(δ, \star)-Equality of Fuzzy Sets

Irina Georgescu

Turku Centre for Computer Science, Institute for Advanced
Management Systems Research, Ȧbo Akademi University,
Lemminkäisenkatu 14, FIN-20520 Turku, Finland
E-mail address: irina.georgescu@abo.fi (I. Georgescu)
Received: July 28, 2004. Accepted: June 26, 2006.

Abstract

The Cai δ-equality of fuzzy sets corresponds to the Lukasiewicz t-norm. In this paper we study the notion of $(*, \delta)$-equality, a concept which generalizes the δ-equality to the case of the fuzzy set theory based on an arbitrary continuous t-norm $*$. We investigate the robustness of some fuzzy implication operators in terms of $(*, \delta)$-equality.

Keywords: $(*, \delta)$-equality, fuzzy implication operators, fuzzy relations

1 INTRODUCTION

If A, B are two fuzzy sets of a universe X, then $d(A, B)=\sup _{x \in X}|A(x)-B(x)|$ is the distance between A and B. In Pappis's paper [16], A and B are said to be approximately equal (denoted by $A \approx B$) if $d(A, B) \leq \epsilon$ where ϵ is a small non negative real number. ϵ is called a proximity measure of A and B. This definition was reformulated in [11] by using the similarity measure [12]: A and B are α-similar $\left(A \approx_{\alpha} B\right)$ if $S(A, B) \geq \alpha$, where $S(A, B)=1-d(A, B)$. An axiomatic definition of distance measure and similarity measure was done in [12]. Three similarity measures have been considered in [17] and others in [25].

To each of these similarity measures a notion of "approximate equality of fuzzy sets" corresponds.
[5] and [26] remarked that this definition of approximative equality of two fuzzy sets causes some inconveniences. Therefore Cai [5] introduced the δ equality of two fuzzy sets: A and B are δ-equal if $\sup _{x \in X}|A(x)-B(x)| \leq 1-\delta$ ($0 \leq \delta \leq 1$). Using the similarity measure associated with an implication
operator in the sense of [1], Wang et al. defined in [26] a more general concept of δ-equality.

Most of these papers analyze the way some implication operators and some operations of fuzzy sets and fuzzy relations behave with respect to δ-equalities. Such operators appear in fuzzy logic and are usually applied in fuzzy control. The results obtained in the above-mentioned papers reflect how the errors in premises influence the conclusions in fuzzy reasoning. Particularly, [5] and [6] contain plenty of results on δ-equality with respect to operations of fuzzy sets, fuzzy relations, extension principle, t-norms and s-norms as well as some robustness results on fuzzy implication operators and fuzzy inference rules. [5] and [6] distinguish themselves by the fact that in the study of different operations with respect to δ-equality, the real number δ is not fixed, but varies with the terms of the operations. It is easy to see that Cai δ-equality can be expressed in terms of the biresiduum corresponding to Lukasiewicz t-norm. All the results in [5] and [6] are obtained in the fuzzy set theory based on Lukasiewicz t-norm.

Changing the t-norm leads to another analysis of the fuzzy reasoning and to another way of "identifying" the fuzzy sets.

Thus a natural problem is if the Cai theory can be developed in a more general setting offered by an arbitrary continuous t -norm $*$. This paper is an answer to this problem.

We shall study the $(*, \delta)$-equality of fuzzy sets, a concept that generalizes the one of δ-equality.

The first objective of this paper is to extend some of Cai's results to a framework offered by a continuous t-norm. Besides these generalizations, results that do not arise from [5], [6] are obtained.

Our second objective is to prove the theorem in an uniform way based on the residuated structure of the interval $[0,1]$ corresponding to a continuous t -norm. Our proofs are more natural and bring more clarity even for the particular case of [5] and [6].

The third objective is to show how the $(*, \delta)$-equality can be put to work in fuzzy revealed preference theory $[8,9]$.

Section 2 contains some basic results on a continuous t -norm $*$ and its residuum \rightarrow. In Section 3 we put in relation the Cai δ-equality and the Lukasiewicz t-norm. This suggests to us the $(*, \delta)$-equality, a concept obtained by using the biresiduum of the t -norm $*$.

Section 4 investigates how the basic operations on fuzzy sets preserve the $(*, \delta)$-equality. The effect of some fuzzy implication operators on the $(*, \delta)$-equality is studied in Section 5. Section 6 is concerned with the manner in which the composition of fuzzy relations and the transitive closure operator preserves the $(*, \delta)$-equality.

In Section 7 we relate the $(*, \delta)$-equality to some fuzzy operators defined by an s-norm. The operator P studied in Section 8 is analogous to the
fuzzy operator $P C$ defined in [27] p. 627. P has the same form with $P C$ but it is defined using the Sugeno integral instead of the classical integral. The results of Section 8 point out the behaviour of some operators including P with respect to $(*, \delta)$-equality.

In Section 9 the notion of $(*, \delta)$-equality of two fuzzy choice functions is defined $[2,8,9]$. According to these papers, to each fuzzy choice function C a fuzzy revealed preference R_{C} is associated; conversely, to each fuzzy preference relation Q on the set of alternatives a fuzzy choice function is associated. The two theorems of this section establish how these two functions determine the translation from $(*, \delta)$-equality of the fuzzy choice functions to the $(*, \delta)$-equality of the fuzzy preference relations and conversely.

2 PRELIMINARIES

In this section we present some basic facts on continuous t-norms and residua. The background for these results can be found in $[10,13,15,21]$.

A mapping $*:[0,1] \times[0,1] \rightarrow[0,1]$ is a t-norm iff it is symmetric, associative, non-decreasing in each argument and $a * 1=a$ for all $a \in[0,1]$.

A t-norm is said to be continuous if it is continuous as a function on the unit interval. With any continuous t-norm $*$ we associate its residuum: $a \rightarrow b=\bigvee\{c \in[0,1] \mid a * c \leq b\}$.
The most well-known continuous t-norms are:
Lukasiewicz t-norm: $a *_{L} b=\max (0, a+b-1) ; a \rightarrow_{L} b=\min$ (1, $1-a+b$)

Gödel t-norm: $a *_{G} b=\min (a, b) ; a \rightarrow_{G} b=\left\{\begin{array}{l}1 \text { if } a \leq b \\ b \text { if } a>b\end{array}\right.$
Product t-norm: $a *_{P} b=a b ; a \rightarrow_{P} b=\left\{\begin{array}{r}1 \text { if } a \leq b \\ b / a \text { if } a>b\end{array}\right.$
Lemma 2.1. ([21]) For any $a, b, c \in[0,1]$ the following properties hold:
(1) $a * b \leq c \Leftrightarrow a \leq b \rightarrow c$; (2) $a *(a \rightarrow b)=a \wedge b$; (3) $a * b \leq$ $a, a * b \leq b$; (4) $b \leq a \rightarrow b$; (5) $a \leq b \Leftrightarrow a \rightarrow b=1$; (6) $a=1 \rightarrow a$; (7) $1=a \rightarrow a$; (8) $1=a \rightarrow 1$; (9) $a *(b \vee c)=(a * b) \vee(a * c)$; (10) $a \leq b$ implies $b \rightarrow c \leq a \rightarrow c$ and $c \rightarrow a \leq c \rightarrow b$.

The negation operation \neg associated with $*$ is defined by

$$
\neg a=a \rightarrow 0=\bigvee\{c \in[0,1] \mid a * c=0\} .
$$

Lemma 2.2. ([21]) For any $a, b, c \in[0,1]$ the following properties hold: (1) $a \leq \neg b \Leftrightarrow a * b=0$; (2) $a * \neg a=0$; (3) $a \leq \neg \neg a$; (4) $\neg 0=$ $1, \neg 1=0$; (5) $\neg a=\neg \neg \neg a$; (6) $a \rightarrow b \leq \neg b \rightarrow \neg a$.

This lemma shows that $([0,1], \vee, \wedge, *, 0,1)$ is a residuated lattice [21].

The biresiduum associated with the continuous t -norm $*$ is defined by $\rho(a, b)=a \leftrightarrow b=(a \rightarrow b) \wedge(b \rightarrow a)$.
Lemma 2.3. ([21]) For any $a, b, c, d \in[0,1]$ the following properties hold:
(1) $\rho(a, 1)=a$; (2) $a=b \Leftrightarrow \rho(a, b)=1$; (3) $\rho(a, b)=\rho(b, a)$; (4) $\rho(a, b) \leq \rho(\neg a, \neg b) ;$ (5) $\rho(a, b) * \rho(b, c) \leq \rho(a, c) ;$ (6) $\rho(a, b) \wedge$ $\rho(c, d) \leq \rho(a \wedge c, b \wedge d) ; \quad$ (7) $\quad \rho(a, b) \wedge \rho(c, d) \leq \rho(a \vee c, b \vee d) ; \quad$ (8) $\rho(a, b) * \rho(c, d) \leq \rho(a * c, b * d) ;$ (9) $\rho(a, b) * \rho(c, d) \leq \rho(a \rightarrow c, b \rightarrow$ d); (10) $\rho(a, b) * a \leq b$; (11) $a \wedge b \leq \rho(a, b)$; (12) $\rho(a, b) * \rho(c, d) \leq$ $\rho(\rho(a, c), \rho(b, d))$.

Proof: The proof of (1)-(3) and (5)-(9) can be found in [21], p. 14. (4) By Lemma 2.2 (6)

$$
\rho(a, b)=(a \rightarrow b) \wedge(b \rightarrow a) \leq(\neg b \rightarrow \neg a) \wedge(\neg a \rightarrow \neg b)=\rho(\neg a, \neg b)
$$

(10) By Lemma 2.1 (2), $\rho(a, b) * a \leq a *(a \rightarrow b)=a \wedge b \leq b$.
(11) By Lemma 2.1 (4), $a \leq b \rightarrow a$ and $b \leq a \rightarrow b$, hence $a \wedge b \leq$ $(a \rightarrow b) \wedge(b \rightarrow a)=\rho(a, b)$.
(12) $\rho(\rho(a, c), \rho(b, d))=\rho((a \rightarrow c) \wedge(c \rightarrow a),(b \rightarrow d) \wedge(d \rightarrow b)) \leq$ $\rho(a \rightarrow c, b \rightarrow d) \wedge \rho(c \rightarrow a, d \rightarrow b) \leq[\rho(a, b) * \rho(c, d)] \wedge[\rho(c, d) *$ $\rho(a, b)]=\rho(a, b) * \rho(c, d)$.

Lemma 2.4. ([21]) For any $\left\{a_{i}\right\}_{i \in I} \subseteq[0,1],\left\{b_{i}\right\}_{i \in I} \subseteq[0,1]$ and $a \in[0,1]$ the following properties hold:

$$
\begin{gathered}
\text { (1) } a \rightarrow\left(\bigwedge_{i \in I} a_{i}\right)=\bigwedge_{i \in I}\left(a \rightarrow a_{i}\right) ;(2)\left(\bigvee_{i \in I} a_{i}\right) \rightarrow a=\bigwedge_{i \in I}\left(a_{i} \rightarrow a\right) ; ~(3) \\
\bigvee_{i \in I}\left(a_{i} \rightarrow a\right) \leq\left(\bigwedge_{i \in I} a_{i}\right) \rightarrow a ;(4) \bigvee_{i \in I}\left(a \rightarrow a_{i}\right) \leq a \rightarrow\left(\bigvee_{i \in I} a_{i}\right) ;(5)\left(\bigvee_{i \in I} a_{i}\right) * \\
\left(\bigvee_{j \in I} b_{j}\right)=\bigvee_{i, j \in I}\left(a_{i} * b_{j}\right) ;(6)\left(\bigwedge_{i \in I} a_{i}\right) *\left(\bigwedge_{j \in I} b_{j}\right) \leq \bigwedge_{i, j \in I}\left(a_{i} * b_{j}\right) .
\end{gathered}
$$

Lemma 2.5. Let X be a non-empty set and $f: X \rightarrow[0,1], g: X \rightarrow[0,1]$ two arbitrary functions. Then

$$
\begin{aligned}
& \text { (1) } \rho\left(\bigwedge_{x \in X} f(x), \bigwedge_{x \in X} g(x)\right) \geq \bigwedge_{x \in X} \rho(f(x), g(x)) \\
& \text { (2) } \rho\left(\bigvee_{x \in X} f(x), \bigvee_{x \in X} g(x)\right) \geq \bigwedge_{x \in X} \rho(f(x), g(x))
\end{aligned}
$$

Proof: (1) By Lemma 2.3 (10), we have for each $z \in X$:
$\left[\bigwedge_{x} \rho(f(x), g(x))\right] *\left(\bigwedge_{y} f(y)\right) \leq \rho(f(z), g(z)) * f(z) \leq g(z)$.
Then, by Lemma $2.1(1), \bigwedge_{x} \rho(f(x), g(x)) \leq\left(\bigwedge_{y} f(y)\right) \rightarrow g(z)$.

This inequality holds for any $z \in X$, hence by Lemma 2.4 (1):

$$
\begin{aligned}
\bigwedge_{x} \rho(f(x), g(x)) & \leq \bigwedge_{z}\left(\left(\bigwedge_{y} f(y)\right) \rightarrow g(z)\right)= \\
& =\left(\bigwedge_{y} f(y)\right) \rightarrow\left(\bigwedge_{z} g(z)\right)
\end{aligned}
$$

Similarly, $\bigwedge_{x} \rho(f(x), g(x)) \leq\left(\bigwedge_{z}(g(z)) \rightarrow\left(\bigwedge_{y} f(y)\right)\right.$, therefore

$$
\begin{aligned}
& \quad \bigwedge_{x} \rho(f(x), g(x)) \leq\left[\left(\bigwedge_{y} f(y)\right) \rightarrow\left(\bigwedge_{z} g(z)\right)\right] \wedge\left[\left(\bigwedge_{z} g(z)\right) \rightarrow\right. \\
& \left.\left(\bigwedge_{y} f(y)\right)\right]=\rho\left(\bigwedge_{x} f(x), \bigwedge_{x} g(x)\right) .
\end{aligned}
$$

(2) For any $y \in X$ we have
$\left[\bigwedge_{x} \rho(f(x), g(x))\right] * f(y) \leq \rho(f(y), g(y)) * f(y) \leq g(y) \leq \bigvee_{z} g(z)$.
In accordance with Lemma $2.1(1), \bigwedge_{x} \rho(f(x), g(x)) \leq f(y) \rightarrow\left(\bigvee_{z} g(z)\right)$.
This inequality holds for any $y \in X$, therefore, by Lemma 2.4 (2)
$\bigwedge_{x} \rho(f(x), g(x)) \leq \bigwedge_{y}\left(f(y) \rightarrow\left(\bigvee_{z} g(z)\right)\right)=\left(\bigvee_{y} f(y)\right) \rightarrow\left(\bigvee_{z} g(z)\right)$
Similarly, $\bigwedge_{x} \rho(f(x), g(x)) \leq\left(\bigvee_{z} g(z)\right) \rightarrow\left(\bigvee_{y} f(y)\right)$ hence
$\bigwedge_{x} \rho(f(x), g(x)) \leq\left[\left(\bigvee_{y} f(y)\right) \rightarrow\left(\bigvee_{z} g(z)\right)\right] \wedge\left[\left(\bigvee_{z} g(z)\right) \rightarrow\right.$
$\left.\left(\bigvee_{y}^{x} f(y)\right)\right]=\rho\left(\bigvee_{x} f(x), \bigvee_{x}^{y} g(x)\right)$.
Let X be a non-empty set. A fuzzy subset of X is a function $A: X \rightarrow[0,1]$. If $x \in X$ then $A(x)$ is called the degree of membership of x in A. Let us denote by $\mathcal{F}(X)$ the set of fuzzy subsets of X.

If $A, B \in \mathcal{F}(X)$ we denote $A \subseteq B$ if $A(x) \leq B(x)$ for each $x \in X$. For any $A, B \in \mathcal{F}(X)$ we define the fuzzy subsets $A \cup B, A \cap B$ by
$(A \cup B)(x)=A(x) \vee B(x) ;(A \cap B)(x)=A(x) \wedge B(x)$.

3 LUKASIEWICZ T-NORM AND CAI δ-EQUALITY

In this section we shall prove that the Cai δ-equality ([5], [6]) can be expressed in terms of the biresiduum of Lukasiewicz t-norm. This result is not new (see example [26], Proposition 3.1) but we shall briefly prove it.

Let us consider the Lukasiewicz t-norm $a *_{L} b=0 \vee(a+b-1)$ and its residuum $a \rightarrow_{L} b=1 \wedge(1-a+b)$. The biresiduum of $*_{L}$ will be given by

$$
\rho_{L}(a, b)=\left(a \rightarrow_{L} b\right) \wedge\left(b \rightarrow_{L} a\right)=\left\{\begin{array}{lll}
b \rightarrow_{L} a & \text { if } & a \leq b \\
a \rightarrow_{L} b & \text { if } & a \geq b
\end{array}\right.
$$

Lemma 3.1. For any $a, b \in[0,1], \rho_{L}(a, b)=1-|a-b|$.
Proof: Assume $a \leq b$, then
$\rho_{L}(a, b)=b \rightarrow_{L} a=1-b+a=1-|a-b|$.
The case $b \leq a$ follows similarly.
Now we recall the Cai definition of δ-equality.
Definition 3.2. ([5], [6]) Let X be a non-empty set, A, B two fuzzy subsets of X and $0 \leq \delta \leq 1$. Then A, B are δ-equal $(A=(\delta) B$ in symbols) if the following condition holds:

$$
\bigvee_{x \in X}|A(x)-B(x)| \leq 1-\delta
$$

Lemma 3.3. If $0 \leq \delta \leq 1$ and A, B are two fuzzy subsets of X then the following are equivalent:
(i) $A=(\delta) B$;
(ii) $\bigwedge_{x \in X} \rho_{L}(A(x), B(x)) \geq \delta$.

Proof: By Lemma 3.1 we remark that
$1-\bigvee_{x \in X}|A(x)-B(x)|=\bigwedge_{x \in X}(1-|A(x)-B(x)|)=\bigwedge_{x \in X} \rho_{L}(A(x), B(x))$
Then the equivalence of (i) and (ii) follows immediately.

$4(*, \delta)$-EQUALITY OF FUZZY SETS

In this section we shall introduce the $(*, \delta)$-equality and we shall discuss this notion with respect to algebraic operations of fuzzy sets and fuzzy relations. We shall relate the $(*, \delta)$-equality with Zadeh's extension principle.

In accordance with Lemma 3.3, the Cai δ-equality is a notion which corresponds to the Lukasiewicz t-norm. This lemma suggests to us the notion of $(*, \delta)$-equality, a concept corresponding to an arbitrary continuous t-norm.

Definition 4.1. Let $*$ be a continuous t-norm and X a non-empty set. If A, B are two fuzzy subsets of X and $0 \leq \delta \leq 1$ then we shall say that A, B are $(*, \delta)$-equal $(A=(*, \delta) B$ in symbols) if the following condition holds
$\bigwedge_{x \in X} \rho(A(x), B(x)) \geq \delta$,
where ρ is the biresiduum of $*$.

For the case when $*$ is the Lukasiewicz t-norm $*_{L}$ we obtain the Cai notion of δ-equality.
$\bigwedge_{x \in X} \rho(A(x), B(x))$ can represent the degree of similarity of the fuzzy sets A and B. Then $A=(*, \delta) B$ means that A and B are "equal to a degree greater than δ ".

Example 4.2. Suppose two approximative pieces of information "about 2" lead to triangular fuzzy numbers $A=(2,2)$ and $B=(2,1)$:

$$
\begin{aligned}
& A(x)=\left\{\begin{array}{rcr}
x / 2 & \text { if } & 0 \leq x \leq 2 \\
(4-x) / 2 & \text { if } & 2 \leq x \leq 4 \\
0 & \text { otherwise, }
\end{array}\right. \\
& B(x)=\left\{\begin{array}{rcc}
x-1 & \text { if } & 1 \leq x \leq 2 \\
3-x & \text { if } & 2 \leq x \leq 3 \\
0 & \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

FIGURE 1
Fuzzy numbers A and. B

We want to see to what extent the fuzzy numbers A and B are $(*, \delta)$-equal. We want to calculate $\rho(A(x), B(x)), x \in \mathfrak{R}$ for an arbitrary continuous t-norm. An easy computation leads to

$$
\rho(A(x), B(x))=\left\{\begin{aligned}
1 & \text { if } x \leq 0 \\
\neg A(x) & \text { if } 0<x<1 \\
A(x) \rightarrow B(x) & \text { if } 1 \leq x \leq 3 \\
\neg A(x) & \text { if } 3<x<4 \\
1 & \text { if } x \geq 4 .
\end{aligned}\right.
$$

We will explicate $\rho(A(x), B(x))$ for Lukasiewicz, Gödel and product t-norms.
a) Lukasiewicz t-norm

$$
\rho_{L}(A(x), B(x))=\left\{\begin{aligned}
1 & \text { if } x \leq 0 \\
1-A(x) & \text { if } 0<x<1 \\
1-A(x)+B(x) & \text { if } 1 \leq x \leq 3 \\
1-A(x) & \text { if } 3<x<4 \\
1 & \text { if } x \geq 4
\end{aligned}\right.
$$

By computation we get

$$
\rho_{L}(A(x), B(x))=\left\{\begin{aligned}
1 & \text { if } x \leq 0 \\
(2-x) / 2 & \text { if } 0<x \leq 1 \\
x / 2 & \text { if } 1 \leq x \leq 2 \\
2-x / 2 & \text { if } 2 \leq x \leq 3 \\
(x-2) / 2 & \text { if } 3 \leq x \leq 4 \\
1 & \text { if } x \geq 4
\end{aligned}\right.
$$

We conclude that $\bigwedge_{x \in \Re} \rho_{L}(A(x), B(x))=1 / 2$ (see Fig. 2) hence $A=$ $\left(*_{L}, 1 / 2\right) B$.
b) Gödel t-norm

$$
\rho_{G}(A(x), B(x))=\left\{\begin{aligned}
1 & \text { if } x \leq 0 \\
0 & \text { if } 0<x<1 \\
B(x) & \text { if } 1 \leq x \leq 3 \\
0 & \text { if } 3<x<4 \\
1 & \text { if } x \geq 4
\end{aligned}\right.
$$

We notice that $\bigwedge_{x \in \Re} \rho_{G}(A(x), B(x))=0$, hence $A=\left(*_{G}, 0\right) B$.

FIGURE 2
$\rho_{L}(A(x), B(x))$.
c) product t-norm

$$
\rho_{P}(A(x), B(x))=\left\{\begin{aligned}
1 & \text { if } x \leq 0 \\
0 & \text { if } 0<x<1 \\
B(x) / A(x) & \text { if } 1 \leq x \leq 3 \\
0 & \text { if } 3<x<4 \\
1 & \text { if } x \geq 4
\end{aligned}\right.
$$

We notice that $\bigwedge_{x \in \Re} \rho_{P}(A(x), B(x))=0$, hence $A=\left(*_{P}, 0\right) B$.
For this example, the only interesting case is the Lukasiewicz t-norm.
For the rest of the paper we fix a continuous t-norm $*$, its residuum \rightarrow and its biresiduum ρ.

Let A, B be two fuzzy subsets of X. Let us define the relational intersection $A \sqcap B$ and the relational union $A \sqcup B$ as the fuzzy relations on X defined by $(A \sqcap B)(x, y)=A(x) \wedge B(y),(A \sqcup B)(x, y)=A(x) \vee B(y)$ for all $x, y \in X$.

Proposition 4.3 Let $A, A^{\prime}, B, B^{\prime}$ be fuzzy subsets of X. If $A=\left(*, \delta_{1}\right) A^{\prime}$ and $B=\left(*, \delta_{2}\right) B^{\prime}$ then $A \sqcap B=\left(*, \delta_{1} \wedge \delta_{2}\right) A^{\prime} \sqcap B^{\prime}$ and $A \cap B=\left(*, \delta_{1} \wedge\right.$ $\left.\delta_{2}\right) A^{\prime} \cap B^{\prime}$.

Proof: By hypothesis, $\bigwedge_{x \in X} \rho\left(A(x), A^{\prime}(x)\right) \geq \delta_{1}, \bigwedge_{x \in X} \rho\left(B(x), B^{\prime}(x)\right) \geq \delta_{2}$.
Then using Lemma 2.3 (6), one gets for all $x, y \in X$:

$$
\begin{aligned}
\rho\left((A \sqcap B)(x, y),\left(A^{\prime} \sqcap B^{\prime}\right)(x, y)\right) & =\rho\left(A(x) \wedge B(y), A^{\prime}(x) \wedge B^{\prime}(y)\right) \\
& \geq \rho\left(A(x), A^{\prime}(x)\right) \wedge \rho\left(B(y), B^{\prime}(y)\right)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \bigwedge_{x, y \in X} \rho\left((A \sqcap B)(x, y),\left(A^{\prime} \sqcap B^{\prime}\right)(x, y)\right) \geq \\
& \bigwedge_{x, y \in X}\left(\rho\left(A(x), A^{\prime}(x)\right) \wedge \rho\left(B(y), B^{\prime}(y)\right)\right)= \\
& =\left[\bigwedge_{x} \rho\left(A(x), A^{\prime}(x)\right)\right] \wedge\left[\bigwedge_{y} \rho\left(B(y), B^{\prime}(y)\right)\right] \geq \delta_{1} \wedge \delta_{2} .
\end{aligned}
$$

Then $A \sqcap B=\left(*, \delta_{1} \wedge \delta_{2}\right) A^{\prime} \sqcap B^{\prime}$. The second relation follows by

$$
\bigwedge_{x \in X} \rho\left(A(x) \wedge B(x), A^{\prime}(x) \wedge B^{\prime}(x)\right) \geq \bigwedge_{x, y \in X} \rho\left(A(x) \wedge B(y), A^{\prime}(x) \wedge\right.
$$

$$
\left.B^{\prime}(y)\right) \geq \delta_{1} \wedge \delta_{2}
$$

Proposition 4.4 If $A=\left(*, \delta_{1}\right) A^{\prime}$ and $B=\left(*, \delta_{2}\right) B^{\prime}$ then $A \sqcup B=\left(*, \delta_{1} \wedge\right.$ $\left.\delta_{2}\right) A^{\prime} \sqcup B^{\prime}$ and $A \cup B=\left(*, \delta_{1} \wedge \delta_{2}\right) A^{\prime} \cup B^{\prime}$.

Proof: Similarly, using Lemma 2.3 (7).
Let A_{1}, \ldots, A_{n} be fuzzy subsets of X. Let us define

$$
\prod_{\substack{i=1 \\ \text { by putting }}}^{n} A_{i}: X^{n} \rightarrow[0,1], \coprod_{i=1}^{n} A_{i}: X^{n} \rightarrow[0,1] .
$$

$$
\begin{aligned}
& \left(\prod_{i=1}^{n} A_{i}\right)\left(x_{1}, \ldots, x_{n}\right)=A_{1}\left(x_{1}\right) \wedge A_{2}\left(x_{2}\right) \wedge \ldots \wedge A_{n}\left(x_{n}\right) \\
& \left(\coprod_{i=1}^{n} A_{i}\right)\left(x_{1}, \ldots, x_{n}\right)=A_{1}\left(x_{1}\right) \vee A_{2}\left(x_{2}\right) \vee \ldots \vee A_{n}\left(x_{n}\right)
\end{aligned}
$$

for all $\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$.
The following result generalizes Propositions 4.3 and 4.4.
Proposition 4.5 Let $A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{n}$ be fuzzy subsets of X. If $A_{i}=\left(*, \delta_{i}\right) B_{i}$ for $i=1, \ldots, n$ then $\prod_{i=1}^{n} A_{i}=\left(*, \bigwedge_{i=1}^{n} \delta_{i}\right) \prod_{i=1}^{n} B_{i}, \coprod_{i=1}^{n} A_{i}=$ $\left(*, \bigwedge_{i=1}^{n} \delta_{i}\right) \coprod_{i=1}^{n} B_{i}, \bigcup_{i=1}^{n} A_{i}=\left(*, \bigwedge_{i=1}^{n} \delta_{i}\right) \bigcup_{i=1}^{n} B_{i}, \bigcap_{i=1}^{n} A_{i}=\left(*, \bigwedge_{i=1}^{n} \delta_{i}\right) \bigcap_{i=1}^{n} B_{i}$.

If A is a fuzzy subset of X then $\neg A$ is the fuzzy subset of X defined by $(\neg A)(x)=\neg A(x)$ for each $x \in X$.

Proposition 4.6 If $A=(*, \delta) B$ then $\neg A=(*, \delta) \neg B$.

Proof: By Lemma 2.3 (4), $\bigwedge_{x} \rho(\neg A(x), \neg B(x)) \geq \bigwedge_{x} \rho(A(x), B(x)) \geq \delta$.

If A, B are two fuzzy subsets of X then $A * B$ will be the fuzzy relation on X defined by $(A * B)(x, y)=A(x) * B(y)$ for all $x, y \in X$.

Proposition 4.7 If $A=\left(*, \delta_{1}\right) A^{\prime}$ and $B=\left(*, \delta_{2}\right) B^{\prime}$ then $A * B=\left(*, \delta_{1} *\right.$ $\left.\delta_{2}\right) A^{\prime} * B^{\prime}$.

Proof: By hypothesis we have
(a) $\bigwedge_{x} \rho\left(A(x), A^{\prime}(x)\right) \geq \delta_{1}, \bigwedge_{y} \rho\left(B(y), B^{\prime}(y)\right) \geq \delta_{2}$.

Now we shall prove the inequality
(b)

$$
\bigwedge_{x, y} \rho\left(A(x) * B(y), A^{\prime}(x) * B^{\prime}(y)\right) \geq\left[\bigwedge_{x} \rho\left(A(x), A^{\prime}(x)\right)\right] *
$$

[$\left.\bigwedge \rho\left(B(y), B^{\prime}(y)\right)\right]$.
${ }^{y}$ Let $x, y \in X$. By Lemma 2.3 (8)

$$
\begin{aligned}
{\left[\bigwedge_{x} \rho\left(A(x), A^{\prime}(x)\right)\right] *\left[\bigwedge_{y} \rho\left(B(y), B^{\prime}(y)\right)\right] } & \leq \rho\left(A(x), A^{\prime}(x)\right) * \rho\left(B(y), B^{\prime}(y)\right) \\
& \leq \rho\left(A(x) * B(y), A^{\prime}(x) * B^{\prime}(y)\right)
\end{aligned}
$$

This inequality holds for any $x, y \in X$ therefore we obtain (b).
By (a) and (b) one can infer that

$$
\begin{aligned}
\bigwedge_{x, y} \rho & \left((A * B)(x, y),\left(A^{\prime} * B^{\prime}\right)(x, y)\right) \\
& =\bigwedge_{x, y} \rho\left(A(x) * B(y), A^{\prime}(x) * B^{\prime}(y)\right) \geq \delta_{1} * \delta_{2}
\end{aligned}
$$

Let A, B be two fuzzy subsets of X. Denote by $A \rightarrow B$ the fuzzy relation on X defined by $(A \rightarrow B)(x, y)=A(x) \rightarrow B(y)$ for all $x, y \in X$.

Proposition 4.8 If $A=\left(*, \delta_{1}\right) A^{\prime}$ and $B=\left(*, \delta_{2}\right) B^{\prime}$ then $(A \rightarrow B)=$ $\left(*, \delta_{1} * \delta_{2}\right)\left(A^{\prime} \rightarrow B^{\prime}\right)$.

Proof: Similarly, using Lemma 2.3 (9).

If A, B are two fuzzy subsets of X then $A \nabla B$ will be the fuzzy subset on X defined by $(A \nabla B)(x)=\neg \rho(A, B)(x)$ for all $x \in X$.

Proposition 4.9 If $A=\left(*, \delta_{1}\right) A^{\prime}$ and $B=\left(*, \delta_{2}\right) B^{\prime}$ then $\nabla(A, B)=$ $\left(*, \delta_{1} * \delta_{2}\right) \nabla\left(A^{\prime}, B^{\prime}\right)$.

Proof: By hypothesis we know $\bigwedge_{x} \rho\left(A(x), A^{\prime}(x)\right) \geq \delta_{1}, \bigwedge_{x} \rho\left(B(x), B^{\prime}(x)\right)$ $\geq \delta_{2}$.

Using Lemma 2.3 (12) and the inequality (b) in the proof of Proposition 4.8 we have
$\bigwedge \rho\left(\nabla(A(x), B(x)), \nabla\left(A^{\prime}(x), B^{\prime}(x)\right)\right)=$
$\bigwedge_{x}^{x} \rho\left(\neg \rho(A(x), B(x)), \neg \rho\left(A^{\prime}(x), B^{\prime}(x)\right)\right)$
$\geq \bigwedge_{x} \rho\left(\rho(A(x), B(x)), \rho\left(A^{\prime}(x), B^{\prime}(x)\right)\right) \geq \bigwedge_{x}\left(\rho\left(A(x), A^{\prime}(x)\right) *\right.$ $\left.\rho\left(B(x), B^{\prime}(x)\right)\right) \geq \delta_{1} * \delta_{2}$,
hence $\nabla(A, B)=\left(*, \delta_{1} * \delta_{2}\right) \nabla\left(A^{\prime}, B^{\prime}\right)$.
Proposition 4.10 Let X and Y be two non-empty sets and f a mapping from X to Y, i.e. $f: X \rightarrow Y$. Let A and A^{\prime} be fuzzy sets defined on X and B and B^{\prime} fuzzy sets defined on Y by the extension principle with respect to f :

$$
\begin{aligned}
& B(y)=\left\{\begin{array}{rcc}
\bigvee_{y=f(x)} A(x) & \text { if } & f^{-1}(y) \neq \emptyset \\
0 & \text { otherwise, }
\end{array}\right. \\
& B^{\prime}(y)=\left\{\begin{array}{rrr}
\bigvee_{y=f(x)} A^{\prime}(x) & \text { if } & f^{-1}(y) \neq \emptyset
\end{array}\right. \\
& 0 \\
& \text { otherwise. }
\end{aligned}
$$

If $A=(*, \delta) A^{\prime}$ then $B=(*, \delta) B^{\prime}$.
Proof: By hypothesis, $\bigwedge_{x \in X} \rho\left(A(x), A^{\prime}(x)\right) \geq \delta$. According to Lemma 2.5 (2) we have

$$
\begin{aligned}
& \bigwedge_{y \in Y} \rho\left(B(y), B^{\prime}(y)\right)=\bigwedge_{y \in Y} \rho\left(\bigvee_{y=f(x)} A(x), \bigvee_{y=f(x)} A^{\prime}(x)\right) \geq \\
& \bigwedge_{y \in Y} \bigwedge_{y=f(x)} \rho\left(A(x), A^{\prime}(x)\right) \geq \bigwedge_{x \in X} \rho\left(A(x), A^{\prime}(x)\right) \geq \delta . \\
& \text { Thus } B=(*, \delta) B^{\prime} .
\end{aligned}
$$

The following result is a generalization of Proposition 4.7.
Proposition 4.11 Let X_{1}, \ldots, X_{n} be non-empty sets and A_{i}, B_{i} fuzzy subsets of X_{i}. Let us consider $A=A_{1} * \ldots * A_{n}, B=B_{1} * \ldots * B_{n}$ the fuzzy subsets of the cartesian product $X=X_{1} \times \ldots \times X_{n}$ defined by

$$
A\left(x_{1}, \ldots, x_{n}\right)=A_{1}\left(x_{1}\right) * \ldots * A_{n}\left(x_{n}\right),
$$

$$
B\left(x_{1}, \ldots, x_{n}\right)=B_{1}\left(x_{1}\right) * \ldots * B_{n}\left(x_{n}\right)
$$

for any $\left(x_{1}, \ldots, x_{n}\right) \in X_{1} \times \ldots \times X_{n}$.
If $A_{i}=\left(*, \delta_{i}\right) B_{i}, i=1, \ldots, n$ then $A=\left(*, \delta_{1} * \ldots * \delta_{n}\right) B$.
Proposition 4.12 Let X_{1}, \ldots, X_{n}, Y be non-empty sets and $f: X_{1} \times \ldots \times$ $X_{n} \rightarrow Y$. Let $A_{i}, A_{i}^{\prime} \in \mathcal{F}\left(X_{i}\right), i=1, \ldots, n$ and $B, B^{\prime} \in \mathcal{F}(Y)$ defined by

$$
\begin{aligned}
& B(y)=\left\{\begin{array}{r}
\bigvee\left\{A_{1}\left(x_{1}\right) * \ldots * A_{n}\left(x_{n}\right) \mid f\left(x_{1}, \ldots, x_{n}\right)=y\right\} \quad \text { if } \\
0 \text { otherwise, }
\end{array} f^{-1}(y) \neq \emptyset\right. \\
& B^{\prime}(y)=\left\{\begin{array}{r}
\text { if } \\
0 \text { otherwise. }
\end{array}\right. \\
& \text { If } \left.A_{i}=\left(*, \delta_{i}^{\prime}\right) A_{i}^{\prime}, i=1, \ldots, n \text { then } B=(*, \delta) B^{\prime} \text { where } \delta=\delta_{1} * \ldots * A_{n}^{\prime}\left(x_{n}\right) \mid f\left(x_{1}, \ldots, x_{n}\right)=y\right\} \quad .
\end{aligned}
$$

Proof: If $X=X_{1} \times \ldots \times X_{n}$ then f is a mapping from X to Y, so we can apply Proposition 4.11 to f and to the fuzzy subsets A, A^{\prime} of X defined by $A\left(x_{1}, \ldots, x_{n}\right)=A_{1}\left(x_{1}\right) * \ldots * A_{n}\left(x_{n}\right), A^{\prime}\left(x_{1}, \ldots, x_{n}\right)=$ $A_{1}^{\prime}\left(x_{1}\right) * \ldots * A_{n}^{\prime}\left(x_{n}\right)$.

By Proposition 4.7, $A=\left(*, \delta_{1} * \ldots * \delta_{n}\right) A^{\prime}$, hence, by Proposition 4.11, $B=\left(*, \delta_{1} * \ldots * \delta_{n}\right) B^{\prime}$.
Proposition 4.13 Let X_{1}, \ldots, X_{n} be non-empty sets and $f: X_{1} \times \ldots \times$ $X_{n} \rightarrow Y$. Let $A_{i}, A_{i}^{\prime} \in \mathcal{F}\left(X_{i}\right), i=1, \ldots, n$ and $B, B^{\prime} \in \mathcal{F}(Y)$ defined by

Proof: Similar to the proof of Proposition 4.12, using Propositions 4.5 and 4.11.

5 SOME FUZZY OPERATORS

Let X be a non-empty set and $\mathcal{F}(X)$ the set of fuzzy subsets of X.

$$
\begin{aligned}
& B(y)=\left\{\begin{array}{r}
\bigvee\left\{A_{1}\left(x_{1}\right) \wedge \ldots \wedge A_{n}\left(x_{n}\right) \mid f\left(x_{1}, \ldots, x_{n}\right)=y\right\} \quad \text { if } \quad f^{-1}(y) \neq \emptyset \\
0 \text { otherwise, }
\end{array}\right. \\
& B^{\prime}(y)=\left\{\begin{array}{r}
\bigvee\left\{A_{1}^{\prime}\left(x_{1}\right) \wedge \ldots \wedge A_{n}^{\prime}\left(x_{n}\right) \mid f\left(x_{1}, \ldots, x_{n}\right)=y\right\} \quad \text { if } f^{-1}(y) \neq \emptyset \\
0 \\
\text { otherwise. }
\end{array}\right. \\
& \text { If } A_{i}=\left(*, \delta_{i}\right) A_{i}^{\prime}, i=1, \ldots, n \text { then } B=(*, \delta) B^{\prime} \text { where } \delta=\delta_{1} \wedge \ldots \wedge \delta_{n} .
\end{aligned}
$$

A fuzzy operator will be a function $I:(\mathcal{F}(X))^{n} \rightarrow \mathcal{F}\left(X^{k}\right)$ where n, k are non-zero natural numbers.

In this section we will investigate how some fuzzy operators preserve the $(*, \delta)$-equality.

Any function $\tau:[0,1]^{n} \rightarrow[0,1]$ provides a fuzzy operator $I:(\mathcal{F}(X))^{n} \rightarrow$ $\mathcal{F}(X)$ defined by
$I\left(A_{1}, \ldots, A_{n}\right)\left(x_{1}, \ldots, x_{n}\right)=\tau\left(A_{1}\left(x_{1}\right), \ldots, A_{n}\left(x_{n}\right)\right)$ for all $A_{1}, \ldots, A_{n} \in$ $\mathcal{F}(X)$ and $x_{1}, \ldots, x_{n} \in X$.

Particularly, τ can be a fuzzy implicator, i.e. a function $\tau:[0,1]^{2} \rightarrow[0,1]$ for which $\tau(0,0)=\tau(0,1)=\tau(1,1)=1, \tau(1,0)=0$ and whose first (partial) functions are decreasing (increasing). A list with the main fuzzy implicators can be found in [18], p. 24. Then the fuzzy operator $I:(\mathcal{F}(X))^{2}$ $\rightarrow \mathcal{F}\left(X^{2}\right)$ associated with a fuzzy implicator is given by $I\left(A_{1}, A_{2}\right)(x, y)=$ $\tau\left(A_{1}(x), A_{2}(y)\right)$ for all $A_{1}, A_{2} \in \mathcal{F}(X)$ and $x, y \in X$.

The following result extends Proposition 4.1 of [6] to an arbitrary continuous t-norm $*$.

Proposition 5.1 Let us consider the fuzzy operator $I:(\mathcal{F}(X))^{2} \rightarrow \mathcal{F}\left(X^{2}\right)$ associated with the Gödel implicator \rightarrow_{G} :

$$
I(A, B)(x, y)=A(x) \rightarrow_{G} B(y)=\left\{\begin{array}{rll}
1 & \text { if } & A(x) \leq B(y) \\
B(y) & \text { if } & A(x)>B(y)
\end{array}\right.
$$

for any $A, B \in \mathcal{F}(X)$ and $x, y \in X$. If $A=(*, \delta) A^{\prime}$ and $B=(*, \delta) B^{\prime}$ then $I(A, B)=(*, \delta) I\left(A^{\prime}, B^{\prime}\right)$ where

$$
\delta=\left[\left(\bigwedge_{y} B(y)\right) \vee\left(\bigwedge_{y} B^{\prime}(y)\right)\right] *\left(\bigwedge_{y} B(y) \wedge B^{\prime}(y)\right)
$$

Proof: By Lemma 2.3 (5) we have for any $x, y \in X$:
(a) $\rho\left(I(A, B)(x, y), I\left(A^{\prime}, B^{\prime}\right)(x, y)\right) \geq$
$\geq \rho\left(I(A, B)(x, y), I\left(A^{\prime}, B\right)(x, y)\right) * \rho\left(I\left(A^{\prime}, B\right)(x, y), I\left(A^{\prime}, B^{\prime}\right)(x, y)\right)$.
First we will prove the inequality
(b) $\rho\left(I(A, B)(x, y), I\left(A^{\prime}, B\right)(x, y)\right) \geq B(y)$.

We must consider the following cases:
(I) $A(x)=A^{\prime}(x)$

Then $I(A, B)(x, y)=I\left(A^{\prime}, B\right)(x, y)$, hence $\rho\left(I(A, B)(x, y), I\left(A^{\prime}, B\right)\right.$ $(x, y))=1$.
(II) $A(x)<A^{\prime}(x)$ We have three subcases:

- $A(x)<A^{\prime}(x) \leq B(y)$

Then $I(A, B)(x, y)=I\left(A^{\prime}, B\right)(x, y)=1$ hence $\rho\left(I(A, B)(x, y), I\left(A^{\prime}, B\right)\right.$ $(x, y))=1$.

- $A(x) \leq B(y) \leq A^{\prime}(x)$

Then $I(A, B)(x, y)=1, I\left(A^{\prime}, B\right)(x, y)=B(y)$ hence $\rho(I(A, B)(x, y)$, $\left.I\left(A^{\prime}, B\right)(x, y)\right)=\rho(1, B(y))=B(y)$.

- $B(y)<A(x)<A^{\prime}(x)$

Then $I(A, B)(x, y)=I\left(A^{\prime}, B\right)(x, y)=B(y)$ hence $\rho(I(A, B)(x, y)$, $\left.I\left(A^{\prime}, B\right)(x, y)\right)=\rho(B(y), B(y))=1$
(III) $A^{\prime}(x)<A(x)$ We also have three subcases:

- $A^{\prime}(x)<A(x) \leq B(y)$

Then $I(A, B)(x, y)=I\left(A^{\prime}, B\right)(x, y)=1$ hence $\rho\left(I(A, B)(x, y), I\left(A^{\prime}, B\right)\right.$ $(x, y))=1$.

- $A^{\prime}(x) \leq B(y)<A(x)$

Then $I(A, B)(x, y)=B(y), I\left(A^{\prime}, B\right)(x, y)=1$ hence $\rho(I(A, B)(x, y)$, $\left.I\left(A^{\prime}, B\right)(x, y)\right)=\rho(B(y), 1)=B(y)$.

- $B(y)<A^{\prime}(x)<A(x)$

Then $I(A, B)(x, y)=I\left(A^{\prime}, B\right)(x, y)=1$ hence $\rho\left(I(A, B)(x, y), I\left(A^{\prime}, B\right)\right.$ $(x, y))=1$.

Therefore the inequality (b) is verified in all the cases.
Secondly, we will establish the following inequality:
(c) $\rho\left(I\left(A^{\prime}, B\right)(x, y), I\left(A^{\prime}, B^{\prime}\right)(x, y)\right) \geq B(y) \wedge B^{\prime}(y)$.

We must consider the following cases:
(I) $B(y)=B^{\prime}(y)$

Then $I\left(A^{\prime}, B\right)(x, y)=I\left(A^{\prime}, B^{\prime}\right)(x, y)$ hence $\rho\left(I\left(A^{\prime}, B\right)(x, y), I\left(A^{\prime}, B^{\prime}\right)\right.$ $(x, y))=1$.
(II) $B^{\prime}(y)<B(y)$ We have three subcases:

- $B^{\prime}(y)<B(y)<A^{\prime}(x)$

Then $I\left(A^{\prime}, B\right)(x, y)=B(y), I\left(A^{\prime}, B^{\prime}\right)(x, y)=B^{\prime}(y)$, hence, by Lemma 2.3 (11):
$\rho\left(I\left(A^{\prime}, B\right)(x, y), I\left(A^{\prime}, B^{\prime}\right)(x, y)\right)=\rho\left(B(y), B^{\prime}(y)\right) \geq B(y) \wedge B^{\prime}(y)$.

- $B^{\prime}(y)<A^{\prime}(x) \leq B(y)$

Then $I\left(A^{\prime}, B\right)(x, y)=1, I\left(A^{\prime}, B^{\prime}\right)(x, y)=B^{\prime}(y)$, hence
$\rho\left(I\left(A^{\prime}, B\right)(x, y), I\left(A^{\prime}, B^{\prime}\right)(x, y)\right)=\rho\left(1, B^{\prime}(y)\right)=B^{\prime}(y)$.

- $A^{\prime}(x) \leq B^{\prime}(y)<B(y)$

Then $\quad I\left(A^{\prime}, B\right)(x, y)=I\left(A^{\prime}, B^{\prime}\right)(x, y)=1 \quad$ hence $\quad \rho\left(I\left(A^{\prime}, B\right)(x, y)\right.$, $\left.I\left(A^{\prime}, B^{\prime}\right)(x, y)\right)=1$.
(III) $B(y)<B^{\prime}(y)$ We have three subcases:

- $A^{\prime}(x) \leq B(y)<B^{\prime}(y)$

Then $I\left(A^{\prime}, B\right)(x, y)=I\left(A^{\prime}, B^{\prime}\right)(x, y)=1 \quad$ hence $\rho\left(I\left(A^{\prime}, B\right)(x, y)\right.$, $\left.I\left(A^{\prime}, B^{\prime}\right)(x, y)\right)=1$.

- $B(y)<A^{\prime}(x) \leq B^{\prime}(y)$

Then $I\left(A^{\prime}, B\right)(x, y)=B(y), I\left(A^{\prime}, B^{\prime}\right)(x, y)=1$ hence
$\rho\left(I\left(A^{\prime}, B\right)(x, y), I\left(A^{\prime}, B^{\prime}\right)(x, y)\right)=\rho(B(y), 1)=B(y)$.

- $B(y)<B^{\prime}(y)<A^{\prime}(x)$

Then $I\left(A^{\prime}, B\right)(x, y)=B(y), I\left(A^{\prime}, B^{\prime}\right)(x, y)=B^{\prime}(y)$ hence
$\rho\left(I\left(A^{\prime}, B\right)(x, y), I\left(A^{\prime}, B^{\prime}\right)(x, y)\right) \geq B(y) \wedge B^{\prime}(y)$.
Thus the inequality (c) is verified in all cases. By the inequalities (a), (b), (c) and Lemma 2.4 (6) we obtain

$$
\begin{aligned}
& \bigwedge_{x, y} \rho\left(I(A, B)(x, y), I\left(A^{\prime}, B^{\prime}\right)(x, y)\right) \\
& \geq \bigwedge_{x, y} \rho\left(I(A, B)(x, y), I\left(A^{\prime}, B\right)(x, y)\right) * \rho\left(I\left(A^{\prime}, B\right)(x, y), I\left(A^{\prime}, B^{\prime}\right)(x, y)\right) \\
& \geq\left[\bigwedge_{x, y} \rho\left(I(A, B)(x, y), I\left(A^{\prime}, B\right)(x, y)\right)\right] *\left[\bigwedge_{x, y} \rho\left(I\left(A^{\prime}, B\right)(x, y), I\left(A^{\prime}, B^{\prime}\right)(x, y)\right]\right. \\
& \geq\left[\bigwedge_{y} B(y)\right] *\left[\bigwedge_{y}\left(B(y) \wedge B^{\prime}(y)\right)\right] .
\end{aligned}
$$

By symmetry we get:
$\bigwedge_{x, y} \rho\left(I(A, B)(x, y), I\left(A^{\prime}, B^{\prime}\right)(x, y)\right) \geq\left[\bigwedge_{y} B^{\prime}(y)\right] *\left[\bigwedge_{y}\left(B(y) \wedge B^{\prime}(y)\right)\right]$

Therefore, by Lemma 2.1 (9)

$$
\begin{aligned}
& \bigwedge_{x, y} \rho\left(I(A, B)(x, y), I\left(A^{\prime}, B^{\prime}\right)(x, y)\right) \\
& \left.\left.\geq\left\{\left[\bigwedge_{y} B(y)\right] *\left[\bigwedge_{y} B(y) \wedge B^{\prime}(y)\right)\right]\right\} \vee\left\{\left[\bigwedge_{y} B^{\prime}(y)\right] *\left[\bigwedge_{y} B(y) \wedge B^{\prime}(y)\right)\right]\right\} \\
& =\left[\left(\bigwedge_{y} B(y)\right) \vee\left(\bigwedge_{y} B^{\prime}(y)\right)\right] *\left[\bigwedge_{y}\left(B(y) \wedge B^{\prime}(y)\right)\right] .
\end{aligned}
$$

In the proof of the above proposition the properties of \rightarrow_{G} are used. An open problem is whether a similar result holds true for the fuzzy operators associated with other implicators.

A second class of fuzzy operators is obtained by using infinitary operators \bigvee and \bigwedge on $[0,1]$. Let us consider a function $\tau:[0,1]^{n} \rightarrow[0,1]$ and $1 \leq k<n$. Then a fuzzy operator $I:(\mathcal{F}(X))^{n} \rightarrow \mathcal{F}\left(X^{n-k}\right)$ is defined by

$$
\begin{aligned}
I\left(A_{1}, \ldots, A_{n}\right)\left(x_{k+1}, \ldots, x_{n}\right)= & \bigvee_{x \in X} \tau\left(A_{1}(x), \ldots, A_{k}(x), A_{k+1}\left(x_{k+1}\right), \ldots,\right. \\
& \left.A_{n}\left(x_{n}\right)\right)
\end{aligned}
$$

for all $A_{1}, \ldots, A_{n} \in \mathcal{F}(X)$ and $x_{1}, \ldots, x_{n} \in X$. A similar fuzzy operator can be defined using \bigwedge instead of \bigvee. In particular τ can be a term, i.e the composition of some of the operations of the residuated lattice $([0,1], \vee, \wedge, *, \rightarrow, 0,1)$.

Instead of formulating a general result about the way $(*, \delta)$-equality is preserved by the fuzzy operators induced by such terms, we will treat this problem in some particular cases.

Proposition 5.2 Let us consider the fuzzy operators $I_{1}, I_{2}, I_{3}, I_{4}:(\mathcal{F}(X))^{3}$ $\rightarrow \mathcal{F}(X)$ defined by

$$
\begin{aligned}
& I_{1}(A, B, C)(y)=\bigvee_{x \in X}[C(x) \wedge(\neg A(x) \vee B(y))] \\
& I_{2}(A, B, C)(y)=\bigvee_{x \in X}[C(x) *(A(x) \rightarrow B(y))] \\
& I_{3}(A, B, C)(y)=\bigvee_{x \in X}[C(x) *(\neg A(x) \vee B(y))] \\
& I_{4}(A, B, C)(y)=\bigvee_{x \in X}[C(x) \wedge(\neg A(x) \rightarrow B(y))]
\end{aligned}
$$

for any $A, B, C \in \mathcal{F}(\mathcal{X})$ and $y \in X$. If $A=\left(*, \delta_{1}\right) A^{\prime}, B=\left(*, \delta_{2}\right) B^{\prime}$ and $C=\left(*, \delta_{3}\right) C^{\prime}$ then

$$
\begin{aligned}
& I_{1}(A, B, C)=\left(*, \delta_{1} \wedge \delta_{2} \wedge \delta_{3}\right) I_{1}\left(A^{\prime}, B^{\prime}, C^{\prime}\right) \\
& I_{2}(A, B, C)=\left(*, \delta_{1} * \delta_{2} * \delta_{3}\right) I_{2}\left(A^{\prime}, B^{\prime}, C^{\prime}\right) \\
& I_{3}(A, B, C)=\left(*, \delta_{3} *\left(\delta_{1} \wedge \delta_{2}\right)\right) I_{3}\left(A^{\prime}, B^{\prime}, C^{\prime}\right) \\
& I_{4}(A, B, C)=\left(*, \delta_{3} \wedge\left(\delta_{1} * \delta_{2}\right)\right) I_{4}\left(A^{\prime}, B^{\prime}, C^{\prime}\right)
\end{aligned}
$$

Proof: In accordance with Lemma 2.5 (2)

$$
\begin{aligned}
& \bigwedge_{y} \rho\left(I_{1}(A, B, C)(y), I_{1}\left(A^{\prime}, B^{\prime}, C^{\prime}\right)(y)\right)=\bigwedge_{y} \rho\left(\bigvee_{x}[C(x) \wedge(\neg A(x) \vee B(y))]\right. \\
& \left.\quad \bigvee_{x}\left[C^{\prime}(x) \wedge\left(\neg A^{\prime}(x) \vee B^{\prime}(y)\right)\right]\right) \\
& \quad \geq \bigwedge_{y} \bigwedge_{x} \rho\left([C(x) \wedge(\neg A(x) \vee B(y))],\left[C^{\prime}(x) \wedge\left(\neg A^{\prime}(x) \vee B^{\prime}(y)\right)\right]\right)
\end{aligned}
$$

Let $x, y \in X$. By Lemma 2.3 (6),(7) and (4) we have:

$$
\begin{aligned}
& \rho\left([C(x) \wedge(\neg A(x) \vee B(y))],\left[C^{\prime}(x) \wedge\left(\neg A^{\prime}(x) \vee B^{\prime}(y)\right)\right]\right) \\
& \geq \rho\left(C(x), C^{\prime}(x)\right) \wedge \rho\left(\neg A(x) \vee B(y), \neg A^{\prime}(x) \vee B^{\prime}(y)\right) \\
& \geq \rho\left(C(x), C^{\prime}(x)\right) \wedge \rho\left(\neg A(x), \neg A^{\prime}(x)\right) \wedge \rho\left(B(y), B^{\prime}(y)\right) \\
& \geq \rho\left(C(x), C^{\prime}(x)\right) \wedge \rho\left(A(x), A^{\prime}(x)\right) \wedge \rho\left(B(y), B^{\prime}(y)\right)
\end{aligned}
$$

We conclude that

$$
\begin{aligned}
& \bigwedge_{y} \rho\left(I_{1}(A, B, C)(y), I_{1}\left(A^{\prime}, B^{\prime}, C^{\prime}\right)(y)\right) \\
& \geq \bigwedge_{x, y}\left[\rho\left(A(x), A^{\prime}(x)\right) \wedge \rho\left(B(y), B^{\prime}(y)\right) \wedge \rho\left(C(x), C^{\prime}(x)\right)\right] \\
& =\left[\bigwedge_{x} \rho\left(A(x), A^{\prime}(x)\right)\right] \wedge\left[\bigwedge_{y} \rho\left(B(y), B^{\prime}(y)\right)\right] \wedge\left[\bigwedge_{x} \rho\left(C(x), C^{\prime}(x)\right)\right] .
\end{aligned}
$$

By hypothesis

$$
\bigwedge_{x} \rho\left(A(x), A^{\prime}(x)\right) \geq \delta_{1}, \bigwedge_{y} \rho\left(B(y), B^{\prime}(y)\right) \geq \delta_{2}, \bigwedge_{x} \rho\left(C(x), C^{\prime}(x)\right) \geq \delta_{3}
$$

therefore

$$
\bigwedge_{y} \rho\left(I_{1}(A, B, C)(y), I_{1}\left(A^{\prime}, B^{\prime}, C^{\prime}\right)(y)\right) \geq \delta_{1} \wedge \delta_{2} \wedge \delta_{3}
$$

For the operators I_{2}, I_{3} and I_{4} the results are obtained similarly.

$6(*, \delta)$-EQUALITY AND FUZZY RELATIONS

In this section we shall investigate how the composition of fuzzy relations and the transitive closure operator preserve the $(*, \delta)$-equality.

Let R, S be two fuzzy relations on X. Recall that $R \circ S$ is the fuzzy relation defined by

$$
(R \circ S)(x, z)=\bigvee_{y \in X} R(x, y) * S(y, z) \text { for all } x, z \in X
$$

The following result generalizes Proposition 4.1 [5] (see also [11]).
Proposition 6.1 Let $R, R^{\prime}, S, S^{\prime}$ be fuzzy relations on X. If $R=\left(*, \delta_{1}\right) R^{\prime}$ and $S=\left(*, \delta_{2}\right) S^{\prime}$ then $R \circ S=\left(*, \delta_{1} * \delta_{2}\right) R^{\prime} \circ S^{\prime}$.

Proof: By hypothesis
(a) $\bigwedge_{x, z} \rho\left(R(x, z), R^{\prime}(x, z)\right) \geq \delta_{1}, \bigwedge_{x, z} \rho\left(S(x, z), S^{\prime}(x, z)\right) \geq \delta_{2}$.

By Lemma 2.5 (2) we have

$$
\text { (b) } \begin{aligned}
& \bigwedge_{x, z} \rho\left((R \circ S)(x, z),\left(R^{\prime} \circ S^{\prime}\right)(x, z)\right) \\
= & \bigwedge_{x, z} \rho\left(\bigvee_{y} R(x, y) * S(y, z), \bigvee_{y} R^{\prime}(x, y) * S^{\prime}(y, z)\right) \\
\geq & \bigwedge_{x, z} \bigwedge_{y} \rho\left(R(x, y) * S(y, z), R^{\prime}(x, y) * S^{\prime}(y, z)\right)
\end{aligned}
$$

Let $x, y, z \in X$. By Lemma 2.3 (8) and Lemma 2.4 (6)

$$
\begin{aligned}
\rho & \left(R(x, y) * S(y, z), R^{\prime}(x, y) * S^{\prime}(y, z)\right) \\
& \geq \rho\left(R(x, y), R^{\prime}(x, y)\right) * \rho\left(S(y, z), S^{\prime}(y, z)\right) \\
& \geq \bigwedge_{s, t, u, v} \rho\left(R(s, t), R^{\prime}(s, t)\right) * \rho\left(S(u, v), S^{\prime}(u, v)\right) \\
& \geq\left[\bigwedge_{s, t} \rho\left(R(s, t), R^{\prime}(s, t)\right)\right] *\left[\bigwedge_{u, v} \rho\left(S(u, v), S^{\prime}(u, v)\right)\right] \geq \delta_{1} * \delta_{2} .
\end{aligned}
$$

These inequalities hold for all $x, y, z \in X$, hence
(c) $\bigwedge_{x, z} \bigwedge_{y} \rho\left(R(x, y) * S(y, z), R^{\prime}(x, y) * S^{\prime}(y, z)\right) \geq \delta_{1} * \delta_{2}$.

From (b) and (c) it follows that $\bigwedge_{x, z} \rho\left((R \circ S)(x, z),\left(R^{\prime} \circ S^{\prime}\right)(x, z)\right) \geq$ $\delta_{1} * \delta_{2}$, i.e. $R \circ S=\left(*, \delta_{1} * \delta_{2}\right) R^{\prime} \circ S^{\prime}$.

Lemma 6.2. Let $\left(R_{i}\right)_{i \in I},\left(S_{i}\right)_{i \in I}$ be two families of fuzzy relations on X and $R=\bigcup_{i \in I} R_{i}, S=\bigcup_{i \in I} S_{i}$. If $R_{i}=\left(*, \delta_{i}\right) S_{i}$ for any $i \in I$ then $R=\left(*, \bigwedge_{i \in I} \delta_{i}\right) S$.

Proof: By hypothesis, $\bigwedge_{x, y} \rho\left(R_{i}(x, y), S_{i}(x, y)\right) \geq \delta_{i}$ for any $i \in I$. In accordance with Lemma 2.5 (2)

$$
\begin{aligned}
& \bigwedge_{x, y} \rho(R(x, y), S(x, y))=\bigwedge_{x, y} \rho\left(\bigvee_{i \in I} R_{i}(x, y), \bigvee_{i \in I} S_{i}(x, y)\right) \\
& \geq \bigwedge_{x, y} \bigwedge_{i \in I} \rho\left(R_{i}(x, y), S_{i}(x, y)\right)=\bigwedge_{i \in I} \bigwedge_{x, y} \rho\left(R_{i}(x, y), S_{i}(x, y)\right) \geq \bigwedge_{i \in I} \delta_{i}
\end{aligned}
$$

A fuzzy relation R on X is $*$-transitive if $R(x, y) * R(y, z) \leq R(x, z)$ for any $x, y, z \in X$. If R is an arbitrary fuzzy relation on X then the *-transitive closure of R is the intersection $T(R)$ of all $*$-transitive fuzzy relations containing R.

The following result is well-known.
Lemma 6.3. If R is a fuzzy relation then $T(R)=\bigcup_{n=1}^{\infty} R^{n}$ where $R^{n}=$ $\underbrace{R \circ R \circ \ldots \circ R}_{n-\text { times }}$ for each n.

Theorem 6.4. Let R, S be two $\underset{\infty}{\infty}$ uzzy relations on X. If $R=(*, \delta) S$ then $T(R)=(*, \epsilon) T(S)$ where $\epsilon=\bigwedge_{n=1} \delta^{(n)}$ and $\delta^{(n)}=\underbrace{\delta * \delta * \ldots * \delta}_{n \text {-times }}$ for each $n \geq 1$.

Proof: By Proposition 6.1, $R^{n}=\left(*, \delta^{(n)}\right) S^{n}$ for each $n \geq 1$. Then we apply Lemmas 6.2 and 6.3.

7 ($*, \delta$)-EQUALITY AND S-NORMS

An s-norm is a binary operation on $[0,1]$ by which one can define a generalized union of two fuzzy sets. [6], p. 744 studies how an s-norm behaves with respect to δ-equality. In this section we shall generalize this result of Cai investigating how the fuzzy operator introduced by an s-norm preserves the $(*, \delta)$-equality.

Applying the s-norm one defines a class of fuzzy operators that generalize the implication operator Dienes-Rescher (or Kleene-Dienes, by [18], p. 24). For this class of fuzzy operators one proves a preservation theorem of $(*, \delta)$-equality that extends Proposition 4.7, [6].

Let X be a non-empty set.
Proposition 7.1 Let $A_{1}, A_{2}, B_{1}, B_{2}, C_{1}, C_{2}$ fuzzy subsets of X such that $A_{1} \subseteq B_{1} \subseteq C_{1}, A_{2} \subseteq B_{2} \subseteq C_{2}$. If $A_{1}=\left(*, \delta_{1}\right) A_{2}, A_{1}=\left(*, \delta_{2}\right) C_{1}$ and $A_{2}=\left(*, \delta_{3}\right) C_{2}$ then $B_{1}=\left(*, \delta_{1} *\left(\delta_{2} \wedge \delta_{3}\right)\right) B_{2}$.

Proof: By hypothesis
(a)

$$
\bigwedge_{x} \rho\left(A_{1}(x), A_{2}(x)\right) \geq \delta_{1}, \bigwedge_{x} \rho\left(A_{1}(x), C_{1}(x)\right) \geq
$$

$\delta_{2}, \bigwedge \rho\left(A_{2}(x), C_{2}(x)\right) \geq \delta_{3}$.
We shall prove that for each $y \in X$
(b) $\left[\bigwedge_{x} \rho\left(A_{1}(x), A_{2}(x)\right)\right] *\left[\bigwedge \rho\left(A_{1}(x), C_{1}(x)\right)\right] \leq B_{1}(y) \rightarrow B_{2}(y)$.

Let $y \in X$. We have $B_{1}(y) \leq C_{1}(y)$ hence, by Lemma 2.1 (10)

$$
C_{1}(y) \rightarrow A_{1}(y) \leq B_{1}(y) \rightarrow A_{1}(y) .
$$

Thus, by Lemma 2.1 (2)

$$
\begin{aligned}
& B_{1}(y) *\left[C_{1}(y) \rightarrow A_{1}(y)\right] *\left[A_{1}(y) \rightarrow A_{2}(y)\right] \leq B_{1}(y) *\left[B_{1}(y)\right. \\
& \left.\quad \rightarrow A_{1}(y)\right] *\left[A_{1}(y) \rightarrow A_{2}(y)\right]=\left[A_{1}(y) \wedge B_{1}(y)\right] *\left[A_{1}(y) \rightarrow A_{2}(y)\right] \\
& \quad \leq A_{1}(y) *\left[A_{1}(y) \rightarrow A_{2}(y)\right]=A_{1}(y) \wedge A_{2}(y) \leq A_{2}(y) \leq B_{2}(y)
\end{aligned}
$$

In accordance with Lemma 2.1 (1)

$$
\left[C_{1}(y) \rightarrow A_{1}(y)\right] *\left[A_{1}(y) \rightarrow A_{2}(y)\right] \leq B_{1}(y) \rightarrow B_{2}(y)
$$

Thus

$$
\begin{aligned}
& {\left[\bigwedge_{x} \rho\left(A_{1}(x), A_{2}(x)\right)\right] *\left[\bigwedge_{x} \rho\left(A_{1}(x), C_{1}(x)\right)\right] \leq \rho\left(A_{1}(y), A_{2}(y)\right) * \rho\left(A_{1}(y), C(y)\right)} \\
& \quad \leq\left[C(y) \rightarrow A_{1}(y)\right] *\left[A_{1}(y) \rightarrow A_{2}(y)\right] \leq B_{1}(y) \rightarrow B_{2}(y) .
\end{aligned}
$$

Similarly

$$
\text { (c) }\left[\bigwedge_{x} \rho\left(A_{1}(x), A_{2}(x)\right)\right] *\left[\bigwedge_{x} \rho\left(A_{2}(x), C_{2}(x)\right)\right] \leq B_{2}(y) \rightarrow B_{1}(y) .
$$

By (a), (b) and (c) we get for each $y \in X$:

$$
\begin{aligned}
\delta_{1} *\left(\delta_{2} \wedge \delta_{3}\right) \leq\left(\delta_{1} * \delta_{2}\right) \wedge\left(\delta_{1} * \delta_{3}\right) \leq\left[B_{1}(y) \rightarrow B_{2}(y)\right] & \wedge\left[B_{2}(y) \rightarrow B_{1}(y)\right] \\
& =\rho\left(B_{1}(y), B_{2}(y)\right)
\end{aligned}
$$

It follows that

$$
\delta_{1} *\left(\delta_{2} \wedge \delta_{3}\right) \leq \bigwedge_{y} \rho\left(B_{1}(y), B_{2}(y)\right)
$$

Now let us recall the definition of s-norm.
Definition 7.2. An s-norm is a function $s:[0,1] \times[0,1] \rightarrow[0,1]$ such that the following axioms hold for any $a, b, c \in[0,1]$:

$$
\begin{aligned}
& \left(A_{1}\right) s(1,1)=1, s(0, a)=s(a, 0)=a \\
& \left(A_{2}\right) s(a, b)=s(b, a)(\text { commutativity axiom }) \\
& \left(A_{3}\right) \text { If } a \leq b \text { then } s(a, c) \leq s(b, c) \\
& \left(A_{4}\right) s(s(a, b), c)=s(a, s(b, c)) \text { (associativity axiom). }
\end{aligned}
$$

The join operation \vee is the most usual s-norm.
Let us consider the s-norm s_{w} defined by

$$
s_{w}(a, b)=\left\{\begin{array}{ccc}
a & \text { if } & b=0 \\
b & \text { if } & a=0 \\
1 & \text { otherwise } &
\end{array}\right.
$$

The following result is Lemma 5.1, [6]:
Lemma 7.3. For any s-norm s and for any $a, b \in[0,1]$ we have $a \vee b \leq s(a, b) \leq s_{w}(a, b)$.

If A, B are two fuzzy subsets of X and s is an s-norm, then $s(A, B)$ will be the fuzzy operator defined by $s(A, B)(x, y)=s(A(x), B(y))$ for all $x, y \in X$.

Proposition 7.4 If $A=\left(*, \delta_{1}\right) A^{\prime}$ and $B=\left(*, \delta_{2}\right) B^{\prime}$ then $s(A, B)=$ $(*, \delta) s\left(A^{\prime}, B^{\prime}\right)$ where $\delta=\left(\delta_{1} \wedge \delta_{2}\right) * \bigwedge_{x, y}\left((A(x) \vee B(y)) \wedge\left(A^{\prime}(x) \vee B^{\prime}(y)\right)\right)$.

Proof: By Lemma 7.3 we have
$A(x) \vee B(y) \leq s(A(x), B(y)) \leq s_{w}(A(x), B(y)) ; A^{\prime}(x) \vee B^{\prime}(y) \leq$ $s\left(A^{\prime}(x), B^{\prime}(y)\right) \leq s_{w}\left(A^{\prime}(x), B^{\prime}(y)\right)$ hence
$A \sqcup B \subseteq s(A, B) \subseteq s_{w}(A, B)$ and $A^{\prime} \sqcup B^{\prime} \subseteq s\left(A^{\prime}, B^{\prime}\right) \subseteq s_{w}\left(A^{\prime}, B^{\prime}\right)$.
By Proposition 4.5, $A \sqcup B=\left(*, \delta_{1} \wedge \delta_{2}\right) A^{\prime} \sqcup B^{\prime}$.
Let $x, y \in X$. Then

$$
\begin{gathered}
s_{w}(A(x), B(y)) \rightarrow(A(x) \vee B(y)) \\
=\left\{\begin{array}{c}
A(x) \rightarrow A(x) \quad \text { if } \quad B(y)=1 \\
B(y) \rightarrow B(y) \quad \text { if } A(x)=1 \\
1 \rightarrow(A(x) \vee B(y)) \text { otherwise }
\end{array}\right. \\
=\left\{\begin{array}{rrr}
1 & \text { if } & B(y)=1 \\
1 & \text { if } & A(x)=1 . \\
A(x) \vee B(y) & \text { otherwise }
\end{array}\right. \\
A(x) \vee B(y) \leq s_{w}(A(x), B(y)) \rightarrow A(x) \vee B(y)=
\end{gathered}
$$

$\rho\left(s_{w}(A(x), B(y)), A(x) \vee B(y)\right)$ hence

$$
\bigwedge_{x, y}(A(x) \vee B(y)) \leq \bigwedge_{x, y} \rho\left(s_{w}(A(x), B(y)), A(x) \vee B(y)\right) .
$$

Therefore $A \sqcup B=\left(*, \epsilon_{1}\right) s_{w}(A, B)$ where $\epsilon_{1}=\bigwedge_{x, y}(A(x) \vee B(y))$. Similarly, $A^{\prime} \sqcup B^{\prime}=\left(*, \epsilon_{2}\right) s_{w}\left(A^{\prime}, B^{\prime}\right)$ where $\epsilon_{2}=\bigwedge_{x, y}\left(A^{\prime}(x) \vee B^{\prime}(y)\right)$.

Now we apply Proposition 7.1 to that situation, hence $s(A, B)=$ $(*, \delta) s\left(A^{\prime}, B^{\prime}\right)$ where $\delta=\left(\delta_{1} \wedge \delta_{2}\right) *\left(\epsilon_{1} \wedge \epsilon_{2}\right)$. It is easy to see that δ has the desired form.

Let us consider the fuzzy operator I defined by
$I(A, B)(x, y)=\left\{\begin{aligned} 1 & \text { if } A(x) \leq B(y) \\ s(\neg A(x), B(y)) & \text { if } A(x)>B(y)\end{aligned}\right.$
for any $A, B \in \mathcal{F}(X)$ and $x, y \in X$.

If $*$ is the Lukasiewicz t-norm and s the join operation \vee we obtain operator I from [6], Proposition 4.7:

$$
I(A, B)(x, y)=\left\{\begin{array}{rl}
1 & \text { if } A(x)
\end{array} \leq B(y), ~=B(y)\right.
$$

The following result extends Proposition 4.7 [6] to a very general setting.
Proposition 7.5 If $A=\left(*, \delta_{1}\right) A^{\prime}$ and $B=\left(*, \delta_{2}\right) B^{\prime}$ then $I(A, B)=(*, \delta)$ $I\left(A^{\prime}, B^{\prime}\right) \quad$ where $\quad \delta=\left[\bigwedge_{x, y} s\left(\neg A(x) \wedge \neg A^{\prime}(x), B(y)\right)\right] *\left[\bigwedge_{x, y} s\left(\neg A^{\prime}(x)\right.\right.$,
$\left.\left.B(y) \wedge B^{\prime}(y)\right)\right]$.

Proof: By Lemma 2.3 (5) we have for any $x, y \in X$:
(a) $\rho\left(I(A, B)(x, y), I\left(A^{\prime}, B^{\prime}\right)(x, y)\right) \geq$
$\geq \rho\left(I(A, B)(x, y), I\left(A^{\prime}, B\right)(x, y)\right) * \rho\left(I\left(A^{\prime}, B\right)(x, y), I\left(A^{\prime}, B^{\prime}\right)(x, y)\right)$.
Firstly we shall prove the inequality:
(b) $\rho\left(I(A, B)(x, y), I\left(A^{\prime}, B\right)(x, y)\right) \geq s\left(\neg A(x) \wedge \neg A^{\prime}(x), B(y)\right)$.

We must consider the cases:
(I) $A(x)=A^{\prime}(x)$ (b) is obviously verified.
(II) $A(x)<A^{\prime}(x)$ We have three subcases:

- $A(x)<A^{\prime}(x) \leq B(y)$ Then $I(A, B)(x, y)=I\left(A^{\prime}, B\right)(x, y)=1$, hence $\rho\left(I(A, B)(x, y), I\left(A^{\prime}, B\right)(x, y)\right)=1$.
- $\quad B(y)<A(x)<A^{\prime}(x) \quad$ Then $\quad I(A, B)(x, y)=s(\neg A(x), B(y)) ;$ $I\left(A^{\prime}, B\right)(x, y)=s\left(\neg A^{\prime}(x), B(y)\right)$

We remark that $\neg A^{\prime}(x) \leq \neg A(x)$ hence $s\left(\neg A^{\prime}(x), B(y)\right) \leq s(\neg A(x)$, $B(y))$, i.e. $s\left(\neg A^{\prime}(x), B(y)\right) \rightarrow s(\neg A(x), B(y))=1$. Thus
$\rho\left(I(A, B)(x, y), I\left(A^{\prime}, B\right)(x, y)\right)=\rho\left(s(\neg A(x), B(y)), s\left(\neg A^{\prime}(x), B(y)\right)\right)=$
$=s(\neg A(x), B(y)) \rightarrow s\left(\neg A^{\prime}(x), B(y)\right) \geq s\left(\neg A^{\prime}(x), B(y)\right) \geq s(\neg A(x) \wedge$
$\left.\neg A^{\prime}(x), B(y)\right)$.

- $A(x) \leq B(y)<A^{\prime}(x) \quad$ Then $\quad I(A, B)(x, y)=1, I\left(A^{\prime}, B\right)(x, y)=$ $s\left(\neg A^{\prime}(x), B(y)\right)$ hence
$\rho\left(I(A, B)(x, y), I\left(A^{\prime}, B\right)(x, y)\right)=s\left(\neg A^{\prime}(x), B(y)\right) \geq s(\neg A(x) \wedge$ $\left.\neg A^{\prime}(x), B(y)\right)$.

Therefore (b) is verified in all subcases.
(III) Similar to (II).

Now we shall establish the inequality
(c) $\rho\left(I\left(A^{\prime}, B\right)(x, y), I\left(A^{\prime}, B^{\prime}\right)(x, y)\right) \geq s\left(\neg A^{\prime}(x), B(y) \wedge B^{\prime}(y)\right)$.

We also consider three cases:
(I) $B(y)=B^{\prime}(y)$ (c) is obviously verified.
(II) $B^{\prime}(y)<B(y)$ We shall analyze three subcases

- $\quad B^{\prime}(y)<B(y)<A^{\prime}(x)$ Then $I\left(A^{\prime}, B\right)(x, y)=s\left(\neg A^{\prime}(x), B(y)\right)$, $I\left(A^{\prime}, B^{\prime}\right)(x, y)=s\left(\neg A^{\prime}(x), B^{\prime}(y)\right)$.

But $B^{\prime}(y)<B(y)$ implies $s\left(\neg A^{\prime}(x), B^{\prime}(y)\right) \leq s\left(\neg A^{\prime}(x), B(y)\right)$, therefore
$\rho\left(I\left(A^{\prime}, B\right)(x, y), I\left(A^{\prime}, B^{\prime}\right)(x, y)\right)=\rho\left(s\left(\neg A^{\prime}(x), B(y)\right), s\left(\neg A^{\prime}(x), B^{\prime}(y)\right)\right)=$
$=s\left(\neg A^{\prime}(x), B(y)\right) \rightarrow s\left(\neg A^{\prime}(x), B^{\prime}(y)\right) \geq s\left(\neg A^{\prime}(x), B^{\prime}(y)\right) \geq$ $s\left(\neg A^{\prime}(x), B(y) \wedge B^{\prime}(y)\right)$.

- $B^{\prime}(y)<A^{\prime}(x) \leq B(y)$ Then $I\left(A^{\prime}, B\right)(x, y)=1, I\left(A^{\prime}, B^{\prime}\right)(x, y)=s(\neg$ $\left.A^{\prime}(x), B^{\prime}(y)\right)$ hence $\rho\left(I\left(A^{\prime}, B\right)(x, y), I\left(A^{\prime}, B^{\prime}\right)(x, y)\right)=s\left(\neg A^{\prime}(x), B^{\prime}(y)\right) \geq$ $s\left(\neg A^{\prime}(x), B(y) \wedge B^{\prime}(y)\right)$.
- $A^{\prime}(x) \leq B^{\prime}(y)<B(y)$ Then $I\left(A^{\prime}, B\right)(x, y)=I\left(A^{\prime}, B^{\prime}\right)(x, y)=1$ hence $\rho\left(I\left(A^{\prime}, B\right)(x, y), I\left(A^{\prime}, B^{\prime}\right)(x, y)\right)=1$.

Then (c) is verified in all subcases.
(III) $B(y)<B^{\prime}(y)$ Similar to (II).

In accordance with (a), (b) and (c) we conclude

$$
\begin{aligned}
& \bigwedge_{x, y} \rho\left(I(A, B)(x, y), I\left(A^{\prime}, B^{\prime}\right)(x, y)\right) \geq \\
\geq & {\left[\bigwedge_{x, y} s\left(\neg A(x) \wedge \neg A^{\prime}(x), B(y)\right)\right] *\left[\bigwedge_{x, y} s\left(\neg A^{\prime}(x), B(y) \wedge B^{\prime}(y)\right)\right] . }
\end{aligned}
$$

8 Sugeno integral and ($*, \delta$)-equality

The fuzzy operator $P C:(\mathcal{F}(X))^{3} \rightarrow \mathcal{F}(X)$ was introduced in [27], p. 627, as a probabilistic version of Zadeh's compositional rule of fuzzy inference [23]. The universe of discourse X has a structure of probability space (X, σ, P) and the definition of $P C$ uses the integral corresponding to the probability P.

In this section we shall introduce a new probabilistic version P : $(\mathcal{F}(X))^{3} \rightarrow \mathcal{F}(X)$ of compositional rule of inference using Sugeno integral [20] instead of the classical one.

The main theorem in this section establishes how the fuzzy operator P preserves the $(*, \delta)$-equality.

A (discrete) fuzzy measure on a finite set X is a function $\mu: \mathcal{P}(X) \rightarrow[0,1]$ verifying the following properties: $\left(M_{1}\right) \mu(\phi)=0$; $\left(M_{2}\right)$ If $K \subseteq L \subseteq X$ then $\mu(K) \leq \mu(L) ;\left(M_{3}\right) \mu(X)=1$.
Definition 8.1. Let X be a finite non-empty set, μ be a fuzzy measure on X and A a fuzzy subset of X. The discrete Sugeno integral of A with respect to μ is defined by
$\int A(x) d \mu(x)=\bigvee_{K \subseteq X} \bigwedge_{u \in K}(A(u) \wedge \mu(K))$.
Let us consider the fuzzy operator $P:(\mathcal{F}(X))^{3} \rightarrow \mathcal{F}(X)$ defined by
$P\left(A, B, A^{\prime}\right)(y)=\int A^{\prime}(x) *(A(x) \rightarrow B(y)) d \mu(x) \quad$ for any $A, A^{\prime}, B \in \mathcal{F}(X)$ and $y \in X$.

Remark 8.2 The fuzzy operator P is similar to the fuzzy operator $P C$ defined in [27] p. 627. P has the same form with $P C$ but it is defined using the Sugeno integral instead of the classical integral.
Proposition 8.3 Let $A_{1}, A_{2}, A_{1}^{\prime}, A_{2}^{\prime}, B_{1}, B_{2}$ be fuzzy subsets of X. If $A_{1}=\left(*, \delta_{1}\right) A_{2}, A_{1}^{\prime}=\left(*, \delta_{2}\right) A_{2}^{\prime}, B_{1}=\left(*, \delta_{3}\right) B_{2}$, then $P\left(A_{1}, B_{1}, A_{1}^{\prime}\right)=$ $\left(*, \delta_{1} * \delta_{2} * \delta_{3}\right) P\left(A_{2}, B_{2}, A_{2}^{\prime}\right)$.
Proof: We have:
(a) $\begin{aligned} & \bigwedge_{x}^{x} \rho\left(A_{1}(x), A_{2}(x)\right) \geq \delta_{1}, \bigwedge_{x} \rho\left(A_{1}^{\prime}(x), A_{2}^{\prime}(x)\right) \geq \delta_{2}, \bigwedge_{y} \\ & \rho\left(B_{1}(y), B_{2}(y)\right) \geq \delta_{3} .\end{aligned}$

$$
\rho\left(B_{1}(y), B_{2}(y)\right) \geq \delta_{3} .
$$

Let $x, y \in X$. Then by Lemma 2.3 (8) and (9)

$$
\begin{aligned}
& \rho\left(A_{1}^{\prime}(x) *\left(A_{1}(x) \rightarrow B_{1}(y)\right), A_{2}^{\prime}(x) *\left(A_{2}(x) \rightarrow B_{2}(y)\right)\right) \geq \\
\geq & \rho\left(A_{1}^{\prime}(x), A_{2}^{\prime}(x)\right) * \rho\left(A_{1}(x) \rightarrow B_{1}(y), A_{2}(x) \rightarrow B_{2}(y)\right) \geq \\
\geq & \rho\left(A_{1}^{\prime}(x), A_{2}^{\prime}(x)\right) * \rho\left(A_{1}(x), A_{2}(x)\right) * \rho\left(B_{1}(y), B_{2}(y)\right) .
\end{aligned}
$$

Using these inequalities and Lemma 2.5 we obtain:

$$
\begin{array}{r}
\rho\left(P\left(A_{1}, B_{1}, A_{1}^{\prime}\right)(y), P\left(A_{2}, B_{2}, A_{2}^{\prime}\right)(y)\right)= \\
=\rho\left(\bigvee_{K \subseteq X} \bigwedge_{x \in K}\left[A_{1}^{\prime}(x) *\left(A_{1}(x) \rightarrow B_{1}(y)\right)\right) \wedge \mu(K)\right], \\
\left.\bigvee_{K \subseteq X} \bigwedge_{x \in K}\left[\left(A_{2}^{\prime}(x) *\left(A_{2}(x) \rightarrow B_{2}(y)\right)\right) \wedge \mu(K)\right]\right) \geq
\end{array}
$$

$$
\begin{array}{r}
\geq \bigwedge_{K \subseteq X} \bigwedge_{x \subseteq K} \rho\left(\left[\left(A _ { 1 } ^ { \prime } (x) * \left(A_{1}(x)\right.\right.\right.\right. \\
\left.\left.\left.\left.\rightarrow B_{1}(y)\right)\right) \wedge \mu(K)\right],\left[\left(A_{2}^{\prime}(x) *\left(A_{2}(x) \rightarrow B_{2}(y)\right)\right) \wedge \mu(K)\right]\right)
\end{array}
$$

In accordance with Lemma 2.3 (6) we get from any $K \subseteq X$ and $y \in K$:

$$
\begin{aligned}
& \quad \rho\left(\left[\left(A_{1}^{\prime}(x) *\left(A_{1}(x) \rightarrow B_{1}(y)\right)\right) \wedge \mu(K)\right],\left[\left(A _ { 2 } ^ { \prime } (x) * \left(A_{2}(x) \rightarrow\right.\right.\right.\right. \\
& \left.\left.\left.\left.B_{2}(y)\right)\right) \wedge \mu(K)\right]\right) \geq \\
& \geq \rho\left(A_{1}^{\prime}(x) *\left(A_{1}(x) \rightarrow B_{1}(y)\right), A_{2}^{\prime}(x) *\left(A_{2}(x) \rightarrow B_{2}(y)\right)\right) \wedge \\
& \rho(\mu(K), \mu(K))= \\
& =\rho\left(A_{1}^{\prime}(x) *\left(A_{1}(x) \rightarrow B_{1}(y)\right), A_{2}^{\prime}(x) *\left(A_{2}(x) \rightarrow B_{2}(y)\right)\right) \geq \\
& \geq \rho\left(A_{1}(x), A_{2}(x)\right) * \rho\left(A_{1}^{\prime}(x), A_{2}^{\prime}(x)\right) * \rho\left(B_{1}(y), B_{2}(y)\right) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \rho\left(P\left(A_{1}, B_{1}, A_{1}^{\prime}\right)(y), P\left(A_{2}, B_{2}, A_{2}^{\prime}(y)\right)\right) \geq \\
& \geq \bigwedge_{K \subseteq X} \bigwedge_{x \in K} \rho\left(A_{1}(x), A_{2}(x)\right) * \rho\left(A_{1}^{\prime}(x), A_{2}^{\prime}(x)\right) * \rho\left(B_{1}(y), B_{2}(y)\right) \geq \\
& \geq {\left[\bigwedge_{K \subseteq X} \bigwedge_{x \in K} \rho\left(A_{1}(x), A_{2}(x)\right)\right] *\left[\bigwedge_{K \subseteq X} \bigwedge_{x \in K} \rho\left(A_{1}^{\prime}(x), A_{2}^{\prime}(x)\right)\right] * } \\
& \rho\left(B_{1}(y), B_{2}(y)\right) .
\end{aligned}
$$

We remark that $\bigwedge_{K \subseteq X} \bigwedge_{x \in K} \rho\left(A_{1}(x), A_{2}(x)\right)=\bigwedge_{x \in X} \rho\left(A_{1}(x), A_{2}(x)\right) \geq \delta_{1}$ hence $\rho\left(P\left(A_{1}, B_{1}, A_{1}^{\prime}\right)(y), P\left(A_{2}, B_{2}, A_{2}^{\prime}\right)(y)\right) \geq \delta_{1} * \delta_{2} * \rho\left(B_{1}(y), B_{2}(y)\right)$.

Therefore

$$
\begin{aligned}
& \bigwedge_{y} P\left(A_{1}, B_{1}, A_{1}^{\prime}\right)(y), P\left(A_{2}, B_{2}, A_{2}^{\prime}\right)(y) \geq \\
\geq & \bigwedge_{y}\left(\delta_{1} * \delta_{2} * \rho\left(B_{1}(y), B_{2}(y)\right)\right) \geq \\
\geq & \delta_{1} * \delta_{2} * \bigwedge_{y} \rho\left(B_{1}(y), B_{2}(y)\right) \geq \\
\geq & \delta_{1} * \delta_{2} * \delta_{3} .
\end{aligned}
$$

Consider the fuzzy operators $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}:(\mathcal{F}(X))^{3} \rightarrow \mathcal{F}(X)$ defined by

$$
\begin{aligned}
& P_{1}\left(A, B, A^{\prime}\right)(y)=\int A^{\prime}(x) *(\neg A(x) \vee B(y)) d \mu(x), \\
& P_{2}\left(A, B, A^{\prime}\right)(y)=\int A^{\prime}(x) \wedge(\neg A(x) \vee B(y)) d \mu(x),
\end{aligned}
$$

$$
\begin{aligned}
& P_{3}\left(A, B, A^{\prime}\right)(y)=\int A^{\prime}(x) \wedge(A(x) \rightarrow B(y)) d \mu(x), \\
& P_{4}\left(A, B, A^{\prime}\right)(y)=\int A^{\prime}(x) * \rho(A(x), B(y)) d \mu(x), \\
& P_{5}\left(A, B, A^{\prime}\right)(y)=\int A^{\prime}(x) \wedge \rho(A(x), B(y)) d \mu(x)
\end{aligned}
$$

for any $A, A^{\prime}, B \in \mathcal{F}(X)$ and $y \in X$.

Proposition 8.4. Let $A_{1}, A_{2}, A_{1}^{\prime}, A_{2}^{\prime}, B_{1}, B_{2}$ be fuzzy subsets of X. If $A_{1}=\left(*, \delta_{1}\right) A_{2}, A_{1}^{\prime}=\left(*, \delta_{2}\right) A_{2}^{\prime}, B_{1}=\left(*, \delta_{3}\right) B_{2}$, then

$$
\begin{aligned}
& P_{1}\left(A_{1}, B_{1}, A_{1}^{\prime}\right)=\left(*, \delta_{3} *\left(\delta_{1} \wedge \delta_{2}\right)\right) P_{1}\left(A_{2}, B_{2}, A_{2}^{\prime}\right), \\
& P_{2}\left(A_{1}, B_{1}, A_{1}^{\prime}\right)=\left(*, \delta_{1} \wedge \delta_{2} \wedge \delta_{3}\right) P_{2}\left(A_{2}, B_{2}, A_{2}^{\prime}\right) \\
& P_{3}\left(A_{1}, B_{1}, A_{1}^{\prime}\right)=\left(*, \delta_{3} \wedge\left(\delta_{1} * \delta_{2}\right)\right) P_{3}\left(A_{2}, B_{2}, A_{2}^{\prime}\right), \\
& P_{4}\left(A_{1}, B_{1}, A_{1}^{\prime}\right)=\left(*, \delta_{1} * \delta_{2} * \delta_{3}\right) P_{4}\left(A_{2}, B_{2}, A_{2}^{\prime}\right), \\
& P_{5}\left(A_{1}, B_{1}, A_{1}^{\prime}\right)=\left(*, \delta_{3} \wedge\left(\delta_{1} * \delta_{2}\right)\right) P_{5}\left(A_{2}, B_{2}, A_{2}^{\prime}\right)
\end{aligned}
$$

Proof: Similarly as Proposition 8.3.

$9(*, \delta)$-equality of fuzzy choice functions

In this section we shall introduce the notion of $(*, \delta)$-equality for fuzzy choice functions and we shall prove that $(*, \delta)$-equality is preserved by some fundamental constructions of fuzzy revealed preference.

A fuzzy choice space is a pair $\langle X, \mathcal{B}\rangle$ where X is a universe of alternatives and \mathcal{B} is a non-empty family of non-zero fuzzy subsets of X. A fuzzy choice function on $\langle X, \mathcal{B}\rangle$ is a function $C: \mathcal{B} \rightarrow \mathcal{F}(X)$ such that for each $S \in \mathcal{B}, C(S)$ is non-zero and $C(S) \subseteq S$. Starting from Banerjee's paper [2] we have developed a revealed preference theory for fuzzy choice functions [8, 9].

We fix a continuous t-norm $*$. Let C be a fuzzy choice function on $\langle X, \mathcal{B}\rangle$. With C we associate the fuzzy revealed preference relation R_{C} defined by [8] $R_{C}(x, y)=\bigvee_{S \in \mathcal{B}}(C(S)(x) * S(y))$ for all $x, y \in X . R_{C}$ is a fuzzy form of the revealed preference relation R introduced by Samuelson in 1938 [19].

The assignment $C \mapsto R_{C}$ defines a function from fuzzy choice functions on $\langle X, \mathcal{B}\rangle$ to fuzzy relations on X. Conversely, let us start with a fuzzy preference relation Q on X and we define a function $C_{Q}: \mathcal{B} \rightarrow \mathcal{F}(X)$ by

$$
C_{Q}(S)(x)=S(x) * \bigwedge_{y \in X}[S(y) \rightarrow Q(x, y)]
$$

for all $S \in \mathcal{B}$ and $x \in X$. In general C_{Q} is not a fuzzy choice function. If C is a fuzzy choice function and $Q=R_{C}$ then C_{Q} is also a fuzzy choice function. For a fuzzy choice function C denote $\hat{C}=C_{R_{C}}$; for $S \in \mathcal{B}$ and $x \in X$ we have

$$
\hat{C}(S)(x)=S(x) * \bigwedge_{y \in X}\left[S(y) \rightarrow R_{C}(x, y)\right]
$$

Let Q be a fuzzy preference relation on X; denote $\hat{Q}=R_{C_{Q}}$.
If C_{1}, C_{2} are two fuzzy choice functions on $\langle X, \mathcal{B}\rangle$ then we define the degree of similarity of C_{1} and C_{2} by

$$
E\left(C_{1}, C_{2}\right)=\bigwedge_{S \in \mathcal{B}} \bigwedge_{x \in X} \rho\left(C_{1}(S)(x), C_{2}(S)(x)\right) .
$$

Definition 9.1. Let C_{1} and C_{2} be two fuzzy choice functions on $\langle X, \mathcal{B}\rangle$. For $0 \leq \rho \leq 1$ we say that C_{1} and C_{2} are $(\delta, *)$-equal $\left(C_{1}=(*, \delta) C_{2}\right.$ in symbols) if $E\left(C_{1}, C_{2}\right) \geq \delta$.

Lemma 9.2. For all $a, b, c \in[0,1]$ we have $\rho(a * c, b * c) \geq \rho(a, b)$, $\rho(a \rightarrow c, b \rightarrow c) \geq \rho(a, b)$.

Proof: By Lemma 2.3 (2), (9).
The following result shows that the $(*, \delta)$-equality of fuzzy preference relations is preserved by the assignment $Q \mapsto \hat{Q}$.

Proposition 9.3. Let Q_{1}, Q_{2} be two fuzzy preference relations on X and $0 \leq \delta \leq 1$. If $Q_{1}=(*, \delta) Q_{2}$ then $\hat{Q}_{1}=(*, \delta) \hat{Q}_{2}$.

Proof: Denoting $C_{1}=C_{Q_{1}}, C_{2}=C_{Q_{2}}$ we have by Lemma 2.5 (2) and Lemma 9.2:

$$
\begin{aligned}
& \bigwedge_{x, y \in X} \rho\left(\hat{Q}_{1}(x, y), \hat{Q}_{2}(x, y)\right)= \\
& =\bigwedge_{x, y \in X} \rho\left(\bigvee_{S \in \mathcal{B}}\left(C_{1}(S)(x) * S(y)\right), \bigvee_{S \in \mathcal{B}}\left(C_{2}(S)(x) * S(y)\right)\right) \geq \\
& \geq \bigwedge_{x, y \in X} \bigwedge_{S \in \mathcal{B}} \rho\left(C_{1}(S)(x) * S(y), C_{2}(S)(x) * S(y)\right) \geq \\
& \geq \bigwedge_{x, y \in X} \bigwedge_{S \in \mathcal{B}} \rho\left(C_{1}(S)(x), C_{2}(S)(x)\right)=\bigwedge_{x \in X} \bigwedge_{S \in \mathcal{B}} \rho\left(C_{1}(S)(x), C_{2}(S)(x)\right) .
\end{aligned}
$$

For any $x \in X$ and $S \in \mathcal{B}$ we have by Lemma 2.5 (2) and Lemma 9.2:

$$
\begin{aligned}
& \rho\left(C_{1}(S)(x), C_{2}(S)(x)\right)= \\
& =\rho\left(S(x) * \bigwedge_{y \in X}\left[S(y) \rightarrow Q_{1}(x, y)\right], S(x) * \bigwedge_{y \in X}\left[S(y) \rightarrow Q_{2}(x, y)\right]\right) \geq \\
& \geq \rho\left(\bigwedge_{y \in X}\left[S(y) \rightarrow Q_{1}(x, y)\right], \bigwedge_{y \in X}\left[S(y) \rightarrow Q_{2}(x, y)\right]\right) \geq \\
& \geq \bigwedge_{y \in X} \rho\left(S(y) \rightarrow Q_{1}(x, y), S(y) \rightarrow Q_{2}(x, y)\right) \geq \\
& \bigwedge_{y \in X} \rho\left(Q_{1}(x, y), Q_{2}(x, y)\right) .
\end{aligned}
$$

In accordance with hypothesis $Q_{1}=(*, \delta) Q_{2}$ we obtain:

$$
\begin{aligned}
& \bigwedge_{x, y \in X} \rho\left(\hat{Q}_{1}(x, y), \hat{Q}_{2}(x, y)\right) \geq \bigwedge_{x \in X} \bigwedge_{S \in \mathcal{B}} \bigwedge_{y \in X} \rho\left(Q_{1}(x, y), Q_{2}(x, y)\right)= \\
& =\bigwedge_{x, y \in X} \rho\left(Q_{1}(x, y), Q_{2}(x, y)\right) \geq \delta \\
& \text { We proved } \hat{Q}_{1}=(*, \delta) \hat{Q}_{2}
\end{aligned}
$$

Now we shall prove that $(*, \delta)$-equality of fuzzy choice functions is preserved by the assignment $C \mapsto \hat{C}$.

Proposition 9.4. Let C_{1}, C_{2} be two fuzzy choice functions on $\langle X, \mathcal{B}\rangle$ and $0 \leq \delta \leq 1$. If $C_{1}=(*, \delta) C_{2}$ then $\hat{C}_{1}=(*, \delta) \hat{C}_{2}$.

Proof: Denote $R_{1}=R_{C_{1}}, R_{2}=R_{C_{2}}$. According to Lemma 9.2 and Lemma 2.5 (1)

$$
\begin{aligned}
& \bigwedge_{S \in \mathcal{B}} \bigwedge_{x \in X} \rho\left(\hat{C}_{1}(S)(x), \hat{C}_{2}(S)(x)\right)= \\
& =\bigwedge_{S \in \mathcal{B}} \bigwedge_{x \in X} \rho\left(S(x) * \bigwedge_{y \in X}\left[S(y) \rightarrow R_{1}(x, y)\right], S(x) * \bigwedge_{y \in X}[S(y) \rightarrow\right.
\end{aligned}
$$

$$
\left.\left.R_{2}(x, y)\right]\right) \geq
$$

$$
\geq \bigwedge_{S \in \mathcal{B}} \bigwedge_{x \in X}^{\geq} \rho\left(\bigwedge_{y \in X}\left[S(y) \rightarrow R_{1}(x, y)\right], \bigwedge_{y \in X}\left[S(y) \rightarrow R_{2}(x, y)\right]\right) \geq
$$

$$
\geq \bigwedge_{S \in \mathcal{B}} \bigwedge_{x, y \in X} \rho\left(S(y) \rightarrow R_{1}(x, y), S(y) \rightarrow R_{2}(x, y)\right) \geq
$$

$$
\geq \bigwedge_{S \in \mathcal{B}} \bigwedge_{x, y \in X} \rho\left(R_{1}(x, y), R_{2}(x, y)\right)=\bigwedge_{x, y \in X} \rho\left(R_{1}(x, y), R_{2}(x, y)\right)
$$

Let $x, y \in X$. Then according to Lemma 2.5 (2) and Lemma 9.2
$\rho\left(R_{1}(x, y), R_{2}(x, y)\right)=\rho\left(\bigvee_{S \in \mathcal{B}}\left(C_{1}(S)(x) * S(y)\right), \bigvee_{S \in \mathcal{B}}\left(C_{2}(S)(x) *\right.\right.$
$S(y))) \geq$
$\bigwedge_{S \in \mathcal{B}} \rho\left(C_{1}(S)(x) * S(y), C_{2}(S)(x) * S(y)\right) \geq \bigwedge_{S \in \mathcal{B}} \rho\left(C_{1}(S)(x), C_{2}(S)(x)\right)$.
Knowing that $C_{1}=(*, \delta) C_{2}$ we obtain:
$\bigwedge_{S \in \mathcal{B}} \bigwedge_{x \in X} \rho\left(\hat{C}_{1}(S)(x), \hat{C}_{2}(S)(x)\right) \geq \bigwedge_{S \in \mathcal{B}} \bigwedge_{x \in X} \rho\left(C_{1}(S)(x), C_{2}(S)(x)\right) \geq \delta$.
Therefore $\hat{C}_{1}=(*, \delta) \hat{C}_{2}$.

10 Some final remarks

In this paper we introduced the (\star, δ)-equality, a concept that indicates the degree of nearness of two fuzzy sets or two fuzzy relations. Our concept generalizes the δ-equality of fuzzy sets studied by Cai in [5], [6].

The starting point of this paper was the observation that the δ-equality can be defined in terms of the biresiduum associated with the Lukasiewicz t-norm. Our main contribution is the extension of Cai theory to the more general context of fuzzy set theory corresponding to an arbitrary continuous t-norm $*$. Most results of the paper lay emphasis on the behaviour of some fuzzy operators with respect to (\star, δ)-equality.

Such fuzzy operators appear in fuzzy reasoning and their investigation using other types of t -norms may bring new information.

As further research we will study how the concept of $(*, \delta)$-equality can be applied to fuzzy reasoning for fuzzy optimization.

REFERENCES

[1] Bandler W., and Kohout L. J. (1980). Fuzzy power sets and fuzzy implication operators. Fuzzy Sets and Systems, 4, 13-30.
[2] Banerjee A. (1995). Fuzzy choice functions, revealed preference and rationality. Fuzzy Sets and Systems, 70, 31-43.
[3] Boixander D., and Jacas J. (1994). Generators and dual similarities. Proceedings of the 5th IPMU, Paris, 4-8 July 1994, 993-998.
[4] Boixander D., and Jacas J. (1998). Extensionality based approximate reasoning. International Journal of Approximate Reasoning, 19, 29-38.
[5] Cai K. Y. (1995). δ-Equalities of fuzzy sets. Fuzzy Sets and Systems, 76, 97-112.
[6] Cai K. Y. (2001). Robustness of fuzzy reasoning and δ-equalities of fuzzy sets. IEEE Transactions on Fuzzy Systems, 9, 738-750.
[7] Dubois D., and Prade H. (1980). Fuzzy Sets and Systems. Theory and Applications. New York: Academic Press.
[8] Georgescu I. (2004). On the axioms of revealed preference in fuzzy consumer theory. Journal of Systems Science and Systems Engineering, 13, 279-206.
[9] Georgescu I. (2004). Consistency conditions in fuzzy consumer theory. Fundamenta Informaticae, 61, 223-245.
[10] Hájek P. (1998). Methamathematics of fuzzy logic. Kluwer.
[11] Hong D. H., and Hwang S. Y. (1994). A note on the value similarity of fuzzy systems variables. Fuzzy Sets and Systems, 66, 383-386.
[12] Xuecheng L. (1992). Entropy, distance measure and similarity measure of fuzzy sets and their relations. Fuzzy Sets and Systems, 52, 305-308.
[13] Klement E. P., Mesiar R., and Pap E. (2000). Triangular norms. Kluwer.
[14] Murofushi T. (2001). Lexicographic use of Sugeno integrals and monotonicity conditions. IEEE Transactions on Fuzzy Systems, 9, 785-794.
[15] Novák V., Perfilieva I., and Moc̆kŏ̆ J. (1999). Mathematical principles of fuzzy logic. Kluwer.
[16] Pappis C. P. (1991). Value approximation of fuzzy systems variables. Fuzzy Sets and Systems, 39, 111-115.
[17] Pappis C. P., and Karacapilidis N.I. (1993). A comparative assesment of measures of similarity of fuzzy values. Fuzzy Sets and Systems, 56, 171-174.
[18] Ruan D., and Kerre E.E. (1993). Fuzzy implication operators and generalized methods of cases. Fuzzy Sets and Systems, 54, 23-37.
[19] Samuelson P.A. (1938). A note of the pure theory of consumer's behavior. it Economica, 5, 61-71.
[20] Sugeno M. (1974). Theory of fuzzy integrals and its applications. PhD thesis, Tokyo Institute of Technology.
[21] Turunen E. (1999). Mathematics behind fuzzy logic. Physica-Verlag.
[22] Zadeh L. A. (1965). Fuzzy sets. Information and Control, 8, 338-353.
[23] Zadeh L. A. (1979). A theory of approximate reasoning. In: Machine Intelligence, 9, Hayes J. E., Michie D. , Kulik L. I (Eds.), New-York: Wiley, 149-194.
[24] Zimmermann H. J. (1984). Fuzzy set theory and its applications. Kluwer.
[25] Wang W. J. (1997). New similarities measures on fuzzy sets and on elements. Fuzzy Sets and Systems, 85, 305-309.
[26] Wang X., De Baets B., and Kerre E. E. (1995). A comparative study of similarity measures. Fuzzy Sets and Systems, 73, 259-268.
[27] Ying M. (1999). Perturbations of fuzzy reasoning. IEEE Transactions on Fuzzy Systems, 7, 625-629.
[28] Ying M. (1989). On ϵ-fuzzy sets. Fuzzy Sets and Systems, 31, 123-129.

