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Abstract: Local Search (LS) has proven to be an efficient optimisation technique in clustering applications and in the minimisation of
stochastic complexity of a data set. In the present paper, we propose two ways of organising LS in these contexts, the Multi-operator
Local Search (MOLS) and the Adaptive Multi-Operator Local Search (AMOLS), and compare their performance to single operator
(random swap) LS method and repeated GLA (Generalised Lloyd Algorithm). Both of the proposed methods use several different LS
operators to solve the problem. MOLS applies the operators cyclically in the same order, whereas AMOLS adapts itself to favour the
operators which manage to improve the result more frequently. We use a large database of binary vectors representing strains of bacteria
belonging to the family Enterobacteriaceae and a binary image as our test materials. The new techniques turn out to be very promising in
these tests.
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1. INTRODUCTION

Local Search (LS) has proven to be an efficient optimisation
technique in clustering applications [1]. In the present paper,
we propose two ways of organising LS, the Multi-Operator
Local Search (MOLS) and the Adaptive Multi-Operator
Local Search (AMOLS). Both techniques use several differ-
ent LS operators to solve the problem.

In recent years, there has been great activity in the
research of efficient solution methods for hard combinatorial
optimisation problems (see Reeves [2] for a survey of
methods). The exact solution of relatively small problem
instances can sometimes be found by modern optimisation
packages like CPLEX, or by tailored branch-and-bound
methods due to the remarkable progress of these systems.
There are still numerous problems (like clustering), where
the exact solution is ruled out, at least for instances of
practical relevance, and one has to resort to approximative
search methods. These can be roughly categorised as con-
struction heuristics, descent methods (including local search
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heuristics), genetic algorithms, tabu search and simulated
annealing. The above classification is not strict, and hybrid
methods are becoming more and more popular. In fact, the
genetic algorithms belong to a larger set of evolutionary
computation methods (containing genetic algorithms, gen-
etic programming and evolutionary strategies) [3].

Local Search (LS), simulated annealing [4] and Tabu Search
(TS) [5] type algorithms modify the current candidate sol-
ution by a search (modification or move) operator which
looks for a better solution in a neighbourhood of the current
solution. These algorithms are usually written to use only
one modification operator [1,6].

Here, we investigate alternative methods of cycling a pool
of various different LS operators (MOLS), and adaptively
drawing random methods from the pool of available oper-
ators (AMOLS). Different LS operators have their advan-
tages and drawbacks; a globally best optimiser does not exist.
Here we refer to the ‘no-free-lunch’ theorem [7]. Usually, a
deterministic approach leads to losses in robustness of the
algorithm, i.e. the efficiency depends strongly upon the
problem instance and the initial solution. On the other
hand, most of the search steps in LS do not produce any
enhancement in the value of the cost function. The use of
multiple search operators of LS can be fruitful because (1)
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despite the determinism, several directions in the search
space are examined, and (2) some operators still can exploit
randomness, even if we have reached a local minimum point.

The idea of multiple search operators has previously been
successfully applied in the design of Adaptive Genetic Algor-
ithms (AGA). In this context, various different crossover
techniques and different mutation probabilities are used in
an adaptive way [8,9]. This gives us a robust technique
which adapts itself to use those search operators which are
best suited for the problem instance at hand.

In the present paper, we apply the above idea in a
different way. While the adaptation in AGA is made for a
population of solutions, in our LS-implementation we con-
sider only one solution. This solution will be greedily
improved by several different LS-operators. The benefit of
this approach is the simplicity of the implementation. On
the other hand, we loose the potential power of parallel
search of GA.

The rest of the paper is organised as follows. Background
theory is presented in Section 2. In Section 3 we present
the different LS operators and MOLS algorithm in detail.
Then we extend MOLS to its adaptive version (AMOLS).
We discuss the data and the test procedures in Section 4,
and in Section 5 we present the results. The paper ends
with a short discussion.

2. PROBLEM FORMULATION

Let x(l) be a d-dimensional binary vector, i.e. a vector with
components x1, x2, %, xd, where xi = 0 or 1 for i = 1, %,
d. Suppose that we have a set of t binary vectors x = {x(1),
x(2), %, x(t)} to be clustered (or placed, partitioned) into k
disjoint clusters C1, C2, %, Ck. We define the centroid of
the cluster Cj as ûj = (û1,j, %, ûdj), where 0̂ij = tij/tj. Here tj

stands for the number of vectors in the cluster Cj, and tij

the number of vectors in cluster j with the ith component
being one. For each vector x(l), the distortion from the
centre of its cluster is defined by the squared l2-distance
(Minkowsky 2-metric)

ix(l) − ûji2
2 = Od

i=1

(x(l)
i − û(l)

ij )2 (1)

It is common to assign a vector to the cluster for which
Eq. (1) is minimised. Another method of clustering is based
on the minimisation of stochastic complexity [10,11]. In this
case, if we define a set of cluster weights L̂ = (l̂1, %, l̂k),
where l̂j = tj/t and we assign x(l) to the cluster for which
the codelength

D(x(l), ûj) =

− Od

i=1

((1 − x(l)
i ) log2 (1 − ûij) (2)

+ x(l)
i log2 ûij) − log2 l̂j

assumes its least value.
Following Gyllenberg et al [10], we define the stochastic

complexity
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The first two terms on the right-hand side of Eq. (3) can
be interpreted as the length of the prefix, i.e. the complexity
of the clustering structure (cluster representatives). The last
term of Eq. (3) is the complexity of describing the vectors
with respect to the clustering (3). The minimisation of
stochastic complexity as a function of k is an answer to the
question of finding the optimal number of clusters, and is
related to the principle of the minimum description/message
length (MDL/MML) [10,12].

We consider two different ways of constructing a clus-
tering, viz. minimisation of Eq. (1) over all sample vectors
for {C1, %, Ck}, and minimisation of Eq. (3). The first
alternative produces ball-like clusters, whereas the second
method minimises the total complexity of the clustering.

For some operators used by the clustering algorithms, we
need a simple measure for the distortion or incoherence of
a single cluster. We chose to define the distortion of the
cluster Cj as the average Hamming-distance to the
rounded centroid

aj = (a1j, %, adj), aij = ûij + 1/2 (4)

The Hamming-distance of the vector x(l) to the rounded
centroid of Cj is defined by

r(x(l), Cj) = Od

i=1

ux(l)
i − aiju (5)

and thus the distortion of a cluster Cj is the average distance
over the vectors x(l) assigned to the cluster, i.e. the distortion
of Cj is given by

Rj =
1
tj
O

xPCj

r(x, Cj) (6)

3. ALGORITHMS

3.1. Search Operators

Let us suppose that we are given a set x of t d-dimensional,
binary data vectors x = {x(1), %, x(t)} and an initial clustering
as defined by the k cluster centroids (û1j, %, ûdj). We next
recall six local search operators which can be used for
improving the clustering. These operators are known from
the context of vector quantisation [13], but we have modi-
fied them to suit the minimisation of stochastic complexity.

SJ1: Split-and-join (variant 1)
Often it turns out to be profitable to code two very close
clusters as a single one, and to use the centroid thus
obtained to code a cluster at some other part of the vector
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space. The SJ1 operator takes this into account by joining
the two closest clusters according to the l2-distance of cen-
troids, and by splitting the most incoherent cluster according
to the internal distortion (average Hamming-distance to
cluster representative (6)).

RWO: Replace-worst
As noted above, a cluster with a high internal distortion is
likely to be coded inefficiently when measured by stochastic
complexity. The replace-worst heuristic draws a new random
centroid from the input data set for the most incoherent
cluster. Incoherence is measured by the internal distortion
(6). Application of GLA after this search operator will re-
map the vectors. Note that the random choice among the
input data means that the new centroid favours the more
dense regions of the d-dimensional space.

RSA: Replace-smallest
Small clusters are likely to be coded inefficiently, because a
code word consumed to the coding of a small cluster could
perhaps be used more efficiently for something else. Small
clusters also emerge as a side-effect of other search operators.
One possibility to fix this is to draw a new random centroid
for the smallest cluster. Again, an application of GLA after
this search operator re-maps the vectors.

RSW: Random-swap
Global and random changes of a cluster centroid may help
the algorithm escape from a local minimum. The operator
selects a random cluster and draws a new random centroid
from the input data set for the chosen cluster. It may be
that no other method is applicable any longer, but the
random-swap still helps us to proceed towards a more promis-
ing region of the search space.

SJ2: Split-and-join (variant 2)
This operation joins the smallest cluster and its closest
neighbour. The closeness of the clusters is measured by the
l2-distance (1) between the cluster centroids. After joining,
the operator splits the most incoherent cluster according to
the internal distortion (6).

CMO: Class-move
As noted for the random-swap operator, it is necessary to
introduce randomness in the search. On the other hand,
the solution process may already be on the right track
towards an advantageous region of the search space, so that
it is only profitable to make minor changes. This is pursued
in the class-move operator, which is the same as random-
swap, the only difference being that the new centroid is
drawn randomly from the same cluster which was chosen
to be replaced. This operator moves the cluster into a
random direction in the search space without destroying
it completely.

3.2. Generalised Lloyd Algorithm

The GLA method [14,15] starts with an initial solution
which can be chosen arbitrarily (it can also be an intermedi-
ate result of the search algorithm). The solution is then
improved iteratively in a loop (Lloyd-iteration), where each

item x(l) in x is checked against each of the clusters {C1,
%, Ck}, and then x(l) is assigned to the closest cluster. After
all of the vectors have been assigned, the centroids and cost
function are recalculated and the same process is repeated.

3.3. Multi-Operator LS

We first start by giving a very primitive organisation to the
multi-operator search in this section: the MOLS algorithm
applies a sequence of six LS operators (SJ1, RWO, RSA,
RSW, SJ2 and CMO) iteratively. This simple algorithm
thus applies the operators in a round-robin fashion. The
initial classification in Step 1 is generated by taking k
randomly chosen data vectors as cluster centroids, and by
assigning the data vectors to the nearest clusters [16]. This
approach is considered to be weaker than the widely used
McQueen’s method [17,18], but on the other hand, the final
result of the LS does not depend strongly upon the quality
of the initial solution, and the method of selecting the
nearest cluster is fast.

Algorithm MOLS
Step 1. Draw k random initial centroids from the input

data set;
Step 2. Run two iterations of GLA [15] with the l2-

metric. Let the result of the clustering be Pbest, and
calculate SC(Pbest) by formula (3);

Step 3. Let the initial search operator be SJ1;
Step 4. Iterate the steps 4.1 to 4.5 max-iter times:

Step 4.1. Apply the current search operator to
Pbest and let the solution be Pmod;

Step 4.2. Apply two iterations of GLA with the
l2-metric to the solution Pmod;

Step 4.3. Calculate SC(Pmod);
Step 4.4. If SC(Pmod) , SC(Pbest),

then let the Pbest := Pmod and SC(Pbest)
:= SC(Pmod);

Step 4.5. Change the search operator to the next
in the list
(SJ1, RWO, RSA, RSW, SJ2, CMO)
cyclically;

Step 5. Calculate L̂;
Step 6. Apply GLA to minimise D given by Eq. (2),

Pbest as the initial solution, until the result does
not change.

At Step 1 we select the k initial centroids among the t
data vectors such that all of these are distinct. The algorithm
then improves the initial solution by the GLA [15], also
known as k-means and GBL (Step 2). After this, the main
loop (Step 4) applies the various local search operators and
GLA, moving in the direction of better solutions.

We determine the closeness with the l2-metric in the
main loop (Step 4) and with formula (2) in Step 6 of the
algorithm, because we are minimising stochastic complexity.
The number of GLA iterations is restricted to two in Step
4. In the final step, GLA is iterated until there is no change
in the optimisation criterion.
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3.4. Adaptive Local Search

Cyclical application of the LS operators in MOLS is, in the
long run, very similar to a random choice of LS operators
with uniform distribution. This observation helps us to
enhance the multi-operator search. Depending upon the
data, the initial values of the centroids and the state of the
search, different search operators work better than others.
On the other hand, when a certain operator is used in
succession, its power may become exhausted. One way to
overcome this shortcoming is to make the algorithm adaptive.
This means that when one operator turns out to be successful
(the application of the operator leads to a better value of
the function representing the optimisation criterion, here
stochastic complexity), the algorithm should use it more
frequently. When doing this, we should still keep the option
of switching to another search operator at a later stage of
the solution process. Next, we propose a way of
accomplishing this kind of strategy.

Let the initial distribution of the probabilities of using
the different LS operators be

p(0)(y) =
1
6
, y = 1, %, 6

Here y is an operator from the set {SJ1, RWO, RSA, RSW,
SJ2, CMO}. This means that each operator is initially
equally probable to be used. We define the indicator func-
tion

f(s)(y) =

5
1, if operation y was successful (decreased Eq. (3)) at the

iteration s

0, otherwise

Let n(s)
y be the number of successes for operator y from the

beginning up to iteration s. Initially, n(0)
y = 0 for all y. In

every iteration, the success counts are updated by

n(s+1)
y = n(s)

y + f(s+1)(y)

and we denote the sum of successes by n(s) = S6
y=1 n(s)

y . Then
we update the probabilities for using different operators by

p(s+1)(y) = Hp(s)(y) if f(s+1)(y) = 0 for all y

n(s)
y + f(s+1)(y)+a

n(s) + 1 + 6a
otherwise

Because f(t+1)(y) = 1 is only true for one y (= y*),

O6

y=1

p(s+1)(y) =
n

(s)
y p

+ 1 + a + n(s) − n
(s)
y p

+ 5a

n(s) + 1 + 6a
= 1 (7)

In this model, the parameter a controls the weight of
the underlying uniform distribution. If a is small, adaptation
happens faster. On the other hand, a should not be too
small, because this implies that no p(s)(y) ever becomes zero.
There is one drawback in this simple model; it has a long
memory. Next we enhance this model to use a shorter
memory, so that in a situation where a previously successful

operator becomes inefficient, the model can adapt to the
situation. We define a weight w(s)

y for each operator;
initially, take

w(0)
y = 0, for all y

and denote the sum of the weights by w(s) = S6
y=1 w(s)

y .
The update values of the probabilities for using different

operators is now given by

p(s+1)(y) = Hp(s)(y) if f(s+1)(y) = 0 for all y

w(s)
y + f(s+1)(y) + a

w(s) + 1 + 6a
otherwise

(8)

We update the weights w(s)
y after each iteration by

w(s+1)
y = w(s)

y + f(s+1)(y) − b(t) (9)
if w(s)

y + f(s+1)(y) − b(s) $ 0

In this model, we have a new control parameter b(s),
which controls the length of the memory. If b(s) = 0 for
all s, then w(s)

y = n(s)
y for all s and y, and the new model is

identical to the previous one. The larger the value of b(s),
the quicker the model forgets its past history. Usually, at
the beginning of the clustering process, the operators have
larger success rates than at the end. Thus, the model works
better if b(s) is larger for small s, and vice versa. By
substituting n(s)

y* with w(s)
y* Eq. (7) also holds for the new

model.
The new improved algorithm looks as follows:

Algorithm AMOLS
Step 1. Draw initially k random cluster centroids from the

input data set;

Step 2. Let s = 0 and p(s)(y) =
1
6

for all y;

Step 3. Perform two iterations of GLA with the l2-metric.
Let the result of the clustering be Pbest and calcu-
late SC(Pbest) by formula (3);

Step 4. Draw a random initial search operator amongst
(SJ1, RWO, RSA, RSW, SJ2, CMO);

Step 5. Iterate the steps 5.1 to 5.7 until s = max-iter:
Step 5.1. Apply search operator to Pbest and let

the solution be Pmod;

Step 5.2. Apply two iterations of GLA with l2-
metrics to the solution Pmod;

Step 5.3. Calculate SC(Pmod);
Step 5.4. If SC(Pmod) , SC(Pbest),

then let the Pbest := Pmod and SC(Pbest)
:= SC(Pmod);

Step 5.5. Increase s by one.
Update probabilities p(s)(y) as defined
by formula (8);

Step 5.6. Update weights w(s)
y as defined by for-

mula (9);
Step 5.7. Draw a random operator amongst

(SJ1, RWO, RSA, RSW, SJ2, CMO)
weighted by distribution p(s)(y);
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Step 6. Calculate L̂;
Step 7. Apply GLA to minimise D given by (2) using

Pbest as an initial solution, until the result does
not change.

3.5. Tabu Search

The tabu search algorithm [5] starts from a random initial
solution, and then tries to improve it by making candidate
moves in the neighbourhood of the current solution. If the
best of the candidates is better than the current solution,
we update the current one by the best candidate. Otherwise,
we let the current solution be the best candidate from
among those not in the so-called tabu list. The list has a
limited size (like 20 in Fränti et al [5]), and the new current
solution replaces the oldest one in the list.

The solution is expressed as a set of cluster centroids as
in MOLS and AMOLS. (For a partition-based tabu search
variant, see Fränti et al [5].) The initial classification is
generated in the same way as with the MOLS and AMOLS
methods, and fine tuned with GLA. In the trial classi-
fications, a randomly chosen class is made obsolete, and a
new one is generated by selecting a random data vector as
the cluster centroid. Each data vector is then reassigned to
the nearest class according to the l2-metric. GLA is again
applied to the solution.

It should be noted that the framework of tabu search
leaves many degrees of freedom for the design and
implementation of the algorithm (see Glover and Laguna
[18] for a thorough discussion of the TS components and
their role). These features include, among others the aspir-
ation criterion (when to override a tabu restriction), the
determination of tabu status on the basis of solution compo-
nents (attributes), the determination of neighbourhood, the
use of complementary tabu memory structures, intensification
and diversification of the search, etc.

3.6. Comparison of Search Methods

The three search methods described above are variants of
neighbourhood search. All start with an initial solution, and
look at the neighbourhood of it in order to find a new
more promising solution. The first two of these methods
(MOLS and AMOS) are myopic, in the sense that they
only move in the direction of locally better solutions. In a
sense, they both are descent methods, but they are randomised
because of the RWO, RSA, RSW and CMO operators.
These operators perform a nondeterministic move in the
search space. It can affect several clusters due to the appli-
cation of GLA-steps, but still the effect is most probably
rather limited. This is because the operators are applied to
one or two clusters.

In contrast to the above, tabu search exploits the history,
and is able to step in a direction with a worse cost function
value. This increases the changes to cover a larger region
of the search space. One can thus expect several different
local minima to be found by the method. Perhaps this is
one of the reasons why the results for TS have been

excellent for a broad set of real applications in the literature.
On the other hand, it is difficult to decide what would be
the (standard or) best setting of the TS algorithm from
among numerous possible options. It is therefore interesting
to see whether a conceptually much simpler technique (like
MOLS or AMOLS) can compete with this sophisticated
technique. (At least we can, with a simple technique, use
the extra time gained to repeat the same algorithm with
different initial solutions, i.e., we may employ a so-called
iterated descent technique.)

The AMOLS technique uses adaptation in the operator
selection, which makes the method more robust and excludes
much of the fine tuning. The same idea could be applied
to TS, but then one has to reconsider the book-keeping of
the adaptation parameters.

4. TEST PROCEDURE

We implemented the MOLS and AMOLS algorithms with
the ANSI C language, and ran them with Digital UNIX
on an AlphaStation 500/400.

The algorithms were applied to two types of test sets.
The first test set was a binarised version of the picture
‘Bridge’ (see Fig. 1). It consists of 4096 16-bit vectors (2813
of these were unique). The 16-bit blocks were formed from
4 3 4 pixel areas of a grey scale image after a BTC-type
quantisation into two levels, according to the mean value
of the block [20].

The second test set consisted of data of 5313 strains of
bacteria belonging to the Enterobacteriaceae family. The
source of the material was the database of Enterobacteriaceae
and Vibrionaceae compiled from 1972 to 1989 by the Enteric
Bacteriology Laboratories, CDC, Atlanta, GA, USA. Each
strain was characterised by a 47-bit binary vector. A detailed
description of the data can be found elsewhere [21,22]. We
call this data set Entero.

We applied the MOLS and AMOLS methods ten times
to each of the test sets using 5000 iterations. We used 62
clusters for the bacterial data and 256 for the image data.
In previous studies [1,22], we have shown that 62 is the
optimal number of clusters for the bacterial data; on the
other hand, 256 is a typical codebook size in image com-
pression. We let a = 2.5 and the function b(s) be decreasing
with respect to s (see Fig. 2).

For the purpose of comparison, we let the LS algorithm
run with random-swap only (RSLS). We also performed
repeated GLA tests, so that the running time was approxi-
mately the same (approximately one hour on a 400 MHz
Alpha CPU) as for MOLS and AMOLS with 5000 iter-
ations. This gave 400 GLA repetitions.

For comparison with TS with the standard settings of
section 3.5 and some other well known methods (SOM =
Self Organising Maps [23], SA = Simulated Annealing [4])
and PNN = Pairwise Nearest Neighbour [24], we modified
the MOLS and AMOLS methods to minimise the distortion

MSE =
1
t O

t

l=1

Ok

j=1

u(l)
j Od

i=1

ux(l)
i − aiju (10)



353Clustering by Adaptive Local Search

Fig. 1. Greyscale and binary versions of the ‘Bridge’ test image.

where u(l)
j = 1 when x(l) belongs to the jth cluster, and zero

otherwise. Here the cluster centroids a1, %, ad are the
rounded Eq. (4). In this test, we used 10,000 iterations of
MOLS and AMOLS, which roughly corresponds to the
parameter settings of the TS. This comparison was only
performed for the data set Bridge due to the availability of
the results for TS, GLA, SA, SOM and PNN (see Fränti
et al [5]).

Finally we studied the effect of different choices of b(s).
To do this, we sampled 1000 vectors from the Bridge data
set, and applied the AMOLS algorithm to this sample. We
used various different b(s) functions for k = 64 clusters. We

Fig. 2. The function b(s) used in test runs for Bridge and Entero.

let b(s) be a constant (0.0, 0.2 and 1.0) and a decreasing
function of s (see Fig. 2). The value 0.0 means that AMOLS
never forgets what it has learnt (i.e. it uses the first adaptive
model presented in Section 3.4). On the other hand, the
value 1.0 means that AMOLS forgets everything after one
iteration step.

5. RESULTS

It is evident that, during the solution process, the power of
some search operators is exhausted, and the MOLS should
skip these and use other operators instead. The question is
whether AMOLS can do any better. Figure 3 demonstrates
the operation of the two algorithms for a typical run with
Bridge. An ‘x’ is marked each time the algorithm finds a
new, better value of SC. The figure shows that the adaptive
pattern is already more clearly present at the beginning of
the AMOLS process, whereas due to the cyclic application
of the search operators, MOLS improves the solution quite
evenly by all six operators. At the end of the process,
patterns of improving methods look similar for AMOLS and
MOLS, but AMOLS has the ability to alternate between
different operators.

If we count the percentage of successful applications of
the different operators, we can see that with MOLS, the
profiles are similar with both data sets, whereas with
AMOLS they are different. Figure 4 shows the relative
frequencies of successful applications of different operators
when counted over all of the repetitions. The figure shows
that AMOLS can exploit the random-swap operator more
effectively on the image data (the proportion of random-
swap is 29% versus 8% of all successful applications). On
the bacterial data, AMOLS exploits more replace-worst oper-
ator (46% versus 37% of successful applications). Both cases
show the power of adaptation; different operators are more
effective on different types of data sets.

Figure 5 shows the development of SC as a function of
iteration index s for the best runs. We observe that the SC
values of AMOLS are lower throughout the search with the



354 M. Gyllenberg et al.

Fig. 3. Typical operator usage patterns of AMOLS (left) and MOLS for Bridge data set.

image data. This also holds for the bacterial data, approxi-
mately from iteration 1000 onwards. We also notice that
successful iterations of AMOLS happen more in succession
than with MOLS. Note that there is not much correlation
between the SC values at the beginning and end of the
two LS algorithms. This indicates that they concentrate on
more promising areas of the search space.

Table 1 compares the average SC values of ten repetitions
counted at a given iteration. The standard deviation is for
the SC-values of the ten repetitions after 5000 iterations,

and the ‘best SC’ gives the minimum of these SC-values.
The last column shows the average number of successful
applications of the operators. On the bacterial data, AMOLS
had more successful applications of operators than MOLS
(61% versus 49% on average). Also, the average SC
(21.371) was statistically smaller than with MOLS (21.429)
when tested with the t-test (p = 0.0036 , 0.05). The same
holds for the image data. Here we have 226 successful
applications for AMOLS against 204 of MOLS. The average
SC for AMOLS (15.397) is statistically smaller (p = 0.027)
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Fig. 4. Comparison of percentages of successful operator applications.
There are four sets of six bars. The first set is for the MOLS Bridge,
the second for the MOLS Entero, and the two next set for AMOLS.
Six bars from the left are percentages per operation SJ1, RWO,
RSA, RSW, SJ2 and CMO.

Fig. 5. Development of SC as a function of the iteration index
(data plots of the best runs).

than for MOLS (15.417). The standard deviation of the SC
values for the image data was almost the same for all of
the algorithms, whereas with the bacterial data, AMOLS
gave rise to the smallest standard deviation of the results.

The best SC produced by AMOLS for the bacterial data
was 21.336, whereas MOLS produced 21.368. For the image
data these values were 15.371 and 15.374, respectively. A
closer investigation of the best results reveals that AMOLS
produced a smaller number of small clusters than MOLS on
the bacterial data: AMOLS produces no singleton clusters,
while MOLS found four such clusters. On the other hand,
the figures were just the opposite (45 and 35) for the
image data.

When using only random-swap in our framework, the
results were worse than those obtained by AMOLS and
MOLS (SC was, on average, 21.604 with a = 0.057 for
Entero and 15.569 with a = 0.011 for Bridge). If we look
at the first 100 iterations, random-swap LS seems to work
fine, but it does not succeed in any further iterations.
However, RSLS gives better results than repeated GLA.
Note that there was a considerably smaller number of suc-
cessful iterations with RSLS than with AMOLS and MOLS.
This suggests that other operators in AMOLS and MOLS
do not exhaust the power of the random-swap operator.

Figure 6 illustrates the clustering results of the data set
Entero by showing all 145 vectors (as rows of small white
and black squares) belonging to genus Salmonella. Vectors
appear in the figure in the order of their scientific name
(left), and by the order in which they appear in the resulting
clusterings of the MOLS (middle) and AMOLS (right)
methods. The figure shows that clusters are not as clearly
visible in the microbiological clustering as in the MOLS
and AMOLS clusterings.

Table 2 compares a number of clustering techniques for
the Bridge test set. The results for PNN, SOM, SA and TS
are from Fränti et al [5]. The version of TS is highly
optimised; this can be seen in its high quality MSE-value
(1.27 in comparison to 1.32 of AMOLS). On the other
hand, AMOLS performs well in comparison to the other
methods, which have also been optimised.

Table 3 is a summary of test runs with different b(s)
settings (for ten repetitions) with a test data sample from
Bridge. The decreasing b(s)-function of Fig. 2 gives the
overall best results. The intuition is that, at the beginning
of the search process, the operators are more successful and
the learning process should use shorter memory there. With
a value of 0.0, the method does not abandon an operator
which has once been successful, and with a value of 1.0,
AMOLS behaves more like MOLS. A compromise between
these two extremes (like 0.2) works satisfactorily.

6. DISCUSSION

We have studied two versions of a multi-operator LS algor-
ithm; non-adaptive and adaptive. Our study shows that the
Multi-Operator Local Search (MOLS and AMOLS) is cap-
able of finding very low cost clusterings. The AMOLS adapts
quickly to favour SJ1, RWO, RSW and SJ2, whereas MOLS
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Table 1. Summary of test runs (10 reptitions). The initial solution (0 iterations) stands for the situation after the initial
application of GLA

Data Method Average SC Standard Best SC Average
deviation successes

0 100 1000 5000

Bridge AMOLS 15.966 15.688 15.527 15.397 0.023 15.371 226
MOLS 15.941 15.714 15.529 15.417 0.018 15.373 204
LS 15.969 15.646 15.598 15.569 0.011 15.552 80
RGLA 15.657 0.017 15.612

Entero AMOLS 23.225 21.764 21.495 21.371 0.022 21.335 61
MOLS 23.461 21.769 21.513 21.429 0.049 21.368 49
LS 23.227 21.809 21.714 21.604 0.057 21.462 19
RGLA 21.809 0.135 21.508

Fig. 6. Vectors belonging to the genus Salmonella. Left: vectors
ordered by their scientific name; centre: the vectors in the order in
which they have been found in the best classification by MOLS;
right: by ALMOS.

Table 2. Comparison of clustering algorithm when minimis-
ing MSE of the clustering for Bridge. The results are averages
of five runs

Method MSE

MOLS 1.334
AMOLS 1.327

TS 1.27
PNN 1.33
SOM 1.39
GLA 1.48
SA 1.52

Table 3. The average SC and number of successes with
different choices of b(s) (for ten test runs). The function
f(s) is decreasing with s (see Fig. 2)

b(s) Average SC Average number of
successes

f(s) 15.264 60
0.2 15.270 58
1.0 15.277 55
0.0 15.286 56

finds improvements most frequently with SJ1, RWO, SJ2
and CMO. For the bacterial and image test data sets, the
behaviour is similar. Additionally, AMOLS used RWO more
frequently on the bacterial data and RSW on the image
data. The overall number of successful applications of the
operators is greater for the adaptive methods for both data
sets.

Although the quality of the results of MOLS and AMOLS
is similar, AMOLS finds statistically better average clus-
tering. Here, the absolute value of the difference to MOLS
is small, but the standard deviation of the results is also
very small. Comparison with other algorithms has revealed
that AMOLS is also a very good method in minimising
MSE, and not much behind a fine-tuned TS-algorithm.

Our test results indicate clearly that a carefully
implemented multi-operator local search gives better results
than the single operator approach. Due to its versatility,
AMOLS is not only a very efficient, but also a multi-
purpose, method; it has a good capability to adapt to differ-
ent types of data. The extra computational cost of adding
adaptation to MOLS is small, because the update of the
probabilities (8) is very fast. This makes AMOLS a practical
clustering algorithm for large clustering problems.
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