
Copyright Notice

The document is provided by the contributing author(s) as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. This is the author’s
version of the work. The final version can be found on the publisher's webpage.

This document is made available only for personal use and must abide to copyrights of the
publisher. Permission to make digital or hard copies of part or all of these works for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage. This works may not be reposted without the explicit permission of the
copyright holder.

Permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the corresponding
copyright holders. It is understood that all persons copying this information will adhere to the
terms and constraints invoked by each copyright holder.

The final version of this paper can be found at:
http://link.springer.com/article/10.1007/s10470-011-9724-4

© Springer. Pre-prints are provided only for personal use. The final publication is available at
link.springer.com

http://link.springer.com/article/10.1007/s10470-011-9724-4

Analog Integrated Circuits and Signal Processing manuscript No.
(will be inserted by the editor)

Complexity Analysis of Software Defined DVB-T2 Physical
Layer

Stefan Grönroos · Kristian Nybom · Jerker Björkqvist

Received: date / Accepted: date

Abstract The second generation terrestrial TV broad-

casting standard from the Digital Video Broadcasting

(DVB) project, DVB-T2, has recently been standard-

ized. In this article we perform a complexity analysis

of our software defined implementation of the modu-

lator/demodulator parts of a DVB-T2 transmitter and

receiver. First we describe the various stages of a DVB-

T2 modulator and demodulator, as well as how they

have been implemented in our system. We then per-

form an analysis of the computational complexity of

each signal processing block. The complexity analysis

is performed in order to identify the blocks that are

not feasible to run in realtime on a general purpose

processor. Furthermore, we discuss implementing these

computationally heavy blocks on other architectures,

such as GPUs (Graphics Processing Units) and FPGAs
(Field-Programmable Gate Arrays), that would still al-

low them to be implemented in software and thus be

easily reconfigurable.

Keywords DVB-T2 · SDR · CUDA · x86

1 Introduction

The DVB-T (Digital Video Broadcast Terrestrial) sys-

tem for digital television broadcasting is widely used for

broadcasting around the world. As high bitrate High-

Definition Television (HDTV) broadcasts become more

prevalent, however, the need for a more spectrum effi-

cient standard increases. The DVB-T2 standard [7, 21]

has been developed to address this need.

Joukahaisenkatu 3-5, 20520, Turku, Finland
E-mail: stefan.gronroos@abo.fi
E-mail: kristian.nybom@abo.fi
E-mail: jerker.bjorkqvist@abo.fi

Compared to its predecessor, DVB-T2 has a more

efficient physical layer using state-of-the-art technolo-

gies to achieve close to optimal performance in terms of

true bitrate in quasi error free conditions: concatenated

LDPC (Low-Density Parity-Check) and BCH (Bose-

Chaudhuri-Hocquenghem) coding, rotated high-order

QAM (Quadrature Amplitude Modulation) constella-

tions, MISO (Multiple Input Single Output) antenna

reception, efficient time and frequency interleaving, large

FFT (Fast Fourier Transform) sizes, etc. All in all,

DVB-T2 is expected to give an increase in capacity

(bit rate) of at least 30% as compared to DVB-T, and

for some configurations up to 70% [21]. The upcoming

next generation mobile TV broadcasting system, DVB-

NGH (Next Generation Handheld), is also expected to

be based on DVB-T2.

In this article, we present a work-in-progress soft-

ware defined DVB-T2 modulator and demodulator us-

ing the GNU Radio framework [2]. In addition to other

benefits of a fully software defined implementation of

DVB-T2, the reconfigurability of such an implementa-

tion can be very beneficial in developing future stan-

dards such as DVB-NGH. The GNU Radio based project

is incomplete, and a number of parts have not yet been

finished. However, the implementation is directly based

on a DVB-T2 simulator, which is more complete.

We examine the computational complexity of the

various parts of a DVB-T2 modulator and demodula-

tor through benchmarks performed on the various sig-

nal processing blocks of our simulator. This gives us

an indication of the complexity of each block in the

system, and shows where the most effort needs to be

placed when aiming for a realtime system. We are not

comparing the results to ASIC (Application-Specific In-

tegrated Circuit) implementations, as our main moti-

vation for this work is to analyze the applicability of

2 S. Grönroos, K. Nybom, J. Björkqvist

a DVB-T2 system on a generic SDR (Software Defined

Radio) platform.

Furthermore, we also discuss alternative implemen-

tations of the most computationally complex blocks on

platforms such as GPUs (Graphics Processing Units)

and FPGAs (Field-Programmable Gate Arrays), which

may allow us to reach realtime performance, while still

retaining the reconfigurability of a software defined im-

plementation. Some signal processing blocks have been

implemented on a GPU architecture by the authors,

and these are analyzed alongside the general purpose

CPU (Central Processing Unit) implementations.

Related work can be found in [19], where a GNU Ra-

dio implementation of a DVB-T modulator is described.

A software defined DVB-C2 [6] (cable transmission) im-

plementation, created within the GNU Radio frame-

work, is discussed in [15]. As the DVB-C2 standard is

quite similar in many ways to the DVB-T2 standard,

we refer to the solutions presented in [15] in later sec-

tions. An SDR implementation of a DVB-T2 receiver

is described in [16], where most of the system has been

realized using FPGAs and DSPs (Digital Signal Proces-

sors). In contrast, our implementation aims at keeping

most functionality, if possible, on general purpose, com-

modity hardware.

The article is laid out as follows. In section 2 we

describe the various parts of a DVB-T2 system. In sec-

tion 3 we introduce the experimental setup on which

measurements were performed, as well as describe the

implementation choices made for some signal processing

blocks. Section 4 contains the results of the measure-

ments. A discussion on results, as well as alternative

efficient algorithms for implementing the most problem-
atic parts of a DVB-T2 system is contained in section

5. Finally, we conclude the article in section 6.

2 DVB-T2 System Architecture

In this section, we describe the main building blocks of

a DVB-T2 modulator, as defined in [7]. These are the

blocks that were benchmarked for this article.

The input data streams, which are in the form of

MPEG-2 Transport Streams or GSE (Generic Stream

Encapsulation) encapsulated data are first split into one

or more Physical Layer Pipes (PLPs), where each PLP

may use different coding and modulation. In this article,

we only consider a single-PLP system. The first module

of such a system is the Input Processing module. This

module converts the input data streams into DVB-T2

baseband frames. This module is not discussed further

in this article, however. After passing through the Input

Processing module, each baseband frame is processed

by the Bit Interleaved Coding & Modulation (BICM)

module, which contains the following stages (in order):

• FEC (Forward Error Correction) coding. DVB-T2

uses an outer BCH code, as well as an inner LDPC

code. The resulting FEC blocks can be either 16200

(short code) or 64800 bits (long code) long. 6 differ-

ent LDPC code rates are available.

• Bit Interleaver (not used for QPSK modulation).

Consists of parity bit interleaving, followed by col-

umn twist interleaving.

• Mapper, which maps bits onto constellations. Pro-

duces cell words.

• Constellation Rotation, if rotated constellations are

used. The cell values produced by the mapper are

rotated in the complex plane (the angle depends

on the modulation used), and the imaginary part is

cyclically delayed by one cell.

• Cell Interleaver. Used to uniformly spread the cell

words of a FEC block.

• Time Interleaver. In this block, cells of groups of

FEC blocks, making up TI-blocks – which in turn

make up Interleaving Frames – are interleaved.

The BICM module is followed by the Frame Builder,

the task of which is to assemble so-called T2 frames

from the Interleaving Frames of each PLP, as well as

various signaling data. Cells that are going to be in-

cluded in one OFDM (Orthogonal Frequency-Division

Multiplexing) symbol are grouped together in this mod-

ule. The Frame Builder module also includes frequency

interleaving, where the cells belonging to an OFDM

symbol are interleaved, providing interleaving in the

frequency domain.

The frames produced by the Frame Builder are sent

to the OFDM Generation module for further process-

ing. The OFDM Generation module includes the fol-

lowing parts:

• MISO processing. This is optional, and allows for

the generation of two slightly different output sig-

nals for transmission from two groups of transmit-

ters.

• Pilot Insertion. Cells containing reference informa-

tion are inserted at to the receiver known points in

the transmitted signal. Pilots can be, among other

uses, used to aid in synchronization and channel es-

timation at the receiver.

• IFFT (Inverse Fast Fourier Transform). The OFDM

symbols are modulated here. FFT sizes of 1K, 2K,

4K, 8K, 16K, and 32K are supported by the stan-

dard.

• PAPR reduction. This optional part allows us to

reduce the Peak-to-Average Power Ratio (PAPR)

of the transmitted signal.

Complexity Analysis of Software Defined DVB-T2 Physical Layer 3

• Guard interval insertion. This is where we insert

guard intervals, which are a cyclic continuation of

the useful part of an OFDM symbol.

• P1 symbol insertion. The P1 symbols are special

1K OFDM symbols that are used mainly to aid the

receiver in recognizing and tuning in to the DVB-T2

signal.

The output of the OFDM Generation module is

a signal ready for transmission. In the following sec-

tion, we discuss how the DVB-T2 simulator was used

to benchmark the various functional blocks of a DVB-

T2 system.

3 Experimental Setup

In this section follows an overview of both the soft-

ware and hardware setup used for benchmarking in or-

der to produce the results presented in section 4. We

also briefly describe our implementations of the constel-

lation demapper, LDPC decoder and demodulator-side

FFT blocks on a GPU, as well as how they differ from

the CPU implementations.

3.1 Software implementation

As mentioned in the introduction, we have implemented

some of the functional blocks discussed in section 2

within the GNU Radio environment. The actual func-

tionality is written in C and C++ and is directly based

on the building blocks of a DVB-T2 simulator devel-

oped at Åbo Akademi University. Since the GNU Ra-

dio implementation lacked some of the functionality im-

plemented in the simulator, we have benchmarked the

blocks within the simulator instead of within the GNU

Radio implementation. This should not affect the re-

sults significantly, as the code used in our GNU Ra-

dio implementation was directly based on the simulator

code.

The simulator was not 100% complete, and lacked

support for some configurations such as multiple PLPs,

some pilot patterns etc. Neither the simulator nor the

GNU Radio implementation included the necessary sup-

port for tuning in to a DVB-T2 channel, nor for various

forms of receiver synchronization at the time when this

article was written. As a consequence, some blocks, pri-

marily on the receiver side, are significantly less com-

plex in our implementation than they would be in an

actual implementation.

Aside from synchronization functionality, the pilot

removal block is perhaps the one that differs most from

an actual implementation. This block would need to

calculate channel estimates in a real implementation,

while our implementation receives perfect channel es-

timates precalculated from a channel simulator. Also,

the BCH decoder part of FEC decoding had not been

implemented at the time of writing.

Synchronization as well as channel estimation func-

tionality was implemented in the software DVB-C2 re-

ceiver implementation described in [15]. Due to the

typically very few and short echoes and overall high

signal quality in cable transmissions, several simplifi-

cations could be made to these components of the re-

ceiver. These simplifications are likely not applicable to

the same degree to DVB-T2 receivers, much due to the

longer and more plentiful echoes, as well as the lower

signal quality in typical terrestrial broadcasting envi-

ronments.

Also worth noting is that the constellation rotation

(modulator) and derotation (demodulator) blocks are

only used at runtime to insert and remove the Q-delay

specified for rotated constellations, and are thus very

fast. Actual rotation or derotation of the constellations

does not happen at runtime, but is precalculated during

initialization, as there is no need to do this at runtime.

3.1.1 CUDA

With modern GPUs being very powerful in data paral-

lel computing tasks, we also implemented the constella-

tion demapper, LDPC decoder, and FFT blocks on such

hardware. These implementations were programmed for

the NVIDIA CUDA (Compute Unified Device Architec-

ture) [18] architecture.

In the CUDA C programming model, we define ker-

nels, which are functions that are run by many threads

in parallel. The threads executing one kernel are split

up into thread blocks, where each thread block may exe-

cute independently, making it possible to execute differ-

ent thread blocks on different GPU cores. The developer

can define the number of threads that will run a kernel,

as well as how many thread blocks the threads will be

split into, within certain limits. While global memory

accesses are often quite costly on GPUs, each thread

block is also assigned a certain amount of fast shared

memory and an L1 cache (in fairly recent GPUs). 32

threads of one thread block, making up a thread warp,

are executed in a SIMD-like (Single Instruction, Multi-

ple Data) fashion on one GPU core.

3.1.2 Demapper

The task of the demapper, given a 2m-QAM configu-

ration (conveying m bits per cell), is to convert each

4 S. Grönroos, K. Nybom, J. Björkqvist

received complex cell value into m Log-Likelihood Ra-

tios (LLRs), where a positive LLR indicates that the

corresponding bit was most likely transmitted with a

value of 1, and vice versa. The perfect LLR values can

be calculated [5, 17] as:

LLR(bi) = ln

∑x∈C1
i
e−

(I−ρIIx)2+(Q−ρQQx)2

2σ2∑
x∈C0

i
e−

(I−ρIIx)2+(Q−ρQQx)2

2σ2

 (1)

where bi corresponds to the ith bit (out of m). C0
i is

the set of original constellation points (in the diagram),

where bit i is 0, and C1
i is the set of points where bit i

is equal to 1. I and Q signify the received I and Q com-

ponents, respectively, while Ix and Qx represent the I

and Q components of point x in the constellation dia-

gram. ρI and ρQ represent the amplitude-fading factors

of the channel, while σ2 represents noise variance. The

amplitude-fading factors as well as noise are estimated

at the receiver based on, for example, the known trans-

mitted values of pilot patterns.

The max-log approximation:

ln(ea1 + · · ·+ eak) ≈ max
i∈[1,k]

ai (2)

can be used to form an approximation of the LLR cal-

culations, giving us the formula:

LLR(bi) ≈
1

2σ2

⌊
min
x∈C0

i

((I − ρIIx)2 + (Q− ρQQx)2)−

min
x∈C1

i

((I − ρIIx)2 + (Q− ρQQx)2)
⌋
(3)

For the CPU version of the demapper, we used the
above max-log approximation, in addition to dividing

the constellation diagram into 4 overlapping quadrants

as described in [17]. Figure 1 shows the division into

quadrants for a rotated 16-QAM constellation diagram.

The correct quadrant can be chosen on the basis of

the signs of the incoming constellation points’ I and

Q components. One quadrant contains both minimum

distance points needed to calculate the LLR using the

max-log approximation, and thus we only calculate dis-

tances to (
√
2m

2 + 1)2 points instead of to all 2m points.

The GPU algorithm did not use the quadrant-based

approach used for the CPU implementation, nor did it

use the max-log approximation. We implemented this

algorithm as two CUDA kernels, where the first kernel

calculates:

∀x ∈ C : DIST (x) = e−
(I−ρIIx)2+(Q−ρQQx)2

2σ2 (4)

where C denotes the entire set of 2m constellation points

in the constellation diagram. One thread is created on

Fig. 1 The division of a 16-QAM rotated constellation dia-
gram into 4 quadrants for use in the demapper.

the GPU for each of the 2m distance calculations. The

second kernel calculates the LLRs for each of the m bits

in parallel. The kernel thus completes the computation

of LLR(bi) in equation 1 by calculating:

LLR(bi) = ln

(∑
x∈C1

i
DIST (x)∑

x∈C0
i
DIST (x)

)
(5)

for each 0 ≤ i < m. Here one thread is thus created for

each of the m bits. While m threads is not enough to

fully utilize the GPU, we grouped together calculations

for all received cells belonging to the same FEC block

in order to enable better parallelism.

3.1.3 LDPC decoder

A binary LDPC code [13] with code rate r = k/n is de-

fined by a sparse binary (n−k)×n parity-check matrix,

H. A valid codeword x of length n bits of an LDPC code

satisfies the constraint HxT = 0. As such, the parity-

check matrix H describes the dependencies between the

k information bits and the n− k parity bits. The code

can also be described using bipartite graphs, i.e., with

n variable nodes and n − k check nodes. If Hi,j = 1,

then there is an edge between variable node j and check

node i.

LDPC codes are typically decoded using iterative

belief propagation (BP) decoders. The procedure for

BP decoding is the following. Each variable node v

sends a message Lv→c of its belief on the bit value to

each of its neighboring check nodes c, i.e. those con-

nected to the variable node with edges. The initial belief

corresponds to the received LLR. Then each check node

c sends a unique LLR Lc→v to each of its neighboring

Complexity Analysis of Software Defined DVB-T2 Physical Layer 5

variable nodes v, such that the LLR sent to v′ satis-

fies the parity-check constraint of c when disregarding

the message Lv′→c that was received from the variable

node v′. After receiving the messages from the check

nodes, the variable nodes again send messages to the

check nodes, where each message is the sum of the re-

ceived LLR and all incoming messages Lc→v except for

the message Lc′→v that came from the check node c′ to

where this message is being sent. In this step, a hard

decision is also made. Each variable node translates the

sum of the received LLR and all incoming messages to

the most probable bit value and an estimate on the

decoded codeword x̂ is obtained. If Hx̂T = 0, a valid

codeword has been found and a decoding success is de-

clared. Otherwise, the iterations continue until either a

maximum number of iterations has been performed or

a valid codeword has been found.

The LDPC decoder is one of the most computation-

ally complex blocks in a DVB-T2 receiver, especially

given the long codeword lengths (n is 16200 or 64800,

while k varies with the code rate used) used in the

standard. The best iterative BP decoder algorithm is

the sum-product decoder, which is also, however, quite

complex in that it uses costly operations such as hyper-

bolic tangent functions. The min-sum [4, 22] decoder

trades some error correction performance for speed by

approximating the complex computations of outgoing

messages from the check nodes. The resulting compu-

tations that are performed in the decoder are the follow-

ing. Let C(v) denote the set of check nodes which are

connected to variable node v. Similarly let V (c) denote

the set of variable nodes which are connected to check

node c. Furthermore, let C(v)\c represent the exclu-

sion of c from C(v), and V (c)\v represent the exclusion

of v from V (c). With this notation, the computations

performed in the min-sum decoder are the following:

1. initialization: Each variable node v sends the mes-

sage Lv→c(xv) = LLR(v).

2. check node update: Each check node c sends the mes-

sage

Lc→v(xv) =

 ∏
v′∈V (c)\v

sign(Lv′→c(xv′))


× min

v′∈V (c)\v
|Lv′→c(xv′)|

(6)

where sign(x) = 1, if x ≥ 0 and −1 otherwise.

3. variable node update: Each variable node v sends

the message

Lv→c(xv) = LLR(v) +
∑

c′∈C(v)\c

Lc′→v(xv) (7)

Fig. 2 The arrays HVN and HCN corresponding to example
H matrix.

and computes

Lv(xv) = LLR(v) +
∑

c∈C(v)

Lc→v(xv) (8)

4. Decision: Quantize x̂v such that x̂v = 1 if Lv(xv) ≥
0, and x̂v = 0 if Lv(xv) < 0. If Hx̂T = 0, x̂ is a valid

codeword and the decoder outputs x̂. Otherwise, go

to step 2.

This algorithm was implemented both for the x86

CPU, and the GPU. The GPU implementation was in

quite an early stage at the time of writing this article,

and as such the software algorithm used is still subject

to optimizations.

The GPU implementation was implemented using

two primary kernels for the variable node updates and

check node updates, respectively. On the GPU, we used

two compact representations, HV N and HCN , of the

parity check matrix, H. The data structures were in-

spired by and very similar to those described in [10].

To illustrate these structures, we use the following sim-

ple example H matrix:

H =

 1 1 1 1 0 0

0 0 1 1 0 1

1 0 0 1 1 0


HV N would then be an array of entries consisting

of a message (floating point) and a cyclic index to the

entry corresponding to the next 1 in the same row of

the H matrix, while entries in HCN would contain a

message and an index to the entry corresponding to

the next 1 in the same column. Each entry in HV N and

HCN thus represent an edge between a variable node

and a check node in the bipartite graph corresponding

to H. The HV N and HCN structures corresponding to

our example H matrix are illustrated in figure 2.

The arrows in the figure help visualize where the

next edge index value points. It is important that the

6 S. Grönroos, K. Nybom, J. Björkqvist

entries corresponding to the same edge are positioned

at the same index in both HV N and HCN , so that

messages written by the variable node update kernel

can be read by the check node update kernel, and vice

versa [10].

Using these structures, the variable node update

kernel will follow the index pointers in HCN in order

to update each entry in HV N , while the check node

update kernel will follow the index pointers in HV N in

order to update the entries in HCN . One thread will

be created on the GPU for each entry in the compact

structure (10 threads for the example H matrix), allow-

ing us to update messages in parallel. In the example,

the sixth thread (thread id 5) created by the variable

node update will perform the following operation:

HV N (5) = LLR(3) + HCN (8) + HCN (3)

according to equation 7. HCN (8) and HCN (3) are found

by following the next edge pointers starting from HCN (5).

The sixth thread of the check node update would per-

form the following:

HCN (5) =sign(HV N (6))× sign(HV N (4))

×min{|HV N (6)|, |HV N (4)|}

3.1.4 FFT

The FFT block was implemented both as CPU-only

and GPU-accelerated versions. The CPU implementa-

tion used the highly optimized FFTW (Fastest Fourier

Transform in the West) library [12]. The GPU imple-

mentation of the block instead used the NVIDIA CUFFT

library, based on the CUDA architecture.

3.2 Hardware setup

Benchmarking was performed on an Ubuntu Linux op-

erating system for x86-64 (64-bit) architectures using

the Linux 2.6.35 kernel. The computer in question was

equipped with an Intel Core i7 950 quad core CPU run-

ning at 3.07 GHz. During benchmarking, multithread-

ing was not used within the measured functionality

(and thus only one CPU core was exploited). The Intel

Turbo Boost technology was not disabled on the CPU

during benchmarking, allowing it to run at a maximum

of 3.33 GHz on a single core. 6 GB of DDR3 RAM

at 1666 MHz was available in the system. A 480-core

NVIDIA GeForce GTX 570 GPU was also part of this

hardware setup, and was used for running and bench-

marking the CUDA-based blocks.

The measurements were performed by using the

clock gettime function (found within the GNU C li-

brary) to return the time before and after execution

of what was considered to be the core functionality of

a functional block, such as a main loop. The impact of

additional memory transfers between blocks and similar

setup operations were mostly ignored.

While the efficiency of the code has been considered

when the blocks were written, the code does however

not contain low level optimizations, such as optimized

inline assembly code. The possibility for further opti-

mizations means that the benchmarks presented in the

following section should be seen mainly as indications

of the relative complexity of the involved functional

blocks, as well as indications of the feasibility of running

the blocks on general purpose CPUs.

In the following section, we present the results of

benchmarking the main functionality of the implemented

parts of a DVB-T2 system.

4 Benchmark Results

In this section the results from benchmarking the al-

gorithms are presented. As DVB-T2 offers quite many

customization possibilities, we fixed most parameters in

the configurations used for the benchmarks. We used pi-

lot pattern 1, as defined in the standard [7], as well as a

guard interval of 1/4 throughout the benchmark tests.

Also, only the 8K FFT mode was considered.

Table 1 shows the measured throughputs of the var-

ious blocks in the modulator and demodulator for 16-

QAM and 256-QAM configurations using both short

and long LDPC codes. The block throughput was mea-

sured by timing the core functionality of the block, and

dividing the time used for processing one FEC block

by the size of the FEC block (16200 bits for short

code length, and 64800 bits for long code). Thus, the

throughput measure does not give the actual useful bi-

trate, but rather the bitrate including parity data. To

gain an approximate useful bitrate, the throughput fig-

ure must be multiplied by the code rate.

It is worth noting that the BCH and LDPC encoder

and decoder functionality depends on code rate. The

throughputs in table 1 are measured for code rate 1/2.

It was found that the BCH encoder’s throughput was

roughly halved from the lowest code rate, 1/2, to the

highest, 5/6. As mentioned, a BCH decoder had not

been completely implemented at the time of writing,

which is the reason for the missing measurements on

the demodulator side.

The LDPC encoder was found to not vary signifi-

cantly in performance between code rates. The LDPC

decoder was found to vary between code rates, and per-

formance was reduced to about 55% of the 1/2-rate per-

formance for some configurations. This also applies for

Complexity Analysis of Software Defined DVB-T2 Physical Layer 7

Table 1 Modulator and demodulator block throughputs (Mbps)

Modulator Demodulator
Short Code Long Code Short Code Long Code

16-QAM 256-QAM 16-QAM 256-QAM 16-QAM 256-QAM 16-QAM 256-QAM

BCH 9.0 9.0 6.9 6.9 n/a n/a n/a n/a
LDPC 100 100 69 69 1.8 1.8 0.9 0.9
Bit Interleaver 55 55 53 55 81 83 78 81
Mapper 85 85 87 87 19.7 3.6 19.7 3.6
Q delay 3240 5400 3600 7200 2700 5400 2817 5400
Cell Interleaver 3240 8100 2400 5400 1157 2612 771 1661
Time Interleaver 130 257 129 265 135 305 140 270
Frame Builder 560 1122 557 1109 1514 2938 1548 3157
Frequency Interleaver 633 1268 629 1266 449 825 472 926
Pilot Insertion 378 758 376 757 538 1049 546 1088
IFFT 122 247 122 247 128 256 127 257

Fig. 3 Modulator block throughput relative to required throughput for realtime performance (100% is realtime)

Fig. 4 Demodulator block throughput relative to required throughput for realtime performance.

8 S. Grönroos, K. Nybom, J. Björkqvist

Table 2 Demodulator GPU block throughputs (Mbps)

Demodulator
Short Code Long Code

16-QAM 256-QAM 16-QAM 256-QAM

LDPC 11.3 11.3 5.3 5.3
Mapper 98 49 113 56
FFT 444 882 444 889

the CUDA-based LDPC decoder. The throughput for

the LDPC decoder is expressed as the throughput when

running 10 iterations of the iterative BP decoder.

In order to gain a clearer view of which blocks are

suitable for realtime operation, it can be mentioned

that using the 8K FFT mode with the extended carrier

mode enabled, each OFDM symbol contains 6296 data

cells, with each cell representing 2, 4, 6, or 8 bits for

QPSK, 16-QAM, 64-QAM, and 256-QAM modulation,

respectively. The maximum number of OFDM symbols

in a frame using the 8K mode, and a guard interval

of 1/4 (as in the experiments), is 223. The duration of

such a DVB-T2 frame is 250 ms. From the above infor-

mation, we can calculate that in order to fully process

such frames, we require throughputs of roughly 22.5

and 45 Mbps for 16-QAM and 256-QAM, respectively.

The throughputs of the modulator and demodulator (as

presented in table 1) divided by these “target“ through-

puts for realtime performance, expressed as percentage

values on a logarithmic scale, are presented in figures 3

and 4. In these figures, a percentage value at or above

100% thus means that a block has a throughput at or

above the required realtime throughput.

The GPU implementations of the demapper, LDPC

decoder, and FFT blocks were also benchmarked, and

the throughputs are presented in table 2. The graph

comparing these throughputs to our realtime require-

ments is presented in figure 5.

On a multicore CPU, it would be possible to run

the various blocks in a threaded fashion in order to dis-

tribute tasks over several cores. Figures 6 and 7 present

the measured performance figures in an alternative way,

in order to aid in determining how the processing could

be distributed on a multicore architecture. These figures

present the maximum required throughput divided by

the achieved throughput of groups of blocks combined1.

This essentially gives the required amount of computing

capacity relative to one CPU core — or one GPU for the

LDPC and demapper blocks in figure 7 — in the test

setup. The signal processing blocks have been grouped

1 The ”combined“ throughput figure was achieved by
adding the measured execution times of all blocks in the
group, and calculating the throughput as described earlier
for one block.

Fig. 5 Demodulator GPU block throughput relative to re-
quired throughput for realtime performance.

Fig. 6 Required processing capacity of groups of modula-
tor signal processing blocks, presented as a percentage of the
capacity of one CPU core on the test setup.

into two main groups in figures 6 and 7. The first group

includes the BCH, LDPC, bit interleaver, mapper, rota-

tion, and cell interleaver blocks, while the second group

includes the time interleaver, frame builder, frequency

interleaver, pilot insertion or removal, and FFT blocks.

Furthermore the most complex blocks have been sepa-

rated from these groupings. The reason for these main

groups is that the blocks of the first group of signal pro-

cessing blocks operate quite independently on units of

data corresponding to one FEC block or less, making

parallel processing relatively straightforward even in-

side the individual signal processing blocks. The blocks

of the second group operate on larger blocks of data,

and thus yield fewer opportunities for parallelism.

Complexity Analysis of Software Defined DVB-T2 Physical Layer 9

Fig. 7 Required processing capacity of groups of demodu-
lator signal processing blocks, presented as a percentage of
the capacity of one CPU core, or the GPU (GPU values for
LDPC and Demapper), on the test setup.

The following section is dedicated to the discussion

of these results, as well as optimization strategies and

alternative implementation platforms for the most com-

putationally costly blocks.

5 Discussion

In this section we discuss the results presented in the

last section. It is worth noting that the benchmarked

throughputs indicate the throughput that the main func-

tionality of the block is capable of if it is run repeat-

edly with no other blocks competing for CPU time. In

an actual system, these blocks will need to share the

computing resources available. While the benchmarks

only used one CPU core, opportunities for distributing

computation over the multiple cores of modern CPUs

are discussed further in section 5.4.

From figure 3, we can see that the BCH block was

the slowest block of the modulator with less than 20% of

the target bitrate in the slowest case, i.e. 256-QAM with

long code length. With 16-QAM and short code length,

this block performed at about 40% of the target. While

these figures are quite low, further code optimizations

might still be able to make the BCH encoder capable

of realtime performance. The other blocks exceeded re-

altime performance with the bit interleaver block being

the only block to perform at less than 150% of our re-

altime goal in certain configurations.

It is on the demodulator side that larger problems

emerged. As seen in figure 4, most blocks operated at

above realtime performance, except for the constella-

tion demapper and LDPC decoder.

5.1 Demapper

While the demapper was very close to the realtime

requirement when 16-QAM modulation was used, the

256-QAM benchmarks showed throughputs less than

4 Mbps or less than 10% of our requirement. Due to

the larger number of distance calculations required for

256-QAM, significantly worse performance compared to

16-QAM is indeed also to be expected.

From figure 5, we can see that the CUDA implemen-

tation of the demapper performed above 400% of the

required rate in 16-QAM configurations, while it was

also able to perform slightly above the requirement in

the 256-QAM configurations.

The CPU-based demapper performance could per-

haps be further improved by using lookup tables to per-

form parts of the LLR calculations in advance. A pro-

posed methodology for exploiting the large amounts of

memory typically present on general purpose comput-

ing systems in order to accelerate SDR systems, can

be found in [20]. A lookup table based approach could

possibly also improve the performance of other blocks

in the system. An FPGA implementation of a DVB-T2

demapper is explained in [17].

5.2 LDPC decoder

As mentioned in section 4, the LDPC decoder results

are the performance assuming 10 iterations of the iter-

ative BP decoder. The number of iterations necessary

might however vary with the quality of the received

signal, making the LDPC decoder complexity highly
variable. In order to give an indication of how limiting

the maximum number of LDPC decoder iterations im-

pacts error correction performance, figure 8 shows sim-

ulation results for a 256-QAM configuration at 1/2 code

rate. The simulations were performed on signal-to-noise

ratio (SNR) levels 0.1 dB apart. For each SNR level,

simulations were allowed to run until 20 FEC blocks

containing erroneous bits (after BCH decoding2) had

been encountered, or until 8000 blocks had been simu-

lated without finding 20 erroneous blocks. The average

bit error rate (BER) was calculated by comparing the

sent and decoded data. A channel model simulating an

AWGN (Additive White Gaussian Noise) channel was

used. We limited the maximum number of LDPC de-

coder iterations to 5, 10, 20, 30, 40, and 50 to pro-

duce the six curves in figure 8. From the figure, we can

2 BCH decoding was not actually performed. We do, how-
ever, know exactly how many bits a BCH decoder would be
able to correct, which is sufficient for simulating the perfor-
mance of the BCH decoder.

10 S. Grönroos, K. Nybom, J. Björkqvist

Fig. 8 Simulation results for 256-QAM 1/2-rate setting,
when limiting the maximum number of LDPC decoder it-
erations.

see that letting the LDPC decoder perform only 10 it-

erations or less demands significantly higher SNRs to

achieve a low BER than when allowing 50 iterations,

for example.

Neither the CPU nor GPU implementations of the

LDPC decoder could perform fast enough to be able

to provide good performance in realtime. Using the ap-

proach for CUDA-based LDPC decoding described in

section 3.1.3, the check node update kernel can access

and modify mostly adjacent memory locations, which

gives relatively good performance for that kernel. The

variable node update kernel does, however, need to ac-

cess memory locations that are quite random, which

leads to slow performance, seemingly due to random

global memory accesses. We could verify this by mea-

suring the performance when either the variable node

update or check node update kernel was disabled. While

the computational instructions involved in the variable

node update kernel are not complex, this kernel was

found to perform roughly 10 times slower than the check

node update kernel, despite the check node update be-

ing more computationally complex. As mentioned, the

GPU implementation was in an early stage of develop-

ment and several optimizations, such as decoding sev-

eral codewords in parallel, as well as using lower pre-

cision for messages should still be attempted (as sug-

gested for example in [1]. Further in-depth discussion

on GPU acceleration of LDPC decoding can be found

in [1, 9–11]. In [11], LDPC decoding was also imple-

mented on the CELL Broadband Engine multicore ar-

chitecture, which however was deemed unsuitable for

codes with large H matrices, such as those used in

DVB-T2. During editing of this article, a description

of a real-time capable GPU-based LDPC decoder for

DVB-S2 codes (almost identical to DVB-T2 codes) has

been published in [8].

FPGA implementations of LDPC decoders for the

kind of codes used in DVB-T2 have been demonstrated

to be feasible [14, 16]. The FPGA implementation dis-

cussed in [14] exploits the periodicity of the LDPC

codes used for DVB-S2. This periodicity could perhaps

also be exploited in GPU implementations.

The software implementation of DVB-C2 described

in [15] simplified the demapper by not calculating LLR

values at all, but instead performing a hard decision on

the bit values sent to the LDPC decoder. Also, DVB-

C2 [6] does not support rotated constellations, making

distance calculations less complex. The DVB-C2 stan-

dard does however support up to 4096-QAM constel-

lations. The LDPC decoder in [15] was implemented

using a simple bit-flipping decoder. This allowed the

authors of [15] to reach realtime performance on a gen-

eral purpose CPU, though at the cost of significantly

higher demands on signal quality.

5.3 FFT

As mentioned, we benchmarked our system only using

the 8K FFT size (because the other sizes were largely

untested), while DVB-T2 supports up to 32K FFTs.

Use of the larger FFT sizes will likely be quite detrimen-

tal to the throughputs of the FFT blocks in the modu-

lator and demodulator. The FFTW library should how-

ever compute discrete Fourier transforms in O(n log n)

time for FFT length n [12], which would seem to not

make the use of larger FFT sizes on general purpose

processors infeasible.

As seen in figure 5, the GPU CUFFT library is very

fast in the 8K mode, and should be able to handle con-

siderably larger FFT sizes than 8K in realtime. A re-

configurable hardware architecture, implemented on an

FPGA, for processing multiple FFT sizes present in dig-

ital TV standards, is proposed in [3].

5.4 Parallelization

While we only measured the performance of various sig-

nal processing blocks on one CPU core (or one GPU),

many opportunities for distributing the signal process-

ing over several cores exist. In the modulator case, we

can see from figure 6 that the blocks from the time in-

terleaver to the IFFT block only require about half of

the capacity of one core together. The part of the chain

beginning with the LDPC encoder and ending with the

Complexity Analysis of Software Defined DVB-T2 Physical Layer 11

cell Interleaver requires up to twice the capacity of one

core (256-QAM, long code). As the operations of these

signal processing blocks on each FEC frame are quite

independent, we could most likely distribute the sig-

nal processing of this group quite evenly over two cores

(perhaps slightly more due to overheads). As already

discussed, the BCH block would need to be optimized,

or it would require many cores for itself.

From figure 7, we observe that all blocks, exclud-

ing the LDPC decoding and constellation demapper

blocks, of the modulator chain together would seem to

require little more than the full capacity of one CPU

core. Again, at least the blocks from the FFT to the

time deinterleaver are quite easily parallelizable on a

per FEC block basis. While the mapper fits on one

GPU, the LDPC decoder would, as already mentioned,

have to be optimized to fit on one GPU and even more

so to share one GPU with the demapper.

6 Summary

In this article, we have measured the performance of our

software implementations of most of the various signal

processing blocks of a DVB-T2 modulator and demodu-

lator. The results were presented as throughputs based

on timing the core functionality of each block.

The results indicate that the modulator should be

possible to realize entirely in software on general pur-

pose computing systems, given some further optimiza-

tion of the algorithms involved. The demodulator, how-

ever, might not be suitable for running exclusively on

general purpose processors. Results indicate that the

most computationally heavy parts of the demodulator

are the FEC decoding and constellation demapper func-

tional blocks. We have discussed alternative architec-

tures, specifically GPUs and FPGAs, and their suitabil-

ity for executing these tasks. These architectures would

retain the reconfigurability that is a major benefit of

SDR systems.

As the GNU Radio implementation is not finished,

the next steps would be to implement all of the remain-

ing blocks in the GNU Radio environment, as well as

optimize both the GPU and CPU implementations of

the signal processing blocks further in order to achieve

realtime performance. FPGA implementations might

also be realized and integrated into the SDR system

in the near future.

References

1. Abburi, K.K.: A Scalable LDPC Decoder on GPU.
In: VLSI Design (VLSI Design), 2011 24th Interna-

tional Conference on, pp. 183–188 (2011). DOI
10.1109/VLSID.2011.44

2. Blossom, E.: GNU radio: tools for exploring the radio
frequency spectrum. Linux Journal (June, 2004)

3. Camarda, F., Prevotet, J.C., Nouvel, F.: Implementation
of a reconfigurable Fast Fourier Transform application
to digital terrestrial television broadcasting. In: Field
Programmable Logic and Applications, 2009. FPL 2009.
International Conference on, pp. 353–358 (2009). DOI
10.1109/FPL.2009.5272266

4. Chen, J., Dholakia, A., Eleftheriou, E., Fossorier, M., Hu,
X.Y.: Reduced-Complexity Decoding of LDPC Codes.
Communications, IEEE Transactions on 53(8), 1288–
1299 (2005). DOI 10.1109/TCOMM.2005.852852

5. Draft ETSI TR 102 831 V0.10.4: Implementation guide-
lines for a second generation digital terrestrial television
broadcasting system (DVB-T2). ETSI Technical Report
(2010)

6. ETSI EN 302 769 V1.2.1: Frame structure channel coding
and modulation for a second generation digital transmis-
sion system for cable systems (DVB-C2). ETSI Technical
Report (2011)

7. ETSI EN 302755 v1.1.1: Digital Video Broadcasting
(DVB); Frame Structure Channel Coding and Modula-
tion for a Second Generation Digital Terrestrial Televi-
sion Broadcasting System (DVB-T2). ETSI Technical
Report (2009)

8. Falcão, G., Andrade, J., Silva, V., Sousa, L.: GPU-based
DVB-S2 LDPC decoder with high throughput and fast
error floor detection. Electronics Letters 47(9), 542–543
(2011). DOI 10.1049/el.2011.0201

9. Falcão, G., Silva, V., Sousa, L.: How GPUs can outper-
form ASICs for fast LDPC decoding. In: Proceedings
of the 23rd international conference on Supercomputing,
ICS ’09, pp. 390–399. ACM, New York, NY, USA (2009).
DOI 10.1145/1542275.1542330

10. Falcão, G., Sousa, L., Silva, V.: Massive parallel LDPC
decoding on GPU. In: Proceedings of the 13th ACM SIG-
PLAN Symposium on Principles and practice of parallel
programming, PPoPP ’08, pp. 83–90. ACM, New York,
NY, USA (2008). DOI 10.1145/1345206.1345221

11. Falcao, G., Sousa, L., Silva, V.: Massively LDPC Decod-
ing on Multicore Architectures. Parallel and Distributed
Systems, IEEE Transactions on 22(2), 309–322 (2011).
DOI 10.1109/TPDS.2010.66

12. Frigo, M., Johnson, S.: The Design and Implementation
of FFTW3. Proceedings of the IEEE 93(2), 216–231
(2005). DOI 10.1109/JPROC.2004.840301

13. Gallager, R.: Low-Density Parity-Check Codes. Ph.D.
thesis, M.I.T. (1963)

14. Gomes, M., Falcao, G., Silva, V., Ferreira, V., Sengo, A.,
Falcao, M.: Flexible Parallel Architecture for DVB-S2
LDPC Decoders. In: Global Telecommunications Con-
ference, 2007. GLOBECOM ’07. IEEE, pp. 3265–3269
(2007). DOI 10.1109/GLOCOM.2007.619

15. Hasse, P., Robert, J.: A Software-Based Real-Time DVB-
C2 Receiver. In: Broadband Multimedia Systems and
Broadcasting (BMSB), 2011. IEEE International Sym-
posium on (2011)

16. Kocks, C., Viessmann, A., Waadt, A., Spiegel, C., et al.:
A DVB-T2 receiver realization based on a software-
defined radio concept. In: Communications, Con-
trol and Signal Processing (ISCCSP), 2010 4th In-
ternational Symposium on, pp. 1–4 (2010). DOI
10.1109/ISCCSP.2010.5463488

17. Li, M., Nour, C., Jego, C., Douillard, C.: Design
of rotated QAM mapper/demapper for the DVB-T2

12 S. Grönroos, K. Nybom, J. Björkqvist

standard. In: Signal Processing Systems, 2009. SiPS
2009. IEEE Workshop on, pp. 18–23 (2009). DOI
10.1109/SIPS.2009.5336265

18. NVIDIA: CUDA C Programming Guide v.3.2.
http://www.nvidia.com (2010)

19. Pellegrini, V., Bacci, G., Luise, M.: Soft-DVB, a Fully
Software, GNURadio Based ETSI DVB-T Modulator.
5th Karlsruhe Workshop on Software Radios (2008)

20. Pellegrini, V., Di Dio, M., Rose, L., Luise, M.: On
the Computation/Memory Trade-Off in Software De-
fined Radios. In: GLOBECOM 2010, 2010 IEEE Global
Telecommunications Conference, pp. 1–5 (2010). DOI
10.1109/GLOCOM.2010.5683494

21. Vangelista, L., Benvenuto, N., Tomasin, S., Nokes,
C., et al.: Key technologies for next-generation terres-
trial digital television standard DVB-T2. Communica-
tions Magazine, IEEE 47(10), 146–153 (2009). DOI
10.1109/MCOM.2009.5273822

22. Wiberg, N.: Codes and Decoding on General Graphs.
Ph.D. thesis, Linköping University (1996)

