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Abstract The DVB-T2 standard for digital terrestrial

broadcasting supports the use of QAM (quadrature am-

plitude modulation) constellations where the constel-

lation points are rotated in the I-Q plane. This com-

bined with a cyclic delay of the Q component provides

improved performance in some fading channels. The

complexity of the optimal demapping process for ro-

tated constellations is however significantly higher than

for non-rotated constellations. This makes the DVB-

T2 demapper one of the most computationally com-

plex parts of a receiver. In this article, we examine

possible simplifications of the demapping process suit-

able for implementation on a general purpose computer

containing a modern GPU (graphics processing unit).

Furthermore, we measure the performance in terms of

throughput, as well as accuracy, of the implemented
algorithms. The implementations are designed to inter-

face efficiently to a previously implemented real-time

capable GPU-based LDPC (low-density parity-check)

channel decoder.

Keywords DVB-T2 · Demapper · QAM · SDR ·
CUDA

1 Introduction

The DVB-T (Digital Video Broadcast Terrestrial) sys-

tem for digital television broadcasting is widely used for
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broadcasting around the world. As high bitrate High-

Definition Television (HDTV) broadcasts become more

prevalent, however, the need for a more spectrum effi-

cient standard increases. The DVB-T2 standard [6, 17]

has been developed to address this need. This standard

offers significantly increased capacity when compared

to DVB-T. The increased capacity comes at the cost

of more complex signal processing components in the

physical layer, however.

Two of the most complex parts of a DVB-T2 re-

ceiver are the channel decoder and QAM (quadrature

amplitude modulation) demapper [8]. For channel cod-

ing, the standard specifies the use of LDPC (low-density

parity-check) codes [7] with exceptionally long code-

word lengths as the inner coding scheme, as well as

an outer BCH (Bose-Chaudhuri-Hocquenghem) code.

DVB-T2 features QPSK, 16-QAM, 64-QAM and 256-

QAM modulation. Optionally, the QAM constellation

diagram may be rotated in signal space (the angle of

rotation is specified for each modulation scheme). This

rotation, combined with the subsequent interleaving of

the in-phase (I) and quadrature (Q) components of the

signal, provides signal-space-diversity [2, 11] and gives

improved performance in some fading channels.

The authors of this article have earlier presented a

real-time capable decoder of DVB-T2 LDPC codes im-

plemented on a GPU (graphics processing unit) using

the NVIDIA CUDA (Compute Unified Device Archi-

tecture) [9]. In a step towards creating a real-time ca-

pable software defined radio (SDR) implementation of a

DVB-T2 receiver on a general purpose computer, we fo-

cus on implementing fast rotated constellation demap-

pers in this article. The proposed implementations will,

like the LDPC decoder already in place, be implemented

using the CUDA on a consumer-grade GPU. In a DVB-

T2 receiver chain, the demapper generates log-likelihood
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ratio (LLR) values to be used as inputs to the LDPC de-

coder, with only a bit interleaver separating the two sig-

nal processing blocks. As both blocks are implemented

on a GPU, we can avoid copying of data between the

GPU and CPU between the demapper and LDPC de-

coder blocks.

In the article, we examine the implementations of

several demapping algorithms and measure their per-

formance in terms of both speed and accuracy. We also

measure the combined throughput when performing both

demapping and LDPC decoding on the GPU, and com-

pare the achieved figures to the maximum throughputs

required by the DVB-T2 standard. The impact of the

various algorithmic simplifications on demapping accu-

racy is measured by simulating DVB-T2 transmissions

within a DVB-T2 physical layer simulator.

While the demapping of traditional Gray-mapped

non-rotated QAM is not very complex, due to the pos-

sibility of treating the I and Q components indepen-

dently, rotation of the constellation diagram changes

this, and complexity is significantly increased due to

the I and Q axes being inter-dependent. Various algo-

rithms for the demapping of rotated constellations have

been discussed in [1,3,10,11,16]. In addition to the max-

imum likelihood (ML) demapper as well as its max-log

simplification [3, 11], the algorithms based on MMSE

(minimum mean squared error) decorrelation and IC

(interference cancellation) described in [10], will also

be implemented and measured on the GPU.

The article is laid out as follows. In section 2, we

describe the target platform of our implementations,

including the CUDA and the specific GPU which was

used to test the implementations. In section 3, we de-

scribe the various demapping algorithms that were im-

plemented and tested on the GPU, while in section 4,

we describe the actual implementations of these algo-

rithms. Benchmark and simulation results are presented

in section 5 along with discussion regarding the ob-

tained results. The article is finally concluded in section

6.

2 Target architecture

In this section we describe the NVIDIA CUDA, and

the specific GPU for which the GPU-based implemen-

tations were developed. Other relevant components of

the system used for benchmarking the implementations

are also described.

The desktop computer system, of which the NVIDIA

GeForce GPU — on which the CUDA implementations

were tested — was one component, also contained an

Intel Core i7-950 main CPU running at a 3.06 GHz

clock frequency. 6 GB of DDR3 RAM (Double Data

Rate 3 random access memory) with a clock frequency

of 1666 MHz was also present in the system. The op-

erating system was the Ubuntu Linux distribution for

64-bit architectures. Version 4.2 of the CUDA Toolkit

was used.

2.1 CUDA

The NVIDIA CUDA [15] is used on modern NVIDIA

GPUs. This architecture is well suited for data-parallel

problems, i.e problems where the same operation can

be executed on many data elements at once.

Fig. 1 As shown in [15], the threads running a CUDA ker-
nel are divided into a grid consisting of a number of thread
blocks, where each thread block is mapped onto one stream-
ing multiprocessor. A group of 32 consecutive threads in a
block are called a warp.

In the CUDA C programming model, we define ker-

nels, which are functions that are run on the GPU

by many threads in parallel. The threads executing

one kernel are split up into thread blocks, where each

thread block may execute independently, making it pos-

sible to execute different thread blocks on different pro-



Implementation and Performance Analysis of DVB-T2 Rotated Constellation Demappers on a GPU 3

Fig. 2 A streaming multiprocessor (SM) in the Fermi archi-
tecture, as depicted in [13]. There are two warp schedulers
per SM, which may schedule a group of 16 threads onto one
of two groups of 16 cores. There are also 16 load-store units
(LSU), and four special function units (SFU).

cessors on a GPU. This subdivision of threads into

thread blocks is illustrated in Fig. 1. Both the thread

blocks in a grid and threads in a block may be refer-

enced by an up to three dimensional index in the kernel

code (Fig. 1 illustrates a two-dimensional grid with two-

dimensional thread blocks). The GPU used for running

the LDPC decoder implementation described in this ar-

ticle was an NVIDIA GeForce GTX 570 [12,14], which

is based on the Fermi architecture [13], and features

15 streaming multiprocessors (SMs) containing 32 cores

each. A block diagram of a streaming multiprocessor in

the Fermi architecture is shown in Fig. 2. Threads are

scheduled in groups of 32 threads of a thread block,

called thread warps. The Fermi hardware architecture

features two warp schedulers per SM, meaning the cores

of a group of 16 cores on one SM execute the same in-

struction from the 16 threads of one half of a warp.

Each SM features 64 kB of fast on-chip memory

that can be divided into 16 kB of L1 cache and 48 kB

of shared memory (“scratchpad“ memory) to be shared

among all the threads of a thread block, or as 48 kB of

L1 cache and 16 kB of shared memory. There is also a

per-SM register file containing 32,768 32-bit registers.

All SMs of the GPU share a common large amount of

global RAM memory (1280 MB for the GTX 570), to

which access is typically quite costly in terms of latency,

as opposed to the on-chip shared memories.

The long latencies involved when accessing global

GPU memory can limit performance in memory inten-

sive applications. Memory accesses can be optimized by

allowing the GPU to coalesce the accesses. When the

32 threads of one warp access a continuous portion of

memory (with certain alignment limitations), only one

memory fetch/store request might be needed in the best

case, instead of 32 separate requests in the worst case if

the memory locations accessed by the threads are very

scattered [15]. In fact, if the L1 cache is activated (can

be disabled at compile time by the programmer), all

global memory accesses fetch a minimum of 128 bytes

(aligned to 128 bytes in global memory) in order to fill

an L1 cache line. Memory access latencies can also be

effectively hidden if some warps on an SM are able to

run arithmetic operations while other warps are blocked

by memory accesses. As the registers as well as shared

memories are split between all warps that are sched-

uled to run on an SM, the number of active warps can

be maximized by minimizing the register and shared

memory requirements of each thread.

3 Demapper algorithms

In this section, we describe various demapper algorithms

that were implemented on the GPU. While non-rotated

Gray-mapped QAM demappers may treat the I and Q

components of the signal as two separate PAM (pulse

amplitude modulation) signals, with rotated QAM con-

stellations the two components become correlated and

the demapper thus becomes more complex. In subsec-

tion 3.1, we describe the rotated QAM constellations

used in DVB-T2, while in subsection 3.2, we describe

various simplifications that can be made in the demap-

per to lower complexity.

3.1 DVB-T2 and Rotated Constellations

In this subsection, we briefly describe the Bit Inter-

leaved Coding & Modulation (BICM) module of a DVB-
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T2 modulator, as well as the rotated QAM constella-

tions supported by the standard.

The input data streams to a DVB-T2 modulator [6],

which are in the form of MPEG-2 Transport Streams

or GSE (Generic Stream Encapsulation) encapsulated

data are first split into one or more Physical Layer

Pipes (PLPs), where each PLP may use different cod-

ing and modulation. The first module of the system

is the Input Processing module. This module converts

the input data streams into DVB-T2 baseband frames.

After passing through the Input Processing module,

each baseband frame is processed by the Bit Interleaved

Coding & Modulation module. A block diagram of this

module is shown in Fig. 3, and it contains the following

stages (in order):

• FEC (Forward Error Correction) coding. DVB-T2

uses an outer BCH code, as well as an inner LDPC

code. The resulting EFC blocks can be either 16200

(short code) or 64800 bits (long code) long. 6 differ-

ent LDPC code rates are available.

• Bit Interleaver (not used for QPSK modulation).

Consists of parity bit interleaving, followed by col-

umn twist interleaving.

• Constellation Mapper, which maps bits onto QAM

constellations. DVB-T2 supports the use of QPSK,

16-QAM, 64-QAM, and 256-QAM modulation. This

module outputs cells, i.e. coordinates in the complex

I-Q plane, where each complex output value repre-

sents 2 (QPSK) to 8 (256-QAM) bits of data.

• Constellation Rotation, if rotated constellations are

used. The cell values produced by the mapper are

rotated in the complex plane (the angle depends

on the modulation used), and the imaginary part is

cyclically delayed by one cell.

• Cell Interleaver. Used to uniformly spread the cells

of a FEC block.

• Time Interleaver. In this block, cells of groups of

FEC blocks, making up TI-blocks – which in turn

make up Interleaving Frames – are interleaved.

As seen above, after Gray mapping of bit sequences

to constellations, the constellation diagram may option-

ally be rotated. The constellation diagrams for QPSK,

16-QAM, 64-QAM, and 256-QAM are rotated by 29.0,

16.8, 8.6, and arctan( 1
16 ) ≈ 3.6 degrees, respectively. If

rotation is enabled, the Q component is also cyclically

delayed by one OFDM (orthogonal frequency-division

multiplexing) cell. The cell interleaver in which the mapped

OFDM cells are further interleaved follows the Q-delay,

thus separating the I and Q components further, pro-

viding signal-space diversity.

The Bit Interleaved Coding & Modulation module is

followed by the Frame Builder and OFDM generation

Fig. 3 Block diagram of the BICM module of a DVB-T2
modulator.

modules [6], however these parts are not relevant for

this article.

3.2 Algorithms

The optimal, although highly complex, maximum likeli-

hood (ML) algorithm for calculating the LLR value for

bit bi (i ∈ [1,m] if we use 2m-QAM) can be expressed

as follows [3]:

LLR(bi) = ln

(
Pr(bi = 1|r
Pr(bi = 0|r

)

= ln

∑x∈C1
i
(e−

D(x)

2σ2 )∑
x∈C0

i
(e−

D(x)

2σ2 )

 ,

(1)

where

D(x) = (rI − ρIxI)2 + (rQ − ρQxQ)2.

Here r =

[
rI
rQ

]
denotes the coordinate of the re-

ceived OFDM cell in the two-dimensional I-Q plane,

ρI and ρQ denote the amplitude fading factors of the

channel, and σ2 is noise variance. C0
i and C1

i denote the

sets of rotated constellation points for which the i:th bit

equals 0 and 1, respectively. Also note that x =

[
xI
xQ

]
in (1).

To simplify (1), one can apply the approximation

[3]:

ln

 ∑
i∈[1,n]

(eai)

 ≈ max
i∈[1,n]

(ai), (2)

which yields the simplified max-log demapper equation:

LLR(bi) ≈
1

2σ2

[
min
x∈C0

i

(
D(x)

)
− min

x∈C1
i

(
D(x)

)]
. (3)

While the max-log simplification of (3) does remove

some complexity (at the cost of degraded demapping

performance), we still need to calculate two-dimensional

distances to 2m points in the case of 2m-QAM mod-

ulation. The authors of [16] discuss the possibility of
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Fig. 4 One of four overlapping subsets of a 256-QAM rotated
constellation diagram, as proposed in [16].

assigning the constellation points of a rotated constel-

lation diagram into four overlapping subsets. This is il-

lustrated in Fig. 4, where one proposed subset is shown

for a rotated 256-QAM constellation diagram. A subset

is chosen based on the signs of the received point’s (r) I

and Q components, and only distances to points within

that subset are calculated using the max-log demap-

per. Depending on the chosen size of the four subsets,

complexity is reduced at the cost of some demapper

accuracy. The subset size shown in Fig. 4 was demon-

strated [16] to yield good demapper performance at a

reduction of 44% in the number of distance calculations

performed for each received OFDM cell. The authors

of [11] also propose a similar division into subsets.
In [10], the authors propose performing an MMSE

(minimum mean squared error) decorrelation followed

by interference cancellation (IC) to decorrelate the I

and Q components. This is similar to methods com-

monly used in MIMO (multiple input - multiple output)

detectors. Based on the derotated and decorrelated I

and Q components, we may perform reduced complex-

ity demapping separately on the two components, sim-

ilarly to traditional QAM demapping. In this case we

have the channel matrix:

H
.
= PQ =

[
ρI 0

0 ρQ

] [
cos θ − sin θ

sin θ cos θ

]
,

where θ is the rotation angle of the constellation dia-

gram. The LLR values after decorrelation are given by

(see [10] for detailed calculations):

LLR(bi) =

βk

[
min
a∈C0

i

∣∣∣∣ x̂MMSE,k

γkk
− ak

∣∣∣∣2 − min
a∈C1

i

∣∣∣∣ x̂MMSE,k

γkk
− ak

∣∣∣∣2
]
,

(4)

where k = 2− (i mod 2), i.e. k equals 1 for odd values

of i, and 2 for even values. This reflects the fact that

odd bits are conveyed by the I component, and even bits

by the Q component in the Gray mapped (non-rotated)

constellation diagram. Also note that, in contrast to the

ML and max-log algorithms, C here denotes the set of

non-rotated constellation points. Furthermore,

x̂MMSE
.
= (HTH + σ2

nI)−1HT r

= QT (P2 + σ2
nI)−1PT r

= QT

[
ρI

ρ2I+σ
2
n
rI

ρQ
ρ2Q+σ2

n
rQ

]
,

Γ
.
=(HTH + σ2

nI)−1HTH

=QT (P2 + σ2
nI)−1P2Q

=QT

 ρ2I
ρ2I+σ

2
n

0

0
ρ2Q

ρ2Q+σ2
n

Q,

and

βk
.
=

γkk
1− γkk

After calculating x̂MMSE and Γ, the LLR calculation

in (4) for a certain bit bi is now only dependent on one

axis of the non-rotated constellation diagram. To fur-

ther decrease complexity, one may replace the minimum

distance calculations in (4) with lookup tables [10].

Interference cancellation may be performed on the

weakest channel (I or Q), which is determined by select-

ing the component corresponding to the smallest value

of ρI and ρQ. To calculate the LLR for the weakest

channel (strongest channel is calculated according to

(4)):

LLR(bi) =

βIC,k

[
min
a∈C0

i

∣∣∣∣ x̂IC,kγIC,k
− ak

∣∣∣∣2 − min
a∈C1

i

∣∣∣∣ x̂IC,kγIC,k
− ak

∣∣∣∣2
]
,

(5)

where

x̂IC,k
.
=

hTk (r− hj āj)

hTk hk + σ2
n

, γIC,k
.
=

hTk hk
hTk hk + σ2

n

, and

βIC,k
.
=

γIC,k
1− γIC,k

,

where j = 1+(i mod 2) (i.e. the opposite channel from

k), and āj is the value of aj for which
∣∣∣ x̂MMSE,jγjj

− aj
∣∣∣2,a ∈

C is minimized (C is the set of all constellation points,

i.e. we choose the one-dimensional point on the axis

corresponding to j which is closest to
x̂MMSE,j

γjj
).
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The algorithms discussed in this section were im-

plemented on the GPU mentioned in section 2 for fur-

ther evaluation. These CUDA implementations are dis-

cussed further in the following section.

4 Implementation

Fig. 5 Illustration of the arrangement of the main input sam-
ples in memory at different stages of running the demapper
and LDPC decoder on the GPU. First, in the main host mem-
ory, input samples are in the form of complex I-Q samples in
arrival order, after which they are interleaved and split into
separate arrays for I and Q samples. These arrays are copied
to the GPU memory. On the GPU, the demapper processes
these samples and produces LLR values for the LDPC de-
coder. The LDPC decoder produces hard bits as its output.
These bits are transferred back to the host memory, and dein-
terleaved.

As mentioned, our implementations of the demap-

per algorithms were realized on an NVIDIA CUDA-

based GPU. The GPU kernels were written in the C

language. The input to the demapper are in the form

of complex cell values where both components are 32-

bit floating point values. This precision is also retained

within the GPU kernels. In these implementations, the

output LLR values are however converted to 8-bit fixed

point values, due to the fact that the GPU-based LDPC

decoder uses this LLR format [9]. This conversion may

not be necessary if another, high-precision, LDPC de-

coder is used. The GPU implementations operate on

cells belonging to 128 DVB-T2 FEC (forward error cor-

rection) frames in parallel. Each FEC frame corresponds

to 16200 or 64800 bits, depending on if short or long

LDPC codewords are used [6].

Fig. 5 illustrates the arrangement of the main in-

put values in memory at various stages of performing

demapping and LDPC decoding on the GPU. Other

values, such as estimated noise figures and channel fad-

ing factors are arranged similarly. As seen in the figure,

the input I-Q samples, which are arranged in the or-

der of arrival, are interleaved such that the first cell

(sample) of all 128 FEC frames are arranged consecu-

tively in memory, followed by the second cell of all code-

words, etc. There are n/m cells per FEC frame if we use

2m-QAM and a FEC frame length of n. The I and Q

samples are also separated into separate arrays at this

stage. After interleaving, the samples are transferred to

the GPU memory. Running the demapper kernels pro-

duces LLR values for each of m bits per cell. The LDPC

decoder produces hard bits as its output. After copying

the bits back to host memory, we deinterleave the bits

back into the original sample ordering.

GPU threads were created such that the 32 threads

of a thread warp would operate on cells from 32 consec-

utive FEC frames. This combined with organizing data

in memory, as illustrated in Fig. 5, such that the data

needed for 32 consecutive FEC frames are also consec-

utive in memory, gives good memory coalescence. This

arrangement of thread blocks and memory does not sig-

nificantly affect demapper throughput (as compared to

the input ordering), since the memory access patterns

during demapping are the same between neighboring

cells in the same FEC block as between the same cell

in different FEC blocks. It does, however, greatly im-

prove LDPC decoder throughput [9], where decoding

the same cell of different FEC blocks results in very

similar memory access patterns, while decoding neigh-

boring cells results in scattered memory accesses with

fewer opportunities for memory access coalescing.

Thread blocks were set to be 256 threads in size,

i.e. one thread block contains threads demapping 2 cells

from all 128 frames. The remainder of this section pro-

vides some implementation details for the algorithms

presented in section 3.
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4.1 ML Demapper and Max-Log Demapper

The implementation of the full maximum likelihood

demapper described by (1) was implemented roughly

as follows. First we loop over each constellation point

x ∈ C, where the expression d := e−
D(x)

2σ2 is calculated.

For 2m-QAM, 2m sums, S = [su,v]m×2, were needed to

store the two sums for each of the m LLRs. In each loop

iteration, we then perform si,k := si,k + d,∀i ∈ [1,m]

— where k is 1 if x ∈ C0
i , and 2 if x ∈ C1

i — in an

inner loop.

After this main loop, we calculate

LLR(bi) := ln(si,2/si,1),∀i ∈ [1,m],

where LLR(bi) is converted to a fixed point 8-bit value.

The implementation of the max-log demapper is

quite similar. Here, for each constellation point, let d :=

D(x), and we use S to store the smallest values of d in-

stead of accumulating sums, i.e. ∀i ∈ [1,m] : si,k := d iff

d < si,k. In the final loop, we then calculate LLR(bi) :=

(si,1 − si,2)/2σ2,∀i ∈ [1,m].

4.2 MMSE and MMSE-IC Demapper

Two demappers based on MMSE decorrelation were

implemented for comparison. The first implementation

calculates all LLRs according to (4), while the second

implementation performs IC and calculates the LLRs

for the bits conveyed by the worst channel according to

(5). Both of these implementations consist of two sepa-

rate GPU kernels. In the MMSE-only case, one kernel

calculates the LLRs corresponding to the I channel, and

the other calculates LLRs corresponding to the Q chan-

nel. When IC is used, one kernel calculates LLRs cor-

responding to the strongest of the two channels, while

the other calculates LLRs for the weaker channel. This

makes code for each kernel shorter, and avoids branch-

ing instructions in the kernels.

Furthermore, for both implementations, two one-

dimensional lookup tables were used for calculating the

LLRs after MMSE decorrelation. The tables contain the

value

min
a∈C0

i

∣∣∣∣ x̂MMSE,k

γkk
− ak

∣∣∣∣2 − min
a∈C1

i

∣∣∣∣ x̂MMSE,k

γkk
− ak

∣∣∣∣2
for 1024 (in our case) values of

x̂MMSE,k
γkk

, where one

table contains the values for k = 1 and the other for

k = 2. Each table thus contains 1024 ∗ m/2 entries

when using 2m-QAM. The large table size was chosen

for precision, as smaller sizes were not found to affect

demapping speed significantly.

5 Measurement results

In this section, measured throughputs of the imple-

mented demapper algorithms are presented, along with

simulation results that measure BER (bit error rate)

performance at certain SNR (signal-to-noise ratio) val-

ues.

5.1 Throughput measurements

Within the DVB-T2 physical layer simulator used for

testing the implementations, the OFDM cells were trans-

ferred to the GPU, after which the demapping of cells

belonging to 128 FEC frames was performed. The out-

put LLR values were not transferred back to the host,

as the LDPC decoder was also implemented as GPU

kernels. Thus, only the output hard-decision bits of the

LDPC decoder were transferred back to the host for

further processing, as illustrated in Fig. 5. The bit-

deinterleaver operation, which is normally performed

after demapping (see Fig. 3), was postponed until af-

ter the LDPC decoder, and was implemented using

lookup tables on the host CPU. Postponing the bit-

deinterleaver is possible if one makes the LDPC decoder

operate on interleaved LLR values and bits by appro-

priately interleaving the columns of the parity-check

matrix defining the LDPC code.

Table 1 Execution times (in seconds) of the various demap-
per algorithms on the GPU, given 16-QAM, 64-QAM, and
256-QAM modulation schemes.

Modulation ML Max-Log MMSE MMSE-IC
16-QAM 0.0101 0.0070 0.0028 0.0032
64-QAM 0.0255 0.0218 0.0022 0.0024
256-QAM 0.0832 0.0788 0.0019 0.0021

Table 2 Throughput (in Mbps) of the combined demapper
and LDPC decoder operation on the GPU. This figure also
includes copying of data between the host and GPU.

Modulation ML Max-Log MMSE MMSE-IC
16-QAM 70.8 72.5 75.4 75.0
64-QAM 64.1 66.0 78.2 78.1
256-QAM 44.9 45.9 80.0 80.0

Table 1 shows the measured execution times in sec-

onds to process one batch of 128 FEC frames of the four

implemented GPU-based demappers on the test setup.

This measured time is the average over 10 blocks of 128

FEC frames. As the long LDPC codeword length was

used, each FEC frame contains 64800 bits of data. The



8 S. Grönroos, K. Nybom, J. Björkqvist

LDPC decoder (as described in [9]), running 30 itera-

tions of the message passing decoding algorithm, had a

run time of approximately 0.09 seconds for each block of

128 FEC-frames. Table 2 shows the average throughput

in Mbps when running both the demapper and LDPC

decoder on the GPU. Included in these measurements

are the demapper, the LDPC decoder, as well as copy-

ing the data between host and GPU. The throughput

has been calculated as (128 ∗ 64800)/t bps, where t is

the total execution time for 128 FEC frames.

We can see from Table 1 that the MMSE-based al-

gorithms are roughly 40 times faster than the ML algo-

rithm and its max-log approximation when using 256-

QAM. This is expected, and is largely due to the fact

that we can calculate distances in one dimension after

MMSE decorrelation, as well as due to the use of lookup

tables. Note that, as opposed to the ML and max-log al-

gorithms, the MMSE implementations decrease slightly

in speed with lower order modulations. This is most

probably due to the need for running a larger amount

of total threads with lower order constellations, due to

each cell carrying fewer bits, which increases the com-

plexity per bit of the MMSE decorrelation. We can also

see that the advantage of the MMSE implementations

decreases dramatically with lower modulation order. At

16-QAM, the fastest (i.e. non-IC) MMSE algorithm is

only 2.5 times faster than the max-log implementation.

This is also to be expected, as the number of distances

calculated by the ML and max-log implementations are

very low at this setting. Furthermore, a max-log demap-

per using subsets as proposed in [16] was also imple-

mented and measured for 256-QAM, where each subset

contained 144 of the 256 constellation points (the sub-

set size shown in Fig. 4). This yielded an execution time

of 0.0538s for the demapper, and an overall throughput

of 53.3 Mbps.

Annex C of the DVB-T2 standard assumes that re-

ceived cells can be read from a deinterleaver buffer at

7.6×106 OFDM cells per second [3,6]. At the 16-QAM,

64-QAM, and 256-QAM modulation settings, we can

represent 4, 6, and 8 bits per cell respectively. This

means that the demodulator should be able to perform

at a maximum bitrate of up to 60.8 Mbps (Megabits

per second) in the 256-QAM case, as well as 30.4 and

45.6 Mbps in the 16-QAM and 64-QAM cases, respec-

tively. These throughput requirements are met with all

demapper implementations when using 16-QAM or 64-

QAM modulation. In the case of 256-QAM, however,

the maximum required throughput was exceeded only

using the fast MMSE-based implementations.

One may further affect the combined throughput by

lowering or increasing the maximum amount of LDPC

iterations used. In [9], however, it is shown that er-

ror correction performance is quite significantly dete-

riorated once we lower the amount of iterations below

30. In order to gain better error correction performance

in difficult channel conditions, we may however wish to

increase the amount of iterations in case we exceed the

required throughput.

5.2 Simulated BER performance

In the previous subsection we showed that the sim-

plified demapping algorithms do result in significantly

higher throughputs when implemented on the GPU.

The simplifications do also, however, have a negative

impact on the BER performance. In order to analyze

the throughput-accuracy tradeoff, we simulated the var-

ious GPU implementations in a DVB-T2 physical layer

simulator.

The simulator was set to use the Rayleigh-fading

(“P1”) channel model specified in [4, 5]. The bit er-

ror rate measured was the remaining BER after BCH

decoding (i.e. after all stages of the demodulator). In

addition to simulations for all GPU demapper imple-

mentations, we also include reference simulation results

produced by CPU implementations that use the ML

demapper.

While the LDPC decoder used in all GPU mea-

surements is the min-sum decoder with 8-bit internal

numeric precision as described in [9], we include refer-

ence CPU measurements using both the optimal sum-

product algorithm (SPA), and the min-sum algorithm,

both using 32-bit floating point numbers internally. In

addition to higher numeric precision, the CPU imple-

mentations also run up to 50 LDPC decoder iterations,

as opposed to a maximum of 30 for the GPU implemen-

tations (30 iterations was chosen in order to relate to

the throughput measurement setup in the previous sub-

section). The CPU measurements using the SPA shows

the performance when both the mapper and LDPC de-

coder are close to optimal, while the difference between

the CPU measurements using min-sum and GPU mea-

surements with the ML demapper give an indication of

the impact of the limited numeric precision and lim-

ited number of iterations on BER performance. Since

all GPU implementations use the same LDPC decoder,

the difference between these are the most important as

they show the difference between the various demapper

implementations.

In Fig. 6(a), we present the measurement results for

64-QAM modulation at an LDPC code rate (ratio of

information bits to total number of bits including par-

ity bits) of 1/2 in the simulated Rayleigh channel. The

CPU implementation using the SPA LDPC decoder and

ML demapper is clearly the most accurate. We can also
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see that switching to the min-sum LDPC decoder in the

CPU implementation carries a penalty of roughly 1.3

dB at a BER level of 10−4, while the penalty for using

the lower precision GPU min-sum decoder instead of

the floating point CPU min-sum decoder is less than 0.2

dB in this case. Furthermore, the GPU implementations

of the ML and Max-Log algorithms perform within 0.1

dB of each other. The penalty for using MMSE-IC over

ML is roughly 0.5 dB. Leaving out the interference can-

cellation in the MMSE approach appears to carry a rel-

atively large performance penalty of around 0.5 dB.

The results for 256-QAM (also 1/2-rate), as pre-

sented in Fig. 6(b), differ from the 64-QAM case to

some extent. The performance gap between the CPU

implementations using the SPA and min-sum decoders

is slightly larger, at around 1.5 dB, than in the 64-

QAM case. In the 256-QAM case, however, the penalty

for using MMSE-IC over ML is less than 0.2 dB, and

the penalty for leaving out IC is slightly lower at less

than 0.4 dB.

(a) 64-QAM, 1/2-rate

(b) 256-QAM, 1/2-rate

Fig. 6 Measurement results for 64-QAM and 256-QAM
modulation with an LDPC code rate of 1/2. The two CPU
implementations use the SPA and min-sum LDPC decoders
(with a maximum of 50 iterations), respectively, together with
the ML demapper. The GPU implementations use a lower
precision min-sum LDPC decoder (with a maximum of 30
iterations) and the various demapper implementations dis-
cussed in section 4.

It is worth noting that both the reference CPU im-

plementations are too slow to consider when real-time

performance is required. Based on the measurements

shown in Fig. 6, the MMSE-IC approach appears to be

a good tradeoff between accuracy and speed, at least

when using 256-QAM, as it yields almost double the

combined LDPC and demapper throughput (see Ta-

ble 2) of the ML and Max-Log implementations at an

accuracy penalty below 0.5 dB SNR. Given the larger

penalty when using 64-QAM compared to 256-QAM,

the penalty might be even higher in lower modulation

orders. This is however a minor issue, as the through-

put of the ML and Max-Log implementations increase

rapidly with lower modulation order. An SDR imple-

mentation could therefore choose the appropriate demap-

per depending on the channel parameters and condi-

tions.

6 Conclusion

In this article, we have implemented and compared var-

ious demapping algorithms for rotated QAM constella-

tions on a modern GPU. Benchmarks show that if a

fast demapping algorithm is chosen, the demapper may

share the GPU with an LDPC decoder while fulfill-

ing the maximum required throughput requirements of

the standard, even using the most complex 256-QAM

mode. We have also shown that for up to 64-QAM, we

may be able to run even the optimal, most complex, ML

demapper, while still reaching the throughput target.

Furthermore, we measured the penalties in terms of

BER of various simplifications of the demapper. These

measurements did show a clear difference in accuracy

between the ML or Max-Log implementations of the

demapper and the MMSE-based implementations. The

difference remained smaller than 0.5 dB in both the 64-

QAM and 256-QAM cases if MMSE with interference

cancellation was used, however.

In the future, we hope to integrate the decoder im-

plementations with other software defined signal pro-

cessing blocks to build a completely software defined,

real-time, receiver chain.
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