a = 25, b = 30).
6 http://nemis.isti.cnr.it/straccia/software/FuzzyOWL//#plug-in.
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Fig. 3. Excerpt of classes, data and object properties in the ontology (partial).
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An annotation example in OWL 2 for the data type highTemperature
is as follows (see Listing 1):
When creating a fuzzy role, an annotation property describing the
type of the constructor and the value of its parameters are speci-
fied. Recursion is not allowed in the definition, and following the
mapping in [46], only fuzzy modified roles are supported. The
domain of the annotation will be any OWL 2 (object or data) prop-
erty with the restriction that the modifier must be defined as a
fuzzy modifier and that the base fuzzy role has a different name
than the annotated role. Examples of fuzzy data types defined in
our ontology are:

– ShortDuration, MediumDuration, LongDuration are fuzzy data
types (FDT) used to represent duration (in seconds). The con-
crete role (CR) Activity.hasDuration indicates the duration of
an Activity.

– The FDT LowVolume, MediumVolume, HighVolume are used to
represent audio volume level in dB. The CR Device.hasVolume
indicates the volume of a Device with audio capability (com-
puter, radio, TV, etc.).
Please cite this article in press as: N. Díaz Rodríguez et al., A fuzzy ontology for sema
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– The FDT ClosedAperture, HalfAperture, OpenAperture describe
aperture angle in degrees of the CR {Door, Window, Curtain,
etc.}.hasAperture.

– SmallCapacity, MediumCapacity, LargeCapacity are FDT repre-
senting the amount of people, and they as used in CR of Loca-
tion.hasCapacity to describe the capacity of a Location.

– The FDT LowHumidity, MediumHumidity, HighHumidity are
used to model humidity (in g=m3) in the CR Location.hasHu-
midity of a Location.

– LowTemperature, MediumTemperature, HighTemperature are
FDT to measure temperature in centigrade degrees, and they
are applied over CR {Location, Room, Environment, Generi-
cUser, Object}.hasTemperature) of a Location, Environment,
User, or Object.

– LowLighting, MediumLighting, HighLighting are FDT measur-
ing lighting in lux, applied to CR of {Location, Environ-
ment}.hasLighting of a Location or Environment.

– The FDT LowNoiseLevel, MediumNoiseLevel, HighNoiseLevel
are designed to measure noise level in dB in the CR {Location,
Environment}.hasNoiseLevel of a Location or Environment.
ntic modelling and recognition of human behaviour, Knowl. Based Syst.
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Fig. 4. Excerpt of Action and Activity classes in the ontology (partial).

Fig. 5. Main relationship among User, Activity, and Environment in the modelled context ontology.

Fig. 6. Membership functions in [29] for fuzzy data type definition (i.e., fuzzy concrete domains) and fuzzy modifier functions: (a) Trapezoidal function; (b) triangular
function; (c) left-shoulder function; (d) right-shoulder function; and (e) linear function.
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Listing 1. Annotation for a new fuzzy data type highTemperature using rightshoul-
der modifier.
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– LowPressure, MediumPressure, HighPressure are FDT to mea-
sure pressure in atmospheres, and they are used in the CR
of {Location, Environment}.hasPressure of a Location or
Environment.

– FewPeople, MediumPeople, ManyPeople are integer-valued
FDT to describe a number of people, in the CR of Event.has-
NAttendants) such as Conference, Seminar, Symposium, Work-
shop or other Event.

� Fuzzy Abstract Roles (Fuzzy Object Properties). Object proper-
ties in the original ontology can be transformed into fuzzy
abstract roles by means of the assignment of a fuzzy member-
ship value. Examples in our ontology are:
– Thing-isInLocation-Location: Represents the location of any-

thing (a Thing) in a given Location. A fuzzy degree can repre-
sent proximity.

– User-attendsEvent-Event: Identifies a given User who attends
an Event. Also, Event can belong to a Calendar.

– Travel-toLocation-Location: Characterizes the activity Travel
by specifying the destination Location it refers to.

– Activity-happensInLocation-Location: Associates an Activity
with a Location to indicate where it occurs.

– Action-actionAppliesTo-Thing: Indicates the object over
which an Action or Activity directly falls or acts over. E.g.,
WalkBy activity applies to Corridor if a user walks by a
corridor.

– GenericUser-hasPersonalStatus-PersonalStatus: Indicates a
personal status of any User in certain moment. PersonalStatus
class is specialized into: Available, Away, Busy, OnHoliday,
OnLeave.

– Activity-involvesAction-Action (and involvesActivity, involves-
OptAction, involvesOptActivity, respectively, where Opt stands
for optional, relates an Activity with the Actions that it
involves or requires. E.g., the DoPresentation activity involves
actions SetLaptopOn, SetProjectorOn, StandUp, and Talk.

– GenericUser-performsAction-Action and GenericUser-per-
formsActivity-Activity specify which User performs an Action
or an Activity, respectively. A fuzzy degree here represents
the level of uncertainty about who performs the action.

– Thing-isNearTo-Thing describes closeness among two enti-
ties (Object, User, Location, etc.).

� Fuzzy Modifiers and Fuzzy Modified Data Types: The degree of
membership of fuzzy data types may be specialized by means of
fuzzy modifiers. A fuzzy modifier is a function fmod : ½0;1� ! ½0;1�
which applies to a fuzzy set to change its membership function,
which can be linear (c) (Fig. 6e) or triangular (a, b, c) (Fig. 6b). We
define the fuzzy modifiers very as linear (0.85), and barely as lin-
ear (0.15), to improve the expressiveness of the ontology. For
instance, given the object property isNearTo (Thing, Thing), the
fuzzy modifiers can be used to define new fuzzy properties such
as very (isNearTo) or barely (isNearTo) (i.e., isVeryNearTo, or isBar-
elyNearTo), and relate objects that are not close to each other, but
very (respectively barely) close.
� Fuzzy Axioms or Assertions: In practice, expressing degrees of

truth is reflected on real time when asserting axioms. Examples
of fuzzy axioms can be assertions such as the following exam-
ple: the User individual John IsInLocation Office with degree
0.7, if the system has detected usual activity of John at his office,
but there are some changes in his routine).
Please cite this article in press as: N. Díaz Rodríguez et al., A fuzzy ontology for s
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When asserting axioms and defining data properties, linguistic
labels make the editing of the rule closer to natural language and
also easier for any kind of user, not requiring any technical knowl-
edge. A degree within the interval (0,1] can, in addition, be pro-
vided for more precise assertions or axioms. For instance, to find
whether there is any user which is close enough to the meeting
room, we could assign a certainty value >0.8 to the query. Fuzzy
queries will be provided in the experimental section as a proof of
concept and for ontology evaluation.

3.3. Fuzzy reasoning

Our fuzzy ontology is mainly characterized by the presence of
fuzzy data types, which are especially tackled by fuzzyDL. For this
reason, we use this reasoner in our ontology. We do not specify
degrees of truth initially on the ontology, these are asserted in exe-
cution time. Thus, a-cuts cannot be pre-calculated as in the DeLo-
rean reasoner. FuzzyDL, however, has some limitations that are
analyzed in this section, as its implications in our proposal.

First of all, fuzzyDL does not allow representation of asymmetry
and irreflexivity role axioms with the available constructors. In
practice, this entails no critical implications to our work, since
our roles are defined with domain and range for each property,
and these are usually disjoint classes. Therefore, while it is possible
to express reflexive and symmetric roles, we have to account that
there will not be any asymmetry or irreflexivity that can be
enforced by the reasoner. Secondly, cardinality restrictions are
not implemented in fuzzyDL. This problem may cause 2 situations
that we solve as follows: (1) E.g., in the Event class definition,
belongsToCalendar min 1 Thing is equivalent to belongsToCalendar
some Thing; and (2) In the User class definition, hasNUsers exactly
1 int can be substituted by hasNUsers some int. This fact, in addition
to having hasNUsers as functional property, makes the number of
relations hasNUsers to be exactly 1.

In general, activities are composed by a sequence of actions.
However, this does not happen in practice all the time, e.g., some
cycles can appear to complete ‘‘half done’’ actions, or forgotten
things are made at the end. Some behaviour procedures are not fol-
lowed in the logic order, but in the order in which the actions are
actually needed, during its execution, without any specific
sequence ordering (e.g., taking instruments while cooking). Since
each behaviour has not a unique way to be performed, behaviours
can be specified by a set of actions and/or activities that compose
it. This is done through specifying the time of occurrence of
actions, activities, and behaviours, and a membership function that
represents the belonging of the action/activity to a given behav-
iour. Regarding the time of occurrence, actions have a crisp date-
time as a timestamp. However, activities and actions have a
startDatetime, endDatetime, and duration. Duration is a fuzzy data-
type given by a triangular fuzzy function. Therefore, when an activ-
ity or behaviour is recognized, it will be with a degree of truth, and
it will be logged as an activity or behaviour detected with a mem-
bership value in (0,1]. E.g.: The behaviour GoingForAWalk could
have associated recognizedWithDegree (NataliaGoingForAWalk, 0.8).
4. Proof of concept and ontology validation

4.1. Case study: office domain and public buildings

Office and public buildings are a good scenario to test our
approach, since the inclusion of the designed ontology into an auto-
matic building control system could help to improve both energy
efficiency and occupants’ wellness. This section describes a proof
of concept about the potential of the fuzzy ontology in this domain,
and the next sections provide an evaluation and comparison with
emantic modelling and recognition of human behaviour, Knowl. Based Syst.
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crisp ontologies to show the benefits of the approach. The main ele-
ments that are used to model knowledge in the office university
environment are the following:

� User status. A user can have at work different status such as
away, at work, on leave, on holiday, busy, or available. Users
can also have work positions (secretary, researcher, technical
staff, students, lecturers, etc.). Generic users in this domain
can be company representatives, internal representatives,
research partners, visitor researchers, visitor students, technical
staff, etc.
� Physical environment. Architectural environment is also repre-

sented in order to monitor activities through e.g. presence sen-
sor or cameras. Part of the environment are locations and their
corresponding GPS coordinates. For this reason, we allow the
representation of semantic maps including different compo-
nents of indoor locations such as different types of buildings
(public and privates) and different specializations of rooms (lec-
ture rooms, laboratories corridors, kitchen, etc.), and outdoor
locations such as parks, terraces, and means of transport.
� Objects. Any element subjected to possible interaction can be

considered in this category. From furniture like windows and
doors to desktop tools and devices. These devices connect to a
specific network (that provides the context), and can represent
a role such as addressee or sender devices in a given
communication.
� Actions. Actions considered are not only focused on the work

environment (setting projectors on/off, turn devices on/off,
check-in at location, etc.) but also include those that can be con-
sidered in other environments (open fridge, being observed at
location, etc.).
� Activities. Activities in the work environment include general

and specific tasks such as going to work, lectures, meetings, pre-
sentations, and writing.
� Behaviours. Behaviours can be defined for specific routines or

patterns based on actions, activities, and other environmental
conditions. For instance, it is possible to express relations of
interest including working for a certain project, being a partner,
colleague (lab, department, university), advisor, etc. Modelling
from general behaviours related with e.g., events and calendars,
to in-office activities and object interaction is a possibility.
When there is a lack of context information but there exists evi-
dence of activities happening, we may reason with UnknownUs-
er (s), UnknownLocation, UnknownActivity or UnknownBehaviour.
In these cases, other context information within the same time
frame may be crucial to help disclosing the human behaviour.

The current version of the developed ontology, validated with
the OWL reasoners HermiT 1.3.6, Pellet 2.3.0 (2.2.0 Proté.g.é
plug-in) and fuzzyDL 1.1, consists of 228 classes, 133 object proper-
ties, 62 data properties and 33 test individuals, within SROIQðDÞ
DL expressiveness. Pitfalls found in the ontology modelling process
were corrected using the OOPS! Pitfall Scanner [50]. To put an
example of behaviour definition, we can identify the actions/activ-
ities that compose it and model it with timing ordering relations.
Next, some examples show applications of use of our ontology:

Example 1 (Defining a Behaviour). The behaviour ‘‘having a coffee
break’’ can be composed by a set of actions: exiting the office, going
through the corridor to the kitchen, taking coffee if somebody
already made it or making coffee if there is not any left, and then
coming back to your office. In ontology terms, this could be
expressed with a nested hierarchy of actions and two activities,
MakeCoffee and TakeCoffee (underlined):
Please cite this article in press as: N. Díaz Rodríguez et al., A fuzzy ontology for s
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– Behaviour To have a coffee break: OpenDoor WalkBy (Corridor)
BeObservedInLocation (Kitchen) (MakeCoffee + TakeCoffee)
WalkBy (Corridor) OpenDoor.

– Activity MakeCoffee: OpenCupboard TurnCoffeeMachineOn
MoveObject (CoffeeJar) OpenFridge.

– Activity TakeCoffee: MoveObject (CoffeeJar) OpenFridge.

Fig. 7 shows the underlying state machine to recognize the
same behaviour. Activities are represented with white large nodes,
while actions are represented with small purple nodes. Activities
are, at the same time, abstractions of other state machines able
to recognize fine-grained activities. Fig. 8 shows, in more detail,
the same behaviour at action level. This hierarchical and recursive
design is useful to decompose the recognition process in smaller
ones and provide different levels of abstraction. As an example,
the activity MakeCoffee could be expressed with the following
axioms:

8 User : performsActionðUser;OpenCupboardÞ
^ performsActionðUser; TurnCoffeeMachineOnÞ
^ performsActionðUser;MoveCoffeeJarÞ
^ performsActionðUser;OpenFridgeÞ
! performsActivityðUser;MakeCoffeeÞ:

Example 2 (Defining a behaviour with OWL 2 axioms (II)). Let us
suppose we want to define a meeting with the vice-chancellor or
Rector as a special type of meeting. The concept HavingRectorMe-
eting can be defined as a meeting in any auditorium or meeting
room, which is hosting at least 10 people and someone of those
room occupants has the Rector work position. HavingRectorMeeting
will be a specialization class of Meeting; more concretely, with the
following restrictions:

HavingRectorMeeting ¼ Meeting and ðhappensInLocationsome

� ððAuditoriumorMeetingRoomÞ and

� ðisLocationFor some ðhasWorkPosition

� some RectorÞÞ and ðisHostingNPeople

� some int ½>¼ \10"^^int�Þ and

� ðhasProjector some

� ðhasDeviceStatus value OnÞÞÞÞ:
Example 3 (Defining Crisp Rules). Concrete application domain
rules can be modelled in pure OWL 2, Fuzzy OWL 2 (e.g. with Mam-
dani rules) or rule languages such as SWRL [51] or SPIN [52]. For
instance, if there is a scheduled conference for more than 25 peo-
ple, we can automatically activate the lights 10 min before the
event starts. Let L be a variable for any Location, X be an integer var-
iable, and T be a timestamp. Then the rule can be modelled as
follows:

8Meeting; Event; L;X; T : isProgrammedWithinEvent

� ðConference; EventÞ ^ isScheduledAtLocationðEvent; LÞ
� ^ hasNAttendantsðEvent;XÞ ^ X > 25

� ^ hasProgrammedStartDateTimeðEvent; TÞ
� ! atDatetimeðTurnLightsOn; ‘T � 00 : 10 : 00’Þ
� ^ lightsAtLocationðTurnLightsOn; LÞ
emantic modelling and recognition of human behaviour, Knowl. Based Syst.

http://dx.doi.org/10.1016/j.knosys.2014.04.016


Fig. 7. Underlying regular automaton to model the behaviour To have a coffee break.

Fig. 8. Underlying regular automaton (at lower-Action level) to model the behaviour To have a coffee break.
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TurnLightsOn is an example of external applications with service
grounding. They are modelled as subclasses of the Service class and
their associated data or object properties represent the application
parameters.
Example 4 (Executing Fuzzy Queries). There are several ways of
running a query. One of the aims of running a query is finding if a
rule is triggering. For instance, to determine the minimal degree to
which individual NataliasNokiaN8 is an instance of concept Phone,
we would run: (min-instance? NataliasNokiaN8 Phone). However, if
we want to know all Phone concept instances, the following query
applies the previous query to every individual in the KB: (all-
instances? Phone).

On the other hand, if we want to determine the maximal degree
to which individual pair (Natalia, JohanLiliusOffice) is an instance of
role isInLocation, this can be obtained as: (max-related? Natalia
JohanLiliusOffice isInLocation). In the opposite side, another possible
query is finding the minimal degree to which a concept A, e.g.,
VeryFullCapacity, subsumes a concept B, e.g., FullCapacity. This
query would be expressed as: (min-subs? VeryFullCapacity
FullCapacity). Optionally, an individual, as well as Lukasiewicz,
Gödel, or Kleene-Dienes implications, can be used for this type of
query [45].
Please cite this article in press as: N. Díaz Rodríguez et al., A fuzzy ontology for s
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Example 5 (Defining Fuzzy Rules). Fuzzy rules in fuzzyDL can be
expressed with the Mamdani structure or as implication rules.
These can be mapped to a set of statements in a fuzzy KB as a fuzzy
control system [45]. The definition of logical rules as Mamdani
rules is performed as follows: (define-concept MamdaniRuleBase
(g-or Rule1 (. . .) RuleN)). For example, the rule ‘‘If the User Natalia
is away for the weekend and the weather situation in Turku
becomes very stormy, all electricity appliances should be turned
off’’ can be expressed as: (define-concept Rule1 = (g-and (Natalia
(some hasStatus AwayForWeekend)) (WeatherSituationTurku (some
isCurrently VeryStormy)) (TurnOffAllElectricitySwitches (some with-
Params NataliasAppartment)))).

The input to the controller/facts can be done using the following
syntax: (instance input (= and WeatherSituationTurku (some isCur-
rently NearlyCloudy))) (instance input (= and Natalia (some hasStatus
AtWork))) (. . .).

In addition to the previous example, we may be interested in
finding the real value of a fuzzy concept when using different fuzzy
linguistic labels. This process is known as defuzzification and it can
be done with the following command for the previous rules: (defuzz-
ify-lom? MamdaniRuleBase input TurnOffAllElectricitySwitches).

Alternatively and equivalently, the definition of logical rules can
be done as implication rules instead. In this case, we show how to
emantic modelling and recognition of human behaviour, Knowl. Based Syst.
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Table 1
Fuzzy Rules 1–5.

Rule 1
description

If a person opens the kitchen cupboard to take coffee, turns the coffee machine on, holds the coffee jar, and possibly takes milk from the fridge, then
the person is making coffee

Definition (define-concept antecedent1 (g-and User (some performsAction MakeCoffee)))
(define-concept MakeCoffee (w-sum (0.1 OpenCupboard) (0.5 TurnCoffeeMachineOn) (0.3 MoveCoffeeJar) (0.1 OpenFridge)))
(define-concept consequent1 (g-and User (some performsActivity MakingCoffee)))
(define-concept Rule1 (l-implies antecedent1 consequent1))

Rule 2
description

If a meeting room has the lights on, there is a meeting going on at the room

Definition (define-concept antecedent2 (g-and MeetingRoom (some hasLights (some hasStatus ON))))
(define-concept consequent2 (g-and MeetingRoom (some hasOcupancyStatus HoldingAMeeting)))
(define-concept Rule2 (l-implies antecedent2 consequent2))

Rule 3
description

If a person makes use of a bottle, a plate, a fork, a spoon, and a knife, we have high certainty that he/she is having lunch

Definition (define-concept antecedent3 (g-and User (some performsAction Lunch)))
(define-concept Lunch (w-sum (0.1 UseBottle) (0.4 UsePlate) (0.2 UseFork) (0.2 UseSpoon) (0.1 UseKnife)))
(define-concept consequent3 (g-and User (some performsActivity HaveLunch)))
(define-concept Rule3 (l-implies antecedent3 consequent3))

Rule 4
description

If a person goes out of his/her office, passes by the corridor, opens the storage room, and takes the exercise stick, then he/she is performing a
Keppijumpa stretching exercise

Definition (define-concept antecedent4 (g-and User (some performsAction KeppijumpaStretchingExercise)))
(define-concept KeppijumpaStretchingExercise (w-sum (0.1 ExitOffice)(0.1 ExitCorridor) (0.1 OpenStorageRoom) (0.4 UseStick)))
(define-concept consequent4 (g-and User (some performsActivity DoStretching)))
(define-concept Rule4 (l-implies antecedent4 consequent4))

Rule 5
description

If a user’s phone is in a location near the office of the head of the laboratory, then the user is having a meeting with his/her supervisor

Definition (define-concept antecedent5 (g-and User (some hasPhone (some isInLocation (some isNearTo JohanLiliusOffice)))))
(define-concept consequent5 (g-and User (some performsActivity MeetingSupervisor)))
(define-concept Rule5 (l-implies antecedent5 consequent5))

7 Fuzzy Human Behaviour Ontology, rules and queries: http://users.abo.fi/ndiaz/
public/FuzzyHumanBehaviourOntology/.
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encode a rule that detects if Natalia’s phone is in a location near
Johan’s office. If this happens, it is recognized that they are having
a meeting and starts recording in her phone the agenda and tran-
scribing it from her phone to her calendar to have it into account
for the next meeting:

(define-concept antecedents (and (Natalia (some hasPhone P) (and
(Natalia (some hasCalendar C)) (and (P (some isInLocation L))) (and L
(some isVeryNearTo JohansOffice))))))

(define-concept consequents (and (StartAudioRecording (some
withParams P)) (TranscribeMeetingAgenda (some withParams (P
and C))))))

(define-concept Rule2 (l-implies (g-and antecedents) (g-and
consequents)))

The query for the consequent’ satisfiability degree could be car-
ried out with the query: (min-instance? input consequents).

4.2. Ontology validation

In this section, we show the benefits of a fuzzy ontology for
human behaviour recognition with respect to crisp approaches.
With that purpose, we define two evaluation parameters. The sca-
lability is understood as the capability of the ontology to perform
with a rule set and a reasoner to achieve activity recognition, in
reasonable execution time, for large amounts of data size (KB’ size).
The satisfiability degree (or firing accuracy of rules, 2 [0,1]) is
another parameter considered, not directly present in crisp ontol-
ogies, where either an activity is recognized or not. The satisfiabil-
ity degree influences the recognition accuracy and gives more
precise information about the certainty of having recognized cer-
tain activity happening.

Although the literature offers a wide variety of activity recogni-
tion datasets, it is rare to find them expressed in the form of
semantic ontology-based axioms. One exception is the Opportu-
nity Dataset [53], adapted to an ontological framework [54]. Their
multilevel activity ontology-based dataset is validated with ELOG
reasoner and it shows a high degree of concurrency in fine-grained
activities [54]. ELOG is a probabilistic reasoner for OWL EL, focused
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on the log-linear description logic based on EL þ þ without nomi-
nals and concrete domains (EL++�LL). It is worth noting that the
computational cost of OWL EL is much lower than for fuzzyDL.
However, this is a trade-off that makes fuzzyDL stronger due to
its SHIF expressivity, much superior to the one of OWL EL.

When dealing with uncertainty, it is important to distinguish
when probabilistic reasoning is suitable with respect to fuzzy rea-
soning. Probabilistic reasoning can model uncertainty associated to
previous experience cases. However, fuzzy reasoning can help
modelling vagueness or natural language-based descriptions,
based on knowledge representation. For instance, almost every
day Peter has muesli for breakfast. Expressions such as ‘‘almost
every day’’, ‘‘quite’’, and ‘‘little’’. could be modelled to better pre-
serve natural language when expressing rules from experts. To val-
idate our own ontology, we create a fuzzy rule KB for human
activity recognition with concepts and relationships. In addition,
for more complex queries, based on triple patterns such as in stan-
dard SPARQL queries, a mapping can be seen in [55] between triple
pattern queries (s, p, o) and fuzzyDL queries. E.g. for queries with
wildcards such as, e.g., (?, p, o), the following fuzzyDL query could
be used to find the minimal degree of satisfiability for that given
predicate form:

If D 2 p. Domain: 8 Individual i 2 D: (min-related? i o p).
For these reasons, as we require a fuzzy reasoner due to seman-

tics, we cannot reuse existing datasets and therefore, we designed
our own set of rules for fuzzyDL 2.04 (using Gurobi optimizer 5.0.2).

The rules we used for the ontology validation experiment are
shown in Tables 1 and 2, but the whole file with fuzzyDL instances
and other definitions and queries is available online together with
the ontology.7 Additional information about the fuzzyDL syntax may
be found in http://gaia.isti.cnr.it/straccia/software/fuzzyDL/
fuzzyDL.html.

The goal of our experiment is to verify that fuzzy ontologies can
outperform crisp ontologies in human behaviour recognition. Thus,
emantic modelling and recognition of human behaviour, Knowl. Based Syst.
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Table 2
Fuzzy Rules 6–8.

Properties for Rules 6,
7, 8

Fuzzy properties for representing the personal average sleep quality in number of sleeping h/day, average number of steps walked per day, and
overall immune-defense level for overall health in a integer scale of [0, 10]

Definition (functional hasAvgSleepQuality)
(functional didAvgNSteps)
(functional hasImmuneDefenseLevel)
(range hasAvgSleepQuality ⁄real⁄ 0.0 20.0)
(range didAvgNSteps ⁄integer⁄ 0 50000)
(range hasImmuneDefenseLevel ⁄integer⁄ 0 10)
(define-fuzzy-concept lowImmuneDefenseLevel left-shoulder (0, 10, 0, 5))
(define-fuzzy-concept badSleepQuality left-shoulder (0.0, 20, 4.0, 5.0))
(define-fuzzy-concept highNSteps right-shoulder (0, 50000, 7000, 10000))
(define-fuzzy-concept lowNSteps left-shoulder (0, 50000, 2000, 2500))

Rule 6 description If sleep quality is very bad and pedometer-based step counter measures a low number and stress is high, then immune-defense is low (having a
coffee break may be recommended)

Definition (define-concept antecedent6 (g-and (some hasAvgSleepQuality badSleepQuality) (some didAvgNSteps highNSteps)))
(define-concept consequent6 (g-and User (some hasImmuneDefenseLevel lowImmuneDefenseLevel)))

Rule 7 description Analoge to Rule 6 but caused when the person is not having enough exercise
Definition (define-concept antecedent7 (g-and (some hasAvgSleepQuality badSleepQuality) (some didAvgNSteps lowNSteps)))

(define-concept consequent7 (g-and User (some hasImmuneDefenseLevel lowImmuneDefenseLevel)))

Rule 8 description A disjunction among two previously defined rules
Definition (define-concept Rule8 (g-or Rule6 Rule7))

Table 3
Fuzzy queries.

Description Code

Query 1 (min-instance? Victor (some performsActivity
MakingCoffee))

Query 2 (min-instance? ADARoom (some
hasOcupancyStatus HoldingAMeeting))

Query 3 (min-instance? Robin (some performsActivity
HaveLunch))

Query 4 (min-instance? Natalia (some performsActivity
DoStretching))

Query 5 (min-instance? Ana (some performsActivity
MeetingSupervisor))

Query 6 (min-instance? facts Rule6)
Query 7 (min-instance? facts Rule7)
Query 8 (define-concept Rule8 (g-or Rule6 Rule7))

(min-instance? facts Rule8)
fuzzyDL Facts for queries

6, 7 and 8
(instance facts (= hasAvgSleepQuality 3) 0.7)

(instance facts (= didAvgNSteps 19000))
(instance Facts 1 (= hasAvgSleepQuality 4) 0.2)
(instance Facts 1 (= didAvgNSteps 2000) 0.9)

Table 4
Degree of satisfiability for crisp VS fuzzy (equivalent) human behaviour rules. In crisp
case, 0 = No firing; 1 = Firing.

Query Crisp answer Fuzzy answer

Query 1 0 0.1
Query 2 0 0.5
Query 3 0 0.4
Query 4 0 0.4
Query 5 0 0.8
Query 6 0 0.0
Query 7 1 1.0
Query 8 1 1.0

Firing accuracy 37.5% 100%
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for the test, we created 8 implicative rules that were applied over
the fuzzy approach and its corresponding crisp ontology. Rules 1–5
test flexibility in the sense that skipping some actions does not pre-
vent the recognition of a behaviour. These rules were designed
with the aim of giving different weights to certain actions within
an activity, so that weights can strengthen the importance of the
different actions that compose an activity to finally give an overall
degree of satisfiability. On the other hand, rules 6, 7, and 8 use
fuzzy membership functions such as the following:

(define-fuzzy-concept lowImmuneDefenseLevelCrisp left-shoulder
(0, 10, 0, 5))
(define-fuzzy-concept badSleepQualityCrisp left-shoulder (0.0, 20,
4.0, 5.0))
(define-fuzzy-concept highNStepsCrisp right-shoulder (0, 50000,
7000, 10000))
(define-fuzzy-concept lowNSteps left-shoulder (0, 50000, 2000,
2500))

To transform these fuzzy concepts to the crisp case, thresholds
need to be taken from the membership functions above and then
hard-coded to work as thresholds as shown by the next lines:

(instance lowImmuneDefenseLevelCrisp ImmuneDefenseLevel)
(define-concept antecedent6 (and (>= hasAvgSleepQuality 5)
(>= didAvgNSteps 7000)))
(define-concept consequent6 (and User (some hasImmuneDefense-
Level lowImmuneDefenseLevelCrisp)))

This rule formulation for the crisp case shows more limitations
in expressivity and further reasoning than the fuzzy approach,
since the formulation of the rule above would not allow linguistic
variables for further imprecise queries of the type (all-instances?
(some hasImmuneDefenseLevel lowImmuneDefenseLevel)).

After creating the set of rules, we instantiated individuals and
formulated queries 1–8 in Table 3, to verify the triggering of rules
1–8, respectively. All queries were designed so that they should fire
(in fuzzy case, to certain degree), except rule 6, that is made to not
fire at all. On the fuzzy case, we assume that the firing of a rule to
detect a behaviour is subject to an activity/behaviour-dependent
threshold. For the sake of simplicity, in Table 4, we considered as
fired those rules whose answer had a degree of satisfiability larger
than zero.
Please cite this article in press as: N. Díaz Rodríguez et al., A fuzzy ontology for s
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This experiment helps us to verify the expressiveness power
and practical implications of fuzzy ontologies with respect to crisp
approaches. In Table 4, none of the rules fires except rules 7 and 8
for the crisp case. On the other hand, all rules except rule 6 fire in
the fuzzy case, with a degree of truth or certainty. An example is
rule 4: Here, KeppijumpaStretchingExercise is a concept that is the
emantic modelling and recognition of human behaviour, Knowl. Based Syst.
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Table 5
Average execution time (in s) for each rule (fuzzy and crisp) in different Knowledge Base (KB) sizes in number of individuals/instances (User).

Crisp and fuzzy query KB size = 100 KB size = 1000 KB size = 10000 KB size = 100000

Crisp Q1 0.0754 0.1688 3.2986 911.222
Crisp Q2 0.074 0.1656 3.0992 962.054
Crisp Q3 0.0752 0.1622 3.3778 984.197
Crisp Q4 0.0752 0.1606 3.2124 1071.07
Crisp Q5 0.0778 0.1656 3.3284 1076.05
Crisp Q6 0.0834 0.156 3.2374 1001.38
Crisp Q7 0.078 0.1656 3.0688 1021.18
Crisp Q8 0.078 0.1626 3.2016 1082.07

Fuzzy Q1 0.0846 0.172 3.1594 800.31
Fuzzy Q2 0.078 0.1626 3.2844 1008.21
Fuzzy Q3 0.0814 0.1626 3.5488 1025.97
Fuzzy Q4 0.078 0.1656 3.4594 912.07
Fuzzy Q5 0.0782 0.175 3.3816 1138.75
Fuzzy Q6 0.0812 0.175 3.5252 1128.29
Fuzzy Q7 0.0782 0.1812 3.3534 978.135
Fuzzy Q8 0.0876 0.1814 3.7248 1078.7138
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weighted sum of the concepts it is composed of. In this case, if the
instance Natalia performs the actions going out of her office, exit-
ing the corridor, opening the storage room and using the exercise
stick, we can recognize that she did the stretching exercise session.
This is expressed in fuzzyDL as follows:

(related Natalia exitOffice performsAction 0.6)
(related Natalia exitCorridor performsAction 1.0)
(related Natalia openStorageRoom performsAction 1.0)
(related Natalia useStick performsAction 1.0)

In the crisp case, if for any reason, one of these actions is not
detected, the activity DoStretching is not recognized, as Table 4
shows. However, the fuzzy approach still fires the rule with a cer-
tainty degree value lower than 1. To implement this behaviour in
the crisp ontology, we need to establish a threshold criteria for
each fact, behaviour, or object to be considered in the case that
the certainty of a fact is not 1, so that the rules can fire. This may
be done manually or using optimization techniques such as genetic
or evolutionary algorithms. This is part of future work directions
on specific domain scenarios where threshold values need to be
tuned and optimized accordingly. However, a fuzzy approach deals
with uncertainty and eases the management of these situations.
Thus, we may conclude that fuzzy ontologies can provide improve-
ments in expressivity with respect to the crisp cases, but also in
performance due to their power to manage uncertainty.

Having shown the benefits of fuzzy ontologies over crisp ones,
in modelling human behaviour, we are also interested in evaluat-
ing if our approach scales to large sizes of Knowledge Bases. With
this purpose, we measured execution times for queries 1–8. We
implemented the equivalent set of crisp queries in fuzzyDL as well,
to evaluate performance and recognition accuracy and to better
assess the rules’ scalability factor in practice. Both fuzzy and crisp
experiments can be compared in Table 5, and the differences
among average times of our 8-query dataset can be seen in Table 6.
We must notice that execution time does not vary substantially for
Table 6
Average execution time differences (in s) for the 8 queries (fuzzy and crisp) dataset
and different Knowledge Base (KB) sizes in number of individuals/instances (User).

KB size in number of
individuals (Users)

Average query running time (s)
difference (fuzzy–crisp)

Standard
deviation

102 0.0038 0.0047

103 0.0086 0.0086

104 0.2016 0.205

105 �4.8468 128.8485
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fuzzy queries with respect to crisp queries. However, a larger
increase in average time occurs when we enlarge the KB dataset
to at least 105 instances in both crisp and fuzzy cases. In the fuzzy
case, query average response time goes to the order of up to
vð13� 16Þ minutes. We are aware that this delay may be too long
if the purpose is to notify about safety–critical activities. Therefore,
in the future, we will focus on prioritizing the detection of critical
activities so that the current reaction time obtained can decrease.

It is important to note that, although KBs of size 105 impose a
considerable increase of execution time with respect to KBs of size
104 (from orders of about 300 times more), this is not significant
due to the comparison with respect to crisp reasoning in KBs of
the same size. In fact, importantly enough, for KB sizes of 105

instances, some queries are faster in the fuzzy case than in the
crisp one. FuzzyDL internal reasoning tableau algorithm optimiza-
tions for large numbers of axioms/instances, Java virtual memory
swapping or cache memory functioning seem to be implementa-
tion-related reasons for this phenomenon to happen. In any case,
it is worth mentioning that all times were measured when running
each query isolated and independently from others. This is to make
queries comparable, since once a first query has been answered,
the rest of queries take much less time due to the reuse of the
internal graph model already built. As conclusion, we can affirm
that fuzzy ontology-reasoning for activity recognition is scalable.

Both crisp and fuzzy experiments, measuring query running
time in seconds, were run on an Intel(R) Core i7-4500@1.80 GHZ
2.40 GHZ, 8 GB RAM 64-bit and Windows 8.1. A limitation of fuzz-
yDL is the maximum number of individuals allowed (maxIndividu-
als = 1000000000). Nevertheless, a KB of size = 106 was not
handled by Java memory.

As a final remark, and considering future larger data size sce-
narios, we believe on the potential of combining the use of a
crisp-fuzzy hybrid architecture approach of KBs for performance
and scaling reasons. This would allow advantages of both para-
digms to be fully exploited (see further discussion in [55]).

5. Conclusions and future work

Knowledge-based techniques, such as ontology-based activity
modelling, add a set of advantages for incremental and context-
aware recognition. It is a suitable approach to achieve interopera-
bility, abstraction, and modularity in an easier way. However, some
expressiveness limitations in OWL DL are also found related with
the lack of support for temporal reasoning [35] and often, an
external rule engine is used to express more complex modelling.
A set of ontologies for human activity modelling has been created
in the recent past [4] which is able to deal with different context
emantic modelling and recognition of human behaviour, Knowl. Based Syst.
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information. The proposal in this work shows a set of advantages in
respect to the existing ones. The main contribution is the support
to model and treat uncertain, incomplete, vague, or imprecise
information, therefore easing the modelling of more flexible mod-
els as well as allowing incomplete but real-life queries. For
instance, we may want to get notifications the days when a certain
office has ‘‘very high’’ temperatures, or we may want to know at
what time window our work’s restaurant is least crowded. When
exact numbers are not known or they are not relevant to get a fast
answer, imprecise knowledge eases the task of information retrie-
val. In addition, we demonstrate that fuzzy ontologies may be
more realistic and provide better accuracy for human behaviour
recognition than crisp ontologies. In the experimental section, we
show that if facts are not completely true, crisp rules cannot fire,
while a fuzzy approach fires them with a satisfiability or certainty
degree. Solving this situation in crisp solutions would require a
continuous threshold management that would make the problem
more complex, while fuzzy systems deal with this type of situa-
tions in a natural way. Apart from being more accurate, we also
showed that the fuzzy approach is scalable for larger sizes of KBs.

Furthermore, varied (from fine to coarse-grained) levels of
abstraction are provided to identify atomic actions, activities com-
posed by actions, and behaviours comprised by an aggregation of
the latter two. Recursion, for more flexible and scalable modelling,
is also allowed at activity and behaviour levels. A behaviour can be
customized and associated to a unique user, user group, or certain
type of action, activity, or context dependence. Our ontology is
applied to human behaviour recognition in the office and public
buildings domain, but is easily expandable to other domains. Since
we provide different granularity levels of activities, incremental
context acquisition – typical of ontology-based reasoning – is sup-
ported and made easier to abstract behaviours. Likewise, this
results on a precise and accurate definition of activities. We pro-
vide not only knowledge engineering for dealing with uncertainty,
but we also allow for modelling activities where its actors or loca-
tions where they take place are unknown. These conditions allow,
in this way, more realistic settings and also, more abstract and dif-
ferent group activities.

After experimenting with a real life and complex enough ontol-
ogy, we can affirm that there is a need for more complete fuzzy
reasoners that can handle real-time notifications (such as a sub-
scription mechanism as in e.g. M3 RDF store [56]) to avoid bottle-
necks with constant querying. This does not occlude fuzzyDL’s
potential and the fact that it has shown to be successful in diverse
domains. In our presented case study, modelling rules in fuzzyDL
also showed some challenges. As fuzzyDL does not allow yet to
express implication rules where the subject in a triple (s,p,o) is a
concrete individual, our experiment focused on general rules for
individuals of a given class C that acts as the subject of the query.
In the future, we expect to have more efficient ways of concreting
the rule so that it can specifically apply to unique instances/indi-
viduals so as to achieve a proper rule personalization. At the
moment, three workarounds solve this situation. a) An extra class
(e.g. NataliaClass concept) can be created for each rule we want it
to affect solely to a concrete individual (e.g. individual Natalia from
class User). This makes explicit, by naming a class with an individ-
ual’s name, that rule should only apply to the given individual. b)
The firing of the rule for a given individual can be detected by first
instantiating the individual of interest (in this case Natalia) as an
instance of that rule (e.g., Rule 4): ((instance Natalia Rule4). This
step is required to give a correct answer in the second step. Sec-
ondly, a rule firing can be detected by querying the degree of sat-
isfiability of individual Natalia satisfying Rule 4. This is done by
querying for Natalia being an instance of the rule’s consequent (this
applies to a given moment, i.e. state of the KB). E.g.: (min-instance?
Natalia (some performsActivity DoStretching)). c) It is also possible to
Please cite this article in press as: N. Díaz Rodríguez et al., A fuzzy ontology for s
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find all individuals satisfying a given rule by querying: (all-
instances? Rule4) after having instantiated all individuals that we
want the rule to apply to (as in step b). E.g.: (instance Natalia Rule4).

Although the novelty of our ontology is to overcome the prob-
lems of existing proposals which are unable to model uncertainty,
the limitations are those common problems of ontology-based
modelling on complex behaviours. This is because ontology-based
modelling may not overcome performance as its most characteris-
tic feature and definitions can seem unnatural at times [35]. There-
fore, future works should consider these aspects more specifically
and improve fuzzy ontology modelling real human interaction, as
well as interfaces for end-users. One possible solution would be
to create hybrid approaches involving data-driven techniques
and fuzzy ontologies for human behaviour recognition as a next
step in our research. Another future direction to explore is model-
ling and detecting human behaviour changes. Using learning
instance matching, i.e., (data level, non-schema) ontology mapping
for new data integration [57], could be an approach towards auto-
mating the evolution or learning of behaviour changes.
Acknowledgments

This work was funded by TUCS (Turku Centre for Computer Sci-
ence), Hans Bang Foundation, Finnish Cultural Foundation, Nokia
Foundation, CIE BioTIC Project CEI2013-P-3, and Project TIN2012-
30939 from National I + D Research Program (Spain). We also
thank Fernando Bobillo and Robin Wikström for their advice with
FuzzyOWL and fuzzyDL tools.
References

[1] R. Casas, R. Blasco Marín, A. Robinet, A.R. Delgado, A.R. Yarza, J. Mcginn, R.
Picking, V. Grout, User modelling in ambient intelligence for elderly and
disabled people, in: Proceedings of the 11th International Conference on
Computers Helping People with Special Needs, ICCHP ’08, Springer-Verlag,
Berlin, Heidelberg, 2008, pp. 114–122. http://dx.doi.org/10.1007/978-3-540-
70540-615.

[2] L. Chen, C. Nugent, M. Mulvenna, D. Finlay, X. Hong, Semantic smart homes:
towards knowledge rich assisted living environments, in: S. McClean, P.
Millard, E. El-Darzi, C. Nugent (Eds.), Intelligent Patient Management, Studies
in Computational Intelligence, vol. 189, Springer, Berlin, Heidelberg, 2009, pp.
279–296. http://dx.doi.org/10.1007/978-3-642-00179-6_17.

[3] L. Chen, C.D. Nugent, Ontology-based activity recognition in intelligent
pervasive environments, Int. J. Web Inform. Syst. (IJWIS) 5 (4) (2009) 410–430.

[4] N. Díaz Rodríguez, M.P. Cuéllar, J. Lilius, M.D. Calvo-Flores, A survey on
ontologies for human behavior recognition, ACM Comput. Surv. 46 (4) (2014)
43:1–43:33. http://doi.acm.org/10.1145/2523819.

[5] R. Kowalski, M. Sergot, A logic-based calculus of events, New Gen. Comput. 4
(1) (1986) 67–95. http://dx.doi.org/10.1007/BF03037383.

[6] F. Doctor, H. Hagras, V. Callaghan, A fuzzy embedded agent-based approach for
realizing ambient intelligence in intelligent inhabited environments, IEEE
Trans. Syst. Man Cybern. Part A 35 (1) (2005) 55–65.

[7] H. Hagras, V. Callaghan, M. Colley, G. Clarke, A. Pounds-Cornish, H. Duman,
Creating an ambient-intelligence environment using embedded agents, Intell.
Syst. IEEE 19 (6) (2004) 12–20.

[8] D. Riboni, C. Bettini, OWL 2 modeling and reasoning with complex human
activities, Pervasive Mob. Comput. 7 (3) (2011) 379–395. http://dx.doi.org/
10.1016/j.pmcj.2011.02.001.

[9] L. Chen, C. Nugent, M. Mulvenna, D. Finlay, X. Hong, M. Poland, Using event
calculus for behaviour reasoning and assistance in a smart home, in: S. Helal,
S. Mitra, J. Wong, C. Chang, M. Mokhtari (Eds.), Smart Homes and Health
Telematics, Lecture Notes in Computer Science, vol. 5120, Springer, Berlin,
Heidelberg, 2008, pp. 81–89. http://dx.doi.org/10.1007/978-3-540-69916-
3_10.

[10] X. Hong, C. Nugent, M. Mulvenna, S. McClean, B. Scotney, S. Devlin, Evidential
fusion of sensor data for activity recognition in smart homes, Pervasive Mob.
Comput. 5 (3) (2009) 236–252, http://dx.doi.org/10.1016/j.pmcj.2008.05.002.
Pervasive Health and Wellness Management. <http://www.sciencedirect.com/
science/article/pii/S157411920800045X>.

[11] G. Villarrubia, A. Sánchez, I. Barri, E. Rubión, A. Fernández, C. Rebate, J.A. Cabo,
T. álamos, J. Sanz, J. Seco, C. Zato, J. Bajo, S. Rodríguez, J. Corchado, Proximity
detection prototype adapted to a work environment, in: P. Novais, K.
Hallenborg, D.I. Tapia, J.M.C. Rodríguez (Eds.), Ambient Intelligence –
Software and Applications, Advances in Intelligent and Soft Computing, vol.
153, Springer, Berlin, Heidelberg, 2012, pp. 51–58. http://dx.doi.org/10.1007/
978-3-642-28783-1_7.
emantic modelling and recognition of human behaviour, Knowl. Based Syst.

http://dx.doi.org/10.1007/978-3-540-70540-615
http://dx.doi.org/10.1007/978-3-540-70540-615
http://dx.doi.org/10.1007/978-3-642-00179-6_17
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0145
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0145
http://doi.acm.org/10.1145/2523819
http://dx.doi.org/10.1007/BF03037383
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0160
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0160
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0160
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0165
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0165
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0165
http://dx.doi.org/10.1016/j.pmcj.2011.02.001
http://dx.doi.org/10.1016/j.pmcj.2011.02.001
http://dx.doi.org/10.1007/978-3-540-69916-3_10
http://dx.doi.org/10.1007/978-3-540-69916-3_10
http://dx.doi.org/10.1016/j.pmcj.2008.05.002
http://www.sciencedirect.com/science/article/pii/S157411920800045X
http://www.sciencedirect.com/science/article/pii/S157411920800045X
http://dx.doi.org/10.1007/978-3-642-28783-1_7
http://dx.doi.org/10.1007/978-3-642-28783-1_7
http://dx.doi.org/10.1016/j.knosys.2014.04.016


N. Díaz Rodríguez et al. / Knowledge-Based Systems xxx (2014) xxx–xxx 15
[12] A. Adler, R. Davis, Speech and sketching for multimodal design, in: Proceedings
of the 9th International Conference on Intelligent User Interfaces, 2004, pp.
214–216.

[13] V. Stanford, Infrastructure for distributed and embedded systems and
interfaces, in: Proceedings of the Embedded Systems, Ambient Intelligence
and Smart Surroundings Conference, 2005.

[14] C.L. Gal, Smart offices, in: Smart Environments: Technology, Protocols, and
Applications, first ed., Wiley Series on Parallel and Distributed Computing,
Wiley, 2004.

[15] M. Stoettinger, Context-Awareness in Industrial Environments, 2004.
<www.mobile-safety.com>.

[16] W. Shen, S. Lang, L. Wang, iShopFloor: an internet-enabled agent-based
intelligent shop floor, IEEE Trans. Syst. Man Cybern. Part C 35 (3) (2005) 371–
381.

[17] H. Chen, T. Finin, A. Joshi, Semantic web in a pervasive context-aware
architecture, in: Artificial Intelligence in Mobile System (AIMS 2003), In
conjunction with UBICOMP, 2003, pp. 33–40.

[18] A. D’Elia, L. Roffia, G. Zamagni, F. Vergari, P. Bellavista, A. Toninelli, S.
Mattarozzi, Smart applications for the maintenance of large buildings: how to
achieve ontology-based interoperability at the information level, in: IEEE
Symposium on Computers and Communications (ISCC), 2010, pp. 1077–1082.
http://dx.doi.org/10.1109/ISCC.2010.5546639.

[19] H. Chen, T. Finin, A. Joshi, L. Kagal, F. Perich, D. Chakraborty, Intelligent agents
meet the semantic web in smart spaces, IEEE Internet Comput. 8 (6) (2004)
69–79.

[20] H. Chen, T. Finin, A. Joshi, An Ontology for context-aware pervasive computing
environments, in: Proceedings of the Workshop on Ontologies in Agent
Systems, 2003.

[21] G. Marreiros, R. Santos, C. Ramos, J. Neves, P. Novais, J. Machado, J. Bulas-Cruz,
Ambient intelligence in emotion based ubiquitous decision making, in:
Proceedings of the Second Workshop on Artificial Intelligence Techniques for
Ambient Intelligence, 2007, pp. 86–91.

[22] A. Fox, B. Johanson, P. Hanrahan, T. Winograd, Integrating information
appliances into an interactive space, IEEE Comput. Graph. Appl. 20 (3)
(2000) 54–65.

[23] D. Riboni, L. Pareschi, L. Radaelli, C. Bettini, Is ontology-based activity
recognition really effective?, in: PerCom Workshops, 2011, pp. 427–431.

[24] L. Peña, Identity, fuzziness and noncontradiction, Nous 18 (2) (1984) 227–259.
[25] E. Sanchez, T. Yamanoi, Fuzzy Ontologies for the Semantic Web, Flexible Query

Answering Systems, 2006, pp. 691-699.
[26] A. Pakonen, T. Tommila, J. Hirvonen, A fuzzy ontology based approach for

mobilising industrial plant knowledge, in: IEEE Conference on Emerging
Technologies and Factory Automation (ETFA), 2010, pp. 1–8. http://dx.doi.org/
10.1109/ETFA.2010.5641200.

[27] O. Corcho, M. Fernández-López, A. Gómez-Pérez, Methodologies, tools and
languages for building ontologies: where is their meeting point?, Data Knowl
Eng. 46 (1) (2003) 41–64. http://dx.doi.org/10.1016/S0169-023X(02)00195-7.

[28] W.N. Borst, Construction of Engineering Ontologies for Knowledge Sharing and
Reuse, Ph.D. Thesis, Institute for Telematica and Information Technology,
University of Twente, Enschede, The Netherlands, 1997.

[29] F. Bobillo, Managing Vagueness in Ontologies, Ph.D. Thesis, University of
Granada, Spain, 2008.

[30] K. Amailef, J. Lu, Ontology-supported case-based reasoning approach for
intelligent m-government emergency response services, Decis. Support Syst.
55 (1) (2013) 79–97. http://dx.doi.org/10.1016/j.dss.2012.12.034. <http://
www.sciencedirect.com/science/article/pii/S0167923613000043>.

[31] C.-L. Liu, H.-L. Yang, Applying ontology-based blog to detect information
system post-development change requests conflicts, Inform. Syst. Front. 14 (5)
(2012) 1019–1032. http://dx.doi.org/10.1007/s10796-011-9314-0.

[32] L.L. Chen, J. Biswas, Tutorial: an introduction to ontology-based activity
recognition, in: Proceedings of the 7th International Conference on Mobile
Computing and Multimedia (MoMM2009). <http://www.iiwas.org/
conferences/iiwas2009/doc/Tutorial_LukeChen.pdf>.

[33] M. Baldauf, S. Dustdar, F. Rosenberg, A survey on context-aware systems,
International Journal of Ad Hoc and Ubiquitous Computing, vol. 2, Inderscience
Publishers, Geneva, Switzerland, 2007. http://dx.doi.org/10.1504/
IJAHUC.2007.014070.

[34] M. Saleemi, N. Díaz Rodríguez, J. Lilius, I. Porres, A framework for context-
aware applications for smart spaces, in: S. Balandin, Y. Koucheryavi, H. Hu
(Eds.), ruSMART 2011: The 4th Conference on Smart Spaces, 2011, LNCS, St.
Petersburg, 2011, pp. 14–25. <http://www.springerlink.com/content/
d8618k217710th32/>.

[35] D. Riboni, C. Bettini, COSAR: hybrid reasoning for context-aware activity
recognition, Pers. Ubiquitous Comput. 15 (3) (2011) 271–289.

[36] B. Krose, van T. Kasteren, C. Gibson, van den T. Dool, CARE: context awareness
in residences for elderly, in: Proceedings of ISG’08: The 6th International
Conference of the International Society for Gerontechnology, 2008, pp. 101–
105.
Please cite this article in press as: N. Díaz Rodríguez et al., A fuzzy ontology for s
(2014), http://dx.doi.org/10.1016/j.knosys.2014.04.016
[37] J. Gómez-Romero, M.A. Patricio, J. García, J.M. Molina, Ontology-based context
representation and reasoning for object tracking and scene interpretation in
video, Expert Syst. Appl. 38 (6) (2011) 7494–7510. http://dx.doi.org/10.1016/
j.eswa.2010.12.118.

[38] D. Preuveneers, J.V.D. Bergh, D. Wagelaar, A. Georges, P. Rigole, T. Clerckx, E.
Berbers, K. Coninx, K.D. Bosschere, Towards an extensible context ontology for
ambient intelligence, in: Proceedings of the Second European Symposium on
Ambient Intelligence, Springer-Verlag, 2004, pp. 148–159.

[39] J. Cantera-Fonseca, R. Lewis, Delivery Context Ontology. W3C Working Draft,
June 2009.

[40] H. Chen, T. Finin, A. Joshi, The SOUPA ontology for pervasive computing, in: V.
Tamma, S. Cranefield, T. Finin, S. Willmott (Eds.), Ontologies for Agents: Theory
and Experiences, Whitestein Series in Software Agent Technologies,
Birkhäuser Basel, 2005, pp. 233–258. http://dx.doi.org/10.1007/3-7643-
7361-X_10.

[41] M. Poveda-Villalón, M.C. Suárez-Figueroa, R. García-Castro, A. Gómez-Pérez, A
context ontology for mobile environments, in: Proceedings of Workshop on
Context, Information and Ontologies – CIAO 2010 Co-located with EKAW 2010,
vol. 626, CEUR-WS, Germany, 2010. <http://oa.upm.es/5414/>.

[42] X.H.Wang, D. Zhang, T. Gu, H. Pung, Ontology based context modeling and
reasoning using OWL, in: Workshop Proceedings of the 2nd IEEE Conference
on Pervasive Computing and Communications, 2004.

[43] R. Hervás, J. Bravo, J. Fontecha, A context model based on ontological
languages: a proposal for information visualization, J. Univ. Comput. Sci. 16
(12) (2010) 1539–1555. <http://www.jucs.org/jucs_16_12/
a_context_model_based>.

[44] S.S. Yau, J. Liu, Hierarchical situation modeling and reasoning for pervasive
computing, in: Proceedings of the Fourth IEEE Workshop on Software
Technologies for Future Embedded and Ubiquitous Systems, and the Second
International Workshop on Collaborative Computing, Integration, and
Assurance, SEUS-WCCIA ’06, IEEE Computer Society, Washington, DC, USA,
2006, pp. 5–10. http://dx.doi.org/10.1109/SEUS-WCCIA.2006.25.

[45] F. Bobillo, U. Straccia, fuzzyDL: an expressive fuzzy description logic reasoner,
in: 2008 International Conference on Fuzzy Systems (FUZZ-08), IEEE Computer
Society, 2008, pp. 923–930.

[46] F. Bobillo, U. Straccia, Fuzzy ontology representation using OWL 2, Int. J.
Approx. Reason. 52 (7) (2011) 1073–1094. http://dx.doi.org/10.1016/
j.ijar.2011.05.003.

[47] J. Hirvonen, T. Tommila, A. Pakonen, C. Carlsson, M. Fedrizzi, R. Fullér, Fuzzy
keyword ontology for annotating and searching event reports, in: KEOD, 2010,
pp. 251–256.

[48] F. Bobillo, M. Delgado, J. Gómez-Romero, DeLorean: a reasoner for fuzzy OWL
2, Expert Syst. Appl. 39 (1) (2012) 258–272, http://dx.doi.org/10.1016/
j.eswa.2011.07.016. <http://www.sciencedirect.com/science/article/pii/
S095741741100978X>.

[49] M.C. Suárez-Figueroa, K. Dellschaft, E. Montiel-Ponsoda, B. Villazón-Terrazas,
Z. Yufei, G.A. de Cea, A. García, M. Fernández-López, A. Gómez-Pérez, M.
Espinoza, M. Sabou, NeOn Deliverable d5.4.1. NeOn Methodology for Building
Contextualized Ontology Networks. NeOn Project, 2008. <http://
www.neonproject.org>.

[50] M. Poveda-Villalón, M. Suárez-Figueroa, A. Gómez-Pérez, Validating ontologies
with OOPS!, in: A. Teije, J. Völker, S. Handschuh, H. Stuckenschmidt, M.
d’Acquin, A. Nikolov, N. Aussenac-Gilles, N. Hernandez (Eds.), Knowledge
Engineering and Knowledge Management, Lecture Notes in Computer Science,
vol. 7603, Springer, Berlin, Heidelberg, 2012, pp. 267–281. http://dx.doi.org/
10.1007/978-3-642-33876-2_24.

[51] SWRL: A Semantic Web Rule Language Combining OWL and RuleML. <http://
www.w3.org/submission/swrl/>.

[52] SPIN. <http://www.spinrdf.org/>.
[53] P. Lukowicz, G. Pirkl, D. Bannach, F. Wagner, A. Calatroni, K. Förster, T.

Holleczek, M. Rossi, D. Roggen, G. Tröster, J. Doppler, C. Holzmann, A. Riener, A.
Ferscha, R. Chavarriaga, Recording a complex, multi modal activity data set for
context recogntion, in: Workshop on Context-Systems Design, Evaluation and
Optimisation at ARCS, 2010. <http://www.duslab.de/cosdeo/>.

[54] R. Helaoui, D. Riboni, H. Stuckenschmidt, A probabilistic ontological
framework for the recognition of multilevel human activities, in:
Proceedings of the 2013 ACM International Joint Conference on Pervasive
and Ubiquitous Computing, UbiComp ’13, ACM, New York, NY, USA, 2013, pp.
345–354. http://doi.acm.org/10.1145/2493432.2493501.

[55] N. Díaz Rodríguez, J. Lilius, M.P. Cuéllar, M. Delgado Calvo-Flores, An approach
to improve semantics in smart spaces using reactive fuzzy rules, in: W.
Pedrycz, M.Z. Reformat (Eds.), IFSA World Congress – NAFIPS Annual Meeting
(IFSA/NAFIPS), IEEE, Edmonton, Canada, 2013, pp. 436–441.

[56] J. Honkola, H. Laine, R. Brown, O. Tyrkkö, Smart-M3 Interoperability Platform
Release, October 2009. <http://sourceforge.net/projects/smart-m3/>.

[57] C. Wang, J. Lu, G. Zhang, Integration of ontology data through learning instance
matching, in: IEEE/WIC/ACM International Conference on Web Intelligence,
2006. WI, 2006, pp. 536–539. http://dx.doi.org/10.1109/WI.2006.100.
emantic modelling and recognition of human behaviour, Knowl. Based Syst.

http://refhub.elsevier.com/S0950-7051(14)00138-5/h0190
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0190
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0190
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0190
http://www.mobile-safety.com
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0195
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0195
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0195
http://dx.doi.org/10.1109/ISCC.2010.5546639
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0200
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0200
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0200
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0205
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0205
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0205
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0210
http://dx.doi.org/10.1109/ETFA.2010.5641200
http://dx.doi.org/10.1109/ETFA.2010.5641200
http://dx.doi.org/10.1016/S0169-023X(02)00195-7
http://www.sciencedirect.com/science/article/pii/S0167923613000043
http://www.sciencedirect.com/science/article/pii/S0167923613000043
http://dx.doi.org/10.1007/s10796-011-9314-0
http://www.iiwas.org/conferences/iiwas2009/doc/Tutorial_LukeChen.pdf
http://www.iiwas.org/conferences/iiwas2009/doc/Tutorial_LukeChen.pdf
http://dx.doi.org/10.1504/IJAHUC.2007.014070
http://dx.doi.org/10.1504/IJAHUC.2007.014070
http://www.springerlink.com/content/d8618k217710th32/
http://www.springerlink.com/content/d8618k217710th32/
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0235
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0235
http://dx.doi.org/10.1016/j.eswa.2010.12.118
http://dx.doi.org/10.1016/j.eswa.2010.12.118
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0245
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0245
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0245
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0245
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0245
http://dx.doi.org/10.1007/3-7643-7361-X_10
http://dx.doi.org/10.1007/3-7643-7361-X_10
http://oa.upm.es/5414/
http://www.jucs.org/jucs_16_12/a_context_model_based
http://www.jucs.org/jucs_16_12/a_context_model_based
http://dx.doi.org/10.1109/SEUS-WCCIA.2006.25
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0260
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0260
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0260
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0260
http://dx.doi.org/10.1016/j.ijar.2011.05.003
http://dx.doi.org/10.1016/j.ijar.2011.05.003
http://dx.doi.org/10.1016/j.eswa.2011.07.016
http://dx.doi.org/10.1016/j.eswa.2011.07.016
http://www.sciencedirect.com/science/article/pii/S095741741100978X
http://www.sciencedirect.com/science/article/pii/S095741741100978X
http://www.neonproject.org
http://www.neonproject.org
http://dx.doi.org/10.1007/978-3-642-33876-2_24
http://dx.doi.org/10.1007/978-3-642-33876-2_24
http://www.w3.org/submission/swrl/
http://www.w3.org/submission/swrl/
http://www.duslab.de/cosdeo/
http://doi.acm.org/10.1145/2493432.2493501
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0285
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0285
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0285
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0285
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0285
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0285
http://refhub.elsevier.com/S0950-7051(14)00138-5/h0285
http://sourceforge.net/projects/smart-m3/
http://dx.doi.org/10.1109/WI.2006.100
http://dx.doi.org/10.1016/j.knosys.2014.04.016

	A fuzzy ontology for semantic modelling and recognition of human behaviour
	1 Introduction
	2 Related work
	2.1 Ontologies for human behaviour recognition
	2.2 Fuzzy Ontologies
	2.2.1 fuzzyDL reasoner


	3 A fuzzy ontology for human activity modelling
	3.1 A (crisp) human behaviour ontology
	3.2 Fuzzification of the ontology
	3.3 Fuzzy reasoning

	4 Proof of concept and ontology validation
	4.1 Case study: office domain and public buildings
	4.2 Ontology validation

	5 Conclusions and future work
	Acknowledgments
	References


