
Copyright Notice

The document is provided by the contributing author(s) as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. This is the author’s
version of the work. The final version can be found on the publisher's webpage.

This document is made available only for personal use and must abide to copyrights of the
publisher. Permission to make digital or hard copies of part or all of these works for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage. This works may not be reposted without the explicit permission of the
copyright holder.

Permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the corresponding
copyright holders. It is understood that all persons copying this information will adhere to the
terms and constraints invoked by each copyright holder.

IEEE papers: © IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. The final publication is available at http://ieeexplore.ieee.org

ACM papers: © ACM. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The
final publication is available at http://dl.acm.org/

Springer papers: © Springer. Pre-prints are provided only for personal use. The final publication is available at link.springer.com

http://ieeexplore.ieee.org/
http://dl.acm.org/
http://link.springer.com/

1

Using Ant Colony System to Consolidate VMs
for Green Cloud Computing

Fahimeh Farahnakian, Adnan Ashraf, Tapio Pahikkala, Pasi Liljeberg, Juha Plosila,
Ivan Porres, and Hannu Tenhunen

Abstract—High energy consumption of cloud data centers is a matter of great concern. Dynamic consolidation of Virtual
Machines (VMs) presents a significant opportunity to save energy in data centers. A VM consolidation approach uses live
migration of VMs so that some of the under-loaded Physical Machines (PMs) can be switched-off or put into a low-power
mode. On the other hand, achieving the desired level of Quality of Service (QoS) between cloud providers and their users is
critical. Therefore, the main challenge is to reduce energy consumption of data centers while satisfying QoS requirements. In
this paper, we present a distributed system architecture to perform dynamic VM consolidation to reduce energy consumption
of cloud data centers while maintaining the desired QoS. Since the VM consolidation problem is strictly NP-hard, we use an
online optimization metaheuristic algorithm called Ant Colony System (ACS). The proposed ACS-based VM Consolidation (ACS-
VMC) approach finds a near-optimal solution based on a specified objective function. Experimental results on real workload
traces show that ACS-VMC reduces energy consumption while maintaining the required performance levels in a cloud data
center. It outperforms existing VM consolidation approaches in terms of energy consumption, number of VM migrations, and
QoS requirements concerning performance.

Index Terms—Dynamic VM consolidation, ant colony system, cloud computing, green computing, energy-efficiency, SLA

F

1 INTRODUCTION

C LOUD computing is a relatively new computing
paradigm. It leverages several existing concepts

and technologies, such as data centers and hardware
virtualization, and gives them a new perspective.
Cloud computing provides three service models and
four deployment models [1]. The three service models
are Infrastructure as a Service (IaaS), Platform as
a Service (PaaS), and Software as a Service (SaaS).
Similarly, the four deployment models are private
cloud, community cloud, public cloud, and hybrid
cloud [2], [3]. With its pay-per-use business model
for the customers, cloud computing shifts the capital
investment risk for under or over provisioning to the
cloud providers [4], [5]. Therefore, several public IaaS,
PaaS, and SaaS cloud providers, such as Amazon,
Google, and Microsoft, operate large-scale cloud data
centers around the world. Moreover, due to the ever-
increasing cloud infrastructure demand, there has
been a significant increase in the size and energy con-
sumption of the cloud data centers [6]. High energy
consumption not only translates to a high operating
cost, but also leads to higher carbon emissions. There-
fore, energy-related costs and environmental impacts

• F. Farahnakian, T. Pahikkala, P. Liljeberg, J. Plosila, and H. Tenhunen
are with the Department of Information Technology, University of
Turku, Turku, Finland.
E-mail: fahfar@utu.fi, aatapa@utu.fi, pakrli@utu.fi, juplos@utu.fi,
hanten@utu.fi

• A. Ashraf and I. Porres are with Department of Information Technolo-
gies, Åbo Akademi University, Turku, Finland.
E-mail: aashraf@abo.fi, iporres@abo.fi

of data centers have become major concerns and
research communities are being challenged to find ef-
ficient energy-aware resource management strategies.
On the other hand, achieving the desired level of
Quality of Service (QoS) between cloud providers and
their users is critical for satisfying customers’ expecta-
tions concerning performance. The QoS requirements
are formalized via Service Level Agreements (SLAs)
that describe the required performance levels, such as
minimal throughput and maximal response time or
latency of the system. Therefore, the main challenge
is to reduce energy consumption of data centers while
satisfying QoS requirements.

Over the past few years, there have been several
attempts to reduce energy consumption of data cen-
ters. Currently, the two widely-used techniques are
dynamic server provisioning and Virtual Machine
(VM) consolidation. Dynamic server provisioning ap-
proaches [7] save energy by using a reduced amount
of resources needed to satisfy the workload require-
ments. Therefore, unnecessary servers are switched-
off or put into a low-power mode when the work-
load demand decreases. Similarly, when the demand
increases, additional servers are switched-on or put
back into a high-power mode. Dynamic VM consoli-
dation is another effective way to improve the utiliza-
tion of resources and their energy-efficacy [6], [8]. It
leverages the hardware virtualization technology [9],
which shares a Physical Machine (PM) among multi-
ple performance-isolated platforms called VMs, where
each VM runs one or more application tasks. The
sharing of the PM resources among multiple VMs

2

is handled by the Virtual Machine Monitor (VMM).
Therefore, virtualization takes dynamic server pro-
visioning one step further and allows different ap-
plications to be allocated on the same PM to im-
prove the resource utilizations. Moreover, it allows
live VM migration and consolidation to pack VMs
on a reduced number of PMs, reducing the energy
consumption [10]. However, in order to maximize
resource utility, it is essential to manage PM resources
in an adequate manner. Therefore, one of the most
important optimization problems concerning VM con-
solidation is energy-efficient placement of VMs on
PMs. Furthermore, to be able to cope with the work-
load variability of different types of applications, the
VM consolidation should be performed in an online
manner.

In this paper, we address the VM consolidation
problem with the objective to reduce energy con-
sumption of data centers while satisfying QoS require-
ments. We present a distributed system architecture
to perform dynamic VM consolidation to improve
resource utilizations of PMs and to reduce their en-
ergy consumption. We also propose a dynamic VM
consolidation approach that uses a highly adaptive
online optimization metaheuristic algorithm called
Ant Colony System (ACS) [11], [12] to optimize VM
placement. The proposed ACS-based VM Consoli-
dation (ACS-VMC) approach uses artificial ants to
consolidate VMs into a reduced number of active
PMs according to the current resource requirements.
These ants work in parallel to build VM migration
plans based on a specified objective function. The
performance of the proposed ACS-VMC approach is
evaluated by using CloudSim [13] simulations on real
workload traces, which were obtained from more than
a thousand VMs running on servers located at more
than 500 places around the world. The simulation
results show that ACS-VMC maintains the desired
QoS while reducing energy consumption in a cloud
data center. It outperforms existing VM consolidation
approaches in terms of energy consumption, number
of VM migrations, and number of SLA violations.

The remainder of this paper is organized as follows.
Section 2 discusses some of the most important related
works and briefly reviews the Ant Colony Optimiza-
tion (ACO) metaheuristic. Section 3 and Section 4
present the system architecture and the proposed dy-
namic VM consolidation approach, respectively. Sec-
tion 5 describes the experimental design and setup.
Finally, we present the experimental results in Sec-
tion 6 and our conclusions in Section 7.

2 BACKGROUND AND RELATED WORK

The existing VM consolidation approaches, such
as [14], [15], [16], [17] are used in data centers to
reduce under-utilization of PMs and to optimize their
energy-efficiency. The main idea in these approaches

is to use live VM migration [10] to periodically consol-
idate VMs so that some of the under-loaded PMs can
be released for termination. Determining when it is
best to reallocate VMs from an overloaded PM is an
important aspect of dynamic VM consolidation that
directly influences the resource utilization and QoS.
In [18], two static thresholds were used to indicate
the time of VM reallocation. This approach keeps
the total Central Processing Unit (CPU) utilization
of a PM between these thresholds. However, setting
static thresholds is not efficient for an environment
with dynamic workloads. Therefore, Beloglazov and
Buyya [19] presented adaptive thresholds that can
be derived based on the statistical analysis of the
historical data.

Another important aspect of dynamic VM consol-
idation concerns load prediction on a PM. Using a
prediction of the future load enables proactive con-
solidation of VMs on the overloaded and under-
loaded PMs. Therefore, in our previous works [20],
[21], we proposed two regression methods to predict
CPU utilization of a PM. These methods use the lin-
ear regression and the K-nearest neighbor regression
algorithms, respectively, to approximate a function
based on the data collected during the lifetimes of
the VMs. Therefore, we used the function to predict
an overloaded or an under-loaded PM for reducing
the SLA violations and energy consumption.

The VM consolidation problem is known to be NP-
hard [15], [22]. Therefore, it is expensive to find an op-
timal solution with a large number of PMs and VMs.
In some of the existing approaches, VM consolidation
has been formulated as an optimization problem with
the objective to find a near optimal solution by using a
greedy approach [22], [23], [24]. Since an optimization
problem is associated with constraints, such as data
center capacity and SLA, these works use a heuristic
to consolidate workload in a multi-dimensional bin
packing problem. The PMs are assumed to be the
bins and the VMs are considered as the objects. The
objective of bin packing is to minimize the number
of bins while packing all the objects. Wood et al. [22]
used a greedy algorithm to determine a sequence of
moves to migrate overloaded VMs to under-loaded
PMs. Ajiro and Tanaka [23] used a load balancing
algorithm called least-loaded (LL) to balance the load
among PMs. Wang et al [24] formulated the VM
consolidation problem as a stochastic bin packing
problem and used an online packing algorithm to
consolidate VMs with dynamic bandwidth demands.

In this paper, we formulate energy-efficient VM
consolidation as a multi-objective combinatorial opti-
mization problem and apply a highly adaptive online
optimization [25] metaheuristic called Ant Colony
Optimization (ACO) [11] to find a near-optimal solu-
tion. ACO is a multi-agent approach to difficult com-
binatorial optimization problems, such as traveling
salesman problem (TSP) and network routing [12].

3

It is inspired by the foraging behavior of real ant
colonies. While moving from their nest to a food
source and back, ants deposit a chemical substance
on their path called pheromone. Other ants can smell
pheromone and they tend to prefer paths with a
higher pheromone concentration. Thus, ants behave
as agents who use a simple form of indirect commu-
nication called stigmergy to find better paths between
their nest and the food source. It has been shown
experimentally that this simple pheromone trail fol-
lowing behavior of ants can give rise to the emergence
of the shortest paths [12]. It is important to note here
that although each ant is capable of finding a complete
solution, high quality solutions emerge only from the
global cooperation among the members of the colony
who concurrently build different solutions. Moreover,
to find a high quality solution, it is imperative to
avoid stagnation, which is a premature convergence to
a suboptimal solution or a situation where all ants end
up finding the same solution without sufficient explo-
ration of the search space [12]. In ACO metaheuristic,
stagnation is avoided mainly by using pheromone
evaporation and stochastic state transitions.

There are a number of ant algorithms, such as
Ant System (AS), Max-Min AS (MMAS), and Ant
Colony System (ACS) [11], [12]. ACS was introduced
to improve the performance of AS and it is cur-
rently one of the best performing ant algorithms. The
existing ACO-based resource allocation and server
consolidation approaches include [15], [26], [27], [28].
Yin and Wang [26] applied ACO to the nonlinear
resource allocation problem, which seeks to find an
optimal allocation of a limited amount of resources
to a number of tasks to optimize their nonlinear
objective function. Feller et al. [15] applied MMAS
to the VM consolidation problem in the context of
cloud computing. A recent paper by Ferdaus et al. [27]
integrated ACS with a vector algebra-based server
resource utilization capturing technique [29]. Another
recent work by Ashraf and Porres [28] used ACS
to consolidate multiple web applications in a cloud-
based shared hosting environment.

In this paper, we apply ACS to the VM consolida-
tion problem. Our main contributions are as follows:
• We formulate energy-efficient VM consolidation

as a multi-objective combinatorial optimization
problem to optimize three conflicting objectives
simultaneously. The objectives include reducing
energy consumption, minimizing the number of
VM migrations, and avoiding SLA violations.

• We present a distributed multi-agent system ar-
chitecture for dynamic VM consolidation. In our
approach, a local agent detects PM status: nor-
mal, overloaded, predicted overloaded, or under-
loaded. We use the LiRCUP method [20] to pre-
dict an overloaded PM for avoiding SLA vio-
lations, as described in Section 3. Moreover, a
global agent dynamically consolidates VMs into

a reduced number of PMs by using our proposed
ACS-based VM Consolidation (ACS-VMC) algo-
rithm, which is presented in Section 4.

• We take into account the multi-dimensional re-
source utilizations of a PM. Therefore, VM con-
solidation in ACS-VMC is based on three re-
source dimensions: CPU, memory, and network
Input/Output (I/O).

• The performance of the proposed ACS-VMC ap-
proach is evaluated by CloudSim simulation on
real workload traces. We compared our proposed
approach with the existing dynamic VM consol-
idation approaches in the CloudSim toolkit and
with the ACS-based VM consolidation approach
in [27]. The results show that ACS-VMC out-
performs existing VM consolidation approaches
in terms of energy consumption, number of VM
migrations, and number of SLA violations.

3 SYSTEM ARCHITECTURE

A cloud data center consists of m heterogeneous
PMs that have different resource capacities. Each PM
contains a CPU, which is often a multi-core. The CPU
performance can be defined in terms of Millions of
Instructions Per Second (MIPS). In addition, a PM is
also characterized by the amount of memory, network
I/O, and storage capacity. At any given time, a cloud
data center usually serves many simultaneous users.
Users submit their requests for provisioning of n VMs,
which are allocated to the PMs. The length of each
request is specified in millions of instructions (MI). In
our proposed approach, the VMs are initially allocated
to PMs based on the Best Fit Decreasing (BFD) algo-
rithm, which is one of the best known heuristics for
the bin-packing problem [16]. BFD first sorts all VMs
by their utilization weights in the decreasing order.
Then, it starts with the VMs that require the largest
amount of resources. The BFD algorithm allocates
VMs in such a way that the unused capacity in the
destination PMs is minimized. Thus, it selects a PM
for which the amount of available resources is closest
to the requested amount of resources by the VM.
Therefore, BFD algorithm provides an initial efficient
allocation of VMs. However, due to dynamic work-
loads, the resource utilizations of VMs continue to
vary over time. Therefore, an initial efficient allocation
approach needs to be augmented with a VM consol-
idation algorithm that can be applied periodically. In
our proposed approach, the ACS-VMC algorithm is
applied periodically in order to adapt and optimize
the VM placement according to the workload.

Figure 1 depicts the proposed system model that
consists of two types of agents: local and global agent.
A Local Agent (LA) resides in a PM to solve the
PM status detection sub-problem by observing the
current resource utilizations of the PM. The Global
Agent (GA) acts as a supervisor and optimizes the

4

Global Agent

Local

Agent

PM

2

VMM

4

3

1

VM VM VM

PM

Local

Agent
VMM

4

1

VM VM VM

...

Fig. 1: The system architecture

VM placement by using the proposed ACS-VMC algo-
rithm. The task sequence of these agents is described
as follows:

1) Each LA monitors the CPU utilization and
categorizes the PM into one of the four sets
Pnormal, Pover, P̂over, and Punder. Respectively,
these sets represent the normal, overloaded, pre-
dicted overloaded, and under-loaded PMs based
on the following conditions:
• If the current CPU utilization exceeds PM

capacity, the PM is considered as a member
of Pover.

• If the predicted utilization value is larger
than the available CPU capacity, the PM
is considered as a member of P̂over. We
use LiRCUP [20] to forecast the short-term
CPU utilization of a PM based on the linear
regression technique. In LiRCUP, the linear
regression approximates the utilization func-
tion according to the past utilization values
in a PM.

• If the current CPU utilization is less than a
threshold of the total CPU utilization, the
PM is categorized as a member of Punder.
We performed a series of preliminary exper-
iments to estimate the threshold. Based on
our analysis, in general, the best results are
obtained when the threshold is set to 50%.

• All remaining PMs belong to Pnormal.
2) The GA collects the status of individual PMs

from the LAs and builds a global best migration
plan by using the proposed ACS-VMC algo-
rithm, which is described in the next section.

3) The GA sends commands to VMMs for per-
forming VM consolidation task. The commands
determine which VMs on a source PM should
be migrated to which destination PMs.

4) The VMMs perform actual migration of VMs
after receiving the commands from the GA.

4 ACS-BASED VM CONSOLIDATION
The pseudocode of the proposed ACS-based VM Con-
solidation (ACS-VMC) algorithm is given as Algo-
rithm 1. For the sake of clarity, the concepts used

in the proposed algorithm and their notations are
tabulated in Table 1. Each PM p ∈ P hosts one or more
VMs from the set of VMs V . Moreover, in the context
of VM migration, each PM is a potential source PM for
the VMs already residing on that PM. Both the source
PM and the VM are characterized by their resource
utilizations, such as CPU, memory and network I/O.
Likewise, a VM can be migrated to any other PM.
Therefore, any other PM is a potential destination PM,
which is also characterized by its resource utilizations.
Thus, the proposed ACS-VMC algorithm creates a set
of tuples T , where each tuple t ∈ T consists of three
elements: the source PM pso, the VM to be migrated
v, and the destination PM pde as given in (1)

t = (pso, v, pde) (1)

The PMs in the VM consolidation problem are anal-
ogous to the cities in the TSP, while the tuples are
analogous to the edges that connect the cities. Due to
obvious reasons, it is imperative to reduce the com-
putation time of the consolidation algorithm, which
is primarily based on the number of tuples |T |. Thus,
when making the set of tuples T , the algorithm ap-
plies two constraints, which result in a reduced set of
tuples by removing some least important and obsolete
tuples. The first constraint is given as

pso ∈ P̂over ∨ pso ∈ Pover ∨ pso ∈ Punder (2)

It ensures that only a predicted overloaded, an over-
loaded, or an under-loaded PM is used as a source
PM pso. The rationale of including a predicted over-
loaded PM as a source PM is to prevent the PM
from becoming overloaded. Similarly, the amount of
SLA violations are reduced by migrating some VMs
from an overloaded PM. In addition, migrations from
an under-loaded PM are more likely to result in
switching of the PM to the sleep mode, which would
reduce the energy consumption by minimizing the
number of active PMs.

The second constraint further restricts the size of
the set of tuples |T | by ensuring that none of the
overloaded Pover and predicted overloaded P̂over PMs
become a destination PM pde

pde /∈ Pover ∧ pde /∈ P̂over (3)

By applying these two simple constraints in a series
of preliminary experiments, we observed that the
computation time of the algorithm was significantly
reduced without compromising the quality of the
solutions.

The output of the VM consolidation algorithm is a
migration plan, which, when enforced, would result
in a minimal set of active PMs needed to host all VMs
without compromising their performance. Thus, the
objective function of the proposed algorithm is

f(M) = |Ps|γ +
1

|M |
(4)

5

TABLE 1: Summary of concepts and their notations

P set of physical machines (PMs)
Pnormal set of PMs on a normal load level
Pover set of overloaded PMs
P̂over set of predicted overloaded PMs
Ps set of sleeping PMs
Punder set of under-loaded PMs
Vp set of VMs running on a PM p
MS set of migration plans
T set of tuples
Tk set of tuples not yet traversed by ant k
V set of VMs
v VM in a tuple
Cpde total capacity vector of the destination PM pde
M a migration plan
M+ the global best migration plan
Mk ant-specific migration plan of ant k
Mm
k ant-specific temporary migration plan of ant k

q a uniformly distributed random variable
S a random variable selected according to (7)
Scrk thus far best score of ant k
Uv used capacity vector of the VM v
Upde used capacity vector of the destination PM pde
Upso used capacity vector of the source PM pso
pde destination PM in a tuple
pso source PM in a tuple
η heuristic value
τ amount of pheromone
τ0 initial pheromone level
∆+
τs additional pheromone amount given to the tu-

ples in M+

q0 parameter to determine relative importance of
exploitation

α pheromone decay parameter in the global up-
dating rule

β parameter to determine the relative importance
of η

γ parameter to determine the relative importance
of |Ps|

ρ pheromone decay parameter in the local updat-
ing rule

nA number of ants that concurrently build their
migration plans

nI number of iterations of the main, outer loop in
the algorithm

where M is the migration plan and Ps is the set of
PMs that will be switched to the sleep mode when M
is enforced. The parameter γ determines the relative
importance of |Ps| with respect to |M |. Since the
ultimate objective in the dynamic VM consolidation
algorithm is to minimize the number of active PMs,
the objective function is defined in terms of number
of sleeping PMs |Ps|. Moreover, it prefers smaller
migration plans because live migration is a resource-
intensive operation.

At the end of the ACS-VMC algorithm, when the
selected migration plan is enforced, our approach fur-
ther restricts the number of active PMs by preferring
VM migrations to the already active PMs. Thus, a PM
in the sleep mode is switched on only when it is not
possible to migrate a VM to an already active PM.

Moreover, a PM can only be switched to the sleep
mode when all of its VMs migrate from it, that is,
when the PM no longer hosts any VMs. Thus, the set

of sleeping PMs Ps is defined as

Ps = {∀p ∈ P | Vp = ∅} (5)

where Vp is the set of VMs running on a PM p.
Unlike the TSP, there is no notion of a path in

the VM consolidation problem. Therefore, in our ap-
proach, the pheromone is deposited on the tuples de-
fined in (1). Each of the nA ants uses a stochastic state
transition rule to choose the next tuple to traverse. The
state transition rule in ACS is called pseudo-random-
proportional-rule [11]. According to this rule, an ant
k chooses a tuple s to traverse next by applying

s =

{
arg maxu ∈ Tk{[τu] · [ηu]β}, if q ≤ q0
S, otherwise

(6)

where τ denotes the amount of pheromone and η
represents the heuristic value associated with a partic-
ular tuple. β is a parameter to determine the relative
importance of the heuristic value with respect to the
pheromone value. Tk ⊂ T is the set of tuples that
remain to be traversed by ant k. q ∈ [0, 1] is a uni-
formly distributed random variable and q0 ∈ [0, 1] is
a parameter. S is a random variable selected according
to the probability distribution given in (7), where the
probability ps of an ant k to choose tuple s to traverse
next is defined as

ps =

[τs]·[ηs]β∑

u ∈ Tk

[τu]·[ηu]β
, if s ∈ Tk

0, otherwise
(7)

The heuristic value ηs of a tuple s is defined in a
similar fashion as in [15] and [28] as

ηs =

{
(|Cpde − (Upde + Uv)|1)−1, if Upde + Uv ≤ Cpde
0, otherwise

(8)
where Cpde is the total capacity vector of the destina-
tion PM pde, Upde is the used capacity vector of pde,
and likewise Uv is the used capacity vector of the VM
v in tuple s. The heuristic value η is based on the
multiplicative inverse of the scalar-valued difference
between Cpde and Upde +Uv . It favors VM migrations
that result in a reduced under-utilization of PMs.
Moreover, the constraint Upde + Uv ≤ Cpde prevents
migrations that would result in the overloading of
the destination PM pde. In the proposed algorithm, we
assumed three resource dimensions, which represent
CPU, memory and network I/O utilization.

The stochastic state transition rule in (6) and (7)
prefers tuples with a higher pheromone concentration
and which result in a higher number of released PMs.
The first case in (6) where q ≤ q0 is called exploita-
tion [11], which chooses the best tuple that attains the
maximum value of [τ] · [η]β . The second case, called
biased exploration, selects a tuple according to (7).
The exploitation helps the ants to quickly converge
to a high quality solution, while at the same time, the

6

biased exploration helps them to avoid stagnation by
allowing a wider exploration of the search space. In
addition to the stochastic state transition rule, ACS
also uses a global and a local pheromone trail evap-
oration rule. The global pheromone trail evaporation
rule is applied towards the end of an iteration after
all ants complete their migration plans. It is defined
as

τs = (1− α) · τs + α ·∆+
τs (9)

where ∆+
τs is the additional pheromone amount that

is given only to those tuples that belong to the global
best migration plan in order to reward them. It is
defined as

∆+
τs =

{
f(M+), if s ∈ M+

0, otherwise
(10)

α ∈ (0, 1] is the pheromone decay parameter, and M+

is the global best migration plan from the beginning
of the trial.

The local pheromone trail update rule is applied on
a tuple when an ant traverses the tuple while making
its migration plan. It is defined as

τs = (1− ρ) · τs + ρ · τ0 (11)

where ρ ∈ (0, 1] is similar to α and τ0 is the initial
pheromone level, which is computed as the multi-
plicative inverse of the product of the approximate
optimal |M | and |P |

τ0 = (|M | · |P |)−1 (12)

One way to estimate optimal |M | is to use the nearest
neighborhood heuristic [11]. We use the K-nearest
neighbor (KNN) heuristic [30] to estimate the optimal
|M | by using a training data set. The data set has m
samples, where each sample xi is described by three
input variables (xi1, xi2, xi3) and an output variable
yi, that is, xi = {xi1, xi2, xi3, yi}. The goal is to find
a relationship between the input variables and the
output variable. Therefore, we choose the number of
under-loaded PMs, the number of overloaded PMs,
and the number of VMs as the three input variables
(xi1, xi2, xi3) and the migration plan size as the output
variable (yi).

The KNN heuristic estimates the output by taking
a local average of the training data set. Moreover, the
locality is defined in terms of the K samples nearest
to the estimation sample. We use Euclidean distance
to measure the distance metric between new sample
and other samples.

The pseudo-random-proportional-rule in ACS and
the global pheromone trail update rule are intended
to make the search more directed. The pseudo-
random-proportional-rule prefers tuples with a higher
pheromone level and a higher heuristic value. There-
fore, the ants try to search other high quality solutions
in a close proximity of the thus far global best so-
lution. On the other hand, the local pheromone trail

Algorithm 1 ACS-based VM consolidation

1: M+ = ∅, MS = ∅
2: ∀t ∈ T |τt = τ0
3: for i ∈ [1, nI] do
4: for k ∈ [1, nA] do
5: Mm

k = ∅,Mk = ∅, Scrk = 0
6: for t ∈ T do
7: generate a random variable q with a uni-

form distribution between 0 and l
8: if q > q0 then
9: compute ps ∀s ∈ T by using (7)

10: end if
11: choose a tuple t ∈ Tk to traverse by

using (6)
12: Mm

k = Mm
k ∪ {t}

13: apply local update rule in (11) on t
14: update used capacity vectors Upso and Upde

in t
15: if f(Mm

k) > Scrk then
16: Scrk = f(Mm

k)
17: Mk = Mk ∪ {t}
18: else
19: Mm

k = Mm
k \ {t}

20: end if
21: end for
22: MS = MS ∪ {Mk}
23: end for
24: M+ = arg maxMk ∈MS{f(Mk)}
25: apply global update rule in (9) on all s ∈ T
26: end for

update rule complements exploration of other high
quality solutions that may exist far from the best-so-
far global solution. This is because whenever an ant
traverses a tuple and applies the local pheromone trail
update rule, the tuple looses some of its pheromone
and becomes less attractive for other ants. Therefore,
it helps in avoiding stagnation where all ants end up
finding the same solution or where they prematurely
converge to a suboptimal solution.

The pseudocode in Algorithm 1 creates a set of
tuples T using (1) and sets the pheromone value
of each tuple to the initial pheromone level τ0 by
using (12) (line 2). The algorithm iterates over nI iter-
ations (line 3). In each iteration, nA ants concurrently
build their migration plans (lines 4–23). Each ant
iterates over |T | tuples (lines 76–21). It computes the
probability of choosing the next tuple to traverse by
using (7) (line 9). Afterwards, based on the computed
probabilities and the stochastic state transition rule
in (6), each ant chooses a tuple t ∈ Tk to traverse
(line 11) and adds t to its temporary migration plan
Mm
k (line 12). The local pheromone trail update rule

in (11) and (12) is applied on t (line 13) and the
used capacity vectors at the source PM Upso and
the destination PM Upde in t are updated to reflect

7

the impact of the migration (line 15). The objective
function in (4) is applied on Mm

k , and if it yields a
score higher than the ant’s best score Scrk (line 16), t is
added to the ant-specific migration plan Mk (line 17).
Otherwise, the tuple t is removed from the temporary
migration plan Mm

k (line 19). Then, towards the end
of an iteration when all ants complete their migration
plans, all ant-specific migration plans are added to
the set of migration plans MS (line 22). Each migra-
tion plan Mk ∈ MS is evaluated by applying the
objective function in (4), the global best application
migration plan M+ is selected (line 24), and the global
pheromone trail update rule in (9) and (10) is applied
on all tuples (line 25). Finally, when all iterations of
the main outer loop complete, the algorithm outputs
the global best migration plan M+.

5 EXPERIMENTAL DESIGN AND SETUP

To evaluate the efficiency of our proposed ap-
proach, we set up experimental environment using
the CloudSim toolkit [13]. CloudSim is a discrete
event simulator for implementation and evaluation
of resource provisioning and VM consolidation tech-
niques for different applications. We simulated a data
center comprising 800 heterogeneous PMs and se-
lected two server configurations in CloudSim: HP
ProLiant ML110 G4 (Intel Xeon 3040, 2 cores×1860
MHz, 4 GB), and HP ProLiant ML110 G5 (Intel Xeon
3075, 2 cores×2660 MHz, 4 GB). Dual-core CPUs are
sufficient to evaluate resource management methods
that are designed for multi-core CPU architectures.
Moreover, it is important to simulate a large num-
ber of servers for performance evaluation of VM
consolidation methods. To evaluate the efficiency of
our proposed approach, we measured four metrics:
SLA violations, energy consumption, number of mi-
grations, and energy-SLA violations. The results are
based on two different workloads: a random work-
load and a real workload. In the random workload,
the users submit requests for the provisioning of 800
heterogeneous VMs. In the real workload, the number
of VMs on each day is specified in Table 2. The ACS
parameters that were used in the proposed approach
are tabulated in Table 3. These parameter values were
obtained in a series of preliminary experiments.

5.1 SLA Violations
Maintaining the desired QoS is an important require-
ment for cloud data centers. QoS requirements are
commonly formalized in the form of SLAs, which
specify enterprise service-level requirements for data
center in terms of minimum latency or maximum
response time. Beloglazov and Buyya [19] proposed
a workload independent metric called SLAV (SLA
Violations) to evaluate the SLA delivered by a VM
in an IaaS cloud. It represents both the SLA Vi-
olations due to Over-utilization (SLAVO) and SLA

TABLE 2: Number of VMs in the real workload

Date Number of VMs
3 March 1052
6 March 898
9 March 1061

22 March 1516
25 March 1078
3 April 1463
9 April 1358

11 April 1233
12 April 1054
20 April 1033

TABLE 3: ACS parameters in the proposed approach

α β γ ρ q0 nA nI w
0.1 0.9 5 0.1 0.9 10 2 2−7

Violations due to Migrations (SLAVM). The SLAVO
and SLAVM metrics independently and with equal
importance characterize the level of SLA violations
by the infrastructure. Therefore, a combined metric
(SLAV) describes performance degradations due to
the overloading of the host PMs as well as those
caused by VM migrations, as

SLAV = SLAV O × SLAVM (13)

SLAVO indicates the percentage of time, during which
active PMs have experienced the CPU utilization of
100%. It is defined as

SLAV O =
1

M

M∑
i=1

Tsi

Tai
(14)

where M is the number of PMs; Tsi is the total time
that the PM i has experienced the utilization of 100%
leading to an SLA violation. Tai is the total duration
of the PM i being in the active state. SLAVM shows
the overall performance degradation by VMs due to
migrations. It is computed as

SLAVM =
1

N

N∑
j=1

Cdj

Crj
(15)

where N is the number of VMs; Cdj is the estimate of
the performance degradation of the VM j caused by
migrations; Crj is the total CPU capacity requested by
the VM j during its lifetime. Based on our preliminary
experiments, we estimated Cdj as 10% of the CPU
utilization in MIPS during all migrations of the VM
j.

5.2 Energy Consumption
We consider the total energy consumption of the
physical resources in a data center that is required
to handle the application workloads. The energy con-
sumption of a PM depends on the utilization of its
CPU, memory, disk, and network card. Most stud-
ies [19], [31] show that CPU consumes more power
than memory, disk storage, and network interface.

8

Therefore, the resource utilization of a PM is usually
represented by its CPU utilization. Instead of using
an analytical model of energy consumption, we used
the real data in the SPECpower benchmark1. Table 4
illustrates the amount of energy consumption of HP
G4 and G5 servers at different load levels.

5.3 Number of VM Migrations
Live VM migration is a costly operation that includes
some amount of CPU processing on the source PM,
the link bandwidth between the source and desti-
nation PMs, the downtime of the services on the
migrating VM, and the total migration time [16].
Therefore, one of our objectives was to minimize the
number of migrations. The length of a VM migration
in CloudSim takes as long as it needs to migrate
the memory assigned to the VM over the network
bandwidth link between source and destination PMs.
In our simulations, we used 1Gbps network links.

5.4 Energy and SLA Violations
The objective of the proposed VM consolidation ap-
proach is to minimize both energy and SLA violations.
Since there is a trade-off between performance and
energy consumption, we measured a combined metric
called ESV (Energy and SLA Violations) that captures
both the Energy Consumption (EC) and the SLA
Violations (SLAV) as

ESV = EC × SLAV (16)

6 EXPERIMENTAL RESULTS

In this section, we compare the proposed ACS-VMC
approach with an ACS based VM consolidation al-
gorithm in [27] and four heuristic algorithms for
dynamic reallocation of VMs in [19]. The AVVMC
consolidation scheme [27] proposes the ant colony
optimization with balanced usage of computing re-
sources based on vector algebra. Moreover, the main
idea of these algorithms [19] is to set upper and
lower utilization thresholds and keep the total CPU
utilization of a node between them. When the upper
threshold is exceeded, VMs are reallocated for load
balancing and when the utilization of a PM drops
below the lower threshold, VMs are reallocated for
consolidation. The algorithms adapt the utilization
threshold dynamically based on the Median Absolute
Deviation (MAD), the Interquartile Range (IQR), and
Local Regression (LR) approach to estimate the CPU
utilization. Moreover, a static threshold method (THR)
is proposed in [19] that monitors the CPU utiliza-
tion and migrates a VM when the current utilization
exceeds 80% of the total amount of available CPU
capacity on the PM. In our experiments, we consider
two type of workloads:

1. http : //www.spec.org/power ssj2008/

6.1 Random Workload
In the random workload, each VM runs an appli-
cation with a variable utilization of CPU, which is
generated with a uniform distribution. Figure 2(a)
presents the SLA violation levels caused by the ACS-
VMC, AVVMC, THR, MAD, IQR, and LR methods in
the random workload. The results indicate that ACS-
VMC reduced the SLA violations more efficiently than
the other approaches. This is due to the fact that
ACS-VMC prevents SLA violations by using a pre-
diction of the overloaded PMs and that the heuristic
value in (8) ensures that the destination PM does
not become overloaded when a VM migrates on it.
Figure 2(b)shows that the proposed dynamic VM
consolidation approach, ACS-VMC, brought higher
energy savings in comparison to the other approaches
in the random workload. In ACS-VMC, a signicant
reduction of the energy consumption of 7.3%, 16.4%,
45.2%, 34.5%, and 47.7% was achieved when com-
pared to AVVMC, LR, MAD, THR, and IQR, respec-
tively. In addition, the trade-off between maximizing
the QoS and minimizing the energy consumption of
data center is demonstrated in Figure 2(c). Figure 2(d)
depicts the total number of VMs migration during
the VM consolidation in the random workload. The
ACS-VMC outperforms the AVVMC and adaptive-
threshold based algorithms due to predictions of uti-
lization, and therefore decreased the number of VM
migrations.

6.2 Real Workload
Real workload data is provided as a part of the
CoMon project, a monitoring infrastructure for Plan-
etLab [32]. In this project, the CPU usage data is
collected every five minutes from more than a thou-
sand VMs and is stored in different files. The VMs
are allocated on servers that are located at more than
500 places around the world. In fact, the workload is
representative of an IaaS cloud environment such as
Amazon EC2, which several independent users create
and manage VMs. Figure 3a shows that ACS-VMC led
to significantly less SLA violations than the other four
benchmark algorithms. The main reason is that ACS-
VMC employs measures to prevent VM migrations
that would result in the overloading of the destina-
tion PM. Moreover, it preemptively reallocates VMs
from a predicted overloaded PM. Figure 3b shows
that ACS-VMC consumed less power than the other
benchmark algorithms in the real workload traces. our
proposed VM consolidation approach reduces energy
consumption by up to 53.4% with desirable system
performance in March 2011 load traces. This is be-
cause, the defined objective function tries to maximize
the number of dormant PMs by packing VMs into
the PMs that have enough capacity. The number of
VM migrations in the real workload are shown in
Figure 4a. As observed from the results, ACS-VMC

9

TABLE 4: Energy consumption at different load levels in watts

Server sleep mode 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
HP ProLiant G4 10 86 89.4 92.6 96 99.5 102 106 108 112 114 117
HP ProLiant G5 10 93.7 97 101 105 110 116 121 125 129 133 135

Fig. 2: The SLAV metric, energy consumption, number of VM migrations and ESV metric by ACS-VMC and
benchmark methods in the random workload

has minimum number of migrations compared with
the other benchmark methods. Because it creates a
migration plan that has require the minimum number
of migrations. In addition, Figure 4b illustrates the
ACS-VMC consumes less ESV than other benchmarks
algorithms in the real workload traces.

7 CONCLUSION AND FUTURE WORK

In this paper, we presented a novel dynamic Vir-
tual Machine (VM) consolidation approach called Ant
Colony System based VM Consolidation (ACS-VMC).
It reduces the energy consumption of data centers by
consolidating VMs into a reduced number of active
Physical Machines (PMs) while preserving Quality of
Service (QoS) requirements. Since the VM consolida-
tion problem is strictly NP-hard, we used the Ant
Colony System (ACS) to find a near-optimal solution.
We defined a multi-objective function that considers
both the number of dormant PMs and the number of
migrations. When compared to the existing dynamic
VM consolidation approaches, ACS-VMC not only
reduced the energy consumption, but also minimized
SLA violations and the number of migrations. We
evaluated the performance of our proposed approach
by conducting experiments with ten different real
workload traces.

As a future work, we plan to further improve the
proposed system model by clustering PMs and assign-
ing them to the respective consolidation managers.
We also intend to evaluate the performance of other
heuristic methods for VM consolidation. Furthermore,
we plan to implement the ACS-VMC algorithm as an
extension of the VM manager within the OpenStack
Cloud platform2 to evaluate the proposed VM consol-
idation algorithm in a real cloud environment.

REFERENCES

[1] P. Mell and T. Grance, “The NIST definition of cloud comput-
ing,” Recommendations of the National Institute of Standards
and Technology. Special Publication 800-145., September 2011,
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-
145.pdf.

[2] G. Motta, N. Sfondrini, and D. Sacco, “Cloud computing: An
architectural and technological overview,” in Service Sciences
(IJCSS), 2012 International Joint Conference on, 2012, pp. 23–27.

[3] I. Sriram and A. Khajeh-Hosseini, “Research agenda in cloud
technologies,” Large Scale Complex IT Systems (LSCITS),
Tech. Rep., 2010.

[4] A. Ashraf, “Cost-efficient virtual machine management: Provi-
sioning, admission control, and consolidation,” Ph.D. disserta-
tion, Turku Centre for Computer Science (TUCS) Dissertations
Number 183, October 2014.

2. http : //openstack.org/

10

(a) SLAV metric

(b) Energy consumption

Fig. 3: SLAV metric and energy consumption by ACS-VMC and benchmark methods in the real workloads

11

(a) Number of VM migrations

(b) ESV metric

Fig. 4: Number of VM migrations and ESV metric by ACS-VMC and benchmark methods in the real workloads

12

[5] A. Ashraf, M. Hartikainen, U. Hassan, K. Heljanko, J. Lilius,
T. Mikkonen, I. Porres, M. Syeed, and S. Tarkoma, “Introduc-
tion to cloud computing technologies,” in Developing Cloud
Software: Algorithms, Applications, and Tools, I. Porres, T. Mikko-
nen, and A. Ashraf, Eds. Turku Centre for Computer Science
(TUCS) General Publication Number 60, October 2013, pp. 1–
41.

[6] A. Beloglazov, R. Buyya, Y. C. Lee, and A. Zomaya, “A
taxonomy and survey of energy-efficient data centers and
cloud computing systems,” Advances in Computers, vol. 82, pp.
47–111, 2011.

[7] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A.
Kozuch, “AutoScale: Dynamic, robust capacity management
for multi-tier data centers,” ACM Transactions on Computer
Systems, vol. 30, no. 4, pp. 14:1–14:26, 2012.

[8] L. Deboosere, B. Vankeirsbilck, P. Simoens, F. Turck, B. Dhoedt,
and P. Demeester, “Efficient resource management for virtual
desktop cloud computing,” The Journal of Supercomputing,
vol. 62, no. 2, pp. 741–767, 2012.

[9] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art
of virtualization,” SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp.
164–177, 2003.

[10] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live migration of virtual machines,”
in Proceedings of the 2Nd Conference on Symposium on Networked
Systems Design & Implementation, ser. NSDI’05, vol. 2, 2005, pp.
273–286.

[11] M. Dorigo and L. Gambardella, “Ant colony system: a coop-
erative learning approach to the traveling salesman problem,”
Evolutionary Computation, IEEE Transactions on, vol. 1, no. 1,
pp. 53–66, 1997.

[12] M. Dorigo, G. Di Caro, and L. M. Gambardella, “Ant algo-
rithms for discrete optimization,” Artif. Life, vol. 5, no. 2, pp.
137–172, Apr. 1999.

[13] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and
R. Buyya, “CloudSim: a toolkit for modeling and simulation
of cloud computing environments and evaluation of resource
provisioning algorithms,” Software: Practice and Experience,
vol. 41, no. 1, pp. 23–50, 2011.

[14] W. Vogels, “Beyond server consolidation,” ACM Queue, vol. 6,
no. 1, pp. 20–26, 2008.

[15] E. Feller, C. Morin, and A. Esnault, “A case for fully decentral-
ized dynamic VM consolidation in clouds,” in Cloud Computing
Technology and Science (CloudCom), 2012 IEEE 4th International
Conference on, December 2012, pp. 26–33.

[16] A. Murtazaev and S. Oh, “Sercon: Server consolidation al-
gorithm using live migration of virtual machines for green
computing,” IETE Technical Review, vol. 28, no. 3, pp. 212–231,
2011.

[17] M. Marzolla, O. Babaoglu, and F. Panzieri, “Server consolida-
tion in clouds through gossiping,” in World of Wireless, Mobile
and Multimedia Networks (WoWMoM), 2011 IEEE International
Symposium on a, 2011, pp. 1–6.

[18] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware re-
source allocation heuristics for efficient management of data
centers for cloud computing,” Grid Computing and eScience,
Future Generation Computer Systems (FGCS), vol. 28, pp. 755–
768, 2012.

[19] A. Beloglazov and R. Buyya, “Optimal online deterministic
algorithms and adaptive heuristics for energy and perfor-
mance efficient dynamic consolidation of virtual machines in
cloud data centers,” Concurrency and Computation: Practice and
Experience, vol. 24, no. 13, pp. 1397–1420, 2012.

[20] F. Farahnakian, P. Liljeberg, and J. Plosila, “LiRCUP: Linear
regression based CPU usage prediction algorithm for live
migration of virtual machines in data centers,” in Software
Engineering and Advanced Applications (SEAA), 2013 39th EU-
ROMICRO Conference on, 2013, pp. 357–364.

[21] F. Farahnakian, T. Pahikkala, P. Liljeberg, and J. Plosila, “En-
ergy aware consolidation algorithm based on K-nearest neigh-
bor regression for cloud data centers,” in Utility and Cloud
Computing (UCC), 2013 IEEE/ACM 6th International Conference
on, Dec 2013, pp. 256–259.

[22] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Sand-
piper: Black-box and gray-box resource management for vir-

tual machines,” Computer Networks, vol. 53, pp. 2923–2938,
2009.

[23] Y. Ajiro and A. Tanaka, “Improving packing algorithms for
server consolidation,” in Proceedings of the International Con-
ference for the Computer Measurement Group (CMG), 2007, pp.
399–407.

[24] M. Wang, X. Meng, and L. Zhang, “Consolidating virtual
machines with dynamic bandwidth demand in data centers,”
in INFOCOM, 2011 Proceedings IEEE, 2011, pp. 71–75.

[25] M. Harman, K. Lakhotia, J. Singer, D. R. White, and S. Yoo,
“Cloud engineering is search based software engineering too,”
Journal of Systems and Software, vol. 86, no. 9, pp. 2225–2241,
2013.

[26] P.-Y. Yin and J.-Y. Wang, “Ant colony optimization for the
nonlinear resource allocation problem,” Applied Mathematics
and Computation, vol. 174, no. 2, pp. 1438–1453, 2006.

[27] M. Ferdaus, M. Murshed, R. Calheiros, and R. Buyya, “Vir-
tual machine consolidation in cloud data centers using ACO
metaheuristic,” in Euro-Par 2014 Parallel Processing, ser. Lecture
Notes in Computer Science, F. Silva, I. Dutra, and V. San-
tos Costa, Eds. Springer International Publishing, 2014, vol.
8632, pp. 306–317.

[28] A. Ashraf and I. Porres, “Using ant colony system to consol-
idate multiple web applications in a cloud environment,” in
22nd Euromicro International Conference on Parallel, Distributed
and Network-based Processing (PDP), 2014, pp. 482–489.

[29] M. Mishra and A. Sahoo, “On theory of VM placement:
Anomalies in existing methodologies and their mitigation
using a novel vector based approach,” in Cloud Computing
(CLOUD), 2011 IEEE International Conference on, July 2011, pp.
275–282.

[30] T. Cover and P. Hart, “Nearest neighbor pattern classification,”
Information Theory, IEEE Transactions on, vol. 13, no. 1, pp. 21–
27, 1967.

[31] D. Kusic, J. Kephart, J. Hanson, N. Kandasamy, and G. Jiang,
“Power and performance management of virtualized com-
puting environments via lookahead control,” in Autonomic
Computing, 2008. ICAC ’08. International Conference on, 2008,
pp. 3–12.

[32] K. Park and V. Pai, “CoMon: a mostly-scalable monitoring sys-
tem for PlanetLab,” ACM SIGOPS Operating Systems Review,
vol. 40, pp. 65–74, 2006.

Fahimeh Farahnakian received M.S degree
in Computer Engineering from the University
of Science and Technology, Tehran, Iran, in
2009. She is currently pursuing her Ph.D.
in Embedded Computer and Electronic Sys-
tems Laboratory, University of Turku, Fin-
land and from May 2011 she is a doc-
toral candidate of Graduate School in Elec-
tronics, Telecommunications and Automation
(GETA). In addition Her research interests in-
clude cloud computing, energy efficient data

center, network on- chips, machine learning, pattern recognition
and fuzzy control. She is a member of IEEE and is a frequent
reviewer for research journals, such as Journal of Circuits, Systems
and Computers (JCSC), International Journal of High Performance
Systems Architecture (IJHPSA), Journal of Low Power Electronics
(JOLPE) and Journal of Supercomputing.

13

Adnan Ashraf received his M.Sc and MS de-
grees in Computer Science from Mohammad
Ali Jinnah University, Islamabad, Pakistan in
2003 and 2006, respectively, and received
his PhD degree in Software Engineering from
Åbo Akademi University, Turku, Finland in
2014. He is currently working as a postdoc-
toral researcher in the Software Engineering
Laboratory at Åbo Akademi University. His
research interests include cloud computing,
energy-efficient data centers, cost-efficient

virtual machine management, admission control, server consolida-
tion, and search based software engineering.

Tapio Pahikkala currently acts as a profes-
sor of intelligence systems in University of
Turku, Finland. He received Ph.D degree in
computer science from University of Turku
in 2008 an d held an Academy of Finland
postdoctoral position during 2010-2012. His
research focuses on machine learning, pat-
tern recognition, algorithmic, and computa-
tional intelligence. He has authored more
than 80 peer-reviewed scientific publications
and served in program committees of numer-

ous scientific conferences. He is a member of both ACM and IEEE,
and he served as member in several committees of IEEE societies.

Pasi Liljeberg received his M.Sc. and Ph.D.
degrees in electronics and information tech-
nology from the University of Turku, Turku,
Finland, in 1999 and 2005, respectively. He
is an Associate Professor in Embedded Elec-
tronics laboratory and an Adjunct Profes-
sor in embedded computing architectures
at the University of Turku, Embedded Com-
puter Systems laboratory. During the period
20072009 he held an Academy of Finland
researcher position. Adj.Prof. Liljeberg is the

author of over 150 peer- reviewed publications, has supervised
9 PhD theses. His current research interests include parallel and
distributed systems, Internet-of-Things, embedded computing archi-
tecture, fault tolerant and energy aware system design, 3D multi-
processor system architectures, dynamic power management, cyber
physical systems, intelligent network-on-chip communication archi-
tectures and reconfigurable system design.

Juha Plosila is an Associate Professor in
Embedded Computing and an Adjunct Pro-
fessor in Digital Systems Design at the Uni-
versity of Turku (UTU), Department of In-
formation Technology, Finland. He received
a PhD degree in Electronics and Commu-
nication Technology from UTU in 1999. Dr.
Plosila is the leader of the Embedded Com-
puter and Electronic Systems (ECES) re-
search unit and a co-leader of the Resilient
IT Infrastructures (RITES) research program-

mer at Turku Centre for Computer Science (TUCS). He leads the
Embedded Systems masters program at the EIT ICT Labs Master
School and is a management committee member of the EU COST
Actions IC1103 (MEDIAN: Manufacturable and Dependable Multi-
core Architectures at Nanoscale) and IC1202 (TACLe: Timing Analy-
sis on Code Level). Dr. Plosila is an Associate Editor of International
Journal of Embedded and Real-Time Communication Systems (IGI
Global).

Ivan Porres is a professor in Software Engi-
neering, head of the Computer Engineering
education, and vice-head of the Department
of Information Technologies at Åbo Akademi
University. He is the leader of the Soft-
ware Engineering Laboratory at the Turku
Centre for Computer Science (TUCS) and
principal investigator at Åbo Akademi for
the Cloud Software Finland (2009-2013) and
N4S (2014-2017) projects at the DIGILE, the
Finnish Strategic Centre for Science, Tech-

nology and Innovation in the Field of ICT. He has received the Ten-
Year Most Influential Paper Award at the ACM/IEEE Conference on
Model Driven Engineering Languages and Systems in two occasions
and has participated in many review appointments and the organiza-
tion of research events.

Hannu Tenhunen received the Diplomas
from the Helsinki University of Technology,
Finland, 1982, and the PhD degree from
Cornell University , Ithaca, New York, 1986.
In 1985, the join ed the Signal Processing
Laboratory , Tampere University of Technol-
ogy, Finland, as an associate professor and
later served as a professor and department
director. Since 1992, ha has been a professor
at the Royal Institute of Technology (KTH),
Sweden, where he also served as dean. He

is currently the director of Turku Center for Computer Science , Fin-
land, and at the University of Turku. He has more than 600 reviewed
publications and 16 patents internationality. He is a member of the
IEEE.

