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Abstract We introduce the congruence indicators W FC A(·) and SFC A(·) corres-
ponding to fuzzy congruence axioms W FC A and SFC A. These indicators measure
the degree to which a fuzzy choice function verifies the axioms W FC A and SFC A,
respectively. The main result of the paper establishes for a given choice function the
relationship between its congruence indicators and some rationality conditions. One
obtains a fuzzy counterpart of the well-known Arrow–Sen theorem in crisp choice
functions theory.

1 Introduction

In economic and social life, the behaviour of individuals and groups is subject to vague
preferences.

There exist several factors that can lead to vague preferences. A large number of
attributes can determine the vagueness of preferences; some of the attributes have a
more important role than others in evaluating an option. The criteria for evaluating
the alternatives can be to some extent incomparable to one another. We add to this the
partial information on the object of preferences and the human subjectivity as well.

Similar with preferences, the choices can be exact or vague.
According to the relationship exact–vague, there have been studied the following

situations:

(a) exact preferences and exact choices;
(b) vague preferences and exact choices;
(c) vague preferences and vague choices.
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332 I. Georgescu

The first situation represents the subject of the classic theory of choice functions
(Arrow 1959; Sen 1971; Suzumura 1976).

In the second situation, even if the preferences are vague, the act of choice is
characterized by the precise specification of the chosen alternatives (Barrett et al.
1990; De Baets and Fodor 1997, 2003; Kulshreshtha and Shekar 2000, etc.)

There are cases when both the preferences and the choices are vague (e.g. in different
moments of a decision when the option is not definitive Banerjee 1995). This is related
to the third situation.

One of the dominant paradigms of social choice is the revealed preference theory.
The classical economic theory has as a basic assumption the rationality of the consumer
behaviour, as an optimizing behavior subject to some budgetary constraints. Revealed
preference is a concept introduced by Samuelson in 1938, in the attempt to postulate
the rationality of a consumer’s behaviour in terms of a preference relation associated
to a demand function.

Revealed preference theory has been developed in an axiomatic framework by
Uzawa 1956; Arrow 1959; Richter 1966; Sen 1971; Suzumura 1976 and many others.
Banerjee (1995) studied the rationality of choice functions whose domain consists
of crisp sets of alternatives and the range consists of fuzzy subsets of the set of
alternatives.

In Georgescu (2004a,b, 2005) we have tried to develop a theory of revealed pre-
ference for a large class of fuzzy choice functions: both the domain and the range
of the choice function consist of fuzzy subsets. By identifying a crisp set with its
characteristic function, our choice function includes that of Banerjee.

In the above mentioned papers there have been studied the axioms of revealed
preference W AF R P , S AF R P and the axioms of congruence W FC A, SFC A in
relationship with the rationality of fuzzy choice functions. W AF R P (resp. S AF R P)
is the fuzzy form of the Weak Axiom of Revealed Preference W AR P (resp. The
Strong Axiom of Revealed Preference S AR P), and W FC A (resp. SFC A) is the fuzzy
form of the Weak Congruence Axiom WC A (resp. the Strong Congruence Axiom
SC A). The main result of Georgescu (2004a) establishes the relationship between the
axioms W AF R P , S AF R P , W FC A and SFC A, by obtaining a fuzzy extension of
the Arrow–Sen theorem (Arrow 1959; Sen 1971).

The analysis of the fuzzy phenomena requires reasonings that operate with values
of truth of the statements expressed by numbers in the real interval [0, 1]. Based on
this fact, instead of checking whether a fuzzy choice function C has a property P or
not, it is more adequate to have a “measure” of the degree to which C verifies P .

The indicators W FC A(C) and SFC A(C) defined in this paper evaluate the degree
to which the choice function C verifies the axioms W FC A and SFC A, respectively.

Section 2 contains definitions and basic facts on t-norms, fuzzy sets and fuzzy
preference relations.

In Sect. 3 there are presented the fuzzy choice functions, the notions of fuzzy
rationality and fuzzy normality, the revealed preference relations RC , R̄C and P̃C

associated with a fuzzy choice function, as well as the axioms W FC A and SFC A.
Section 4 deals with the similarity degree of two fuzzy choice functions, notion that

the study of the indicators of Sect. 6 relies on.
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The indicators Ref (Q), T rans(Q) and SC(Q) studied in Sect. 5 express the degree
to which a fuzzy preference relation Q verifies the properties of reflexivity, transitivity,
and strong completeness, respectively.

Section 6 contains the main contributions of this paper. In this section there are
defined the indicators W FC A(C) and SFC A(C) which express the degree to which
the fuzzy choice function C verifies W FC A and SFC A, respectively. The main result
of the paper (Theorem 6.6) shows that, in the presence of two natural hypotheses H1
and H2, W FC A(C) and SFC A(C) are identical and can be expressed in terms of a
normality degree and of the transitivity degree of RC or R̄C . A corollary of this result
is the fuzzy form of Arrow–Sen theorem (Georgescu 2004a).

2 Basic definitions and results

In this section we present some basic facts on continuous t-norms and residua. The
background for these results can be found in Bělohlávek (2002), Fodor and Roubens
(1994), and Klement et al. (2000).

A mapping ∗ : [0, 1]×[0, 1] → [0, 1] is a t-norm iff it is commutative, associative,
non-decreasing in each argument and a ∗ 1 = a for all a ∈ [0, 1].

With any continuous left–continuous t-norm ∗ we associate its residuum:
a → b = ∨{c ∈ [0, 1]|a ∗ c ≤ b}.
The most well-known continuous t-norms are:

Lukasiewicz t-norm: a ∗L b = max (0, a + b − 1); a →L b = min (1, 1 − a + b)

minimum operator: a ∗G b = min (a, b); a →G b =
{

1 if a ≤ b
b if a > b

Product t-norm: a ∗P b = ab; a →P b =
{

1 if a ≤ b
b/a if a > b

The negation operation ¬ associated with ∗ is defined by
¬a = a → 0 = ∨{c ∈ [0, 1]|a ∗ c = 0}.
Let us consider the nilpotent minimum:

x ∗nM y =
{

0 if x + y ≤ 1,

min(x, y) otherwise.

The nilpotent minimum is left-continuous, but not continuous (see Fodor and Rou-
bens 1994; Klement et al. 2000).

Let ∗ be a left-continuous t-norm.
The properties mentioned in the following three lemmas reflect the main connections

between the t-norm ∗ and its residuum →.

Lemma 2.1 (Bělohlávek 2002; Fodor and Roubens 1994) For any a, b, c ∈ [0, 1] the
following properties hold:

(1) a ∗ b ≤ c ⇔ a ≤ b → c;
(2) a ∗ (a → b) ≤ a ∧ b; if ∗ is continuous, then a ∗ (a → b) = a ∧ b;
(3) a ≤ b ⇔ a → b = 1;
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(4) a = 1 → a;
(5) (a → b) ∗ (b → c) ≤ a → c;
(6) a ≤ b implies b → c ≤ a → c and c → a ≤ c → b.

Lemma 2.2 (Bělohlávek 2002; Fodor and Roubens 1994) For any {ai }i∈I , {bi }i∈I

⊆ [0, 1] and a ∈ [0, 1] the following properties hold:

(1) a →
(

∧

i∈I

ai

)

=
∧

i∈I

(a → ai );

(2)

(
∨

i∈I

ai

)

→ a =
∧

i∈I

(ai → a);

(3)
∨

i∈I

(ai → a) ≤
(

∧

i∈I

ai

)

→ a;

(4)

(
∨

i∈I

ai

)

∗ a =
∨

i∈I

(ai ∗ a);

(5)

(
∧

i∈I

ai

)

∗
⎛

⎝
∧

j∈I

b j

⎞

⎠ ≤
∧

i, j∈I

(ai ∗ b j ).

The biresiduum associated with the left-continuous t-norm ∗ is defined by ρ(a, b) =
a ↔ b = (a → b) ∧ (b → a).

Let X be a non-empty set. A fuzzy subset of X is a function A : X → [0, 1]. We
denote by P(X) the family of crisp subsets of X and by F(X) the family of fuzzy
subsets of X . As a crisp subset of X is defined by its characteristic function, then we
have P(X) ⊆ F(X). For any A, B ∈ F(X), by A ⊆ B we mean that A(x) ≤ B(x)

for each x ∈ X . A fuzzy subset A of X is non-zero if A(x) 	= 0 for some x ∈ X ; A is
normal if A(x) = 1 for some x ∈ X .

If x1, . . . , xn ∈ X then [x1, . . . , xn] will denote the characteristic function of
{x1, . . . , xn}:

[x1, . . . , xn](y) =
{

1 if y ∈ {x1, . . . , xn},
0 if y 	∈ {x1, . . . , xn}.

For A, B ∈ F(X) let us denote

I (A, B) =
∧

x∈X

(A(x) → B(x)) and E(A, B) =
∧

x∈X

(A(x) ↔ B(x)).

It is clear that A ⊆ B iff I (A, B) = 1 and A = B iff E(A, B) = 1. For any x ∈ X
we have:

I (A, B) ≤ A(x) → B(x) and E(A, B) ≤ A(x) ↔ B(x).

I (A, B) is called the subsethood degree of A and B and E(A, B) the degree of
equality (degree of similarity) of A and B. Intuitively I (A, B) expresses the truth value
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of the statement “A is included in B” and E(A, B) the truth value of the statement “A
and B contain the same elements” (see Bělohlávek 2002, p. 82).

Let ∗ be a left–continuous t-norm.
A fuzzy preference relation Q on X is a function Q : X2 → [0, 1].
Let X be a non–empty set and Q a fuzzy relation on X . Q is said to be:

reflexive if Q(x, x) = 1 for all x ∈ X ;
symmetric if Q(x, y) = Q(y, x) for all x, y ∈ X ;
∗-transitive if Q(x, y) ∗ Q(y, z) ≤ Q(x, z) for all x, y, z ∈ X ;
total if Q(x, y) > 0 or Q(y, x) > 0 for all distinct x, y ∈ X ;
strongly total if Q(x, y) = 1 or Q(y, x) = 1 for all distinct x, y ∈ X ;
complete if Q(x, y) > 0 or Q(y, x) > 0 for all x, y ∈ X ;
strongly complete if Q(x, y) = 1 or Q(y, x) = 1 for all x, y ∈ X .

We remark that Q is strongly complete iff it is reflexive and strongly total.
A fuzzy preference relation Q is said to be regular if it is ∗-transitive and strongly

complete.
Let Q be a fuzzy relation on X . Denote by T (Q) the intersection of all ∗-transitive

fuzzy relations that contain Q:
T (Q) = ⋂{Q′|Q ⊆ Q′ and Q′ is ∗-transitive}.
T (Q) is called the ∗-transitive closure of Q. Remark that T (Q) = Q iff Q is

∗-transitive.

Proposition 2.3 For any x, y ∈ X,

T (Q)(x, y) = Q(x, y) ∨
∞∨

n=1

∨

t1,...,tn∈X

Q(x, t1) ∗ . . . ∗ Q(tn, y).

3 Fuzzy choice functions

In real life there are cases when both preferences and choices are vague [e.g. in different
moments of a negotiation when the option is not definitive (Klaue et al. 2001; Kurbel
and Loutschko 2003)]. At the mathematical level the choices are modeled by fuzzy
choice functions.

Dasgupta and Deb (1991) study properties of rationality for a class of fuzzy choice
functions. The authors consider that:

“Even when one is analyzing precise choice when preferences are fuzzy, this
approach is useful. Fuzzy choice sets provide an important intermediate step ana-
logous to the “substitution effect” in the theory of consumer demand. Thus, precise
choice with fuzzy preference may be viewed as taking place in two steps: (a) fuzzy
choice; (b) fuzzy choice being “made” precise in some “natural” way”.

A similar concept of fuzzy choice functions has been studied by Banerjee (1995).
His motivation is the following:

“For instance, a decision maker, faced with the problem of deciding whether not to
choose an alternative x from a set of alternatives A, may feel that he/she is inclined
to the extent 0.8 (on, say, a scale from 0 to 1) toward choosing it. Moreover, this
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fuzziness of choice is, at least potentially, observable. For instance, the decision maker
in the example will be able to tell an interviewer the degree of his/her inclinations, or
demonstrate these inclinations to an observer by the degree of eagerness or enthusiasm
which he/she displays. Hence, while there may be problems of estimation, fuzzy choice
functions are, in theory, observable.”

In this section we shall work with a notion of fuzzy choice function larger than
Banerjee’s. It has been studied by Georgescu (2004a,b, 2005) and Ovchinnikov (2004).

A fuzzy choice space is a pair (X,B) where X is a non-empty set of alternatives
and B is a non-empty family of non-zero fuzzy subsets of X . A fuzzy choice function
on (X,B) is a function C : B → F(X) such that for any S ∈ B, C(S) is a non-zero
fuzzy subset of X and C(S) ⊆ S.

The members of B can be interpreted as available fuzzy sets. If x ∈ X is an
alternative and S ∈ B is an available fuzzy set then the real number S(x) can be
viewed as the availability degree of x with respect to S. The degree C(S)(x) to which
x is chosen subject to S naturally belongs to the interval [0, S(x)].

In the end of a decision-making process, an agent has to select an alternative from
a feasible set of alternatives. In some cases, the decision process is complex and
assumes intermediary evaluations, when the information is partial (e.g. negotiations
on electronic marketplaces (Klaue et al. 2001; Kurbel and Loutschko 2003)). The
fuzzy choice functions defined above may offer a mathematical modeling appropriate
for such situations.

Since a crisp set is defined by its characteristic function, our definition of a fuzzy
choice function generalizes Banerjee (1995). In Banerjee (1995) the domain of a choice
function is made of all non-empty finite subsets and the range is made of fuzzy subsets
of X . In our approach, both the domain and the range of a choice function contain
fuzzy subsets of X .

The results of Georgescu (2004a,b) are proved provided the choice function C
verifies the following hypotheses:

H1 Every S ∈ B and C(S) are normal fuzzy subsets of X ;
H2 B includes the fuzzy sets [x1, . . . , xn] for any n ≥ 1 and x1, . . . , xn ∈ X .

Since C(S) ⊆ S, in H1 it suffices to assume that C(S) is normal for each S ∈ B. For
the crisp choice functions the hypothesis H1 is automatically fulfilled by the definition
of such choice function: any S and C(S) are non-empty. In the same case H2 asserts
that B includes all non-empty finite subsets of X , hypothesis assumed in (Arrow 1959;
Sen 1971; Uzawa 1956).

Let (X,B) be a fuzzy choice space and Q a fuzzy preference relation on X . For
any S ∈ B let us define the fuzzy subsets M(S, Q) and G(S, Q) of X .

M(S, Q)(x) = S(x) ∗
∧

y∈X

[(S(y) ∗ Q(y, x)) → Q(x, y)]

G(S, Q)(x) = S(x) ∗
∧

y∈X

[S(y) → Q(x, y)].
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In the crisp case, M(S, Q) represents the set of Q-maximal elements of S and
G(S, Q) represents the set of Q-greatest elements of S (see Suzumura 1976):

G(S, Q) = {x ∈ S|(x, y) ∈ Qforally ∈ S};
M(S, Q) = {x ∈ S|(y, x) 	∈ PQforally ∈ S},

where PQ is the strict preference relation associated with Q (PQ = {(x, y) ∈
X2|(x, y) ∈ Q and (y, x) 	∈ Q}).

In general the functions M(·, Q) : B → F(X) and G(·, Q) : B → F(X) are not
fuzzy choice functions.

The functions M(·, Q) and G(·, Q) allow for introducing the notion of rationality
of fuzzy choice functions. A fuzzy choice function C on (X,B) is called M-rational
(resp. G-rational) if C = M(·, Q) (resp. C = G(·, Q)) for some preference relation
Q on X . In case of the minimum operator ∧, if Q is reflexive and strongly total,
then M(·, Q) = G(·, Q) Georgescu (2005), therefore M-rationality and G-rationality
coincide.

Consider now a fuzzy choice function C on (X,B). To C one assigns the fuzzy
revealed preferences RC , R̄C and P̃C on X defined by

RC (x, y) =
∨

S∈B
(C(S)(x) ∗ S(y));

R̄C (x, y) = C([x, y])(x);
P̃C (x, y) =

∨

S∈B
(C(S)(x) ∗ S(y) ∗ ¬C(S)(y))

for any x, y ∈ X . RC , R̄C and P̃C are fuzzy versions of some preference relations
studied in classical revealed preference theory (Arrow 1959; Richter 1966; Sen 1971).

Let x, y be two alternatives. By interpreting the t–norm as a conjunction, the real
number RC (x, y) is the degree of truth of the statement “there is an S such that
the alternative x is chosen with respect to S and alternative y verifies S”. R̄C (x, y)

represents the degree of truth of the statement “from the set {x, y} is chosen at least
the alternative x”, and P̃C (x, y) is the degree of truth of the statement “there is an S
with respect to which x is chosen and y is rejected”.

By Georgescu (2004a), under the hypotheses H1 and H2, in case of the minimum
operator, R̄C ⊆ RC and RC , R̄C are strongly complete.

A fuzzy choice function C is said to be G-normal (resp. M-normal) if C = G(·, RC )

(resp. C = M(·, RC )) Georgescu (2004a). G-normality (resp. M-normality) is a
special case of G-rationality (resp. M-rationality). For simplicity we shall write Ĉ =
G(·, RC ). In case of the minimum operator, C(S) ⊆ Ĉ(S) for any S ∈ B (Georgescu
2004a).

Now we shall state two axioms of congruence for fuzzy choice functions.
Let C : B → F(X) be a fuzzy choice function.
W FC A (Weak Fuzzy Congruence Axiom)
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338 I. Georgescu

For any S ∈ B and x, y ∈ X , the following inequality holds:

RC (x, y) ∗ C(S)(y) ∗ S(x) ≤ C(S)(x).

SFC A (Strong Fuzzy Congruence Axiom)
For any S ∈ B and x, y ∈ X , the following inequality holds:

WC (x, y) ∗ C(S)(y) ∗ S(x) ≤ C(S)(x).

WC represents the transitive closure of fuzzy preference relation RC .
Axiom W FC A expresses the fact that the degree to which alternative x is chosen

with respect to S, y verifies S and x is revealed preferred to y is less or equal than the
degree to which y is chosen with respect to S.

Similar interpretations can be given to the axiom SFC A.

Remark 3.1 Axioms W FC A, SFC A are fuzzy versions of axioms WC A, SC A in
crisp choice function theory.

4 Similarity of fuzzy choice functions

Approximate reasoning deals with variables that are not identical, but have close
behaviour becoming identifiable. Therefore we need some concepts to express situa-
tions when fuzzy sets and/or fuzzy relations are identifiable. The notion of similarity
is very satisfiable for describing such situations.

The notion of similarity relation was introduced by Zadeh (1971) as a generalization
of the concept of (crisp) equivalence relation.

We fix a continuous t-norm.
Let X be a non-empty set. A fuzzy relation Q on X is said to be a similarity relation

if it is reflexive, symmetric and ∗-transitive. If x, y ∈ X then Q(x, y) will be called
the similarity degree of x and y.

Lemma 4.1 (Bělohlávek 2002) The function E(·, ·) : F(X)2 → [0, 1] defined by the
assignment (A, B) �→ E(A, B) is a similarity relation on F(X).

Lemma 4.2 (Bělohlávek 2002) If A, B ∈ F(X) and x ∈ X then E(A, B) ∗ A(x) ≤
B(x).

If Q1, Q2 are two fuzzy relations on X then the degree of similarity of Q1 and Q2

has the form: E(Q1, Q2) =
∧

x,y∈X
(Q1(x, y) ↔ Q2(x, y)).

According to Lemma 4.2, for any x, y ∈ X we have E(Q1, Q2) ∗ Q1(x, y) ≤
Q2(x, y).

If one interprets the fuzzy relations Q1 and Q2 as preferences of two agents then
the real number E(Q1, Q2) expresses how “similar” these preferences are.

The next definition introduces the degree of similarity of two fuzzy choice functions.
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Definition 4.3 Let C1, C2 be two fuzzy choice functions on (X,B). The degree of
similarity E(C1, C2) of C1 and C2 is a real defined by

E(C1, C2) =
∧

x∈X

∧

S∈B
(C1(S)(x) ↔ C2(S)(x)).

Lemma 4.4 (Georgescu forthcoming) The assignment (C1, C2) �→ E(C1, C2)

defines a similarity relation on the set of fuzzy choice functions on (X,B).

The following three lemmas are true for the case when ∗ is the minimum operator ∧.

Lemma 4.5 Let C, C ′ be two fuzzy choice functions. Then for any S ∈ B and x ∈ X,
we have

(i) E(C, C ′) ∧ C(S)(x) ≤ C ′(S)(x);
(ii) E(C, C ′) ∧ ¬C(S)(x) ≤ ¬C ′(S)(x).

Proof By Lemma 2.1(2), we have

(i)

E(C, C ′) ∧ C(S)(x) = C(S)(x) ∧
∧

y∈X

∧

T ∈B
[C(T )(y) ↔ C ′(T )(y)]

≤ C(S)(x) ∧ [C(S)(x) → C ′(S)(x)]
= C(S)(x) ∧ C ′(S)(x) ≤ C ′(S)(x).

(ii) According to (i) we have

E(C, C ′) ∧ ¬C(S)(x) ∧ C ′(S)(x) ≤ C(S)(x) ∧ ¬C(S)(x) = 0.

It follows that E(C, C ′) ∧ ¬C(S)(x) ∧ C(S′)(x) = 0, therefore E(C, C ′) ∧
¬C(S)(x) ≤ ¬C ′(S)(x). ��

The previous lemma shows how the similarity preserves the vague choices.

Lemma 4.6 Let C and C ′ be two fuzzy choice functions and x, y ∈ X. Then

(i) E(C, C ′) ∧ RC (x, y) ≤ RC ′(x, y);
(ii) E(C, C ′) ∧ ¬RC (x, y) ≤ ¬RC ′(x, y).

Proof (i) By applying Lemma 4.5(i), we have:

E(C, C ′) ∧ RC (x, y) = E(C, C ′) ∧
∨

S∈B
[C(S)(x) ∧ S(y)]

=
∨

S∈B
[E(C, C ′) ∧ C(S)(x) ∧ S(y)]

≤
∨

S∈B
[C ′(S)(x) ∧ S(y)] = RC ′(x, y).
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340 I. Georgescu

(ii) By (i) we have E(C, C ′)∧¬RC (x, y)∧RC ′(x, y)≤ RC (x, y)∧¬RC (x, y)=0,
from which it follows that E(C, C ′) ∧ ¬RC (x, y) ≤ ¬RC ′(x, y). ��

Lemma 4.7 If C and C ′ are two fuzzy choice functions and x, y ∈ X then E(C, C ′)∧
P̃C (x, y) ≤ P̃C ′(x, y).

Proof According to Lemma 4.5(i), we have

E(C, C ′) ∧ P̃C (x, y)

= E(C, C ′) ∧
∨

S∈B
[C(S)(x) ∧ S(y) ∧ ¬C(S)(y)]

=
∨

S∈B
[(E(C, C ′) ∧ C(S)(x)) ∧ S(y) ∧ (E(C, C ′) ∧ ¬C(S)(y))]

≤
∨

S∈B
[C ′(S)(x) ∧ S(y) ∧ ¬C ′(S)(y)] = P̃C ′(x, y).

��

The two previous lemmas show the way the revealed preferences (represented by
the fuzzy preference relations RC and P̃C ) are preserved by the similarity of fuzzy
choice functions.

The degree of similarity E(C1, C2) allows us to define the indicators of congruence
in Sect. 6, and the three lemmas from above will be intensely used for proving the
main theorem of the paper (Theorem 6.6).

5 Indicators of fuzzy preference relations

We have seen that fuzzy relations model vague preferences. The properties of the fuzzy
relations studied in this section (reflexivity, transitivity, etc.) throw a better light on
the way preference relations are connected with various alternatives.

The indicators of fuzzy preference relations introduced in this section have the
following significance: instead of checking whether a fuzzy relation R has the property
P , we evaluate the degree to which R verifies P .

If Q is a crisp relation on X then the sentence “Q is reflexive” is a statement in the
bivalent logic: it is true or false. For a fuzzy relation Q on X it is more appropriate
to place the sentence “Q is reflexive” in the setting of a fuzzy logic (Klement et al.
2000; Bělohlávek 2002, etc.). Then instead of saying that Q is reflexive or not we
shall consider the degree of truth of that statement. This will be a real number in the
interval [0, 1] and it will express “how reflexive” the fuzzy relation Q is. The indicators
introduced by Definition 5.1 represent degrees of truth which correspond to properties
of fuzzy relations such as reflexivity, ∗-transitivity etc.

Definition 5.1 (Bělohlávek 2002) Let Q be a fuzzy relation on X . We define the
following indicators:
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(a) the degree of reflexivity of Q:

Ref (Q) =
∧

x∈X

Q(x, x);

(b) the degree of ∗-transitivity of Q:

T rans(Q) =
∧

x,y,z∈X

(Q(x, y) ∗ Q(y, z) → Q(x, z));

(c) the degree of strong completeness of Q:

SC(Q) =
∧

x,y∈X

(Q(x, y) ∨ Q(y, x)).

Lemma 5.2 For any fuzzy relation Q on X the following assertions hold:

(a) Ref (Q) = 1 iff Q is reflexive;
(b) T rans(Q) = 1 iff Q is ∗-transitive;
(c) SC(Q) = 1 iff Q is strongly complete.

Proof We shall prove (b) for example. By Lemma 2.1(3),

T rans(Q) = 1 iff Q(x, y) ∗ Q(y, z) → Q(x, z) = 1 for allx, y, z ∈ X;
iff Q(x, y) ∗ Q(y, z) ≤ Q(x, z) for all x, y, z ∈ X;
iff Qis ∗ -transitive.

��
Example 5.3 Let X = {x, y} and the fuzzy preference relation given by the matrix

Q =
(

a b
c d

)

where 0 ≤ a, b, c, d ≤ 1. Then Ref (Q) = a ∧ d; T rans(Q) = (b ∧ c) ↔ (a ∧ d);
SC(Q) = a ∨ b ∨ c ∨ d.

Proposition 5.4 Let Q be a fuzzy relation on X and x, y, z ∈ X. Therefore

(a) Ref (Q) ≤ Q(x, x);
(b) T rans(Q) ∗ Q(x, y) ∗ Q(y, z) ≤ Q(x, z);
(c) SC(Q) ≤ Q(x, y) or SC(Q) ≤ Q(y, x).

Proof To exemplify, we prove (b). By the definition of T rans(Q) we have
T rans(Q) ≤ Q(x, y) ∗ Q(y, z) → Q(x, z) from where, by applying Lemma

2.1(2), one obtains T rans(Q) ∗ Q(x, y) ∗ Q(y, z) ≤ Q(x, z). ��
The following two propositions show how the three indicators defined above are

preserved by the fuzzy equality E(·, ·).
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Proposition 5.5 Let Q1, Q2 be two fuzzy relations on X. Then

(1) Ref (Q1) ∗ E(Q1, Q2) ≤ Ref (Q2);
(2) SC(Q1) ∗ E(Q1, Q2) ≤ SC(Q2).

Proof (1) For any x ∈ X , by Lemma 2.1(2), we have

Ref (Q1) ∗ E(Q1, Q2) ≤ Q1(x, x) ∗ (Q1(x, x) ↔ Q2(x, x))

≤ Q1(x, x) ∗ (Q1(x, x) → Q2(x, x))

≤ Q1(x, x) ∧ Q2(x, x) ≤ Q2(x, x).

It follows

Ref (Q1) ∗ E(Q1, Q2) ≤
∧

x∈X

Q2(x, x) = Ref (Q2).

(2) With Lemma 2.2(4) and Lemma 4.2, the proof is similar as (1).

We assume throughout that ∗ is the minimum operator.

Proposition 5.6 For any two fuzzy relations Q1, Q2 on X we have:

T rans(Q1) ∧ E(Q1, Q2) ≤ T rans(Q2).

Proof Let x1, x2 ∈ X . Then by Lemma 4.2 and Proposition 5.4 (b) and

since ∧ is idempotent, T rans(Q1) ∧ E(Q1, Q2) ∧ Q2(x, y) ∧ Q2(y, z)

= T rans(Q1) ∧ E(Q1, Q2) ∧ E(Q1, Q2) ∧ Q2(x, y) ∧ E(Q1, Q2) ∧ Q2(y, z)

≤ E(Q1, Q2) ∧ T rans(Q1) ∧ Q1(x, y) ∧ Q1(y, z)

≤ E(Q1, Q2) ∧ Q1(x, z) ≤ Q2(x, z).

By applying Lemma 2.1(1), for any x, y, z ∈ X we have

T rans(Q1) ∧ E(Q1, Q2) ≤ (Q2(x, y) ∧ Q2(y, z)) → Q2(x, z)

from where

T rans(Q1) ∧ E(Q1, Q2) ≤
∧

x,y,z∈X

[(Q2(x, y) ∧ Q2(y, z)) → Q2(x, z)]

= T rans(Q2).

��
Proposition 5.7 Let Q be a fuzzy relation on X. For any x, y ∈ X we have

T rans(Q) ∧ T (Q)(x, y) ≤ Q(x, y).
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Proof Let n ≥ 1 and t1, . . . , tn ∈ X . Applying the idempotence of ∧ and several
times Proposition 5.4 (b) we get

T rans(Q) ∧ Q(x, t1) ∧ · · · ∧ Q(tn, y) ≤ Q(x, y).

Therefore by Lemma 2.2(4) we have

T rans(Q) ∧ T (Q)(x, y)

= T rans(Q) ∧
⎡

⎣Q(x, y) ∨
∞∨

n=1

∨

t1,...,tn∈X

Q(x, t1) ∧ · · · ∧ Q(tn, y)

⎤

⎦

= T rans(Q) ∧ Q(x, y)∨
⎡

⎣
∞∨

n=1

∨

t1,...,tn∈X

T rans(Q) ∧ Q(x, t1)∧· · · ∧ Q(tn, y)

⎤

⎦

≤ Q(x, y).

��
Remark 5.8 By Proposition 5.7 and Lemma 2.1(1), we have T rans(Q) ≤ T (Q)

(x, y) → Q(x, y) = T (Q)(x, y) ↔ Q(x, y).

Hence T rans(Q) ≤
∧

x,y∈X

(T (Q)(x, y) ↔ Q(x, y)) = E(Q, T (Q)).

6 Congruence indicators for fuzzy choice functions

The goal of this section is to define and study the indicators of the axioms of congruence
W FC A, SFC A. These indicators express the degree to which the axioms W FC A
and SFC A are verified by a fuzzy choice function. The main result proved in this
section is an Arrow–Sen theorem for fuzzy choice functions formulated in terms of
indicators (Theorem 6.6).

Definition 6.1 For a fuzzy choice function C on (X,B) we define the following in-
dicators of the axioms W FC A and SFC A:

(i) W FC A(C) =
∧

x,y∈X

∧

S∈B
[S(x) ∗ C(S)(y) ∗ RC (x, y) → C(S)(x)];

(ii) SFC A(C) =
∧

x,y∈X

∧

S∈B
[S(x) ∗ C(S)(y) ∗ WC (x, y) → C(S)(x)].

The previous definition of the two indicators comes from the formulation of the
axioms W FC A and SFC A in the natural language and it is based on the fact that ∗
models the fuzzy conjunction and the residuum → models the fuzzy implication.

Remark 6.2 For a choice function C the following equivalences hold:

W FC A(C) = 1 iff C verifies W FC A;
SFC A(C) = 1 iff C verifies SFC A.

123



344 I. Georgescu

The indicator W FC A(C) (resp. SFC A(C)) expresses the degree to which the
fuzzy choice function C verifies W FC A (resp. SFC A). These indicators allow an
analysis of the behaviour of a fuzzy choice function with respect to the axioms W FC A
(resp. SFC A). With these indicators we can compare the fuzzy choice functions: if
C1 and C2 are two fuzzy choice functions and W FC A(C1) ≤ W FC A(C2) then we
can say that C2 is “more congruous” than C1 in the sense of the axiom W FC A. It
follows that each of these indicators produces a ranking of a family of fuzzy choice
functions.

One can define similarly the revealed preference indicators W AF R P(C) and
S AF R P(C) corresponding to the fuzzy revealed preference axioms W AF R P and
S AF R P .

In this section we suppose that hypotheses H1 and H2 are verified.
To prove the main result of this section (Theorem 6.6), we need some preliminary

technical results, which have an intrinsic interest as well.
According to Sen (1971), if the crisp choice function C verifies the Weak

Congruence Axiom WC A then the crisp revealed preference relation RC associated
with C is transitive. The following proposition generalizes this result to fuzzy choice
functions.

Proposition 6.3 If C is a fuzzy choice function on (X,B) then W FC A(C)≤
T rans(RC ).

Proof Let x, y, z ∈ X . We shall prove the inequality
(a) W FC A(C) ∧ RC (x, y) ∧ RC (y, z) ≤ RC (x, z)
Let us denote T = [x, y, z]. By H2 C(T ) is normal hence C(T )(x) = 1 or

C(T )(y) = 1 or C(T )(z) = 1. We analyze these three cases.
If C(T )(x) = 1, then 1 = C(T )(x) ∧ T (z) ≤ RC (x, z), hence RC (x, z) = 1.
If C(T )(y) = 1, then by Lemma 2.1 (2), we have

W FC A(C) ∧ RC (x, y) ∧ RC (y, z)

≤ RC (x, y) ∧ RC (y, z) ∧ [(T (x) ∧ C(T )(y) ∧ RC (x, y)) → C(T )(x)]
= RC (x, y) ∧ RC (y, z) ∧ [RC (x, y) → C(T )(x)]
≤ RC (x, y) ∧ [RC (x, y) → C(T )(x)] = RC (x, y) ∧ C(T )(x)

≤ C(T )(x) = C(T )(x) ∧ T (z) ≤ RC (x, z).

If C(T )(z) = 1, then

W FC A(C) ∧ RC (x, y) ∧ RC (y, z)

≤ RC (x, y)∧RC (y, z)∧[(T (y)∧C(T )(z)∧RC (y, z))→C(T )(y)]∧W FC A(C)

= RC (x, y) ∧ RC (y, z)∧[RC (y, z) → C(T )(y)] ∧ W FC A(C)

= RC (x, y) ∧ RC (y, z) ∧ C(T )(y) ∧ W FC A(C)

≤ RC (x, y) ∧ C(T )(y) ∧ [(T (x) ∧ C(T )(y) ∧ RC (x, y)) → C(T )(x)]
= RC (x, y) ∧ C(T )(y) ∧ [(RC (x, y) ∧ C(T )(y)) → C(T )(x)]
= RC (x, y) ∧ C(T )(y) ∧ C(T )(x) ≤ C(T )(x) = C(T )(x) ∧ T (z) ≤ RC (x, z).
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Therefore the inequality (a) is verified for all the three cases. From (a) it follows
immediately that

W FC A(C) ≤ (RC (x, y) ∧ RC (y, z)) → RC (x, z) for any x, y, z ∈ X , therefore
W FC A(C) ≤

∧

x,y,z∈X

[(RC (x, y) ∧ RC (y, z)) → RC (x, z)] = T rans(RC ). ��

The following proposition expresses in terms of indicators the fact that the
G-normality of C and the transitivity of RC assure the fulfillment of the fuzzy
congruence axiom W FC A.

Proposition 6.4 If C is a fuzzy choice function then E(C, Ĉ)∧T rans(RC ) ≤ W FC A
(C).

Proof Let S ∈ B and x, y ∈ X . We shall prove that
(a) E(C, Ĉ) ∧ T rans(RC ) ∧ RC (x, y) ∧ C(S)(y) ∧ S(x) ≤ C(S)(x).
Let z ∈ X . Knowing that C(S)(y) ∧ S(z) ≤ RC (y, z) and applying Proposition

5.4 (b):

E(C, Ĉ) ∧ T rans(RC ) ∧ RC (x, y) ∧ C(S)(y) ∧ S(x) ∧ S(z)

≤ E(C, Ĉ) ∧ T rans(RC ) ∧ RC (x, y) ∧ RC (y, z) ∧ S(x) ≤ RC (x, z).

From this, Lemma 2.1(1) gives:

E(C, Ĉ) ∧ T rans(RC ) ∧ RC (x, y) ∧ C(S)(y) ∧ S(x) ≤ S(z) → RC (x, z)

for each z ∈ X , therefore

E(C, Ĉ) ∧ T rans(RC ) ∧ RC (x, y) ∧ C(S)(y) ∧ S(x) ≤
∧

z∈X

[S(z) → RC (x, z)].

We deduce that

E(C, Ĉ) ∧ T rans(RC ) ∧ RC (x, y) ∧ C(S)(y) ∧ S(x)

≤ S(x) ∧
∧

z∈X

[S(z) → RC (x, z)] = Ĉ(S)(x).

By applying Lemma 4.5 (i) we obtain

E(C, Ĉ) ∧ T rans(RC ) ∧ RC (x, y) ∧ C(S)(y) ∧ S(x)

≤ E(C, Ĉ) ∧ Ĉ(S)(x) ≤ C(S)(x)

and (a) is proved. According to (a), by Lemma 2.1 (1), we have:

E(C, Ĉ) ∧ T rans(RC ) ≤ (S(x) ∧ C(S)(x) ∧ RC (x, y)) → C(S)(x)
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from where

E(C, Ĉ) ∧ T rans(RC ) ≤
∧

x,y∈X

∧

S∈B
[(S(x) ∧ C(S)(y) ∧ RC (x, y)) → C(S)(x)]

= W FC A(C).

��
The following theorem shows that the similarity of the fuzzy preference relations

RC and R̄C is assured by the degree of G-normality of C .

Theorem 6.5 For any fuzzy choice function C on (X,B) we have E(C, Ĉ) ≤ E
(RC , R̄C ).

Proof According to the definition of Ĉ we have

E(C, Ĉ) =
∧

x∈X

∧

S∈B
[Ĉ(S)(x) ↔ C(S)(x)] =

∧

x∈X

∧

S∈B
[Ĉ(S)(x) → C(S)(x)]

since C ⊆ Ĉ .
Using the definition of R̄C we get

E(RC , R̄C ) =
∧

x,y∈X

[RC (x, y) ↔ R̄C (x, y)]

=
∧

x,y∈X

[RC (x, y) → R̄C (x, y)]

since R̄C ⊆ RC .
Since RC is reflexive and [x, y](x) = [x, y](y) = 1, [x, y](z) = 0 for z 	∈ {x, y},

one obtains by Lemma 2.1 (4)

Ĉ([x, y])(x) = [x, y](x) ∧
∧

z∈X

([x, y](z) → RC (x, z))

= [[x, y](x) → RC (x, x)] ∧ [[x, y](y) → RC (x, y)]
= RC (x, x) ∧ RC (x, y)

= RC (x, y).

Then

RC (x, y)→ R̄C (x, y) = Ĉ([x, y])(x)→ R̄C (x, y) = Ĉ([x, y])(x) → C([x, y])(x).

Therefore,

E(C, Ĉ) =
∧

x∈X

∧

S∈B
[Ĉ(S)(x) → C(S)(x)]
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≤
∧

x∈X

∧

y∈X

(Ĉ([x, y])(x) → C([x, y])(x))

=
∧

x,y∈X

[RC (x, y) → R̄C (x, y)] = E(RC , R̄C ).

��

A well-known Arrow–Sen theorem (Arrow 1959; Sen 1971) establishes for crisp
choice functions the equivalence between the congruence axioms WC A, SC A and
other rationality conditions. The following result provides the relationship between
the congruence indicators W FC A(C), SFC A(C), the degree of similarity of C and
Ĉ and the transitivity indicators of the fuzzy revealed preference relations RC , R̄C . In
this way, one obtains, in terms of indicators and similarity, a fuzzy counterpart of the
Arrow–Sen theorem.

Theorem 6.6 If C is a fuzzy choice function on (X,B) then

W FC A(C) = SFC A(C) = E(C, Ĉ) ∧ T rans(RC )

= E(C, Ĉ) ∧ T rans(R̄C ).

Proof Let us show that E(C, Ĉ) ∧ T rans(RC ) = E(C, Ĉ) ∧ T rans(R̄C ).
According to Theorem 6.5, E(C, Ĉ) ≤ E(RC , R̄C ), hence, by Proposition 5.6:

E(C, Ĉ) ∧ T rans(RC ) ≤ E(RC , R̄C ) ∧ T rans(RC ) ≤ T rans(R̄C );
E(C, Ĉ) ∧ T rans(R̄C ) ≤ E(RC , R̄C ) ∧ T rans(R̄C ) ≤ T rans(RC ).

From these two inequalities it follows immediately

E(C, Ĉ) ∧ T rans(RC ) = E(C, Ĉ) ∧ T rans(R̄C ).

Let us show that W FC A(C) = SFC A(C).
Let S ∈ B and x, y ∈ X . Since RC (x, y) ≤ WC (x, y) by Lemma 2.1 (6) we have

(S(x) ∧ C(S)(y) ∧ WC (x, y)) → C(S)(x)

≤ (S(x) ∧ C(S)(y) ∧ RC (x, y)) → C(S)(x).

From this, SFC A(C) ≤ W FC A(C). For the converse inequality W FC A(C) ≤
SFC A(C), we have to show that for any S ∈ B and x, y ∈ X ,

(a) W FC A(C) ≤ (S(x) ∧ C(S)(y) ∧ WC (x, y)) → C(S)(x).
By Lemma 2.1 (1) inequality (a) is equivalent with
(b) W FC A(C) ∧ S(x) ∧ C(S)(y) ∧ WC (x, y) ≤ C(S)(x).
According to Proposition 6.3, W FC A(C) ≤ T rans(RC ) and according to Propo-

sition 5.7, T rans(RC ) ∧ WC (x, y) ≤ RC (x, y).
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Then

W FC A(C) ∧ S(x) ∧ C(S)(y) ∧ WC (x, y)

≤ T rans(RC ) ∧ S(x) ∧ C(S)(y) ∧ WC (x, y)

≤ S(x) ∧ C(S)(y) ∧ RC (x, y)

from where one obtains by means of Lemma 2.1(2)

W FC A(C) ∧ S(x) ∧ C(S)(y) ∧ WC (x, y)

≤ S(x) ∧ C(S)(y) ∧ RC (x, y) ∧ W FC A(C)

≤ S(x) ∧ C(S)(y) ∧ RC (x, y) ∧ [(S(x) ∧ C(S)(y) ∧ RC (x, y)) → C(S)(x)]
= S(x) ∧ C(S)(y) ∧ RC (x, y) ∧ C(S)(x) ≤ C(S)(x).

With this (b) is proved, therefore W FC A(C) ≤ SFC A(C). It follows W FC A(C)

= SFC A(C).
Let us show that W FC A(C) = E(C, Ĉ) ∧ T rans(RC ). Since Proposition 6.4

implies that E(C, Ĉ) ∧ T rans(RC ) ≤ W FC A(C), it rests to show the converse.
Let S ∈ B and x ∈ X . Since C(S) is a normal fuzzy subset of X there exists z ∈ X

such that C(S)(z) = 1, therefore S(z) = 1. Then, by Lemma 2.1 (4)

Ĉ(S)(x) = S(x) ∧
∧

u∈X

[S(u) → RC (x, u)] ≤ S(x) ∧ [S(z) → RC (x, z)]

= S(x) ∧ [1 → RC (x, z)] = S(x) ∧ RC (x, z).

Then by applying Lemma 2.1 (2) it follows that

W FC A(C) ∧ Ĉ(S)(x) ≤ W FC A(C) ∧ S(x) ∧ RC (x, z)

= S(x) ∧ C(S)(z) ∧ RC (x, z) ∧
∧

u,v∈X

∧

T ∈B
[(T (u) ∧ C(T )(v) ∧ RC (u, v))

→ C(T )(u)]
≤ S(x) ∧ C(S)(z) ∧ RC (x, z) ∧ [(S(x) ∧ C(S)(z) ∧ RC (x, z)) → C(S)(x)]
= S(x) ∧ C(S)(z) ∧ RC (x, z) ∧ C(S)(x) ≤ C(S)(x).

By Lemma 2.1(1) one obtains W FC A(C) ≤ Ĉ(S)(x) → C(S)(x). Since C(S)(x)

≤ Ĉ(S)(x), then by Lemma 2.1(3), C(S)(x) → Ĉ(S)(x) = 1 therefore

W FC A(C) ≤
∧

S∈B

∧

x,y∈X

[C(S)(x) ↔ Ĉ(S)(x)] = E(C, Ĉ).

By Proposition 6.3, it follows that W FC A(C) ≤ E(C, Ĉ) ∧ T rans(RC ). ��
Corollary 6.7 (Georgescu 2004a) For a fuzzy choice function C on (X,B) the
following assertions are equivalent:
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(1) C verifies W FC A;
(2) C verifies SFC A;
(3) C is G-normal and RC is regular;
(4) C is G-normal and R̄C is regular.

Proof The equivalence (1) ⇔ (2) follows by Theorem 6.6 and Remark 6.2. We prove
now (1) ⇔ (3). It is known that under hypotheses H1 and H2, RC and R̄C are reflexive
and strongly total, therefore the regularity of RC and R̄C means their ∗-transitivity.
According to Theorem 6.6, Remark 6.2 and Lemma 5.2 (b), the following assertions
are equivalent:

• C verifies SFC A;
• W FC A(C) = 1;
• E(C, Ĉ) = 1 and T rans(RC ) = 1;
• C = Ĉ and RC is ∧-transitive;
• C is G-normal and RC is regular.

The other equivalences are established similarly. ��
Remark 6.8 The degree of similarity E(C, Ĉ) of C and Ĉ can be regarded as a measure
of the G-normality of C . Then Theorem 6.6 shows that the indicators W FC A(C) and
SFC A(C) are equal and that they can be expressed in terms of the G-normality of C
and of the degree of transitivity of RC or R̄C .

Theorem 6.6 has been stated and proved for the minimum operator ∧. In the proof
of this theorem and the preliminary propositions we have used the idempotency and
other specific properties of minimum operator. The following example shows that
in case of the nilpotent minimum, the Lukasiewicz t-norm and the product t-norm,
Theorem 6.6 cannot be stated.

Example 6.9 Let X = {x, y} and B = {[x], [y], [x, y], A} where A ∈ F(X) is defined
by A = 0.3χ{x} + χ{y}.

Consider function C : B → F(X) defined by

C([x])=χ{x}; C([y])=χ{y}; C([x, y])=0.25χ{x}+χ{y}; C(A)=0.25χ{x}+χ{y}.

C is a fuzzy choice function fulfilling H1 and H2. We determine first the fuzzy
relation RC :

RC (x, y) =
∨

S∈B
(C(S)(x) ∗ S(y)) = 0.25.

Analogously RC (x, x) = RC (y, y) = RC (y, x) = 1, thus

RC =
(

1 0.25
1 1

)

.

It is clear that RC is ∗-transitive, strongly complete, and RC = R̄C . Thereby
WC = RC and W FC A(C) = SFC A(C).
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By computation, we obtain that W FC A(C) = SFC A(C) = 1.
We compute next Ĉ .

Ĉ([x])(x) = 1 = C([x])(x),

Ĉ([x])(y) = 0 = C([x])(y),

Ĉ([y])(x) = 0 = C([y])(x),

Ĉ([y])(y) = 1 = C([y])(y),

Ĉ([x, y])(x) = [x, y](x) ∗ [([x, y](x) → RC (x, x)) ∧ ([x, y](y) → RC (x, y))],
= RC (x, y) = 0.25 = C([x, y])(x),

Ĉ([x, y])(y) = RC (y, x) = 1 = C([x, y])(y),

Ĉ(A)(y) = A(y) ∗ [((A(x) → RC (y, x)) ∧ (A(y) → RC (y, y))],
= 0.3 → RC (y, x) = 1 = C(A)(y),

Ĉ(A)(x) = A(x) ∗ [((A(x) → RC (x, x)) ∧ (A(y) → RC (x, y))],
= 0.3 ∗ RC (x, y) = 0.3 ∗ 0.25; C(A)(x) = 0.25.

For any left-continuous t-norm ∗, we compute the degree of similarity of C and Ĉ
and we obtain that E(C, Ĉ) = (0.3 ∗ 0.25) ↔ 0.25. Particularizing the t-norm ∗ one
obtains:

For the minimum operator, E(C, Ĉ) = 0.25 ↔ 0.25 = 1;
For the Lukasiewicz t-norm ∗L , E(C, Ĉ) = 0 ↔ 0.25 = 0.75;
For the product t-norm ∗P , E(C, Ĉ) = 0.075 ↔ 0.25 = 0.3;
For the nilpotent minimum ∗nM , E(C, Ĉ) = 0 ↔ 0.25 = 0.75.

In conclusion, Theorem 6.6 is verified only for the minimum operator.

7 Concluding remarks

The Arrow–Sen theorem, in the form given in Sen (1971), establishes the equivalence
of revealed preference axioms W AR P , S AR P , of congruence axioms WC A, SC A
and of another four conditions of rationality of choice functions.

A fuzzy extension of this theorem (Georgescu 2004a) connects the axioms WAFRP,
S AF R P , W FC A and SFC A, fuzzy forms of W AR P , S AR P , WC A and SC A,
respectively.

For fuzzy choice functions, some of these equivalences of the Arrow–Sen theorem
hold true for an arbitrary continuous t-norm, others for the minimum operator and
others for the Lukasiewicz t-norm.

The core of this paper is a stronger version of the part in Arrow–Sen theorem
(Georgescu 2004a) that holds for the minimum operator. This result expresses the
relationship between the congruence indicators W FC A(C) and SFC A(C) associated
with a fuzzy choice function C , the similarity of C and its G-normal fuzzy choice
function, and transitivity degree of the fuzzy revealed preference relations RC and R̄C .

These indicators enable us to compare two fuzzy choice functions with respect to
each axiom. For example, for two fuzzy choice functions C1 and C2, if W FC A(C1) ≤
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W FC A(C2) then we can say that C2 verifies W FC A to a greater extent than C1. On
this basis, any family of fuzzy choice functions can be ranked with respect to each
axiom.

Let us consider a family of fuzzy choice functions, each of them representing a
model resulting from an expertise. Then by using the congruence indicators we can
select the expertise with the highest “degree of rationality”.

The main result of this paper (Theorem 6.6) has two limitations: one is due to the
presence of hypotheses H1 and H2 , other due to the fact that it holds only for the
minimum operator. These limitations would be eventually overcome by the modifica-
tion of definition of W FC A(C) and SFC A(C), or by using other indicators. An open
problem is to use the revealed preference indicators W AF R P(C) and S AF P R(C)

in obtaining a fuzzy generalization of that part of the Arrow–Sen theorem related to
the revealed preference axioms W AR P and S AR P .
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Bělohlávek R (2002) Fuzzy relational systems. Foundations and principles. Kluwer, Dordrecht
Dasgupta M, Deb R (1991) Fuzzy choice functions. Soc Choice Welf 8:171–182
De Baets B, Fodor J (1997) Twenty years of fuzzy preference relations (1978–1997). Belgian J Oper Res

Stat Comput Sci 37:61–82
De Baets B, Fodor J (Eds.) (2003) Principles of fuzzy preference modelling and decision making. Academia

Press, Gent
Fodor J, Roubens M (1994) Fuzzy preference modelling and multicriteria decision support. Kluwer,

Dordrecht
Georgescu I (2005) Rational choice and revealed preference:a fuzzy approach. PhD Dissertation 60, Turku

Centre for Computer Science
Georgescu I (2004a) On the axioms of revealed preference in fuzzy consumer theory. J Syst Sc Syst Eng

13:279–296
Georgescu I (2004b) Consistency conditions in fuzzy consumers theory. Fund Inf 61:223–245
Georgescu I (2007) Similarity of fuzzy choice functions. Fuzzy Sets Syst (forthcoming)
Klaue S, Kurbel K, Loutschko I (2001) Automated negotiations on agent-based e-marketplaces: an overview.

In: Proceedings of the 14th Bled electronic commerce conference, Bled, Slovenia, pp 508–519
Klement EP, Mesiar R, Pap E (2000) Triangular norms. Kluwer, Dordrecht
Kulshreshtha K, Shekar B (2000) Interrelationship among fuzzy preference-based choice function and

significance of rationality conditions:a taxonomic and intuitive perspective. Fuzzy Sets Syst 109:
429–445

Kurbel K, Loutschko I (2003) Towards multi-agent electronic marketplaces: What is there and what is
missing? Knowledge Engg Rev 18:33–46

Ovchinnikov S (2004) Decision-making with a ternary binary relation. In: Proceedings of the conference
on information processing and management of uncertainty IPMU 2004, Perugia, Italy, pp 511–516

Richter M (1966) Revealed preference theory. Econometrica 34:635–645
Roubens M (1989) Some properties of choice functions based on valued binary relations. Eur J Op Res

40:309–321
Samuelson PA (1938) A note on the pure theory of consumer’s behaviour. Economica 5:61–71
Sen AK (1971) Choice functions and revealed preference. Rev Econ Stud 38:307–317

123



352 I. Georgescu

Suzumura K (1976) Rational choice and revealed preference. Rev Econ Stud 43:149–159
Turunen E (1999) Mathematics behind fuzzy logic. Physica-Verlag
Uzawa H (1956) A note on preference and axioms of choice. Ann Inst Stat Math 8:35–40
Zadeh LA (1971) Similarity relations and fuzzy orderings. Inf Sci 3:177–200

123


	Congruence indicators for fuzzy choice functions
	Abstract
	Introduction
	Basic definitions and results
	Fuzzy choice functions
	Similarity of fuzzy choice functions
	Indicators of fuzzy preference relations
	Congruence indicators for fuzzy choice functions
	Concluding remarks
	Acknowledgments
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


