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Abstract The next generation DVB-T2, DVB-S2, and

DVB-C2 standards for digital television broadcasting

specify the use of Low-Density Parity-Check (LDPC)

codes with codeword lengths of up to 64800 bits. The

real-time decoding of these codes on general purpose

computing hardware is useful for completely software

defined receivers, as well as for testing and simulation

purposes. Modern graphics processing units (GPUs) are

capable of massively parallel computation, and can in

some cases, given carefully designed algorithms, outper-

form general purpose CPUs (central processing units)

by an order of magnitude or more. The main problem in

decoding LDPC codes on GPU hardware is that LDPC

decoding generates irregular memory accesses, which

tend to carry heavy performance penalties (in terms of

efficiency) on GPUs. Memory accesses can be efficiently
parallelized by decoding several codewords in parallel,

as well as by using appropriate data structures. In this

article we present the algorithms and data structures

used to make log-domain decoding of the long LDPC

codes specified by the DVB-T2 standard — at the high

data rates required for television broadcasting — pos-

sible on a modern GPU. Furthermore, we also describe

a similar decoder implemented on a general purpose

CPU, and show that high performance LDPC decoders

are also possible on modern multi-core CPUs.
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1 INTRODUCTION

The DVB-T (Digital Video Broadcast Terrestrial) sys-

tem for digital television broadcasting is widely used for

broadcasting around the world. As high bitrate high-

definition television (HDTV) broadcasts become more

prevalent, however, the need for a more spectrum effi-

cient standard increases. The DVB-T2 standard [7, 26]

has been developed to address this need. As compared

to DVB-T, this standard offers significantly increased

capacity (bitrate). The increased capacity is achieved

at the cost of higher complexity components for, among

others, forward error correction (FEC).

The DVB-T2 standard makes use of two FEC codes,

featuring LDPC (low-density parity-check) codes [11]

with exceptionally long codeword lengths of 16200 or
64800 bits as the inner code. As outer code, a BCH

(Bose-Chaudhuri-Hocquenghem) code is employed to

reduce the error floor caused by LDPC decoding. The

second generation digital TV standards for satellite and

cable transmissions, DVB-S2 [5] and DVB-C2 [6], re-

spectively, also employ very similar LDPC codes to

DVB-T2. Because of the long LDPC codewords, the

decoding of these codes is one of the most computa-

tionally complex operations in a DVB-T2 receiver [12].

In this work, we propose a method for highly parallel

decoding of the long LDPC codes using GPUs (graph-

ics processing units) and general purpose CPUs (central

processing units). While a GPU or CPU implementa-

tion is likely less energy efficient than implementations

based on for example ASICs (application-specific inte-

grated circuits) and FPGAs (field-programmable gate

arrays), GPUs and CPUs have other advantages. Even

high-end GPUs and CPUs are often quite affordable

compared to capable FPGAs, and this hardware can

be found in most personal home computers. Although
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originally developed for graphics processing, modern

GPUs are also highly reconfigurable similarly to gen-

eral purpose CPUs. These advantages make a GPU or

CPU implementation interesting for software defined

radio (SDR) systems built using commodity hardware,

as well as for testing and simulation purposes.

Algorithms and data structures that allow for reach-

ing the LDPC decoding throughput bitrates required by

DVB-T2, DVB-S2, and DVB-C2 when implemented on

a modern GPU, are described in the article. While the

design decisions are generally applicable to GPU archi-

tectures overall, this particular implementation is built

on the NVIDIA CUDA (Compute Unified Device Archi-

tecture) [23], and tested on an NVIDIA GPU. We also

compare the performance of the GPU implementation

to a highly efficient multithreaded CPU implementation

written for a consumer-grade Intel CPU. Furthermore,

we examine the impact of limited numerical precision as

well as applied algorithmic simplifications on the error

correction performance of the decoder. This is accom-

plished through comparing the error correction perfor-

mance of the proposed optimized implementations to

more accurate CPU-based LDPC decoders, by simu-

lating transmissions within a DVB-T2 physical layer

simulator.

Prior related work can be found in [1, 8–10, 14, 25].

We employ similar data structures to those presented

in [9], although with different implementations of the

algorithms and levels of parallelism. The implementa-

tion described in [8] is quite similar to the implemen-

tation presented here in that it describes a realtime

GPU-based decoder for DVB-S2 LDPC codes. As DVB-

S2 and DVB-T2 codes are mostly identical, we com-

pare performance results against the results obtained

in [8]. Differences in results, and their possible causes

are discussed in section 5. The implementations de-

scribed in [1, 14, 25] were written for different types of

LDPC codes and very different code lengths from the

implementation described here, and are thus difficult to

compare directly to the proposed implementation.

An SDR implementation of a DVB-C2 receiver im-

plemented on a normal PC (personal computer) is dis-

cussed in [13], where the authors use heavily simplified

algorithms for FEC decoding in order to reach realtime

performance. In this case, a GPU-based LDPC decoder

could most likely provide significantly better error cor-

rection performance while also reducing the load on the

main CPU.

The article is laid out as follows. In section 2, we

describe the basics behind LDPC codes, and the decod-

ing of such codes. In section 3, we describe the archi-

tecture used in current NVIDIA GPUs, as well as the

experimental setup. Section 4 describes the proposed

approaches to LDPC decoding on a GPU and CPU. In

section 5, we present performance measurements, both

in terms of throughput and error correction capability.

Finally, section 6 concludes the article.

2 LDPC CODES

A binary LDPC code [11] with code rate r = k/n is de-

fined by a sparse binary (n−k)×n parity-check matrix,

H. A valid codeword x of length n bits of an LDPC code

satisfies the constraint HxT = 0. As such, the parity-

check matrix H describes the dependencies between the

k information bits and the n− k parity bits. The code

can also be described using bipartite graphs, i.e., with

n variable nodes and n − k check nodes. If Hi,j = 1,

then there is an edge between variable node j and check

node i.

LDPC codes are typically decoded using iterative

belief propagation (BP) decoders. The procedure for

BP decoding is the following. Each variable node v

sends a message Lv→c of its belief on the bit value to

each of its neighboring check nodes c, i.e. those con-

nected to the variable node with edges. The initial be-

lief corresponds to the received Log-Likelihood Ratios

(LLR), which are produced by the QAM (Quadrature

Amplitude Modulation) constellation demapper [3] in

a DVB-T2 receiver. Then each check node c sends a

unique LLR Lc→v to each of its neighboring variable

nodes v, such that the LLR sent to v′ satisfies the

parity-check constraint of c when disregarding the mes-

sage Lv′→c that was received from the variable node

v′. After receiving the messages from the check nodes,

the variable nodes again send messages to the check

nodes, where each message is the sum of the received

LLR and all incoming messages Lc→v except for the

message Lc′→v that came from the check node c′ to

where this message is being sent. In this step, a hard

decision is also made. Each variable node translates the

sum of the received LLR and all incoming messages to

the most probable bit value and an estimate on the

decoded codeword x̂ is obtained. If Hx̂T = 0, a valid

codeword has been found and a decoding success is de-

clared. Otherwise, the iterations continue until either a

maximum number of iterations has been performed or

a valid codeword has been found.

The LDPC decoder is one of the most computation-

ally complex blocks in a DVB-T2 receiver, especially

given the long codeword lengths (n is 16200 or 64800,

while k varies with the code rate used) specified in the

standard. The best iterative BP decoder algorithm is

the sum-product decoder [17], which is also, however,

quite complex in that it uses costly operations such

as hyperbolic tangent functions. The min-sum [2, 27]
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decoder trades some error correction performance for

speed by approximating the complex computations of

outgoing messages from the check nodes. The resulting

computations that are performed in the decoder are

the following. Let C(v) denote the set of check nodes

which are connected to variable node v. Similarly let

V (c) denote the set of variable nodes which are con-

nected to check node c. Furthermore, let C(v)\c repre-

sent the exclusion of c from C(v), and V (c)\v represent

the exclusion of v from V (c). With this notation, the

computations performed in the min-sum decoder are

the following:

1. initialization: Each variable node v sends the mes-

sage Lv→c(xv) = LLR(v).

2. check node update: Each check node c sends the mes-

sage

Lc→v(xv) =

 ∏
v′∈V (c)\v

sign(Lv′→c(xv′))


× min

v′∈V (c)\v
|Lv′→c(xv′)|

(1)

where sign(x) = 1, if x ≥ 0 and −1 otherwise.

3. variable node update: Each variable node v sends

the message

Lv→c(xv) = LLR(v) +
∑

c′∈C(v)\c

Lc′→v(xv) (2)

and computes

Lv(xv) = LLR(v) +
∑

c∈C(v)

Lc→v(xv) (3)

4. Decision: Quantize x̂v such that x̂v = 1 if Lv(xv) <

0, and x̂v = 0 if Lv(xv) ≥ 0. If Hx̂T = 0, x̂ is a valid

codeword and the decoder outputs x̂. Otherwise, go

to step 2.

2.1 DVB-T2 code properties

The DVB-T2 standard [7] specifies LDPC codes with

the codeword lengths 16200 bits (short code) and 64800

bits (long code). The code rate r = k/n can be 1/2, 3/5,

2/3, 3/4, 4/5, or 5/6. Table 1 lists n, k, the average row

and column degrees, as well as the total number of edges

for a subset of these code rates. The average row and

column degrees refer to the average number of ones in

the rows and columns of H, respectively. Please note

that although the short codes are identified as 1/2, 3/4

and 5/6 in table 1 (also identified as such in [7]), the

effective code rates for these codes are 4/9, 11/15, and

37/45 respectively.

Table 1 Properties of a subset of the LDPC codes supported
in DVB-T2. The columns for average column degree (ACD)
and average row degree (ARD) show the average number of
ones in the columns and rows of H, respectively. The “edges”
column shows the total number of ones in H.

Rate n k ACD ARD Edges
1/2

16200
7200 3.0 5.4 48599

3/4 11880 2.9 11.0 47519
5/6 13320 3.0 17.1 49319
1/2

64800
32400 3.5 7.0 226799

3/4 48600 3.5 14.0 226799
5/6 54000 3.7 22.0 237599

3 HARDWARE ARCHITECTURES

In this section we describe the NVIDIA CUDA, and

the specific GPU for which the GPU-based implemen-

tation was developed. Other relevant components of the

system used for benchmarking the decoder implementa-

tions are also described, including the Intel CPU which

was also the target for the CPU-optimized LDPC de-

coder.

3.1 CUDA

The NVIDIA CUDA [23] is used on modern NVIDIA

GPUs. The architecture is well suited for data-parallel

problems, i.e problems where the same operation can be

executed on many data elements at once. At the time

of writing this article, the latest variation of the CUDA

used in GPUs was the Fermi architecture [20], which

offers some improvements over earlier CUDA hardware

architectures, such as an L1 cache, larger on-chip shared
memory, faster context switching etc.

In the CUDA C programming model, we define ker-

nels, which are functions that are run on the GPU by

many threads in parallel. The threads executing one

kernel are split up into thread blocks, where each thread

block may execute independently, making it possible

to execute different thread blocks on different proces-

sors on a GPU. The GPU used for running the LDPC

decoder implementation described in this paper was

an NVIDIA GeForce GTX 570 [19, 21], featuring 15

streaming multiprocessors (SMs) containing 32 cores

each. The scheduler schedules threads in groups of 32

threads, called thread warps. The Fermi hardware ar-

chitecture features two warp schedulers per SM, mean-

ing the cores of a group of 16 cores on one SM execute

the same instruction from the same warp.

Each SM features 64 kB of fast on-chip memory

that can be divided into 16 kB of L1 cache and 48 kB

of shared memory (“scratchpad“ memory) to be shared

among all the threads of a thread block, or as 48 kB of
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L1 cache and 16 kB of shared memory. There is also a

per-SM register file containing 32,768 32-bit registers.

All SMs of the GPU share a common large amount of

global RAM memory (1280 MB for the GTX 570), to

which access is typically quite costly in terms of latency,

as opposed to the on-chip shared memories.

The long latencies involved when accessing global

GPU memory can limit performance in memory inten-

sive applications. Memory accesses can be optimized by

allowing the GPU to coalesce the accesses. When the

32 threads of one warp access a continuous portion of

memory (with certain alignment limitations), only one

memory fetch/store request might be needed in the best

case, instead of 32 separate requests if the memory lo-

cations accessed by the threads are scattered [23]. In

fact, if the L1 cache is activated (can be disabled at

compile time by the programmer), all global memory

accesses fetch a minimum of 128 bytes (aligned to 128

bytes in global memory) in order to fill an L1 cache line.

Memory access latencies can also be effectively hidden

if some warps on an SM can run arithmetic operations

while other warps are blocked by memory accesses. As

the registers as well as shared memories are split be-

tween all warps that are scheduled to run on an SM,

the number of active warps can be maximized by mini-

mizing the register and shared memory requirements of

each thread.

3.2 Measurement setup and CPU

The desktop computer system, of which the GeForce

GPU was one component, also contained an Intel Core

i7-950 main CPU running at a 3.06 GHz clock fre-

quency. This CPU has 4 physical cores, utilizing Intel

Hyper-Threading technology to present 8 logical cores

to the system [15]. 6 GB of DDR3 RAM (Double Data

Rate 3 random access memory) with a clock frequency

of 1666 MHz was also present in the system. The op-

erating system was the Ubuntu Linux distribution for

64-bit architectures.

The CPU supports the SSE (Streaming SIMD Ex-

tensions) SIMD (single instruction, multiple data) in-

struction sets [15] up to version 4.2. These vector in-

structions, operating on 128-bit registers, allow a single

instruction to perform an operation on up to 16 packed

8-bit integer values (or 8 16-bit values, or 4 32-bit val-

ues) at once. There are also instructions operating on up

to 4 32-bit floating point values. The optimized CPU-

based LDPC decoder described in this article exploits

these SIMD instructions in combination with multi-

threading to achieve high decoding speeds. For multi-

threading, the POSIX (Portable Operating System In-

terface) thread libraries are utilized.

Another possible approach to building a CPU de-

coder is to compile the CUDA code directly for the Intel

CPU architecture using an appropriate compiler [24].

It is also possible to write the GPU kernels within the

OpenCL (Open Computing Language) framework [16]

instead of CUDA, as OpenCL compilers are available

for both the GPU and CPU. Both of these approaches

would still most likely require tuning the implementa-

tion separately for the two target architectures in order

to achieve high performance, however. As our focus in

this article lies on performance rather than portability,

we chose to implement the CPU decoder using more

well established CPU programming methods.

4 DECODER IMPLEMENTATION

The GPU-based LDPC decoder implementation pre-

sented here consists mainly of two different CUDA ker-

nels, where one kernel performs the variable node up-

date (2), and the other performs the check node update

(1). These two kernels are run in an alternating fashion

for a specified maximum number of iterations. There

is also a kernel for initialization of the decoder, and

one special variable node update kernel, which is run

last, and which includes the hard decision (quantiza-

tion) step mentioned in section 2.

The architecture of the optimized CPU implemen-

tation is very similar to the GPU version. On the CPU,

the kernels described above are implemented as C func-

tions which are designed to run as threads on the CPU.

Each single thread on the CPU, however, does signif-

icantly more work than a single thread running on a

CUDA core.

4.1 General decoder architecture

For storage of messages passed between check nodes

and variable nodes, we use 8-bit precision. As the ini-

tial LLR values were stored in floating point format

on the host, we converted the LLRs to 8-bit signed

integers by multiplying the floating point value by 2,

and keeping the integer part (clamped to the range

[−127,+127]). This effectively gave us a fixed point rep-

resentation with 6 bits for the integer part and 1 bits for

the decimal part. The best representation in terms of

bit allocation is likely dependent on how the LLR val-

ues have been calculated and the range of those values.

The mentioned bit allocation was found to give good

results in our simulations, however this article does not

focus on finding an optimal bit allocation for the in-

teger and decimal parts. After this initial conversion
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(which is performed on the CPU), the LDPC decoder

algorithms use exclusively integer arithmetic.

GPU memory accesses can be fully coalesced if 32

consecutive threads access 32 consecutive 32-bit words

in global memory, thus filling one cache line of 128

bytes. In order to gain good parallelism with regard

to memory access patterns, we designed the decoder to

decode 128 LDPC codewords in parallel. When reading

messages from global memory, each of the 32 threads

in a warp reads four consecutive messages packed into

one 32-bit word. The messages are stored in such a way

that the 32 32-bit words read by the threads of a warp

are arranged consecutively in memory, and correspond

to 128 8-bit messages belonging to 128 different code-

words. This arrangement leads to coalescing of memory

accesses. Computed messages are written back to global

memory in the same fashion, also achieving full coales-

cence. While the Core i7 CPU only has 64 byte cache

lines, we also designed the CPU decoder to decode 128

codewords at once, in order to keep the data structures

of the GPU and CPU implementations equal (this de-

cision should not decrease performance).

We use two compact representations, HV N and HCN ,

of the parity check matrix H. The data structures were

inspired by those described in [9]. To illustrate these

structures, we use the following simple example H ma-

trix:

H =

1 1 1 1 0 0

0 0 1 1 0 1

1 0 0 1 1 0


HCN would then be an array of entries consisting

of a cyclic index to the entry corresponding to the next

one in the same row of the H matrix, while entries in

HV N would contain an index to the entry correspond-

ing to the next one in the same column. Each entry

in HCN and HV N thus represent an edge between a

variable node and a check node in the bipartite graph

corresponding to H. The HCN and HV N structures

corresponding to the example H matrix are illustrated

in Fig. 1.

We use a separate array structure, M, to store the

actual messages passed between the variable and check

node update phases. The M structure contains 128 mes-

sages for each one (edge) in H, corresponding to the 128

codewords being processed in parallel. Each entry in M

is one byte in size. The structure is stored in memory so

that messages corresponding to the same edge (belong-

ing to different codewords) are arranged consecutively.

The entry M(i × 128 + w) thus contains the message

corresponding to edge i for the w:th codeword.

Furthermore, we use two structures (arrays) Rf and

Cf to point to the first element of rows and columns,

Fig. 1 The arrays HCN and HV N corresponding to example
H matrix.

respectively, of the H matrix. For the example H ma-

trix, we have Rf = ( 0 4 7 ), and Cf = ( 0 1 2 3 9 6 ).

The structure LLR contains the received initial beliefs

for all codewords, and will have n × 128 elements for

an LDPC code of length n. LLR(x× 128 +w) contains

the initial belief for bit x of codeword w.

4.2 GPU Algorithms

In this subsection follows a more detailed description of

the functionality in the GPU kernels. For the variable

node update, we let each thread process four consecu-

tive codewords for one column of H, and similarly each

thread of the check node update kernel will process one

row of H. Thus, 32 consecutive threads will process one

column or row for all 128 codewords.

The procedure for the variable node update is roughly

as follows, given an LDPC code defined by an (n−k)×n
parity check matrix. We launch n× 32 threads in total.

1. Given global thread id t, we process column c =

b t
32c of H, and codewords w = (t mod 32) × 4 to

(t mod 32)× 4 + 3.

2. Read four consecutive LLR values starting from

LLR(c× 128 +w) into 4-element vector m. We ex-

pand these values to 16-bit precision to avoid wrap

around problems in later additions.

3. Let i = Cf (c)

4. For all edges in column c:

4.1. Copy the four consecutive messages (8-bit) start-

ing from M(i × 128 + w) into 4-element vector

msg. This is achieved by reading one 32-bit word

from memory.

4.2. Add, element-wise, the elements of msg to the

elements of m and store the results in m.

4.3. Let i = HVN(i). If i = Cf (c), we have processed

all edges.

5. For all edges in column c:

5.1. Again, copy four messages (8-bit) from M(i ×
128 + w) to M(i × 128 + w + 3) into 4-element

vector msg.
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5.2. Perform m −msg (element-wise subtraction of

four elements), clamp the resulting values to the

range [−127,+127] (since m contains 16-bit inte-

gers, and msg contains 8-bit integers) and store

the result in msg.

5.3. Copy msg back to the memory positions of M(i×
128 + w) to M(i× 128 + w + 3).

5.4. Let i = HVN(i). If i = Cf (c), we have processed

all edges.

6. Variable node update completed.

The check node update launches (n−k)×32 threads,

and the procedure is the following:

1. Given global thread id t, we process row r = b t
32c

of H, and codewords w = (t mod 32) × 4 to (t

mod 32)× 4 + 3.

2. Define four 4-element vectors sign,min,nmin and

mi. Initialize elements of sign to 1, and elements of

min and nmin to 127.

3. Let i = Rf (r).

4. Let j = 0 (iteration counter).

5. For all edges in row r:

5.1. Copy four consecutive messages starting from

M(i× 128 + w) into 4-element vector msg

5.2. For all element indices x ∈ [0, 3], if |msg(x)| <
min(x), let min(x) = |msg(x)| and set mi(x) =

j. Otherwise, if |msg(x)| < nmin(x), let

nmin(x) = |msg(x)|.
5.3. Also, for all x ∈ [0, 3], let sign(x) be negative if

msg(x)× sign(x) is negative, and positive oth-

erwise.

5.4. Set j equal to j + 1.

5.5. Let i = HCN(i). If i = Rf (r), we have processed

all edges.

6. Let j = 0.

7. For all edges in row r:

7.1. Copy four consecutive messages starting from

M(i× 128 + w) into 4-element vector msg.

7.2. For all x ∈ [0, 3], if mi(x) 6= j, let msg(x) =

sign(sign(x)×msg(x))×min(x). Otherwise, if

mi(x) = j, let msg(x) = sign(sign(x)×msg(x))×
nmin(x).

7.3. Copy msg back to the memory positions of M(i×
128 + w) to M(i× 128 + w + 3).

7.4. Set j equal to j + 1.

7.5. Let i = HCN(i). If i = Rf (r), we have processed

all edges.

8. Check node update completed.

The special variable node update kernel that in-

cludes hard decision, adds an additional step to the

end of the variable node update kernel. Depending on

if m(x), for x ∈ [0, 3], is positive or negative, it writes a

zero or one to index c×128+w+x of an array structure

B as specified in the last step of the min-sum decoder

procedure described in section 2. The B structure is

copied back from the GPU to the host upon completed

decoding.

4.3 CPU Algorithms

As mentioned, each single thread in the CPU version

performs a larger amount of the total work than in

the GPU case. As we use the integer SSE instructions

operating on 128-bit (16-byte) registers, we generally

operate on 16 8-bit messages belonging to 16 different

codewords in each SSE instruction. In the variable node

update, each thread computes a fraction (depending on

the preferred number of CPU threads) of the columns of

H for all 128 codewords. Likewise, a check node update

thread computes a fraction of the rows for all code-

words. As in the GPU implementation, the lifetime of

one CPU thread is one iteration of either a variable

node update or a check node update.

The procedure for the variable node update is as

follows, given an LDPC code defined by an (n − k) ×
n parity check matrix. We launch TV threads, where

the optimal TV depends on factors such as CPU core

count. Let t ∈ [0, TV − 1] denote the current thread.

Hexadecimal values are written using the 0x prefix.

1. Given thread id t, we process columns

c ∈ [ t×nTV
, (t+1)×n

TV
− 1], and for each column, we pro-

cess 8 groups of 16 codewords, cg ∈ [0, 7].

2. Let w = (cg × 16)

3. Read sixteen consecutive LLR values starting from

LLR(c× 128 + w) into 16-element vector m.

4. Let i = Cf (c)

5. For all edges in column c:

5.1. Copy the sixteen consecutive messages (8-bit)

starting from M(i × 128 + w) into 16-element

vector msg.

5.2. Add, element-wise, the elements of msg to the

elements of m and store the results in m (SSE

PADDSB saturating addition instruction).

5.3. Let i = HVN(i). If i = Cf (c), we have processed

all edges.

6. For all edges in column c:

6.1. Copy the sixteen consecutive messages starting

from M(i×128+w) into 16-element vector msg.

6.2. Perform m−msg and store result in msg. The

SSE PSUBSB saturating subtraction instruction

is used for this.

6.3. If any element in msg is equal to −128, set it to

−127. Performed by comparing msg to a vector

containing only −128 using the PCMPEQB in-
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struction, followed by the PBLENDVB instruc-

tion to replace values of −128 with −127 in msg.

6.4. Copy msg back to the memory positions of M(i×
128 + w) to M(i× 128 + w + 15).

6.5. Let i = HVN(i). If i = Cf (c), we have processed

all edges.

7. Variable node update completed.

In the CPU implementation there is also a special vari-

able node update function including hard decision. This

function calculates the hard decision using SSE instruc-

tions by right shifting the values of m by 7 bits, so that

the sign bit becomes the least significant bit. All bits

other than the least significant are set to zero, giving

us the hard decision bit values as bytes. Elements equal

to −128 are set to −127 in step 6.3 to make the range

of positive and negative values equal. Failing to do so

was found to result in disastrous error correction per-

formance.

The check node update launches TC threads, and t ∈
[0, TC − 1] denotes the current thread. The procedure

is the following:

1. Given thread id t, we process rows

r ∈ [ t×(n−k)TC
, (t+1)×(n−k)

TC
− 1], and for each column,

we process 8 groups of 16 codewords, cg ∈ [0, 7].

2. Let w = (cg × 16)

3. Define 16-element vectors sign, min, nmin, and

mi. Initialize elements of sign to 1, and elements of

min and nmin to 127.

4. Let i = Rf (r).

5. Let j = 0 (iteration counter).

6. For all edges in row r:

6.1. Copy sixteen consecutive messages starting from

M(i× 128 + w) into vector msg.

6.2. Compute sign ⊕msg, and store result in sign.

SSE PXOR instruction for bitwise XOR opera-

tion on two 128-bit registers is used.

6.3. Compute element-wise absolute values of msg,

and store result in msg, using the SSE instruc-

tion PABSB for absolute value.

6.4. ∀e ∈ [0, 15], let the value of mask1(e) be 0xFF

if msg(e) < min(e), and 0x00 otherwise. The

SSE instruction PCMPGTBr accomplishes this.

6.5. ∀e ∈ [0, 15], let the value of mask2(e) be 0xFF

if msg(e) < nmin(e), and 0x00 otherwise

(PCMPGTBr instruction).

6.6. ∀e ∈ [0, 15], let temp(e) = min(e) if mask1(e)

equals 0xFF , and otherwise let temp(e) =

msg(e). The SSE instruction PBLENDVB is

used.

6.7. ∀e ∈ [0, 15], let nmin(e) = temp(e) if mask2(e)

equals 0xFF , and otherwise let nmin(e) =

nmin(e) (PBLENDVB).

6.8. ∀e ∈ [0, 15], let min(e) = msg(e) if mask1(e)

equals 0xFF , and otherwise let min(e) = min(e)

(PBLENDVB).

6.9. ∀e ∈ [0, 15], let mi(e) = j if mask1(e) equals

0xFF , and otherwise let mi(e) = mi(e)

(PBLENDVB).

6.10. Set j equal to j + 1.

6.11. Let i = HCN(i). If i = Rf (r), we have processed

all edges.

7. Let j = 0.

8. ∀e ∈ [0, 15], let sign(e) equal−1 (0xFF ) if sign(e) <

0, and 0 otherwise. This is accomplished by the SSE

PCMPGTBr instruction (compare to zero vector).

9. For all edges in row r:

9.1. Copy sixteen consecutive messages starting from

M(i× 128 + w) into vector msg.

9.2. ∀e ∈ [0, 15], let the value of mask1(e) be 0xFF

if mi(e) = j, and 0x00 otherwise. SSE instruc-

tion PCMPEQB accomplishes this.

9.3. ∀e ∈ [0, 15], let the value of mask2(e) be 0xFF

if msg(e) < 0, and 0x00 otherwise (PCMPGTBr).

9.4. ∀e ∈ [0, 15], let mask3(e) = sign(e)⊕mask2(e)

(PXOR).

9.5. ∀e ∈ [0, 15], let mask3(e) = mask3(e) ∨ 1 (SSE

POR instruction).

9.6. ∀e ∈ [0, 15], let temp1(e) equal −min(e) if

mask3(e) < 0, and min(e) otherwise. The SSE

instruction PSIGNB is used for this.

9.7. ∀e ∈ [0, 15], let temp2(e) equal −nmin(e) if

mask3(e) < 0, and nmin(e) otherwise (PSIGNB).

9.8. ∀e ∈ [0, 15], let msg(e) = temp2(e) if mask1(e)

equals 0xFF , and otherwise let msg(e) =

temp1(e) (PBLENDVB).

9.9. Copy msg back to the memory positions of M(i×
128 + w) to M(i× 128 + w + 15)

9.10. Set j equal to j + 1.

9.11. Let i = HCN(i). If i = Rf (r), we have processed

all edges.

10. Check node update completed.

4.4 Optimization strategies

In this subsection, we discuss various design choices

made during implementation to improve decoding speed.

The optimizations were verified by benchmarking, as

well as profiling of the implementation.

4.4.1 GPU

Notice that, in both main CUDA kernels, we copy the

same four elements to msg from M twice (once in each

loop). The second read could have been avoided by stor-

ing the elements into fast on-chip shared memory the



8 S. Grönroos, K. Nybom, J. Björkqvist

first time. Through experiments, however, we noticed

that we got significantly improved performance by not

reserving the extra storage space in shared memory.

This is mostly due to the fact that we can instead have

a larger number of active threads at a time on an SM,

when each thread requires fewer on-chip resources. A

larger number of active threads can effectively “hide”

the latency caused by global memory accesses.

Significant performance gains were also achieved by

using bit twiddling operations to avoid branches and

costly instructions such as multiplications in places where

they were not necessary. The fact that this kind of op-

timizations had a significant impact on performance

suggests that this implementation is instruction bound

rather than memory access bound despite the many

scattered memory accesses performed in the decoder.

Through profiling of the two main kernels, we also found

that the ratio of instructions issued per byte of mem-

ory traffic to or from global memory was significantly

higher than the optimum values suggested in optimiza-

tion guidelines [18], further suggesting that the kernels

are indeed instruction bound.

An initial approach at an LDPC decoder more closely

resembled the implementation described in [9], in that

we used one thread to update one message, instead of

having threads update all connected variable nodes or

check nodes. This lead to a larger number of quite small

and simple kernels. This first implementation was how-

ever significantly slower than the currently proposed

implementation. One major benefit of the proposed ap-

proach is that fewer redundant memory accesses are

generated, especially for codes where the average row

and/or column degree is high.

As mentioned in section 3.1, the Fermi architecture

allows the programmer to choose between 16 kB of

shared memory and 48 kB of L1 cache, or vice versa.

We used the 48 kB L1 cache setting in the final imple-

mentation, as we did not use any shared memory. This

clearly improved performance compared to the alterna-

tive setting.

4.4.2 CPU

On the CPU we noticed that choosing a significantly

higher value for the number of threads (TV and TC)

per variable or check node update iteration than the

number of logical cores in the test setup improved per-

formance significantly. On the test system, we found

TV = TC = 32 to be a good value, although only 8

logical cores were present. It was also found impor-

tant to process the 8 groups of 16 codewords for a par-

ticular row or column of H before processing another

row/column, in order to improve cache utilization. Bit

twiddling operations played an even more important

role on the CPU than on the GPU, due to the fact

that, for example, there is no 8-bit integer multiplica-

tion instruction in SSE.

It is worth noting that while we expanded the in-

termediate result m to a 16-bit integer in the variable

node update on the GPU, we kept precision at 8-bit

throughout the operation on the CPU. Expanding the

intermediate values in an SSE-based implementation

would have required many extra operations, sacrificing

performance. This solution leads to a somewhat less

precise CPU decoder. In section 5.3, we compare the

error correction performance of the GPU and CPU im-

plementations.

5 PERFORMANCE

In this section, we present performance figures for both

the CUDA-based and SSE SIMD-based LDPC decoders

presented in section 4, both in terms of throughput and

error correction performance. We show that the GPU

implementation achieved throughputs required by the

DVB-T2 standard with acceptable error correction per-

formance.

5.1 Throughput measurements

The system described in section 3 was used for bench-

marking the two min-sum LDPC decoders. Decoder

throughput was measured by timing the decoding pro-

cedure for 128 codewords processed in parallel, and di-

viding the codeword length used (16200 bits for short

code length, and 64800 bits for long code) times 128

by the time consumed. Thus, the throughput measure

does not give the actual useful bitrate, but rather the

bitrate including parity data. To gain an approximate

useful bitrate, the throughput figure must be multiplied

by the code rate. We benchmarked the decoder for both

the short and long codeword lengths supported by the

DVB-T2 standard. Moreover, we measured three differ-

ent code rates: 1/2, 3/4, and 5/6.

For the GPU implementation, the time measured

included copying LLR values to the GPU, running a

message initialization kernel, running the variable node

and check node update kernels for as many iterations as

desired before running the variable node update kernel

including hard decision, and finally copying the hard

decisions back to host memory. Timing the CPU ver-

sion included the same steps, except transferring data

to and from the GPU, which is not necessary in that

case. In these benchmarks we did not check whether

we had actually arrived at a valid codeword. This task
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Table 2 GPU decoder average throughput in Mbps
(Megabits per second), long code (n = 64800). Minimum
throughput in parentheses.

Rate 20 iterations 30 iter. 50 iter.
1/2 163.4 (160.1) 112.5 (110.9) 69.3 (68.7)
3/4 164.1 (160.6) 112.9 (111.4) 69.5 (68.9)
5/6 157.2 (153.9) 107.9 (106.3) 66.4 (65.9)

Table 3 GPU decoder average throughput in Mbps, short
code (n = 16200). Minimum throughput in parentheses.

Rate 20 iterations 30 iter. 50 iter.
1/2 186.1 (179.4) 128.6 (125.1) 79.5 (78.2)
3/4 192.4 (185.2) 133.1 (129.6) 82.4 (81.0)
5/6 189.6 (181.8) 131.2 (127.3) 81.2 (79.7)

Table 4 CPU decoder average throughput in Mbps, long
code (n = 64800). Minimum throughput in parentheses.

Rate 20 iterations 30 iter. 50 iter.
1/2 44.5 (43.4) 30.6 (30.0) 18.7 (18.4)
3/4 42.1 (40.8) 28.8 (28.4) 17.5 (17.4)
5/6 40.1 (38.5) 27.6 (27.4) 17.0 (16.8)

Table 5 CPU decoder average throughput in Mbps, short
code (n = 16200). Minimum throughput in parentheses.

Rate 20 iterations 30 iter. 50 iter.
1/2 47.4 (44.3) 30.4 (28.5) 18.2 (16.5)
3/4 47.5 (45.7) 30.6 (28.5) 19.1 (17.3)
5/6 45.8 (43.4) 29.7 (27.4) 17.5 (15.5)

was instead handled by the BCH decoder. If desired,

we can check the validity of a codeword at a through-

put penalty (penalty depending on how often we check

for validity). This may for example be done together

with hard decision in order to be able to terminate the

decoder early upon successful recovery of all 128 code-

words. In this case, however, we specify a set number

of iterations to run before one final hard decision. Note

that the HCN and HV N structures only need to be

transferred to the GPU at decoder initialization (i.e.

when LDPC code parameters change), and that this

time is thus not included in the measured time.

The measured throughputs of the GPU implemen-

tation are presented in table 2 for long code, and in

table 3 for short code configurations. The correspond-

ing throughput figures for the CPU implementation are

presented in tables 4 and 5. We decoded 10 batches of

128 codewords and recorded the average time as well

as the maximum time for decoding a batch, giving us

the average throughput as well as a minimum through-

put (shown within parentheses in the tables) for each

configuration.

5.2 Results discussion

Annex C of the DVB-T2 standard assumes that re-

ceived cells can be read from a deinterleaver buffer at

7.6× 106 OFDM (orthogonal frequency-division multi-

plexing) cells per second [3, 7]. At the highest modu-

lation mode supported by DVB-T2, 256-QAM, we can

represent 8 bits per cell. This means that the LDPC

decoder should be able to perform at a bitrate of at

least 60.8 Mbps (Megabits per second). As seen from

the results, the proposed GPU implementation is able

to meet this realtime constraint even while performing

50 iterations.

DVB-S2 [5] and DVB-C2 [4, 6] use the same code-

word lengths as DVB-T2, though they specify partly

different sets of code rates to suite their application do-

mains. DVB-C2 may require processing up to 7.5× 106

cells per second, which, coupled with a maximum mod-

ulation mode of 4096-QAM, gives us 90 Mbps maximum

required throughput. DVB-S2 also may require about

90 Mbps maximum throughput [8]. By interpolation of

the values in table 2, we observe that we should be able

to meet the throughput requirements of these standards

at up to roughly 35 iterations.

As mentioned, the GPU-based LDPC decoder de-

scribed in [8] decodes DVB-S2 codes, and as such should

be comparable to the implementation presented in this

paper. The implementation details of this decoder are

not explained in-depth in [8]. The authors of [8] do,

however, state that the min-sum algorithm is used for

decoding, and that 8-bit data representation is used,

which both also apply to the implementation discussed

in section 4 of this paper. The level of parallelism dif-

fers, however, where the implementation in [8] decodes

16 codewords in parallel, while the implementation de-

scribed in section 4 of this paper decodes 128 codewords

in parallel. We do not know in detail how the parallelism

is realized in [8], however we believe 128 parallel code-

words will allow for improved memory coalescing, due

to the fact that Fermi GPUs can read up to 32 succes-

sive 32-bit words very efficiently when accessed by the

32 threads in a warp [20]. The higher level of parallelism

does introduce some additional latency in a receiver

chain, which is however only on the order of fractions

of a second considering the high throughputs involved.

The authors of [8] do however use lookup tables stored

in fast constant memory to calculate message addresses,

whereas we fetch the address offsets from global mem-

ory.

The GPU used in [8] was an NVIDIA Tesla C2050

[22]. While based on the Fermi architecture, the C2050

differs from the GTX 570 in several ways, such as clock

frequencies and memory bus width, making direct per-
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Fig. 2 CPU decoder throughput with 1/2-rate long code at
20 iterations as a function of the number of threads (TV and
TC). Different curves for 1 to 4 cores available to the decoder.

formance comparison by comparing throughput values

difficult. A rough estimate on the speed differences be-

tween the two GPUs could be based on the differences

in SM clock frequency and the number of SMs. The

C2050 has 14 SMs running at 1.15 GHz, while the GTX

570 has 15 SMs running at 1.46 GHz. The authors of [8]

reported a throughput of 75.8 Mbps per 30 iterations of

the 1/2-rate long DVB-S2 code. From table 2, we can

see that we obtained a throughput of 112.5 Mbps for

the same code and the same number of iterations. Di-

viding the throughputs by number of SMs times clock

frequency, we get 4.7 and 5.1 kbps per cycle per SM

for the implementations in [8] and in this paper, re-

spectively. This comparison is not valid in case an im-

plementation is memory bound rather than arithmetic

bound, however, as global memory bandwidth would

then be the likely bottleneck.

From tables 4 and 5 we see the throughputs of the

CPU decoder at 20, 30, and 50 iterations. We can see

that the CPU implementation generally performs at

slightly higher than 25% of the throughput of the GPU

implementation. As the throughput increases quite lin-

early with a decreasing maximum number of iterations,

we can derive that about 12 iterations should give us

the required maximum bitrate of the DVB-T2 stan-

dard (60.8 Mbps). Indeed simulations at the slowest

setting, 5/6-rate long code, revealed that at 12 itera-

tions, we achieve 63.7 Mbps throughput with the CPU.

This low amount of iterations would have a significant

negative impact on error correction performance, which

is demonstrated in section 5.3.

It should be noted that the throughput of the CPU

implementation is the throughput when the CPU is

completely dedicated to the task of decoding LDPC

codewords. In a single processor system running a soft-

ware defined receiver, this would not be the case. The

CPU capacity would in that case need to be shared

among all the signal processing blocks in the receiver

chain (in addition to tasks such as video and audio de-

coding). In this respect, the GPU implementation yields

an advantage in addition to higher throughput. If the

GPU is assigned the task of LDPC decoding, the CPU

is free to perform other tasks.

Fig. 2 shows throughput of the CPU implementa-

tion (1/2-rate long code, 20 iterations) as a function

of varying the amount of threads (TV and TC) when

different numbers of cores are available to the decoder.

It should be noted that a core in Fig. 2 refers to a

physical core, which consists of two logical cores, due

to the presence of Intel Hyper-Threading technology.

The Intel Turbo Boost feature, which allows a core to

run at a higher than default clock frequency when other

cores are idle, was disabled during this measurement.

The speedup factors when utilizing two, three, and four

physical cores with the optimal amount of threads are

1.9, 2.6, and 3.1, respectively. Varying the amount of

cores used on the GPU is, to the authors’ knowledge,

not possible, and a similar scalability study was thus

not performed on the GPU.

5.3 Error correction performance

Many dedicated hardware LDPC decoders use a preci-

sion of 8 bits or less for messages, and should thus have

similar or worse error correction performance compared

to the proposed implementations. Within the simula-

tion framework used for testing the decoder, however,

we had high-precision implementations of LDPC de-

coders using both the sum-product algorithm (SPA),

as well as the min-sum algorithm. These implementa-

tions were written for a standard x86-based CPU, and

used 32-bit floating point message representation.

Simulations of DVB-T2 transmissions using both

high-precision CPU-based implementations as well as

the proposed GPU-based and CPU-based implementa-

tions, were performed in order to determine the cost of

the lower precision of message representations as well

as the use of min-sum over SPA in terms of decoder

error correction capability.

Fig. 3 shows simulation results for a 16-QAM config-

uration at the code rates 1/2 and 5/6 of the long code.

The simulations were performed on signal-to-noise ratio

(SNR) levels 0.1 dB apart. When simulating using the

high-precision CPU implementations, 2000 codewords

were simulated for each SNR level. As the proposed

implementations were orders of magnitude faster, we

simulated 16000 codewords per SNR level for these im-

plementations, in order to be able to detect possible

low error floors. The average bit error rate (BER) was

calculated by comparing the sent and decoded data.

A channel model simulating an AWGN (additive white
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(a) Rate 1/2

(b) Rate 5/6

Fig. 3 Simulation results for 16-QAM long code configura-
tions when using the proposed CUDA GPU and SSE SIMD
CPU implementations, as well as high precision (HP) CPU
implementations of SPA and min-sum algorithms. (Note that
BER values of 0 are not included in the graph, which means
the curve ends when BER goes down to 0.)

Gaussian noise) channel was used. The maximum num-

ber of LDPC decoder iterations allowed was set to 50.

As can be seen in Fig. 3, the proposed lower preci-

sion GPU and CPU implementations perform very close

(within 0.1 dB) to the high-precision min-sum CPU im-

plementation on the AWGN channel. The simulations

clearly indicate that the impact of using the simplified

min-sum algorithm as opposed to the superior SPA al-

gorithm is much greater than the choice of message pre-

cision. The error correction performance advantage of

the SPA algorithm also remains relatively small (please

note the fine scale of the x-axes of Fig. 3), however,

with slightly less than a 1 dB advantage for 1/2-rate

and roughly 0.5 dB for 5/6-rate at a BER level of 10−4.

As mentioned in section 5.2, the CPU implementa-

tion could perform only 12 iterations in order to reach

the maximum required throughput of DVB-T2, while

Fig. 4 Simulation results for 16-QAM 1/2-rate long code
configuration when varying the maximum number of LDPC
decoder iterations. Simulations were performed using the pro-
posed SIMD CPU implementation.

the GPU implementation manages to perform in ex-

cess of 50 iterations under the same constraints. In Fig.

4, we demonstrate how varying the amount of maxi-

mum iterations performed by the proposed CPU min-

sum decoder implementation impacts error correction

performance. The figure shows simulation results for

a 16-QAM configuration, with 1/2-rate long code over

an AWGN channel. All SNR levels were simulated over

2048 codewords. Fig. 4 reveals that 12 iterations of the

min-sum decoder does not yield very good error cor-

rection performance. The difference between 12 and 50

iterations is roughly 0.7 dB at a BER level of 10−4,

which is perhaps not a great amount. At 12 iterations,

however, the steepness of the “waterfall“ region of the

SNR-BER curve is notably worse than at 50 iterations,

which is undesirable. Fig. 4 also shows that 30 itera-

tions does not give significantly worse results than 50

iterations.

6 CONCLUSION

In this paper, we have presented two implementations of

LDPC decoders optimized for decoding the long code-

words specified by the next generation digital television

broadcasting standards DVB-T2, DVB-S2, and DVB-

C2. The GPU implementation is a highly parallel de-

coder optimized for a modern GPU architecture. We

have shown that we can achieve the throughputs re-

quired by these standards at high numbers of iterations,

giving good error correction performance. Furthermore,

we have shown that our implementation compares well

to another similar implementation [8]. We have also

shown that a modern multi-core SIMD-enabled CPU is

capable of quite high throughputs, though perhaps not
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quite enough for the most demanding configurations of

the DVB standards.

In the future, we hope to integrate the decoder im-

plementations with other software defined signal pro-

cessing blocks to build a completely software defined,

realtime, receiver chain. In [12], it was shown that be-

sides the LDPC decoder, the QAM constellation demap-

per — converting received constellation points in the

complex plane to LLR values — is one of the most

computationally complex blocks in a DVB-T2 receiver

chain. As the demapper produces the input to the LDPC

decoder (a bit deinterleaver does however separate the

two signal processing blocks), a good next step would

be to perform both the demapping and LDPC decoding

on the GPU, further reducing the main CPU load.
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