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The Cai δ-equality of fuzzy sets corresponds to the Lukasiewicz t-norm.
In this paper we study the notion of (∗, δ)-equality, a concept which
generalizes the δ-equality to the case of the fuzzy set theory based
on an arbitrary continuous t-norm ∗. We investigate the robustness of
some fuzzy implication operators in terms of (∗, δ)-equality.
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1 INTRODUCTION

If A, B are twofuzzysetsofauniverse X , thend(A, B) = supx∈X |A(x) − B(x)|
is the distance between A and B . In Pappis’s paper [16], A and B are
said to be approximately equal (denoted by A ≈ B) if d(A, B) ≤ ε where
ε is a small non negative real number. ε is called a proximity measure of
A and B . This definition was reformulated in [11] by using the similarity
measure [12]: A and B are α-similar (A ≈α B) if S(A, B) ≥ α, where
S(A, B) = 1 − d(A, B). An axiomatic definition of distance measure and
similarity measure was done in [12]. Three similarity measures have been
considered in [17] and others in [25].

To each of these similarity measures a notion of “approximate equality
of fuzzy sets” corresponds.

[5] and [26] remarked that this definition of approximative equality of two
fuzzy sets causes some inconveniences. Therefore Cai [5] introduced the δ-
equality of two fuzzy sets: A and Bareδ-equal if supx∈X |A(x) − B(x)| ≤ 1 − δ

(0 ≤ δ ≤ 1). Using the similarity measure associated with an implication
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operator in the sense of [1], Wang et al. defined in [26] a more general
concept of δ-equality.

Most of these papers analyze the way some implication operators and
some operations of fuzzy sets and fuzzy relations behave with respect to
δ-equalities. Such operators appear in fuzzy logic and are usually applied
in fuzzy control. The results obtained in the above-mentioned papers reflect
how the errors in premises influence the conclusions in fuzzy reasoning.
Particularly, [5] and [6] contain plenty of results on δ-equality with respect
to operations of fuzzy sets, fuzzy relations, extension principle, t-norms and
s-norms as well as some robustness results on fuzzy implication operators
and fuzzy inference rules. [5] and [6] distinguish themselves by the fact
that in the study of different operations with respect to δ-equality, the real
number δ is not fixed, but varies with the terms of the operations. It is
easy to see that Cai δ-equality can be expressed in terms of the biresiduum
corresponding to Lukasiewicz t-norm. All the results in [5] and [6] are
obtained in the fuzzy set theory based on Lukasiewicz t-norm.

Changing the t-norm leads to another analysis of the fuzzy reasoning
and to another way of “identifying” the fuzzy sets.

Thus a natural problem is if the Cai theory can be developed in a more
general setting offered by an arbitrary continuous t-norm ∗. This paper is
an answer to this problem.

We shall study the (∗, δ)-equality of fuzzy sets, a concept that generalizes
the one of δ-equality.

The first objective of this paper is to extend some of Cai’s results to a
framework offered by a continuous t-norm. Besides these generalizations,
results that do not arise from [5], [6] are obtained.

Our second objective is to prove the theorem in an uniform way based on
the residuated structure of the interval [0, 1] corresponding to a continuous
t-norm. Our proofs are more natural and bring more clarity even for the
particular case of [5] and [6].

The third objective is to show how the (∗, δ)-equality can be put to
work in fuzzy revealed preference theory [8, 9].

Section 2 contains some basic results on a continuous t-norm ∗ and
its residuum →. In Section 3 we put in relation the Cai δ-equality and
the Lukasiewicz t-norm. This suggests to us the (∗, δ)-equality, a concept
obtained by using the biresiduum of the t-norm ∗.

Section 4 investigates how the basic operations on fuzzy sets preserve
the (∗, δ)-equality. The effect of some fuzzy implication operators on the
(∗, δ)-equality is studied in Section 5. Section 6 is concerned with the
manner in which the composition of fuzzy relations and the transitive
closure operator preserves the (∗, δ)-equality.

In Section 7 we relate the (∗, δ)-equality to some fuzzy operators defined
by an s-norm. The operator P studied in Section 8 is analogous to the
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fuzzy operator PC defined in [27] p. 627. P has the same form with
PC but it is defined using the Sugeno integral instead of the classical
integral. The results of Section 8 point out the behaviour of some operators
including P with respect to (∗, δ)-equality.

In Section 9 the notion of (∗, δ)-equality of two fuzzy choice functions
is defined [2, 8, 9]. According to these papers, to each fuzzy choice
function C a fuzzy revealed preference RC is associated; conversely, to
each fuzzy preference relation Q on the set of alternatives a fuzzy choice
function is associated. The two theorems of this section establish how these
two functions determine the translation from (∗, δ)-equality of the fuzzy
choice functions to the (∗, δ)-equality of the fuzzy preference relations and
conversely.

2 PRELIMINARIES

In this section we present some basic facts on continuous t-norms and
residua. The background for these results can be found in [10, 13, 15, 21].

A mapping ∗ : [0, 1] × [0, 1] → [0, 1] is a t-norm iff it is symmetric,
associative, non-decreasing in each argument and a ∗ 1 = a for all a ∈ [0, 1].

A t-norm is said to be continuous if it is continuous as a function on
the unit interval. With any continuous t-norm ∗ we associate its residuum:

a → b = ∨{c ∈ [0, 1]|a ∗ c ≤ b}.
The most well-known continuous t-norms are:
Lukasiewicz t-norm: a ∗L b = max (0, a + b − 1); a →L b = min

(1, 1 − a + b)

Gödel t-norm: a ∗G b = min (a, b); a →G b =
{

1 if a ≤ b
b if a > b

Product t-norm: a ∗P b = ab; a →P b =
{

1 if a ≤ b
b/a if a > b

Lemma 2.1. ([21]) For any a, b, c ∈ [0, 1] the following properties hold:
(1) a ∗ b ≤ c ⇔ a ≤ b → c; (2) a ∗ (a → b) = a ∧ b; (3) a ∗ b ≤

a, a ∗ b ≤ b; (4) b ≤ a → b; (5) a ≤ b ⇔ a → b = 1; (6) a = 1 → a; (7)
1 = a → a; (8) 1 = a → 1; (9) a ∗ (b ∨ c) = (a ∗ b) ∨ (a ∗ c); (10) a ≤ b
implies b → c ≤ a → c and c → a ≤ c → b.

The negation operation ¬ associated with ∗ is defined by

¬a = a → 0 = ∨{c ∈ [0, 1]|a ∗ c = 0}.
Lemma 2.2. ([21]) For any a, b, c ∈ [0, 1] the following properties hold:

(1) a ≤ ¬b ⇔ a ∗ b = 0; (2) a ∗ ¬a = 0; (3) a ≤ ¬¬a; (4) ¬0 =
1,¬1 = 0; (5) ¬a = ¬¬¬a; (6) a → b ≤ ¬b → ¬a.

This lemma shows that ([0, 1],∨,∧, ∗, 0, 1) is a residuated lattice [21].
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The biresiduum associated with the continuous t-norm ∗ is defined by
ρ(a, b) = a ↔ b = (a → b) ∧ (b → a).

Lemma 2.3. ([21]) For any a, b, c, d ∈ [0, 1] the following properties hold:
(1) ρ(a, 1) = a; (2) a = b ⇔ ρ(a, b) = 1; (3) ρ(a, b) = ρ(b, a);

(4) ρ(a, b) ≤ ρ(¬a,¬b); (5) ρ(a, b) ∗ ρ(b, c) ≤ ρ(a, c); (6) ρ(a, b) ∧
ρ(c, d) ≤ ρ(a ∧ c, b ∧ d); (7) ρ(a, b) ∧ ρ(c, d) ≤ ρ(a ∨ c, b ∨ d); (8)
ρ(a, b) ∗ ρ(c, d) ≤ ρ(a ∗ c, b ∗ d); (9) ρ(a, b) ∗ ρ(c, d) ≤ ρ(a → c, b →
d); (10) ρ(a, b) ∗ a ≤ b; (11) a ∧ b ≤ ρ(a, b); (12) ρ(a, b) ∗ ρ(c, d) ≤
ρ(ρ(a, c), ρ(b, d)).

Proof: The proof of (1)-(3) and (5)-(9) can be found in [21], p. 14. (4)
By Lemma 2.2 (6)

ρ(a, b) = (a → b) ∧ (b → a) ≤ (¬b → ¬a) ∧ (¬a → ¬b) = ρ(¬a,¬b).

(10) By Lemma 2.1 (2), ρ(a, b) ∗ a ≤ a ∗ (a → b) = a ∧ b ≤ b.
(11) By Lemma 2.1 (4), a ≤ b → a and b ≤ a → b, hence a ∧ b ≤

(a → b) ∧ (b → a) = ρ(a, b).
(12) ρ(ρ(a, c), ρ(b, d)) = ρ((a → c) ∧ (c → a), (b → d) ∧ (d → b)) ≤

ρ(a → c, b → d) ∧ ρ(c → a, d → b) ≤ [ρ(a, b) ∗ ρ(c, d)] ∧ [ρ(c, d) ∗
ρ(a, b)] = ρ(a, b) ∗ ρ(c, d).

Lemma 2.4. ([21]) For any {ai}i∈I ⊆ [0, 1], {bi}i∈I ⊆ [0, 1] and a ∈ [0, 1]
the following properties hold:

(1) a → (
∧
i∈I

ai ) =
∧
i∈I

(a → ai ); (2) (
∨
i∈I

ai ) → a =
∧
i∈I

(ai → a); (3)∨
i∈I

(ai → a) ≤ (
∧
i∈I

ai ) → a; (4)
∨
i∈I

(a → ai ) ≤ a → (
∨
i∈I

ai ); (5) (
∨
i∈I

ai ) ∗

(
∨
j∈I

b j ) =
∨

i, j∈I

(ai ∗ b j ); (6) (
∧
i∈I

ai ) ∗ (
∧
j∈I

b j ) ≤
∧

i, j∈I

(ai ∗ b j ).

Lemma 2.5. Let X be a non-empty set and f : X → [0, 1], g : X → [0, 1]
two arbitrary functions. Then

(1) ρ(
∧
x∈X

f (x),
∧
x∈X

g(x)) ≥
∧
x∈X

ρ( f (x), g(x));

(2) ρ(
∨
x∈X

f (x),
∨
x∈X

g(x)) ≥
∧
x∈X

ρ( f (x), g(x)).

Proof: (1) By Lemma 2.3 (10), we have for each z ∈ X :

[
∧

x

ρ( f (x), g(x))] ∗ (
∧

y

f (y)) ≤ ρ( f (z), g(z)) ∗ f (z) ≤ g(z).

Then, by Lemma 2.1 (1),
∧

x

ρ( f (x), g(x)) ≤ (
∧

y

f (y)) → g(z).
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This inequality holds for any z ∈ X , hence by Lemma 2.4 (1):∧
x

ρ( f (x), g(x)) ≤
∧

z

((
∧

y

f (y)) → g(z)) =

= (
∧

y

f (y)) → (
∧

z

g(z))

Similarly,
∧

x

ρ( f (x), g(x)) ≤ (
∧

z

(g(z)) → (
∧

y

f (y)), therefore∧
x

ρ( f (x), g(x)) ≤ [(
∧

y

f (y)) → (
∧

z

g(z))] ∧ [(
∧

z

g(z)) →

(
∧

y

f (y))] = ρ(
∧

x

f (x),
∧

x

g(x)).

(2) For any y ∈ X we have

[
∧

x

ρ( f (x), g(x))] ∗ f (y) ≤ ρ( f (y), g(y)) ∗ f (y) ≤ g(y) ≤
∨

z

g(z).

In accordance with Lemma 2.1 (1),
∧

x

ρ( f (x), g(x)) ≤ f (y) → (
∨

z

g(z)).

This inequality holds for any y ∈ X , therefore, by Lemma 2.4 (2)∧
x

ρ( f (x), g(x)) ≤
∧

y

( f (y) → (
∨

z

g(z))) = (
∨

y

f (y)) → (
∨

z

g(z))

Similarly,
∧

x

ρ( f (x), g(x)) ≤ (
∨

z

g(z)) → (
∨

y

f (y)) hence

∧
x

ρ( f (x), g(x)) ≤ [(
∨

y

f (y)) → (
∨

z

g(z))] ∧ [(
∨

z

g(z)) →

(
∨

y

f (y))] = ρ(
∨

x

f (x),
∨

x

g(x)).

Let X be a non-empty set. A fuzzy subset of X is a function A : X → [0, 1].
If x ∈ X then A(x) is called the degree of membership of x in A. Let us
denote by F (X) the set of fuzzy subsets of X .

If A, B ∈ F (X) we denote A ⊆ B if A(x) ≤ B(x) for each x ∈ X . For
any A, B ∈ F (X) we define the fuzzy subsets A ∪ B , A ∩ B by

(A ∪ B)(x) = A(x) ∨ B(x); (A ∩ B)(x) = A(x) ∧ B(x).

3 LUKASIEWICZ T-NORM AND CAI δ-EQUALITY

In this section we shall prove that the Cai δ-equality ([5], [6]) can be
expressed in terms of the biresiduum of Lukasiewicz t-norm. This result is
not new (see example [26], Proposition 3.1) but we shall briefly prove it.
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Let us consider the Lukasiewicz t-norm a ∗L b = 0 ∨ (a + b − 1) and
its residuuma →L b = 1 ∧ (1 − a + b).Thebiresiduum of∗L willbegiven by

ρL (a, b) = (a →L b) ∧ (b →L a) =
{

b →L a if a ≤ b
a →L b if a ≥ b

.

Lemma 3.1. For any a, b ∈ [0, 1], ρL (a, b) = 1 − |a − b|.
Proof: Assume a ≤ b, then

ρL (a, b) = b →L a = 1 − b + a = 1 − |a − b|.
The case b ≤ a follows similarly.

Now we recall the Cai definition of δ-equality.

Definition 3.2. ([5], [6]) Let X be a non-empty set, A, B two fuzzy subsets
of X and 0 ≤ δ ≤ 1. Then A, B are δ-equal (A = (δ)B in symbols) if the
following condition holds:∨

x∈X

|A(x) − B(x)| ≤ 1 − δ.

Lemma 3.3. If 0 ≤ δ ≤ 1 and A, B are two fuzzy subsets of X then the
following are equivalent:

(i) A = (δ)B;
(ii)

∧
x∈X

ρL (A(x), B(x)) ≥ δ.

Proof: By Lemma 3.1 we remark that
1 −

∨
x∈X

|A(x) − B(x)| =
∧
x∈X

(1 − |A(x) − B(x)|) =
∧
x∈X

ρL (A(x), B(x))

Then the equivalence of (i) and (ii) follows immediately.

4 (∗, δ)-EQUALITY OF FUZZY SETS

In this section we shall introduce the (∗, δ)-equality and we shall discuss this
notion with respect to algebraic operations of fuzzy sets and fuzzy relations.
We shall relate the (∗, δ)-equality with Zadeh’s extension principle.

In accordance with Lemma 3.3, the Cai δ-equality is a notion which
corresponds to the Lukasiewicz t-norm. This lemma suggests to us the
notion of (∗, δ)-equality, a concept corresponding to an arbitrary continuous
t-norm.

Definition 4.1. Let ∗ be a continuous t-norm and X a non-empty set. If
A, B are two fuzzy subsets of X and 0 ≤ δ ≤ 1 then we shall say that
A, B are (∗, δ)-equal (A = (∗, δ)B in symbols) if the following condition holds
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∧
x∈X

ρ(A(x), B(x)) ≥ δ,

where ρ is the biresiduum of ∗.

For the case when ∗ is the Lukasiewicz t-norm ∗L we obtain the Cai
notion of δ-equality.∧

x∈X

ρ(A(x), B(x)) can represent the degree of similarity of the fuzzy

sets A and B . Then A = (∗, δ)B means that A and B are “equal to a
degree greater than δ”.

Example 4.2. Suppose two approximative pieces of information “about 2”
lead to triangular fuzzy numbers A = (2, 2) and B = (2, 1):

A(x) =




x/2 if 0 ≤ x ≤ 2

(4 − x)/2 if 2 ≤ x ≤ 4

0 otherwise,

B(x) =




x − 1 if 1 ≤ x ≤ 2

3 − x if 2 ≤ x ≤ 3

0 otherwise.

FIGURE 1
Fuzzy numbers A and. B
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We want to see to what extent the fuzzy numbers A and B are (∗, δ)-equal.
We want to calculate ρ(A(x), B(x)), x ∈ � for an arbitrary continuous

t-norm. An easy computation leads to

ρ(A(x), B(x)) =




1 if x ≤ 0

¬A(x) if 0 < x < 1

A(x) → B(x) if 1 ≤ x ≤ 3

¬A(x) if 3 < x < 4

1 if x ≥ 4.

We will explicate ρ(A(x), B(x)) for Lukasiewicz, Gödel and product
t-norms.

a) Lukasiewicz t-norm

ρL (A(x), B(x)) =




1 if x ≤ 0

1 − A(x) if 0 < x < 1

1 − A(x) + B(x) if 1 ≤ x ≤ 3

1 − A(x) if 3 < x < 4

1 if x ≥ 4.

By computation we get

ρL (A(x), B(x)) =




1 if x ≤ 0

(2 − x)/2 if 0 < x ≤ 1

x/2 if 1 ≤ x ≤ 2

2 − x/2 if 2 ≤ x ≤ 3

(x − 2)/2 if 3 ≤ x ≤ 4

1 if x ≥ 4.

We conclude that
∧
x∈�

ρL (A(x), B(x)) = 1/2 (see Fig. 2) hence A =
(∗L , 1/2)B .

b) Gödel t-norm

ρG(A(x), B(x)) =




1 if x ≤ 0

0 if 0 < x < 1

B(x) if 1 ≤ x ≤ 3

0 if 3 < x < 4

1 if x ≥ 4.

We notice that
∧
x∈�

ρG(A(x), B(x)) = 0, hence A = (∗G, 0)B .
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FIGURE 2
ρL (A(x), B(x)).

c) product t-norm

ρP (A(x), B(x)) =




1 if x ≤ 0

0 if 0 < x < 1

B(x)/A(x) if 1 ≤ x ≤ 3

0 if 3 < x < 4

1 if x ≥ 4.

We notice that
∧
x∈�

ρP (A(x), B(x)) = 0, hence A = (∗P , 0)B .

For this example, the only interesting case is the Lukasiewicz t-norm.

For the rest of the paper we fix a continuous t-norm ∗, its residuum →
and its biresiduum ρ.

Let A, B be two fuzzy subsets of X . Let us define the relational
intersection A � B and the relational union A � B as the fuzzy relations on
X defined by (A � B)(x, y) = A(x) ∧ B(y), (A � B)(x, y) = A(x) ∨ B(y)
for all x, y ∈ X .

Proposition 4.3 Let A, A′, B, B ′ be fuzzy subsets of X. If A = (∗, δ1)A′

and B = (∗, δ2)B ′ then A � B = (∗, δ1 ∧ δ2)A′ � B ′ and A ∩ B = (∗, δ1 ∧
δ2)A′ ∩ B ′.

Proof: By hypothesis,
∧
x∈X

ρ(A(x), A′(x)) ≥ δ1,
∧
x∈X

ρ(B(x), B ′(x)) ≥ δ2.

Then using Lemma 2.3 (6), one gets for all x, y ∈ X :

ρ((A � B)(x, y), (A′ � B ′)(x, y)) = ρ(A(x) ∧ B(y), A′(x) ∧ B ′(y))

≥ ρ(A(x), A′(x)) ∧ ρ(B(y), B ′(y)).
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Hence,∧
x,y∈X

ρ((A � B)(x, y), (A′ � B ′)(x, y)) ≥
∧

x,y∈X

(ρ(A(x), A′(x)) ∧ ρ(B(y), B ′(y))) =

= [
∧

x

ρ(A(x), A′(x))] ∧ [
∧

y

ρ(B(y), B ′(y))] ≥ δ1 ∧ δ2.

Then A � B = (∗, δ1 ∧ δ2)A′ � B ′. The second relation follows by∧
x∈X

ρ(A(x) ∧ B(x), A′(x) ∧ B ′(x)) ≥
∧

x,y∈X

ρ(A(x) ∧ B(y), A′(x) ∧

B ′(y)) ≥ δ1 ∧ δ2.

Proposition 4.4 If A = (∗, δ1)A′ and B = (∗, δ2)B ′ then A � B = (∗, δ1 ∧
δ2)A′ � B ′ and A ∪ B = (∗, δ1 ∧ δ2)A′ ∪ B ′.

Proof: Similarly, using Lemma 2.3 (7).

Let A1, . . . , An be fuzzy subsets of X . Let us define

n∏
i=1

Ai : Xn → [0, 1],
n∐

i=1

Ai : Xn → [0, 1].

by putting

(
n∏

i=1

Ai )(x1, . . . , xn) = A1(x1) ∧ A2(x2) ∧ . . . ∧ An(xn)

(
n∐

i=1

Ai )(x1, . . . , xn) = A1(x1) ∨ A2(x2) ∨ . . . ∨ An(xn)

for all (x1, . . . , xn) ∈ Xn .
The following result generalizes Propositions 4.3 and 4.4.

Proposition 4.5 Let A1, . . . , An, B1, . . . , Bn be fuzzy subsets of X. If

Ai = (∗, δi )Bi for i = 1, . . . , n then
n∏

i=1

Ai = (∗,

n∧
i=1

δi )
n∏

i=1

Bi ,

n∐
i=1

Ai =

(∗,

n∧
i=1

δi )
n∐

i=1

Bi ,

n⋃
i=1

Ai = (∗,

n∧
i=1

δi )
n⋃

i=1

Bi ,

n⋂
i=1

Ai = (∗,

n∧
i=1

δi )
n⋂

i=1

Bi .

If A is a fuzzy subset of X then ¬A is the fuzzy subset of X defined
by (¬A)(x) = ¬A(x) for each x ∈ X .

Proposition 4.6 If A = (∗, δ)B then ¬A = (∗, δ)¬B.
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Proof: By Lemma 2.3 (4),
∧

x

ρ(¬A(x),¬B(x)) ≥
∧

x

ρ(A(x), B(x)) ≥ δ.

If A, B are two fuzzy subsets of X then A ∗ B will be the fuzzy relation
on X defined by (A ∗ B)(x, y) = A(x) ∗ B(y) for all x, y ∈ X .

Proposition 4.7 If A = (∗, δ1)A′ and B = (∗, δ2)B ′ then A ∗ B = (∗, δ1 ∗
δ2)A′ ∗ B ′.

Proof: By hypothesis we have

(a)
∧

x

ρ(A(x), A′(x)) ≥ δ1,
∧

y

ρ(B(y), B ′(y)) ≥ δ2.

Now we shall prove the inequality

(b)
∧
x,y

ρ(A(x) ∗ B(y), A′(x) ∗ B ′(y)) ≥ [
∧

x

ρ(A(x), A′(x))] ∗

[
∧

y

ρ(B(y), B ′(y))].

Let x, y ∈ X . By Lemma 2.3 (8)

[
∧

x

ρ(A(x), A′(x))] ∗ [
∧

y

ρ(B(y), B ′(y))] ≤ ρ(A(x), A′(x)) ∗ ρ(B(y), B ′(y))

≤ ρ(A(x) ∗ B(y), A′(x) ∗ B ′(y)).

This inequality holds for any x, y ∈ X therefore we obtain (b).
By (a) and (b) one can infer that∧

x,y

ρ((A ∗ B)(x, y), (A′ ∗ B ′)(x, y))

=
∧
x,y

ρ(A(x) ∗ B(y), A′(x) ∗ B ′(y)) ≥ δ1 ∗ δ2.

Let A, B be two fuzzy subsets of X . Denote by A → B the fuzzy
relation on X defined by (A → B)(x, y) = A(x) → B(y) for all x, y ∈ X .

Proposition 4.8 If A = (∗, δ1)A′ and B = (∗, δ2)B ′ then (A → B) =
(∗, δ1 ∗ δ2)(A′ → B ′).

Proof: Similarly, using Lemma 2.3 (9).
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If A, B are two fuzzy subsets of X then A∇B will be the fuzzy subset
on X defined by (A∇B)(x) = ¬ρ(A, B)(x) for all x ∈ X .

Proposition 4.9 If A = (∗, δ1)A′ and B = (∗, δ2)B ′ then ∇(A, B) =
(∗, δ1 ∗ δ2)∇(A′, B ′).

Proof: By hypothesis we know
∧

x

ρ(A(x), A′(x)) ≥ δ1,
∧

x

ρ(B(x), B ′(x))

≥ δ2.
Using Lemma 2.3 (12) and the inequality (b) in the proof of Proposition

4.8 we have∧
x

ρ(∇(A(x), B(x)),∇(A′(x), B ′(x))) =∧
x

ρ(¬ρ(A(x), B(x)),¬ρ(A′(x), B ′(x)))

≥
∧

x

ρ(ρ(A(x), B(x)), ρ(A′(x), B ′(x))) ≥
∧

x

(ρ(A(x), A′(x)) ∗
ρ(B(x), B ′(x))) ≥ δ1 ∗ δ2,

hence ∇(A, B) = (∗, δ1 ∗ δ2)∇(A′, B ′).

Proposition 4.10 Let X and Y be two non-empty sets and f a mapping
from X to Y , i.e. f : X → Y . Let A and A′ be fuzzy sets defined on X and
B and B ′ fuzzy sets defined on Y by the extension principle with respect
to f :

B(y) =



∨
y= f (x)

A(x) if f −1(y) �= ∅

0 otherwise,

B ′(y) =



∨
y= f (x)

A′(x) if f −1(y) �= ∅

0 otherwise.

If A = (∗, δ)A′ then B = (∗, δ)B ′.

Proof: By hypothesis,
∧
x∈X

ρ(A(x), A′(x)) ≥ δ. According to Lemma 2.5

(2) we have∧
y∈Y

ρ(B(y), B ′(y)) =
∧
y∈Y

ρ(
∨

y= f (x)

A(x),
∨

y= f (x)

A′(x)) ≥
∧
y∈Y

∧
y= f (x)

ρ(A(x), A′(x)) ≥
∧
x∈X

ρ(A(x), A′(x)) ≥ δ.

Thus B = (∗, δ)B ′.
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The following result is a generalization of Proposition 4.7.

Proposition 4.11 Let X1, . . . , Xn be non-empty sets and Ai , Bi fuzzy
subsets of Xi . Let us consider A = A1 ∗ . . . ∗ An, B = B1 ∗ . . . ∗ Bn the
fuzzy subsets of the cartesian product X = X1 × . . . × Xn defined by

A(x1, . . . , xn) = A1(x1) ∗ . . . ∗ An(xn),
B(x1, . . . , xn) = B1(x1) ∗ . . . ∗ Bn(xn)
for any (x1, . . . , xn) ∈ X1 × . . . × Xn.
If Ai = (∗, δi )Bi , i = 1, . . . , n then A = (∗, δ1 ∗ . . . ∗ δn)B.

Proposition 4.12 Let X1, . . . , Xn, Y be non-empty sets and f : X1 × . . . ×
Xn → Y . Let Ai , A′

i ∈ F (Xi ), i = 1, . . . , n and B, B ′ ∈ F (Y ) defined by

B(y) =
{∨

{A1(x1) ∗ . . . ∗ An(xn)| f (x1, . . . , xn) = y} if f −1(y) �= ∅
0 otherwise,

B ′(y) =
{∨

{A′
1(x1) ∗ . . . ∗ A′

n(xn)| f (x1, . . . , xn) = y} if f −1(y) �= ∅
0 otherwise.

If Ai = (∗, δi )A′
i , i = 1, . . . , n then B = (∗, δ)B ′ where δ = δ1 ∗ . . . ∗ δn.

Proof: If X = X1 × . . . × Xn then f is a mapping from X to Y , so
we can apply Proposition 4.11 to f and to the fuzzy subsets A, A′

of X defined by A(x1, . . . , xn) = A1(x1) ∗ . . . ∗ An(xn), A′(x1, . . . , xn) =
A′

1(x1) ∗ . . . ∗ A′
n(xn).

By Proposition 4.7, A = (∗, δ1 ∗ . . . ∗ δn)A′, hence, by Proposition 4.11,
B = (∗, δ1 ∗ . . . ∗ δn)B ′.

Proposition 4.13 Let X1, . . . , Xn be non-empty sets and f : X1 × . . . ×
Xn → Y . Let Ai , A′

i ∈ F (Xi ), i = 1, . . . , n and B, B ′ ∈ F (Y ) defined by

B(y) =
{∨

{A1(x1) ∧ . . . ∧ An(xn)| f (x1, . . . , xn) = y} if f −1(y) �= ∅
0 otherwise,

B ′(y) =
{∨

{A′
1(x1) ∧ . . . ∧ A′

n(xn)| f (x1, . . . , xn) = y} if f −1(y) �= ∅
0 otherwise.

If Ai = (∗, δi )A′
i, i = 1, . . . , n then B = (∗, δ)B ′ where δ = δ1 ∧ . . . ∧ δn.

Proof: Similar to the proof of Proposition 4.12, using Propositions 4.5 and
4.11.

5 SOME FUZZY OPERATORS

Let X be a non-empty set and F (X) the set of fuzzy subsets of X .
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A fuzzy operator will be a function I : (F (X))n → F (Xk) where n, k
are non-zero natural numbers.

In this section we will investigate how some fuzzy operators preserve
the (∗, δ)-equality.

Any function τ : [0, 1]n → [0, 1] provides a fuzzy operator I : (F (X))n →
F (X) defined by

I (A1, . . . , An)(x1, . . . , xn) = τ (A1(x1), . . . , An(xn)) for all A1, . . . , An ∈
F (X) and x1, . . . , xn ∈ X .

Particularly, τ can be a fuzzy implicator, i.e. a function τ : [0, 1]2 → [0, 1]
for which τ (0, 0) = τ (0, 1) = τ (1, 1) = 1, τ (1, 0) = 0 and whose first
(partial) functions are decreasing (increasing). A list with the main fuzzy
implicators can be found in [18], p. 24. Then the fuzzy operator I : (F (X))2

→ F (X2) associated with a fuzzy implicator is given by I (A1, A2)(x, y) =
τ (A1(x), A2(y)) for all A1, A2 ∈ F (X) and x, y ∈ X .

The following result extends Proposition 4.1 of [6] to an arbitrary
continuous t-norm ∗.

Proposition 5.1 Let us consider the fuzzy operator I : (F (X))2 → F (X2)
associated with the Gödel implicator →G:

I (A, B)(x, y) = A(x) →G B(y) =
{

1 if A(x) ≤ B(y)

B(y) if A(x) > B(y)
.

for any A, B ∈ F (X) and x, y ∈ X. If A = (∗, δ)A′ and B = (∗, δ)B ′ then
I (A, B) = (∗, δ)I (A′, B ′) where

δ = [(
∧

y

B(y)) ∨ (
∧

y

B ′(y))] ∗ (
∧

y

B(y) ∧ B ′(y))

Proof: By Lemma 2.3 (5) we have for any x, y ∈ X :

(a)ρ(I (A, B)(x, y), I (A′, B ′)(x, y)) ≥
≥ ρ(I (A, B)(x, y), I (A′, B)(x, y)) ∗ ρ(I (A′, B)(x, y), I (A′, B ′)(x, y)).

First we will prove the inequality

(b) ρ(I (A, B)(x, y), I (A′, B)(x, y)) ≥ B(y).

We must consider the following cases:

(I) A(x) = A′(x)
Then I (A, B)(x, y) = I (A′, B)(x, y), hence ρ(I (A, B)(x, y), I (A′, B)

(x, y)) = 1.
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(II) A(x) < A′(x) We have three subcases:

• A(x) < A′(x) ≤ B(y)
Then I (A, B)(x, y) = I (A′, B)(x, y) = 1henceρ(I (A, B)(x, y), I (A′, B)

(x, y)) = 1.

• A(x) ≤ B(y) ≤ A′(x)
Then I (A, B)(x, y) = 1, I (A′, B)(x, y) = B(y) hence ρ(I (A, B)(x, y),

I (A′, B)(x, y)) = ρ(1, B(y)) = B(y).

• B(y) < A(x) < A′(x)
Then I (A, B)(x, y) = I (A′, B)(x, y) = B(y) hence ρ(I (A, B)(x, y),

I (A′, B)(x, y)) = ρ(B(y), B(y)) = 1

(III) A′(x) < A(x) We also have three subcases:

• A′(x) < A(x) ≤ B(y)
Then I (A, B)(x, y) = I (A′, B)(x, y) = 1henceρ(I (A, B)(x, y), I (A′, B)

(x, y)) = 1.

• A′(x) ≤ B(y) < A(x)
Then I (A, B)(x, y) = B(y), I (A′, B)(x, y) = 1 hence ρ(I (A, B)(x, y),

I (A′, B)(x, y)) = ρ(B(y), 1) = B(y).

• B(y) < A′(x) < A(x)
Then I (A, B)(x, y) = I (A′, B)(x, y) = 1henceρ(I (A, B)(x, y), I (A′, B)

(x, y)) = 1.

Therefore the inequality (b) is verified in all the cases.
Secondly, we will establish the following inequality:

(c) ρ(I (A′, B)(x, y), I (A′, B ′)(x, y)) ≥ B(y) ∧ B ′(y).
We must consider the following cases:

(I) B(y) = B ′(y)
Then I (A′, B)(x, y) = I (A′, B ′)(x, y) hence ρ(I (A′, B)(x, y), I (A′, B ′)

(x, y)) = 1.

(II) B ′(y) < B(y) We have three subcases:

• B ′(y) < B(y) < A′(x)
Then I (A′, B)(x, y) = B(y), I (A′, B ′)(x, y) = B ′(y), hence, by Lemma

2.3 (11):
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ρ(I (A′, B)(x, y), I (A′, B ′)(x, y)) = ρ(B(y), B ′(y)) ≥ B(y) ∧ B ′(y).

• B ′(y) < A′(x) ≤ B(y)
Then I (A′, B)(x, y) = 1, I (A′, B ′)(x, y) = B ′(y), hence
ρ(I (A′, B)(x, y), I (A′, B ′)(x, y)) = ρ(1, B ′(y)) = B ′(y).

• A′(x) ≤ B ′(y) < B(y)
Then I (A′, B)(x, y) = I (A′, B ′)(x, y) = 1 hence ρ(I (A′, B)(x, y),

I (A′, B ′)(x, y)) = 1.

(III) B(y) < B ′(y) We have three subcases:

• A′(x) ≤ B(y) < B ′(y)
Then I (A′, B)(x, y) = I (A′, B ′)(x, y) = 1 hence ρ(I (A′, B)(x, y),

I (A′, B ′)(x, y)) = 1.

• B(y) < A′(x) ≤ B ′(y)
Then I (A′, B)(x, y) = B(y), I (A′, B ′)(x, y) = 1 hence
ρ(I (A′, B)(x, y), I (A′, B ′)(x, y)) = ρ(B(y), 1) = B(y).

• B(y) < B ′(y) < A′(x)
Then I (A′, B)(x, y) = B(y), I (A′, B ′)(x, y) = B ′(y) hence
ρ(I (A′, B)(x, y), I (A′, B ′)(x, y)) ≥ B(y) ∧ B ′(y).

Thus the inequality (c) is verified in all cases. By the inequalities (a),
(b), (c) and Lemma 2.4 (6) we obtain

∧
x,y

ρ(I (A, B)(x, y), I (A′, B ′)(x, y))

≥
∧
x,y

ρ(I (A, B)(x, y), I (A′, B)(x, y)) ∗ ρ(I (A′, B)(x, y), I (A′, B ′)(x, y))

≥ [
∧
x,y

ρ(I (A, B)(x, y), I (A′, B)(x, y))] ∗ [
∧
x,y

ρ(I (A′, B)(x, y), I (A′, B ′)(x, y)]

≥ [
∧

y

B(y)] ∗ [
∧

y

(B(y) ∧ B ′(y))].

By symmetry we get:

∧
x,y

ρ(I (A, B)(x, y), I (A′, B ′)(x, y)) ≥ [
∧

y

B ′(y)] ∗ [
∧

y

(B(y) ∧ B ′(y))]
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Therefore, by Lemma 2.1 (9)∧
x,y

ρ(I (A, B)(x, y), I (A′, B ′)(x, y))

≥ {[
∧

y

B(y)] ∗ [
∧

y

B(y) ∧ B ′(y))]} ∨ {[
∧

y

B ′(y)] ∗ [
∧

y

B(y) ∧ B ′(y))]}

= [(
∧

y

B(y)) ∨ (
∧

y

B ′(y))] ∗ [
∧

y

(B(y) ∧ B ′(y))].

In the proof of the above proposition the properties of →G are used. An
open problem is whether a similar result holds true for the fuzzy operators
associated with other implicators.

A second class of fuzzy operators is obtained by using infinitary operators∨
and

∧
on [0, 1]. Let us consider a function τ : [0, 1]n → [0, 1] and

1 ≤ k < n. Then a fuzzy operator I : (F (X))n → F (Xn−k) is defined by

I (A1, . . . , An)(xk+1, . . . , xn) =
∨
x∈X

τ (A1(x), . . . , Ak(x), Ak+1(xk+1), . . . ,

An(xn))

for all A1, . . . , An ∈ F (X) and x1, . . . , xn ∈ X . A similar fuzzy operator
can be defined using

∧
instead of

∨
. In particular τ can be a term,

i.e the composition of some of the operations of the residuated lattice
([0, 1],∨,∧, ∗,→, 0, 1).

Instead of formulating a general result about the way (∗, δ)-equality is
preserved by the fuzzy operators induced by such terms, we will treat this
problem in some particular cases.

Proposition 5.2 Let us consider the fuzzy operators I1, I2, I3, I4 : (F (X))3

→ F (X) defined by

I1(A, B, C)(y) =
∨
x∈X

[C(x) ∧ (¬A(x) ∨ B(y))];

I2(A, B, C)(y) =
∨
x∈X

[C(x) ∗ (A(x) → B(y))];

I3(A, B, C)(y) =
∨
x∈X

[C(x) ∗ (¬A(x) ∨ B(y))];

I4(A, B, C)(y) =
∨
x∈X

[C(x) ∧ (¬A(x) → B(y))].
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for any A, B, C ∈ F (X ) and y ∈ X. If A = (∗, δ1)A′, B = (∗, δ2)B ′ and
C = (∗, δ3)C ′ then

I1(A, B, C) = (∗, δ1 ∧ δ2 ∧ δ3)I1(A′, B ′, C ′),

I2(A, B, C) = (∗, δ1 ∗ δ2 ∗ δ3)I2(A′, B ′, C ′),

I3(A, B, C) = (∗, δ3 ∗ (δ1 ∧ δ2))I3(A′, B ′, C ′),

I4(A, B, C) = (∗, δ3 ∧ (δ1 ∗ δ2))I4(A′, B ′, C ′).

Proof: In accordance with Lemma 2.5 (2)∧
y

ρ(I1(A, B, C)(y), I1(A′, B ′, C ′)(y)) =
∧

y

ρ(
∨

x

[C(x) ∧ (¬A(x) ∨ B(y))],

∨
x

[C ′(x) ∧ (¬A′(x) ∨ B ′(y))])

≥
∧

y

∧
x

ρ([C(x) ∧ (¬A(x) ∨ B(y))], [C ′(x) ∧ (¬A′(x) ∨ B ′(y))]).

Let x, y ∈ X . By Lemma 2.3 (6),(7) and (4) we have:

ρ([C(x) ∧ (¬A(x) ∨ B(y))], [C ′(x) ∧ (¬A′(x) ∨ B ′(y))])

≥ ρ(C(x), C ′(x)) ∧ ρ(¬A(x) ∨ B(y),¬A′(x) ∨ B ′(y))

≥ ρ(C(x), C ′(x)) ∧ ρ(¬A(x),¬A′(x)) ∧ ρ(B(y), B ′(y))

≥ ρ(C(x), C ′(x)) ∧ ρ(A(x), A′(x)) ∧ ρ(B(y), B ′(y)).

We conclude that

∧
y

ρ(I1(A, B, C)(y), I1(A′, B ′, C ′)(y))

≥
∧
x,y

[ρ(A(x), A′(x)) ∧ ρ(B(y), B ′(y)) ∧ ρ(C(x), C ′(x))]

= [
∧

x

ρ(A(x), A′(x))] ∧ [
∧

y

ρ(B(y), B ′(y))] ∧ [
∧

x

ρ(C(x), C ′(x))].

By hypothesis∧
x

ρ(A(x), A′(x)) ≥ δ1,
∧

y

ρ(B(y), B ′(y)) ≥ δ2,
∧

x

ρ(C(x), C ′(x)) ≥ δ3,
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therefore ∧
y

ρ(I1(A, B, C)(y), I1(A′, B ′, C ′)(y)) ≥ δ1 ∧ δ2 ∧ δ3.

For the operators I2, I3 and I4 the results are obtained similarly.

6 (∗, δ)-EQUALITY AND FUZZY RELATIONS

In this section we shall investigate how the composition of fuzzy relations
and the transitive closure operator preserve the (∗, δ)-equality.

Let R, S be two fuzzy relations on X . Recall that R ◦ S is the fuzzy
relation defined by

(R ◦ S)(x, z) =
∨
y∈X

R(x, y) ∗ S(y, z) for all x, z ∈ X .

The following result generalizes Proposition 4.1 [5] (see also [11]).

Proposition 6.1 Let R, R′, S, S′ be fuzzy relations on X. If R = (∗, δ1)R′

and S = (∗, δ2)S′ then R ◦ S = (∗, δ1 ∗ δ2)R′ ◦ S′.

Proof: By hypothesis

(a)
∧
x,z

ρ(R(x, z), R′(x, z)) ≥ δ1,
∧
x,z

ρ(S(x, z), S′(x, z)) ≥ δ2.

By Lemma 2.5 (2) we have

(b)
∧
x,z

ρ((R ◦ S)(x, z), (R′ ◦ S′)(x, z))

=
∧
x,z

ρ(
∨

y

R(x, y) ∗ S(y, z),
∨

y

R′(x, y) ∗ S′(y, z))

≥
∧
x,z

∧
y

ρ(R(x, y) ∗ S(y, z), R′(x, y) ∗ S′(y, z)).

Let x, y, z ∈ X . By Lemma 2.3 (8) and Lemma 2.4 (6)

ρ(R(x, y) ∗ S(y, z), R′(x, y) ∗ S′(y, z))

≥ ρ(R(x, y), R′(x, y)) ∗ ρ(S(y, z), S′(y, z))

≥
∧

s,t,u,v

ρ(R(s, t), R′(s, t)) ∗ ρ(S(u, v), S′(u, v))

≥ [
∧
s,t

ρ(R(s, t), R′(s, t))] ∗ [
∧
u,v

ρ(S(u, v), S′(u, v))] ≥ δ1 ∗ δ2.
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These inequalities hold for all x, y, z ∈ X , hence

(c)
∧
x,z

∧
y

ρ(R(x, y) ∗ S(y, z), R′(x, y) ∗ S′(y, z)) ≥ δ1 ∗ δ2.

From (b) and (c) it follows that
∧
x,z

ρ((R ◦ S)(x, z), (R′ ◦ S′)(x, z)) ≥

δ1 ∗ δ2, i.e. R ◦ S = (∗, δ1 ∗ δ2)R′ ◦ S′.

Lemma 6.2. Let (Ri )i∈I , (Si )i∈I be two families of fuzzy relations on X and
R =

⋃
i∈I

Ri , S =
⋃
i∈I

Si . If Ri = (∗, δi )Si for any i ∈ I then R = (∗,
∧
i∈I

δi )S.

Proof: By hypothesis,
∧
x,y

ρ(Ri (x, y), Si (x, y)) ≥ δi for any i ∈ I . In

accordance with Lemma 2.5 (2)∧
x,y

ρ(R(x, y), S(x, y)) =
∧
x,y

ρ(
∨
i∈I

Ri (x, y),
∨
i∈I

Si (x, y))

≥
∧
x,y

∧
i∈I

ρ(Ri (x, y), Si (x, y)) =
∧
i∈I

∧
x,y

ρ(Ri (x, y), Si (x, y)) ≥
∧
i∈I

δi

A fuzzy relation R on X is ∗-transitive if R(x, y) ∗ R(y, z) ≤ R(x, z)
for any x, y, z ∈ X . If R is an arbitrary fuzzy relation on X then the
∗-transitive closure of R is the intersection T (R) of all ∗-transitive fuzzy
relations containing R.

The following result is well-known.

Lemma 6.3. If R is a fuzzy relation then T (R) =
∞⋃

n=1

Rn where Rn =
R ◦ R ◦ . . . ◦ R︸ ︷︷ ︸

n−times

for each n.

Theorem 6.4. Let R, S be two fuzzy relations on X. If R = (∗, δ)S then

T (R) = (∗, ε)T (S) where ε =
∞∧

n=1

δ(n) and δ(n) = δ ∗ δ ∗ . . . ∗ δ︸ ︷︷ ︸
n−times

for each

n ≥ 1.

Proof: By Proposition 6.1, Rn = (∗, δ(n))Sn for each n ≥ 1. Then we apply
Lemmas 6.2 and 6.3.



(δ, �)-EQUALITY OF FUZZY SETS 21

7 (∗, δ)-EQUALITY AND S-NORMS

An s-norm is a binary operation on [0, 1] by which one can define a
generalized union of two fuzzy sets. [6], p. 744 studies how an s-norm
behaves with respect to δ-equality. In this section we shall generalize this
result of Cai investigating how the fuzzy operator introduced by an s-norm
preserves the (∗, δ)-equality.

Applying the s-norm one defines a class of fuzzy operators that generalize
the implication operator Dienes-Rescher (or Kleene-Dienes, by [18], p.
24). For this class of fuzzy operators one proves a preservation theorem
of (∗, δ)-equality that extends Proposition 4.7, [6].

Let X be a non-empty set.

Proposition 7.1 Let A1, A2, B1, B2, C1, C2 fuzzy subsets of X such
that A1 ⊆ B1 ⊆ C1, A2 ⊆ B2 ⊆ C2. If A1 = (∗, δ1)A2, A1 = (∗, δ2)C1 and
A2 = (∗, δ3)C2 then B1 = (∗, δ1 ∗ (δ2 ∧ δ3))B2.

Proof: By hypothesis

(a)
∧

x

ρ(A1(x), A2(x)) ≥ δ1,
∧

x

ρ(A1(x), C1(x)) ≥

δ2,
∧

x

ρ(A2(x), C2(x)) ≥ δ3.

We shall prove that for each y ∈ X

(b) [
∧

x

ρ(A1(x), A2(x))] ∗ [
∧

x

ρ(A1(x), C1(x))] ≤ B1(y) → B2(y).

Let y ∈ X . We have B1(y) ≤ C1(y) hence, by Lemma 2.1 (10)

C1(y) → A1(y) ≤ B1(y) → A1(y).

Thus, by Lemma 2.1 (2)

B1(y) ∗ [C1(y) → A1(y)] ∗ [A1(y) → A2(y)] ≤ B1(y) ∗ [B1(y)

→ A1(y)] ∗ [A1(y) → A2(y)] = [A1(y) ∧ B1(y)] ∗ [A1(y) → A2(y)]

≤ A1(y) ∗ [A1(y) → A2(y)] = A1(y) ∧ A2(y) ≤ A2(y) ≤ B2(y).

In accordance with Lemma 2.1 (1)

[C1(y) → A1(y)] ∗ [A1(y) → A2(y)] ≤ B1(y) → B2(y).
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Thus

[
∧

x

ρ(A1(x), A2(x))] ∗ [
∧

x

ρ(A1(x), C1(x))] ≤ ρ(A1(y), A2(y)) ∗ ρ(A1(y), C(y))

≤ [C(y) → A1(y)] ∗ [A1(y) → A2(y)] ≤ B1(y) → B2(y).

Similarly

(c)[
∧

x

ρ(A1(x), A2(x))] ∗ [
∧

x

ρ(A2(x), C2(x))] ≤ B2(y) → B1(y).

By (a), (b) and (c) we get for each y ∈ X :

δ1 ∗ (δ2 ∧ δ3) ≤ (δ1 ∗ δ2) ∧ (δ1 ∗ δ3) ≤ [B1(y) → B2(y)] ∧ [B2(y) → B1(y)]

= ρ(B1(y), B2(y)).

It follows that

δ1 ∗ (δ2 ∧ δ3) ≤
∧

y

ρ(B1(y), B2(y)).

Now let us recall the definition of s-norm.

Definition 7.2. An s-norm is a function s : [0, 1] × [0, 1] → [0, 1] such
that the following axioms hold for any a, b, c ∈ [0, 1]:

(A1) s(1, 1) = 1, s(0, a) = s(a, 0) = a;
(A2) s(a, b) = s(b, a) (commutativity axiom);
(A3) If a ≤ b then s(a, c) ≤ s(b, c);
(A4) s(s(a, b), c) = s(a, s(b, c)) (associativity axiom).

The join operation ∨ is the most usual s-norm.
Let us consider the s-norm sw defined by

sw(a, b) =



a if b = 0
b if a = 0
1 otherwise

.

The following result is Lemma 5.1, [6]:

Lemma 7.3. For any s-norm s and for any a, b ∈ [0, 1] we have
a ∨ b ≤ s(a, b) ≤ sw(a, b).
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If A, B are two fuzzy subsets of X and s is an s-norm, then s(A, B)
will be the fuzzy operator defined by s(A, B)(x, y) = s(A(x), B(y)) for all
x, y ∈ X .

Proposition 7.4 If A = (∗, δ1)A′ and B = (∗, δ2)B ′ then s(A, B) =
(∗, δ)s(A′, B ′) where δ = (δ1 ∧ δ2) ∗

∧
x,y

((A(x) ∨ B(y)) ∧ (A′(x) ∨ B ′(y))).

Proof: By Lemma 7.3 we have
A(x) ∨ B(y) ≤ s(A(x), B(y)) ≤ sw(A(x), B(y)); A′(x) ∨ B ′(y) ≤

s(A′(x), B ′(y)) ≤ sw(A′(x), B ′(y)) hence
A � B ⊆ s(A, B) ⊆ sw(A, B) and A′ � B ′ ⊆ s(A′, B ′) ⊆ sw(A′, B ′).
By Proposition 4.5, A � B = (∗, δ1 ∧ δ2)A′ � B ′.
Let x, y ∈ X . Then

sw(A(x), B(y)) → (A(x) ∨ B(y))

=



A(x) → A(x) if B(y) = 1
B(y) → B(y) if A(x) = 1

1 → (A(x) ∨ B(y)) otherwise

=



1 if B(y) = 1
1 if A(x) = 1

A(x) ∨ B(y) otherwise
.

A(x) ∨ B(y) ≤ sw(A(x), B(y)) → A(x) ∨ B(y) =
ρ(sw(A(x), B(y)), A(x) ∨ B(y)) hence∧

x,y

(A(x) ∨ B(y)) ≤
∧
x,y

ρ(sw(A(x), B(y)), A(x) ∨ B(y)).

Therefore A � B = (∗, ε1)sw(A, B) where ε1 =
∧
x,y

(A(x) ∨ B(y)). Sim-

ilarly, A′ � B ′ = (∗, ε2)sw(A′, B ′) where ε2 =
∧
x,y

(A′(x) ∨ B ′(y)).

Now we apply Proposition 7.1 to that situation, hence s(A, B) =
(∗, δ)s(A′, B ′) where δ = (δ1 ∧ δ2) ∗ (ε1 ∧ ε2). It is easy to see that δ has
the desired form.

Let us consider the fuzzy operator I defined by

I (A, B)(x, y) =
{

1 if A(x) ≤ B(y)
s(¬A(x), B(y)) if A(x) > B(y)

for any A, B ∈ F (X) and x, y ∈ X .
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If ∗ is the Lukasiewicz t-norm and s the join operation ∨ we obtain
operator I from [6], Proposition 4.7:

I (A, B)(x, y) =
{

1 if A(x) ≤ B(y)
(1 − A(x)) ∨ B(y) if A(x) > B(y).

The following result extends Proposition 4.7 [6] to a very general setting.

Proposition 7.5 If A = (∗, δ1)A′ and B = (∗, δ2)B ′ then I (A, B) = (∗, δ)
I (A′, B ′) where δ = [

∧
x,y

s(¬A(x) ∧ ¬A′(x), B(y))] ∗ [
∧
x,y

s(¬A′(x),

B(y) ∧ B ′(y))].

Proof: By Lemma 2.3 (5) we have for any x, y ∈ X :

(a) ρ(I (A, B)(x, y), I (A′, B ′)(x, y)) ≥
≥ ρ(I (A, B)(x, y), I (A′, B)(x, y)) ∗ ρ(I (A′, B)(x, y), I (A′, B ′)(x, y)).

Firstly we shall prove the inequality:

(b) ρ(I (A, B)(x, y), I (A′, B)(x, y)) ≥ s(¬A(x) ∧ ¬A′(x), B(y)).
We must consider the cases:

(I) A(x) = A′(x) (b) is obviously verified.

(II) A(x) < A′(x) We have three subcases:

• A(x) < A′(x) ≤ B(y) Then I (A, B)(x, y) = I (A′, B)(x, y) = 1, hence
ρ(I (A, B)(x, y), I (A′, B)(x, y)) = 1.

• B(y) < A(x) < A′(x) Then I (A, B)(x, y) = s(¬A(x), B(y));
I (A′, B)(x, y) = s(¬A′(x), B(y))

We remark that ¬A′(x) ≤ ¬A(x) hence s(¬A′(x), B(y)) ≤ s(¬A(x),
B(y)), i.e. s(¬A′(x), B(y)) → s(¬A(x), B(y)) = 1. Thus

ρ(I (A, B)(x, y), I (A′, B)(x, y)) = ρ(s(¬A(x), B(y)), s(¬A′(x), B(y))) =

= s(¬A(x), B(y)) → s(¬A′(x), B(y)) ≥ s(¬A′(x), B(y)) ≥ s(¬A(x) ∧
¬A′(x), B(y)).

• A(x) ≤ B(y) < A′(x) Then I (A, B)(x, y) = 1, I (A′, B)(x, y) =
s(¬A′(x), B(y)) hence

ρ(I (A, B)(x, y), I (A′, B)(x, y)) = s(¬A′(x), B(y)) ≥ s(¬A(x) ∧
¬A′(x), B(y)).

Therefore (b) is verified in all subcases.
(III) Similar to (II).
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Now we shall establish the inequality

(c)ρ(I (A′, B)(x, y), I (A′, B ′)(x, y)) ≥ s(¬A′(x), B(y) ∧ B ′(y)).
We also consider three cases:

(I) B(y) = B ′(y) (c) is obviously verified.

(II) B ′(y) < B(y) We shall analyze three subcases

• B ′(y) < B(y) < A′(x) Then I (A′, B)(x, y) = s(¬A′(x), B(y)),
I (A′, B ′)(x, y) = s(¬A′(x), B ′(y)).

But B ′(y) < B(y) implies s(¬A′(x), B ′(y)) ≤ s(¬A′(x), B(y)), therefore

ρ(I (A′, B)(x, y), I (A′, B ′)(x, y)) = ρ(s(¬A′(x), B(y)), s(¬A′(x), B ′(y))) =

= s(¬A′(x), B(y)) → s(¬A′(x), B ′(y)) ≥ s(¬A′(x), B ′(y)) ≥
s(¬A′(x), B(y) ∧ B ′(y)).

• B ′(y) < A′(x) ≤ B(y) Then I (A′, B)(x, y) = 1, I (A′, B ′)(x, y) = s(¬
A′(x), B ′(y)) hence ρ(I (A′, B)(x, y), I (A′, B ′)(x, y)) = s(¬A′(x), B ′(y)) ≥
s(¬A′(x), B(y) ∧ B ′(y)).

• A′(x) ≤ B ′(y) < B(y) Then I (A′, B)(x, y) = I (A′, B ′)(x, y) = 1
hence ρ(I (A′, B)(x, y), I (A′, B ′)(x, y)) = 1.

Then (c) is verified in all subcases.

(III) B(y) < B ′(y) Similar to (II).
In accordance with (a), (b) and (c) we conclude∧
x,y

ρ(I (A, B)(x, y), I (A′, B ′)(x, y)) ≥

≥ [
∧
x,y

s(¬A(x) ∧ ¬A′(x), B(y))] ∗ [
∧
x,y

s(¬A′(x), B(y) ∧ B ′(y))].

8 Sugeno integral and (∗, δ)-equality

The fuzzy operator PC : (F (X))3 → F (X) was introduced in [27], p. 627,
as a probabilistic version of Zadeh’s compositional rule of fuzzy inference
[23]. The universe of discourse X has a structure of probability space
(X, σ, P) and the definition of PC uses the integral corresponding to the
probability P .
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In this section we shall introduce a new probabilistic version P :
(F (X))3 → F (X) of compositional rule of inference using Sugeno integral
[20] instead of the classical one.

The main theorem in this section establishes how the fuzzy operator P
preserves the (∗, δ)-equality.

A (discrete) fuzzy measure on a finite set X is a function µ : P(X) → [0, 1]
verifying the following properties: (M1) µ(φ) = 0; (M2) If K ⊆ L ⊆ X
then µ(K ) ≤ µ(L); (M3) µ(X) = 1.

Definition 8.1. Let X be a finite non-empty set, µ be a fuzzy measure on
X and A a fuzzy subset of X. The discrete Sugeno integral of A with
respect to µ is defined by∫

A(x)dµ(x) =
∨

K⊆X

∧
u∈K

(A(u) ∧ µ(K )).

Let us consider the fuzzy operator P : (F (X))3 → F (X) defined by

P(A, B, A′)(y) = ∫
A′(x) ∗ (A(x) → B(y))dµ(x) for any

A, A′, B ∈ F (X) and y ∈ X .

Remark 8.2 The fuzzy operator P is similar to the fuzzy operator PC
defined in [27] p. 627. P has the same form with PC but it is defined
using the Sugeno integral instead of the classical integral.

Proposition 8.3 Let A1, A2, A′
1, A′

2, B1, B2 be fuzzy subsets of X.
If A1 = (∗, δ1)A2, A′

1 = (∗, δ2)A′
2, B1 = (∗, δ3)B2, then P(A1, B1, A′

1) =
(∗, δ1 ∗ δ2 ∗ δ3)P(A2, B2, A′

2).

Proof: We have:

(a)
∧

x

ρ(A1(x), A2(x)) ≥ δ1,
∧

x

ρ(A′
1(x), A′

2(x)) ≥ δ2,
∧

y

ρ(B1(y), B2(y)) ≥ δ3.
Let x, y ∈ X . Then by Lemma 2.3 (8) and (9)

ρ(A′
1(x) ∗ (A1(x) → B1(y)), A′

2(x) ∗ (A2(x) → B2(y))) ≥
≥ ρ(A′

1(x), A′
2(x)) ∗ ρ(A1(x) → B1(y), A2(x) → B2(y)) ≥

≥ ρ(A′
1(x), A′

2(x)) ∗ ρ(A1(x), A2(x)) ∗ ρ(B1(y), B2(y)).

Using these inequalities and Lemma 2.5 we obtain:

ρ(P(A1, B1, A′
1)(y), P(A2, B2, A′

2)(y)) =
= ρ(

∨
K⊆X

∧
x∈K

[A′
1(x) ∗ (A1(x) → B1(y))) ∧ µ(K )],

∨
K⊆X

∧
x∈K

[(A′
2(x) ∗ (A2(x) → B2(y))) ∧ µ(K )]) ≥
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≥
∧

K⊆X

∧
x⊆K

ρ([(A′
1(x) ∗ (A1(x)

→ B1(y))) ∧ µ(K )], [(A′
2(x) ∗ (A2(x) → B2(y))) ∧ µ(K )]).

In accordance with Lemma 2.3 (6) we get from any K ⊆ X and y ∈ K :

ρ([(A′
1(x) ∗ (A1(x) → B1(y))) ∧ µ(K )], [(A′

2(x) ∗ (A2(x) →
B2(y))) ∧ µ(K )]) ≥
≥ ρ(A′

1(x) ∗ (A1(x) → B1(y)), A′
2(x) ∗ (A2(x) → B2(y))) ∧

ρ(µ(K ), µ(K )) =
= ρ(A′

1(x) ∗ (A1(x) → B1(y)), A′
2(x) ∗ (A2(x) → B2(y))) ≥

≥ ρ(A1(x), A2(x)) ∗ ρ(A′
1(x), A′

2(x)) ∗ ρ(B1(y), B2(y)).

Thus

ρ(P(A1, B1, A′
1)(y), P(A2, B2, A′

2(y))) ≥
≥

∧
K⊆X

∧
x∈K

ρ(A1(x), A2(x)) ∗ ρ(A′
1(x), A′

2(x)) ∗ ρ(B1(y), B2(y)) ≥

≥ [
∧

K⊆X

∧
x∈K

ρ(A1(x), A2(x))] ∗ [
∧

K⊆X

∧
x∈K

ρ(A′
1(x), A′

2(x))] ∗

ρ(B1(y), B2(y)).

We remark that
∧

K⊆X

∧
x∈K

ρ(A1(x), A2(x)) =
∧
x∈X

ρ(A1(x), A2(x)) ≥ δ1

hence ρ(P(A1, B1, A′
1)(y), P(A2, B2, A′

2)(y)) ≥ δ1 ∗ δ2 ∗ ρ(B1(y), B2(y)).

Therefore∧
y

P(A1, B1, A′
1)(y), P(A2, B2, A′

2)(y) ≥

≥
∧

y

(δ1 ∗ δ2 ∗ ρ(B1(y), B2(y))) ≥

≥ δ1 ∗ δ2 ∗
∧

y

ρ(B1(y), B2(y)) ≥
≥ δ1 ∗ δ2 ∗ δ3.

Consider the fuzzy operators P1, P2, P3, P4, P5 : (F (X))3 → F (X)
defined by

P1(A, B, A′)(y) = ∫
A′(x) ∗ (¬A(x) ∨ B(y))dµ(x),

P2(A, B, A′)(y) = ∫
A′(x) ∧ (¬A(x) ∨ B(y))dµ(x),
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P3(A, B, A′)(y) = ∫
A′(x) ∧ (A(x) → B(y))dµ(x),

P4(A, B, A′)(y) = ∫
A′(x) ∗ ρ(A(x), B(y))dµ(x),

P5(A, B, A′)(y) = ∫
A′(x) ∧ ρ(A(x), B(y))dµ(x)

for any A, A′, B ∈ F (X) and y ∈ X .

Proposition 8.4. Let A1, A2, A′
1, A′

2, B1, B2 be fuzzy subsets of X. If
A1 = (∗, δ1)A2, A′

1 = (∗, δ2)A′
2, B1 = (∗, δ3)B2, then

P1(A1, B1, A′
1) = (∗, δ3 ∗ (δ1 ∧ δ2))P1(A2, B2, A′

2),
P2(A1, B1, A′

1) = (∗, δ1 ∧ δ2 ∧ δ3)P2(A2, B2, A′
2),

P3(A1, B1, A′
1) = (∗, δ3 ∧ (δ1 ∗ δ2))P3(A2, B2, A′

2),
P4(A1, B1, A′

1) = (∗, δ1 ∗ δ2 ∗ δ3)P4(A2, B2, A′
2),

P5(A1, B1, A′
1) = (∗, δ3 ∧ (δ1 ∗ δ2))P5(A2, B2, A′

2).

Proof: Similarly as Proposition 8.3.

9 (∗, δ)-equality of fuzzy choice functions

In this section we shall introduce the notion of (∗, δ)-equality for fuzzy
choice functions and we shall prove that (∗, δ)-equality is preserved by
some fundamental constructions of fuzzy revealed preference.

A fuzzy choice space is a pair 〈X,B〉 where X is a universe of alternatives
and B is a non-empty family of non-zero fuzzy subsets of X . A fuzzy
choice function on 〈X,B〉 is a function C : B → F (X) such that for each
S ∈ B, C(S) is non-zero and C(S) ⊆ S. Starting from Banerjee’s paper [2]
we have developed a revealed preference theory for fuzzy choice functions
[8, 9].

We fix a continuous t-norm ∗. Let C be a fuzzy choice function on
〈X,B〉. With C we associate the fuzzy revealed preference relation RC

defined by [8] RC (x, y) =
∨
S∈B

(C(S)(x) ∗ S(y)) for all x, y ∈ X . RC is a

fuzzy form of the revealed preference relation R introduced by Samuelson
in 1938 [19].

The assignment C �→ RC defines a function from fuzzy choice functions
on 〈X,B〉 to fuzzy relations on X . Conversely, let us start with a fuzzy
preference relation Q on X and we define a function CQ : B → F (X) by

CQ(S)(x) = S(x) ∗
∧
y∈X

[S(y) → Q(x, y)]

for all S ∈ B and x ∈ X . In general CQ is not a fuzzy choice function.
If C is a fuzzy choice function and Q = RC then CQ is also a fuzzy choice
function. For a fuzzy choice function C denote Ĉ = CRC ; for S ∈ B and
x ∈ X we have
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Ĉ(S)(x) = S(x) ∗
∧
y∈X

[S(y) → RC (x, y)].

Let Q be a fuzzy preference relation on X ; denote Q̂ = RCQ .
If C1, C2 are two fuzzy choice functions on 〈X,B〉 then we define the

degree of similarity of C1 and C2 by
E(C1, C2) =

∧
S∈B

∧
x∈X

ρ(C1(S)(x), C2(S)(x)).

Definition 9.1. Let C1 and C2 be two fuzzy choice functions on 〈X,B〉.
For 0 ≤ ρ ≤ 1 we say that C1 and C2 are (δ, ∗)-equal (C1 = (∗, δ)C2 in
symbols) if E(C1, C2) ≥ δ.

Lemma 9.2. For all a, b, c ∈ [0, 1] we have ρ(a ∗ c, b ∗ c) ≥ ρ(a, b),
ρ(a → c, b → c) ≥ ρ(a, b).

Proof: By Lemma 2.3 (2), (9).

The following result shows that the (∗, δ)-equality of fuzzy preference
relations is preserved by the assignment Q �→ Q̂.

Proposition 9.3. Let Q1, Q2 be two fuzzy preference relations on X and
0 ≤ δ ≤ 1. If Q1 = (∗, δ)Q2 then Q̂1 = (∗, δ)Q̂2.

Proof: Denoting C1 = CQ1 , C2 = CQ2 we have by Lemma 2.5 (2) and
Lemma 9.2:∧

x,y∈X

ρ(Q̂1(x, y), Q̂2(x, y)) =

=
∧

x,y∈X

ρ(
∨
S∈B

(C1(S)(x) ∗ S(y)),
∨
S∈B

(C2(S)(x) ∗ S(y))) ≥

≥
∧

x,y∈X

∧
S∈B

ρ(C1(S)(x) ∗ S(y), C2(S)(x) ∗ S(y)) ≥

≥
∧

x,y∈X

∧
S∈B

ρ(C1(S)(x), C2(S)(x)) =
∧
x∈X

∧
S∈B

ρ(C1(S)(x), C2(S)(x)).

For any x ∈ X and S ∈ B we have by Lemma 2.5 (2) and Lemma 9.2:

ρ(C1(S)(x), C2(S)(x)) =
= ρ(S(x) ∗

∧
y∈X

[S(y) → Q1(x, y)], S(x) ∗
∧
y∈X

[S(y) → Q2(x, y)]) ≥

≥ ρ(
∧
y∈X

[S(y) → Q1(x, y)],
∧
y∈X

[S(y) → Q2(x, y)]) ≥

≥
∧
y∈X

ρ(S(y) → Q1(x, y), S(y) → Q2(x, y)) ≥
∧
y∈X

ρ(Q1(x, y), Q2(x, y)).
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In accordance with hypothesis Q1 = (∗, δ)Q2 we obtain:∧
x,y∈X

ρ(Q̂1(x, y), Q̂2(x, y)) ≥
∧
x∈X

∧
S∈B

∧
y∈X

ρ(Q1(x, y), Q2(x, y)) =

=
∧

x,y∈X

ρ(Q1(x, y), Q2(x, y)) ≥ δ.

We proved Q̂1 = (∗, δ)Q̂2.

Now we shall prove that (∗, δ)-equality of fuzzy choice functions is
preserved by the assignment C �→ Ĉ .

Proposition 9.4. Let C1, C2 be two fuzzy choice functions on 〈X,B〉 and
0 ≤ δ ≤ 1. If C1 = (∗, δ)C2 then Ĉ1 = (∗, δ)Ĉ2.

Proof: Denote R1 = RC1 , R2 = RC2 . According to Lemma 9.2 and Lemma
2.5 (1)∧

S∈B

∧
x∈X

ρ(Ĉ1(S)(x), Ĉ2(S)(x)) =

=
∧
S∈B

∧
x∈X

ρ(S(x) ∗
∧
y∈X

[S(y) → R1(x, y)], S(x) ∗
∧
y∈X

[S(y) →

R2(x, y)]) ≥
≥

∧
S∈B

∧
x∈X

ρ(
∧
y∈X

[S(y) → R1(x, y)],
∧
y∈X

[S(y) → R2(x, y)]) ≥

≥
∧
S∈B

∧
x,y∈X

ρ(S(y) → R1(x, y), S(y) → R2(x, y)) ≥

≥
∧
S∈B

∧
x,y∈X

ρ(R1(x, y), R2(x, y)) =
∧

x,y∈X

ρ(R1(x, y), R2(x, y))

Let x, y ∈ X . Then according to Lemma 2.5 (2) and Lemma 9.2

ρ(R1(x, y), R2(x, y)) = ρ(
∨
S∈B

(C1(S)(x) ∗ S(y)),
∨
S∈B

(C2(S)(x) ∗
S(y))) ≥∧

S∈B
ρ(C1(S)(x) ∗ S(y), C2(S)(x) ∗ S(y)) ≥

∧
S∈B

ρ(C1(S)(x), C2(S)(x)).

Knowing that C1 = (∗, δ)C2 we obtain:∧
S∈B

∧
x∈X

ρ(Ĉ1(S)(x), Ĉ2(S)(x)) ≥
∧
S∈B

∧
x∈X

ρ(C1(S)(x), C2(S)(x)) ≥ δ.

Therefore Ĉ1 = (∗, δ)Ĉ2.
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10 Some final remarks

In this paper we introduced the (�, δ)-equality, a concept that indicates the
degree of nearness of two fuzzy sets or two fuzzy relations. Our concept
generalizes the δ-equality of fuzzy sets studied by Cai in [5], [6].

The starting point of this paper was the observation that the δ-equality
can be defined in terms of the biresiduum associated with the Lukasiewicz
t-norm. Our main contribution is the extension of Cai theory to the more
general context of fuzzy set theory corresponding to an arbitrary continuous
t-norm ∗. Most results of the paper lay emphasis on the behaviour of some
fuzzy operators with respect to (�, δ)-equality.

Such fuzzy operators appear in fuzzy reasoning and their investigation
using other types of t-norms may bring new information.

As further research we will study how the concept of (∗, δ)-equality can
be applied to fuzzy reasoning for fuzzy optimization.
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