
PROJ ECT N OTE

Building the essential resources for Finnish: the Turku
Dependency Treebank

Katri Haverinen • Jenna Nyblom • Timo Viljanen • Veronika Laippala •

Samuel Kohonen • Anna Missilä • Stina Ojala • Tapio Salakoski • Filip Ginter

� The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract In this paper, we present the final version of a publicly available treebank of

Finnish, the Turku Dependency Treebank. The treebank contains 204,399 tokens (15,126

sentences) from 10 different text sources and has been manually annotated in a Finnish-

specific version of the well-known Stanford Dependency scheme. The morphological

analyses of the treebank have been assigned using a novel machine learning method to

disambiguate readings given by an existing tool. As the second main contribution, we

present the first open source Finnish dependency parser, trained on the newly introduced

treebank. The parser achieves a labeled attachment score of 81 %. The treebank data as

well as the parsing pipeline are available under an open license at http://bionlp.utu.fi/.

Keywords Treebank � Finnish � Parsing � Morphology

1 Introduction

The need for manually annotated resources, and more specifically treebanks, is

widely acknowledged within the field of computational linguistics. Due to their

K. Haverinen (&)

Turku Centre for Computer Science, University of Turku, Joukahaisenkatu 3–5,

20014 Turun yliopisto, Turku, Finland

e-mail: kahave@utu.fi

K. Haverinen � J. Nyblom � T. Viljanen � S. Kohonen � A. Missilä � S. Ojala �
T. Salakoski � F. Ginter

Department of Information Technology, University of Turku, Turku, Finland

V. Laippala

Department of French Studies, University of Turku, Turku, Finland

K. Haverinen

University of Turku Graduate School, University of Turku, Joukahaisenkatu 3–5,

20014 Turun yliopisto, Turku, Finland

123

Lang Resources & Evaluation

DOI 10.1007/s10579-013-9244-1

http://bionlp.utu.fi/

importance especially for statistical parsing, as well as many advanced applications,

treebanks have been constructed for many languages, regardless of how widely

spoken. Perhaps the best-known of the world’s treebanks are the Penn Treebank

(Marcus et al. 1993) for English and the Prague Dependency Treebank (Hajič 1998)

for Czech. Other languages with treebanks completed or under construction include,

among others, Swedish, Estonian, Dutch, Japanese, French, German, Hungarian,

and even dead languages such as Latin and Ancient Greek.

For Finnish, the early versions of the Turku Dependency Treebank (TDT)

constitute the first publicly available treebank (Haverinen et al. 2009, 2010b, 2011).

Shortly after the second intermediate release of TDT, FinnTreeBank, a grammar-

definition treebank consisting of all example sentences from the reference book of

Finnish grammar by Hakulinen et al. (2004) was made available and later extended

to a total of 169,450 tokens (Voutilainen and Lindén 2011). The differences

between FinnTreeBank and TDT will be discussed in greater detail in Sect. 9.

Finally, there also exists a small-scale treebank of 15,335 tokens from the narrow

domain of clinical narratives, containing PropBank-style argument annotation in

addition to morphology and dependency syntax (Haverinen et al. 2010a).

As the first main contribution of this paper, we present the final version of the

Turku Dependency Treebank, considerably extended in both size and annotation

scope relative to its previously available subsets. The treebank consists of 204,399

tokens (15,126 sentences), thus being the largest Finnish treebank in existence and

more than twice the size of the latest previously available version. The treebank has

been manually annotated using the well-known Stanford Dependency scheme and,

in addition to the base-syntactic trees, it also contains a second layer of annotation

with conjunct propagation and additional dependencies as described in the original

Stanford Dependency scheme, another novel contribution in this paper. Unlike the

earlier versions, the current release also contains a morphological layer that is based

on an open source morphological analyzer, disambiguated using a novel machine

learning method that relies on the unambiguous tokens for its training data, and the

syntactic annotation for the features. The treebank is available at no cost, under an

open license.

Several tools exist for morphological and syntactic analysis of Finnish.

FinTWOL and FinCG (Koskenniemi 1983; Karlsson 1990) by Lingsoft Inc. are a

commercial morphological analyzer and constraint grammar-based disambiguator.

The Kielikone parser, an early commercial parser of Valkonen et al. (1987) both

resolves morphological ambiguity and assigns basic syntactic functions. Recently,

two open source morphological analyzers, OMorFi (Pirinen 2008; Lindén et al.

2009) and Voikko,1 have become available as well. Compared to OMorFi, Voikko

has a more limited lexicon coverage and is primarily applied in open source Finnish

spellcheckers. Both are pure morphological analyzers with no disambiguation

component. Finally, Connexor Machinese Syntax, another commercial tool, is the

only currently available Finnish full dependency parser.2

1 http://voikko.sourceforge.net/.
2 http://www.connexor.eu.

K. Haverinen et al.

123

http://voikko.sourceforge.net/.
http://www.connexor.eu.

The unavailability of an open source Finnish dependency parser was among the

most important practical motivations for building the Turku Dependency Treebank,

which provides the necessary data for statistical parser training. As the second main

contribution of this paper, we therefore present a statistical parsing pipeline,

consisting of a sentence splitter, a tokenizer, a morphological tagger and a full

dependency parser. It constitutes the first freely available, open source dependency

parser of Finnish, setting the initial baseline for Finnish statistical parsing.

In the following, we thoroughly discuss different aspects of the treebank as well

as the accompanying tools, starting with the text selection criteria of the treebank in

Sect. 2. We then move on to the syntactic annotation scheme in Sect. 3, and the

annotation process in Sect. 4. The morphological analyses in the treebank are

discussed in Sect. 5. Section 6 evaluates the quality of the syntax annotation as well

as the morphological analyses. Section 8 describes the freely available parsing

pipeline created using the treebank as well as briefly describes existing applications,

while Sect. 9 discusses the differences between the Turku Dependency Treebank

and FinnTreeBank. Sect. 10 concludes the work.

2 Text selection

The Turku Dependency Treebank consists of 204,399 tokens (15,126 sentences) of

written Finnish, from ten different text sources or genres. 10 % of this data, as

calculated on the level of documents, is held out as a test set, for the purpose of

parser comparisons and scientific challenges. This test set is available to the public

via a web-based parser evaluation service, which is described below in Sect. 7

Unless specifically otherwise stated, all numbers presented in this paper, in this as

well as all of the following sections, are calculated on the full treebank, that is,

including also the test set.

When selecting the text for the treebank, we have used two broad criteria. First of

all, the treebank is to be made publicly available under a license that does not restrict

its use. Therefore, the selected text should either be released under an open license

originally, or it should be possible, with reasonable effort, to negotiate such a license.

The specific license used for the treebank is the Creative Commons Attribution-Share
Alike license, which allows both non-commercial and commercial use.

In addition, the treebank should exhibit topical variety. This criterion is exercised

in two ways. First, the treebank consists of 10 sections, each of which contains text

from a different source. Each section consists of a number of documents, which are

single, continuous texts—with the exception of the grammar example section, as

described below. The different sections and their sentence and token counts, as well

as the numbers of documents included, are listed in Table 1. In order to avoid

biasing the treebank towards the topics of long articles,3 documents that are at most

75 sentences long have been included in the treebank and annotated in their entirety,

and documents longer than that have been truncated at 75 sentences.

3 For instance, the Finnish Wikipedia contains articles that are more than 300 sentences long.

The Turku Dependency Treebank

123

Second, we have strived for topical variety within each section. In the following,

we discuss the section-specific methods for selecting the documents in a manner that

ensures variety in that section. For all text sources, we have either used random

selection or selected texts in order from the newest to the oldest. Several of the

sources were published under an open license to begin with, but for those which

were not, we have contacted the authors individually to gain permission to re-

publish their text.

As the Finnish Wikipedia contains a large number of articles by different authors

and concerning a variety of topics, the articles in the Wikipedia section of the

treebank have been selected randomly. In the Finnish Wikinews, the number of

different authors is smaller, and therefore we have first randomly selected an author

and then randomly selected an article by them.

The university news section has been gathered from the UtuOnline magazine,

which is an online magazine of the University of Turku. These texts were selected in

order starting from the newest articles. The size of the section was restricted to 50

articles, as the topics are fairly limited.

The blog entries used in TDT were collected from top ranking items on various

lists of popular blogs. A rough topic-wise division was made, and the number of

blogs to be selected on each topic was limited. The blogs used in the treebank

represent the following topic categories: personal and general, style and fashion,

relationships and sex, technology, living abroad and cooking. From each blog,

approximately 200 sentences of text were used, selecting entries from the newest to

the oldest. Potentially problematic entries, such as those containing long quotes that

could cause copyright issues, were disregarded in the selection process.

The student magazine texts were selected from magazines of three different

student organizations: one magazine for computer science students, one for

mathematics and physics students, and one for social sciences students. These

magazines are written for students by students, and they range over a variety of

Table 1 Sections of TDT and their sizes in terms of document, sentence and token counts

Section Documents Sentences Tokens

Wikipedia articles 200 2,269 32,272

Wikinews articles 100 1,120 14,497

University online news 50 942 13,283

Blog entries 77 1,781 22,403

Student magazine articles 23 1,058 14,432

Grammar examples – 1,992 17,061

Europarl speeches 80 1,082 19,964

JRC-Acquis legislation 29 1,141 24,909

Financial news 50 1,002 12,689

Fiction 65 2,739 32,889

All 674 15,126 204,399

No document count is given for the grammar examples section, as this section consists of individual

sentences with no further structure

K. Haverinen et al.

123

topics and styles, from writings about studies and student life to letters to the editor

and humorous texts. The newest electronically available issues of the three

magazines were used, and from those, at most two texts by the same author were

selected, as student magazines are often produced by a small number of active

writers.

The grammar examples section consists of example sentences and fragments

from the Finnish Grammar (Hakulinen et al. 2004), a random subset of FinnTree-

Bank. As will be discussed in Sect. 9, this section of the treebank allows for a

comparison of the treebanks, as well as a conversion between their syntactic

schemes. Unlike the sentences in other sections of TDT, the grammar examples do

not form a continuous story. The original FinnTreeBank contains some duplicate

sentences, as the grammar on occasion uses the same examples for multiple

phenomena. These duplicates were removed from TDT.

Two sections of the treebank are based on existing corpora mostly aimed at

machine translation; one section consists of speeches from the Finnish section of the

Europarl corpus (Koehn 2005), and one of legislation text from the JRC-Acquis

corpus (Steinberger et al. 2006). Random selection was used for both of these text

sources. From Europarl, we selected random speech turns, randomizing also the

meeting and topic from which the speech turns were selected. From JRC-Acquis, in

turn, we selected random documents from random years.

The financial news section of the treebank uses the articles of a Finnish

newspaper focusing on financial news, Taloussanomat. The majority of the texts of

the newspaper are originally published under an open license, and only these texts

were selected for the treebank, as we had the permission to re-license these specific

texts to fit the license of the treebank.

The fiction section consists of texts by amateur writers from various sources on

the web. Most commonly they are short stories posted in a dedicated blog. In the

case of short stories, each story was considered a separate text, and at most 75

sentences from each text were included in the treebank, as usual. In the case of

longer, continuous stories, such as serials, the whole story was considered a single

text, and only the first 75 sentences from the beginning of the first chapter were

selected for annotation.

3 Dependency annotation scheme

The annotation scheme of the treebank is a Finnish-specific version of the well-

known Stanford Dependency (SD) scheme, originally developed by de Marneffe

and Manning (2008a, b). The SD scheme represents the syntax of a sentence as a

graph where the nodes represent the words of the sentence, and the edges represent

directed dependencies between them. One of the two words connected by a

dependency is the head or governor while the other is the dependent. Each

dependency is labeled with a dependency type, which describes the syntactic

function of the dependent word. Figure 1 illustrates the Stanford Dependency

scheme on a Finnish sentence.

The Turku Dependency Treebank

123

SD is becoming a popular choice of syntax scheme in multiple languages.

Treebanks natively annotated in SD include a treebank for Chinese (Lee and Kong

2012) and one for Persian (Seraji et al. 2012). With the conversion included in the

original Stanford tools,4 the Penn Treebank (Marcus et al. 1993) and indeed any

treebank annotated in the Penn Treebank constituency scheme can be converted into

the SD scheme. In addition, the SD scheme is especially popular in parser

evaluation works (Cer et al. 2010; Nivre et al. 2010; Clegg and Shepherd 2007;

Miwa et al. 2010; Foster et al. 2011), and several parsers are capable of producing

the scheme either natively or by conversion, including the Charniak-Johnson parser

(Charniak and Johnson 2005), the Stanford parser (Klein and Manning 2003), the

Clear parser Choi and Palmer (2011), the parser of Tratz and Hovy (2011), and

naturally any dependency parser that can be trained from a treebank, such as the

MaltParser (Nivre et al. 2007), the MSTParser (McDonald et al. 2006) or the Mate-

Tools parser (Bohnet 2010). The scheme was originally intended to be application-

oriented, and it has indeed been successfully used in applications, particularly in the

biomedical domain (Björne et al. 2010; Miyao et al. 2009; Qian and Zhou 2012),

and otherwise in opinion extraction (Zhuang et al. 2006) and sentiment analysis

(Meena and Prabhakar 2007).

The original SD scheme of de Marneffe and Manning has four variants, which

include a different subset of dependency types each, describing different levels of

syntactic and semantic detail. The annotation in the Turku Dependency Treebank

consists of two different layers. The first layer is based on the basic variant of SD.

The analyses are trees, with the exception of one dependency type concerning multi-

word named entities, which is allowed to break the tree structure. However, we also

provide a strict tree version of the treebank, as will be described in Sect. 7. The

annotation in the first layer is described in Sect. 3.1. The second layer of annotation

adds additional dependencies on top of the first layer; this results in analyses that are

no longer trees, but rather directed graphs. The second layer of annotation is

discussed in Sect. 3.2.

The dependency types of the original SD scheme are arranged in a hierarchy,

where the most general dependency type dep is on top of the hierarchy, and all other

types are its direct or indirect subtypes. When annotating using SD, the most

specific dependency type possible is always to be selected from the hierarchy. The

scheme defines a total of 55 dependency types, including six types which are

intermediate in the hierarchy and rarely used. The remaining 49 types include 48

bottom level types and the most general type dep.

Fig. 1 The stanford dependency scheme. The sentence can be translated as The commission must ask for
clarification from the minister and his assistant

4 http://nlp.stanford.edu/software/lex-parser.shtml

K. Haverinen et al.

123

http://nlp.stanford.edu/software/lex-parser.shtml

The Finnish-specific version of the scheme has been modified from the original

scheme by removing dependency types where the corresponding phenomenon does

not occur in Finnish, and adding new types where a phenomenon has not been

covered by the original scheme. The resulting scheme used in TDT has in total 53

dependency types, including 46 types in the first, syntactic layer, four intermediate

types that are present in the (modified) SD hierarchy but not used in the TDT

annotation, and three types that are only present in the second layer of annotation

discussed in Sect. 3.2. All these types are listed in Table 2. The annotation scheme

has been described in detail in the TDT annotation manual (Haverinen 2012); in this

work we focus on the differences between the Finnish and English schemes.

3.1 The finnish-specific SD scheme: the first annotation layer

Some phenomena of the Finnish language required modifications to the scheme, and

some more general features were unaccounted for in the original SD scheme, but

overall the modifications made were small-scale, so as to remain consistent with

other SD-based resources. These changes are discussed in the following two

subsections.

3.1.1 Additions to the SD scheme

Perhaps the most notable difference between the original SD scheme and the

Finnish-specific version concerns nominal modifiers and adpositions. The Finnish

language includes both pre- and postpositions, but inflected nominal modifiers

without an adposition are often used instead. Sometimes the very same meaning can

be expressed in both of these ways, and semantically, nominal modifiers and

adpositional phrases are similar. In order to analyze them similarly also on the level

of syntax, we have introduced a new type for inflected nominal modifiers, nommod.

This type has two uses: it can be used alone for an inflected nominal modifier

without an adposition, or it can be combined with a second new type, adpos
(adposition). Unlike in the English SD scheme, the nominal is considered the head,

again in order to analyze nominal modifiers and adpositional phrases similarly. For

an illustration of nominal modifiers and adpositional phrases, see Fig. 2.

Next, a Finnish genitive modifier may convey many different meanings. Most of

these are not distinguished in TDT, but we have added two new dependency types

for an important and frequent phenomenon: genitive subjects (gsubj) and objects

(gobj) of a noun. For an illustration of these two new types, see Fig. 3.

Another Finnish-specific dependency type added to the scheme relates to

expressions of owning and having. In Finnish, clauses that express owning,

omistuslause (possessive clause) (Hakulinen et al. 2004, §891), are somewhat

different from their English counterparts, as there is no separate verb with the

meaning to have, but rather the verb olla (to be) is used instead. For instance, the

sentence I have a cat would be expressed as Minulla on kissa, which in turn could

be literally translated as ‘‘At me is a cat’’. The Finnish possessive clauses resemble

another clause type, namely existential clauses, such as Pihalla on kissa (There is a

The Turku Dependency Treebank

123

Table 2 Dependency types of the Finnish-specific SD scheme

Types new to this scheme version are emphasized, and types only present in the second layer of anno-

tation are marked with an asterisk

K. Haverinen et al.

123

cat in the yard). In fact, Hakulinen et al. (2004, §891) consider possessive clauses a

subtype of existential clauses. Theories differ in whether they consider the

nominative/partitive sentence element in existential or possessive clauses to be a

subject or not; for instance Helasvuo and Huumo (2010) argue that this sentence

element is not in fact a subject and term it e-NP instead, whereas Hakulinen et al.

(2004, §910) consider the e-subject simply ‘‘the subject of an existential clause’’.

The possessive clauses in TDT are analyzed similarly to existential clauses. In

both of these clause types, the element corresponding to the e-subject (kissa, cat) is

marked as the subject, and the adessive sentence element (minulla, ‘‘at me’’) as a

nominal modifier. As the possessive clause is clearly a very specific clause type with

its own meaning, these structures are marked in TDT with the separate dependency

type nommod-own, which is a subtype of nominal modifier, nommod. As this

analysis is consistent, it is possible to transform it according to any view desired.

Figure 4 shows an example of the TDT analysis of a possessive clause, and as a

point of comparison, the analysis of an existential clause.

Fig. 2 Nominal modifiers and adpositions in Finnish (top). Note how in adpositional phrases, the
nominal is made the governor of the phrase. The sentence can be translated as He moved by car along
small roads. For comparison, also the corresponding English sentence and its analysis in the original SD
scheme is given (bottom)

Fig. 3 Genitive subjects (left) and objects (right) of a noun. The examples can be translated as The
falling of the vase made him sad and The building of the ship started right away

Fig. 4 A possessive clause (omistuslause, left) as compared to an existential clause (right). Otherwise the
analysis is exactly the same, but in the possessive clause the owner is marked using the dedicated
dependency type nommod-own. The examples can be translated as I have a problem for the possessive
clause, and There are children in the yard for the existential clause

The Turku Dependency Treebank

123

A few more general additions to the SD scheme were also required for the

annotation of TDT. Most importantly, a solution was needed for situations where

the head word of a phrase is absent from the text, but its dependents are present.

This would be problematic for any dependency scheme, as the head word is needed

in order to construct an analysis. There are two different cases where a missing head

word can occur, and both are treated similarly in TDT. First, the head word of a

clause can be missing in fragments, which are common in for instance newspaper

titles. An example of such a sentence would be Presidentti Kiinaan solmimaan
sopimusta (The president to China to make a contract). Second, a head word may be

missing in gapping, a type of ellipsis where the head word of a phrase is omitted to

avoid repetition while its dependents are present. For example, the sentence Maija
luki kirjaa ja Matti sanomalehteä (Maija read a book and Matti a newspaper)
contains a gapping structure.

In TDT, when a word is absent from a sentence and it is necessary in order to be

able to construct an analysis, a null token, which represents the missing word, is

inserted during annotation. Similar solutions to this issue have been adopted in

several other dependency treebanks, for instance the dependency version of the

TIGER treebank for German (Brants et al. 2002), the SynTagRus treebank of

Russian (Boguslavsky et al. 2002), the Hungarian Dependency Treebank (Vincze

et al. 2010) as well as the Hindi treebank of Begum et al. (2008) and the Arabic

treebank of Dukes and Buckwalter (2010).

Null tokens are only inserted in TDT when they are needed as the governor of

another token. Thus, not all forms of ellipsis are marked by null tokens, nor is a null

token inserted for omitted copulas or auxiliaries. This is because in the SD scheme,

the head of a copular clause is the predicative, not the copular verb, and

additionally, if a copula or an auxiliary is absent, its dependents are also absent. The

majority of the null tokens (651/706) are verbs, but also other parts-of-speech are

possible, mainly in gapping situations. See Fig. 5 for an illustration of both uses of

the null token.

The Finnish-specific SD scheme also accounts for multi-word named entities,

which are marked using the dependency type name. This dependency type is

Fig. 5 Fragments (top) and gapping (bottom). When a word necessary for constructing an analysis is
missing, a null token is inserted to represent it. The fragment example can be translated as The president
to China to make a contract and the gapping example as Maija read a book and Matti a newspaper

K. Haverinen et al.

123

exceptional in the sense that it is allowed to break the tree structure. However, the

analyses can be processed so as to make all sentence structures trees, as will be

discussed in Sect. 7 The governor of a name dependency is the rightmost word of

the named entity, and the dependent the leftmost. If there are more than two words

in the entity, no additional name dependencies are marked. However, if the named

entity has an obvious internal syntactic structure, this structure is marked in addition

to the name dependency. In these cases, the head word of the named entity is the

actual head, not the rightmost token. Figure 6 illustrates both usages of the name
dependency type. Note that the analysis of the internal structure of a named entity

can also be partial, if the entity consists of different parts, where some parts have an

internal structure and some do not. The rationale behind the twofold analysis of

named entities is that we wish to allow the user to easily transform and re-interpret

the annotation as desired and to limit future applications as little as possible.

As smaller modifications, we have added to the Finnish-specific scheme

dependency types for vocatives (voc) and interjections (intj), which where

previously unaccounted for in SD. For comparative structures, we have introduced

two types, compar and comparator, where the former connects the comparative

word and the object of comparison, and the latter marks the comparative

conjunction, if present. In addition, we have introduced separate types for subjects

of copular clauses, as these clauses have their own special treatment in SD. This

adds two new types: nsubj-cop for nominal subjects and csubj-cop for clausal

subjects. Finally, we add the type iccomp for infinite clausal complements.

In the second layer of annotation that will be discussed in Sect. 3.2, we have

added a separate type for external copular subjects, xsubj-cop, analogously to the

type nsubj-cop in the base-syntactic layer. Also the dependency type ellipsis
marking gapping structures is new to the second annotation layer.

3.1.2 Removals from the SD Scheme

Some phenomena of the English language accounted for in the SD scheme do not

occur in Finnish, rendering the corresponding types unnecessary. These types have

been removed from the Finnish-specific SD scheme. Passive clauses do not have

subjects in Finnish (see for instance the Finnish grammar by Hakulinen et al. (2004,

§1313)), and consequently, the passive subject types (nsubjpass and csubjpass) from

the English scheme version are not used in TDT. What in English is considered the

passive subject, is in Finnish the direct object, and thus the type dobj is used instead.

The agent type, intended for agents of passive clauses, is similarly not needed for

Fig. 6 Multi-word named entities are marked with the dependency type name. Note how Jumalat
juhlivat öisin has an internal structure (‘‘Gods celebrate by night’’, the Finnish title of A secret history),
where the main verb, juhlivat, acts as the governor, whereas Donna Tartt is merely a name. The sentence
can be translated as A secret history is Donna Tartt’s first work

The Turku Dependency Treebank

123

Finnish, as there is no agent construction for passives. In addition, we consider the

type agent semantic rather than syntactic. Certain constructions, such as toimesta
and taholta (see the Finnish grammar (Hakulinen et al. 2004, §1327)), however

resemble the English agent structure. They are analyzed as nominal modifiers, in

accordance with the commonly used Finnish morphological analyzers, FinTWOL

and OMorFi. Other removed types include types for the expletive there (expl), the

indirect object (iobj), and the possessive ’s (possessive), none of which occur in

Finnish. As discussed above, adpositional phrases are treated differently from the

original SD scheme, meaning that also the preposition-related types from the

original scheme, prep and pobj, have been removed. At this point in time, referents
in relative clauses (ref) are not annotated in TDT. When used, this type violates the

treeness condition, and therefore it would belong to an additional layer of

annotation.

Three types from the original SD scheme, purpcl (purpose clause), tmod
(temporal modifier) and measure were considered semantic in nature and were not

used in the syntax annotation, but rather the appropriate syntactic types were used.

Additionally, the original SD scheme contains a type for apposition-like abbrevi-

ations (abbrev), used in contexts such as National Aeronautics and Space
Administration (NASA). In TDT, only the more general type for appositions

(appos) is used since abbreviations are identified in the morphological analysis.

Finally, predicatives are always analyzed as predicatives, rather than attributives

(attr) as is possible in the original SD scheme.

3.2 The second annotation layer: conjunct propagation and extra dependencies

The annotation in the second layer of TDT covers the following phenomena:

propagation of conjunct dependencies, external subjects, syntactic functions of

relativizers, and gapping. In the following, each of these four phenomena are

discussed in turn.

Conjunct propagation The first and most important phenomenon covered in the

second annotation layer of TDT is propagation of conjunct dependencies, as it is

called by de Marneffe and Manning (2008a). This phenomenon concerns

coordination structures. In the SD scheme, the first coordinated element is the

head of the coordination, and the rest of the coordinated elements as well as the

coordinating conjunction depend on it. If a sentence element modifies the head of a

coordination, it may be that it in fact modifies all or some of the coordinated

elements and should therefore be propagated to them. Similarly, if the head of a

coordination modifies another sentence element, it is possible that all or some of the

coordination members act as the modifiers. For an illustration of a sentence

annotated with the conjunct propagation, see Fig. 7.

In addition to merely propagating to other coordinated elements, it is possible for

a dependency to simultaneously change its type. This can occur for instance if the

elements coordinated are of different parts-of-speech, or if the same sentence

element plays a different role to a second predicate. Figure 8 illustrates conjunct

propagation with dependency type changes.

K. Haverinen et al.

123

The existing Stanford tools5 are able to produce output with the propagated

dependencies present; however, de Marneffe and Manning (2008a) note that this

part of the tools performs imperfectly. To our knowledge, TDT is the first existing

treebank with manually annotated conjunct propagation in the SD scheme.

External subjects The second phenomenon annotated in the second layer of TDT

is external subjects, marked with the dependency type xsubj (or xsubj-cop, for

copular external subjects). With open clausal complements, the main verb and the

clausal complement share a subject (subject control). The fact that the subject of the

first verb also acts as the subject of the second verb cannot be marked in the base

layer of annotation due to the treeness restriction, and hence these dependencies are

only marked in the second layer. It should be noted that external subjects interact

with the conjunct propagation both ways: external subjects can propagate, and also

propagated subjects can produce an external subject. Figure 9 serves as an

illustration of external subjects.

Syntactic functions of relativizers The third phenomenon annotated in the second

layer concerns relative clauses. In the base syntactic layer, the phrase containing the

relative word is marked simply as a relativizer, rel. However, the relativizer also

always has a secondary syntactic function. For instance, the word joka (which) can

act as the subject of the relative clause. In the base layer of annotation, this

information is omitted, again due to the treeness restriction. Thus, in the second

layer, each relativizer is given its syntactic function by adding a new dependency

Fig. 7 Propagation of conjunct dependencies. The base layer of annotation is marked with solid
dependencies, and the propagated dependencies are dashed. The example sentence can be translated as
First the King lived in Germany and studied there astronomy and chemistry. Note how the subject
(kuningas, king) and the adverb modifier (ensin, first) propagate from the first verb to the second, but the
nominal modifier (Saksassa, in Germany) does not. Also note how the direct object dependency arriving
to the second coordination propagates

Fig. 8 Propagation of conjunct dependencies with dependency type changes. On the left, the adjectival
modifier is coordinated with a participal modifier, and thus the type of the amod dependency changes into
partmod while propagating. On the right, the word savupilvi (cloud of smoke) acts as the subject of the
first clause, but as the object of the second clause, and hence the type of the propagated dependency
changes. The example can be translated as A thick and slowly spreading cloud of smoke formed at the sky
and was soon noticed

5 http://nlp.stanford.edu/software/lex-parser.shtml

The Turku Dependency Treebank

123

http://nlp.stanford.edu/software/lex-parser.shtml

that corresponds to the existing relativizer dependency in the first layer. The two

dependencies usually coincide with respect to their head and dependent words, but

as the governor of a relativizer dependency is always the main predicate of the

relative clause, this is not always the case. The type of the second-layer dependency

is one of the 46 dependency types defined in the first layer of the scheme. For an

illustration, see Fig. 10.

Similarly to external subjects, also relativizers can propagate in coordinations. In

addition, if a relativizer acts as a subject to a verb, it can also act as an external

subject to an open clausal complement of this verb.

Gapping Language contains several different types of ellipsis, but only one of

them is explicitly marked in TDT, namely the omission of a governor, gapping.

Gapping is marked with null tokens (see Sect. 3.1) as well as a semantic dependency

of the type ellipsis. See Fig. 11 for an illustration. In addition to gapping, some

elliptical phenomena are marked less explicitly as propagated dependencies.

3.3 Discussion

One of the design-principles of the SD scheme, as originally created by de Marneffe

and Manning (2008b), was language independence. From this perspective, the

revisions required for Finnish were small-scale in general, and the overall scheme

appears to be suitable for Finnish. Some of the revisions made for Finnish are also

Fig. 10 Syntactic functions of relativizers. A relativizer can act in any syntactic function, such as an
object (top) or a subject (bottom). Note that in the bottom-most example, the nsubj dependency does not
coincide with the rel dependency that it corresponds to on the first layer. The examples can be translated
as The vase that I dropped shattered into small pieces and The child whom I made cry still wailed

Fig. 9 External subjects. Note how the xsubj dependencies can propagate (left), and how propagated
subjects can produce an external subject (right). The examples can be translated as He started to sing and
play and He sang and started to play

K. Haverinen et al.

123

more generally applicable and should be considered in future SD scheme annotation

efforts.

Perhaps the most notable of these general revisions is the treatment of

adpositions. The preposition-as-head analysis is suitable for English, but for a

language that expresses the same meanings using either the case system or

adpositions, such an analysis seems inconsistent. Almost regardless of language,

some solution is also required for fragmentary and elliptical phenomena, which we

have addressed using additional null tokens. Smaller issues likely to be encountered

also in languages other than Finnish and English include vocatives, interjections,

comparative structures and multi-word named entities, which have no predefined

analysis in the original SD scheme. For languages that lack a separate verb for

having, a special analysis that distinguishes possessive and existential clauses is

called for. Marking copular subjects using the -cop types may be beneficial for a

number of languages and genres, as it allows easy identification of copular clauses

even in cases where the copular verb is absent. Finally, depending on the desired

granularity of the scheme, genitive modifiers could be classified into types other

than the possessive type, which is due to the roots of the scheme being in the

English language.

In general, if the addition of a new type is desired for a specific language, the type

hierarchy of the SD scheme is of assistance. If new types are inserted in a suitable

place in the hierarchy, they can easily be replaced by their supertypes in applications

requiring a more coarse-grained analysis, or comparability with other corpora

annotated in the SD scheme.

4 Annotation process

In the course of the annotation process, there have been in total seven different

annotators contributing to the treebank, with varying backgrounds and different

amounts of previous experience. Out of these seven annotators, five have

contributed to the first annotation layer, and six to the second.

The first and second layer of annotation described in Sect. 3 were annotated in

two consequent steps, so that the second annotation layer was based on the existing

first layer. For both layers, we used a custom annotation tool that is able to show the

analyses visually, and an early version of this tool is publicly available on the

treebank website. We begin this Section by describing the general workflow of the

Fig. 11 Gapping is marked by a null token to represent the elided word, as well as a dependency of the
type ellipsis. The example can be translated as Maija read a book and Matti a newspaper

The Turku Dependency Treebank

123

annotation, which applies to both the first and second layers, and continue by

describing the specifics of the two layers.

4.1 Annotation workflow

The annotation protocol of the treebank in its entirety is full double-annotation. The

annotation process consists of three phases, which result in three different kinds of

annotations.

Individual annotations Each document is first assigned to two different

annotators, who annotate it independently of each other. This results in two

individual annotations.

Merged annotation Next, the two individual annotations of the same document

are automatically merged into a single analysis, so that both analyses are shown

whenever there is a difference. These differences are then settled in a meeting of the

whole annotation team. This results in a so called merged annotation of the

document.

Final annotation After settling the differences, an additional phase of corrections

is needed in order to gain the final annotation of the treebank, for two reasons. First,

as the annotation team comes across new examples, some annotation decisions may

change over time, and thus older annotations will become outdated. In order to

make even old annotations conform to the newest annotation decisions, consistency
checks and corrections are performed. Second, possible sentence splitting and

tokenization issues are corrected at this stage, in order to produce high-quality

annotations for the treebank while keeping the double-annotation and merging

process as simple as possible. This procedure also has the additional benefit that it

provides perfectly aligned data for studying the annotation process itself, using the

individual and merged annotations.

4.2 The first annotation layer

The first layer of the treebank was annotated by pairs of annotators from a pool of

five different annotators. Taking into account the constraints of the annotators

available at each time and the proportion of time they could dedicate to the

annotation, the documents were divided between annotators as equally as possible.

Also, care was taken that all different possible pairs of annotators were given

documents to annotate against each other, again taking into account the previously

mentioned constraints and the additional requirement that in the beginning of a new

annotator’s training, the annotator must only annotate against the annotator-in-chief,

Annotator 1, as this annotator was the most experienced and the most accurate, as

will be shown in Sect. 6.1. This was to make sure that as many of the beginning

annotator’s mistakes as possible are eliminated in the double-annotation. The

contributions of each annotator in each section are presented in Table 3.

A substantial part of the first layer (10,863 sentences, 146,790 tokens) has been

annotated using a parser as an aid. That is, after an initial phase of annotating all

sentences from scratch, we have used the completed part of the treebank to train a

K. Haverinen et al.

123

statistical parser, using the MaltParser system by Nivre et al. (2007), and used it to

produce preliminary trees. For each document, one annotator was given the

preliminary trees to inspect and correct, with all dependencies visually marked so

that parts of the sentence already inspected could easily be distinguished from those

still awaiting inspection. The other annotator annotated the same document from

scratch.

We have previously evaluated the effect of this protocol on annotation accuracy

and speed (Haverinen et al. 2010b). We found that while a beginning annotator

could benefit from a starting point, and a very experienced annotator could gain on

speed while suffering a minor penalty on accuracy, on the whole, the preannotation

protocol had no notable effect on the annotation. Based on this finding, the topic of

preannotation will not be further pursued in this paper.

4.3 The second annotation layer

The second annotation layer was annotated by pairs of annotators out of a total of

six annotators. In this layer, we used the existing tree structures annotated in the first

phase as a starting point, and used a preprocessing software to suggest which

additional dependencies could be present in the current sentence. The annotator was

required to either confirm the dependencies or delete them, and in the case of

relativizers, select their type. The deletion possibility was necessary, even for

relativizers although they always have a secondary function, since the suggested

dependency was not necessarily between the correct words. In the case of

Table 3 Annotator contributions per section in the base syntax layer

Ann. 1 Ann. 2 Ann. 3 Ann. 4 Ann. 5

Tokens % Tokens % Tokens % Tokens % Tokens %

Wikipedia 25,424 39.4 19,215 29.8 16,928 26.2 0 0 2,977 4.6

Wikinews 13,295 45.9 13,483 46.5 1,202 4.1 1,014 3.5 0 0

Uni. news 9,380 35.3 6,111 23.0 5,504 20.7 5,571 21.0 0 0

Blogs 17,792 39.7 18,464 41.2 0 0 0 0 8,550 19.1

Student 10,656 36.9 8,147 28.2 6,692 23.2 3,369 11.7 0 0

Grammar 12,169 35.7 9,545 28.0 2,163 6.3 0 0 10,245 30.0

Europarl 16,898 42.3 14,022 35.1 5,094 12.8 797 2.0 3,117 7.8

JRC-Acquis 16,438 33.0 13,977 28.1 2,917 5.9 0 0 16,486 33.1

Financial 9,061 35.7 9,054 35.7 0 0 0 0 7,263 28.6

Fiction 25,296 38.5 20,739 31.5 0 0 0 0 19,743 30.0

Overall 156,409 38.3 132,757 32.5 40,500 9.9 10,751 2.6 68,381 16.7

For each annotator is given the amount of tokens annotated in each section (tokens), as well as the

percentage of the section annotated (%). The overall amount of tokens annotated in each section (100 %)

is twice the size of the section, as each token was counted twice, once for each annotator. Thus the

theoretical maximum of tokens that one annotator could annotate is 50 % of the total, seeing that each

document must have two annotators

The Turku Dependency Treebank

123

coordination propagation, the annotator could select a dependency governing or

depending upon the head of a coordination structure and select whether this

dependency propagates with respect to this coordination or not. In addition, it was

possible to add or remove second layer dependencies manually, or change their

types. This was sometimes necessary, as in the coordination propagation,

dependencies occasionally modify some but not all coordinated elements or change

their type while propagating. The first layer dependencies were not allowed to be

modified at this stage.

5 Morphological analyses

This section describes the morphological layer of TDT. As manual annotation is

expensive, and as there exists a suitable open source tool that is able to produce non-

disambiguated morphological analyses of high quality, we have sought ways to

obtain the morphological analyses for the treebank by automatically disambiguating

the readings provided by this existing tool. The disambiguation is performed using

machine learning, with unambiguous tokens serving as training data and syntactic

analyses providing features. This Section begins by describing the tool used as the

basis of the morphological layer, then continues to the methods used to

disambiguate its output.

5.1 OMorFi

The morphological analyses in TDT are based on the output of OMorFi (Pirinen

2008; Lindén et al. 2009), which is a recent open source morphological analyzer of

Finnish and part of the Open Source Morphologies (OMor) project by the University

of Helsinki. As mentioned in Sect. 1, out of the open source tools for Finnish

morphology, OMorFi has the best vocabulary coverage.

For each token, OMorFi returns a set of morphological readings. Each reading

consists of a lemma (baseform) and a set of morphological tags, such as the main

part-of-speech (POS), case, number, tense and so forth. A word can have multiple

readings, in which case OMorFi generates all possible readings without disambig-

uation. Table 4 illustrates the OMorFi output.

OMorFi is able to produce different combinations of a total of 109 tags. In the

figures given in this Section, we disregard numerals and punctuation, only

considering word-like tokens. Out of all such tokens, 5.2 % are unknown to

OMorFi, and approximately 46.1 % are unambiguous while the remaining 48.6 %

receive more than one reading from OMorFi. On average, OMorFi assigns a token

1.8 readings, and for ambiguous tokens only, the average is 2.7 readings.

In order to be able to use the OMorFi output as the morphological analyses of the

treebank, two main issues need to be addressed. First, a separate disambiguation

step is needed for the 48.6 % of tokens in TDT that are ambiguous. Second, the

unrecognized tokens (5.2 %) must be either manually annotated or addressed by

other means. The specific methods used for post-processing the OMorFi output,

K. Haverinen et al.

123

treating unknown tokens and disambiguating between readings are discussed in the

next subsections.

5.2 Post-processing OMorFi output and treatment of unknown tokens

In order to facilitate automatic disambiguation of the readings given by OMorFi, we

have taken steps to post-process the OMorFi output to be more suitable for this

purpose. In many cases, OMorFi produces multiple readings that are, for practical

purposes, especially parsing, equivalent. This happens frequently with derivations

and compounds, as Table 5 illustrates. As can be seen from the Table, the noun

tekeminen (doing) is given two readings, one indicating that tekeminen is a minen-

derivation (close to the ing-participle in English) of the verb tehdä (to do), and the

other analyzes it directly as a noun. Even given context, it is not possible to judge

which one of these two readings would be correct, as it can quite plausibly be

claimed that both of them are. The same is true for the noun isoisä, which receives

Table 4 OMorFi output

Word Lemma Translated lemma POS Other tags

Hän hän he/she Pron Pers Sg Nom Up

ei ei not V Neg Sg3 Act

asu asua to live V Prs Ind ConNeg

asua to live V Sg2 Act Imprt

asu outfit N Sg Nom

pienessä pieni small A Sg Ine Pos

kylässä kylä village N Sg Ine

kylässä visiting Adv

The correct readings are marked by emphasis. The example sentence can be translated as He doesn’t live
in a small village

Table 5 Examples of practically equivalent readings by OMorFi

Word Lemma Translated lemma POS Other tags

tekeminen tekeminen doing N Sg Nom

tehdä do N (V) Der_minen Sg Nom

isoisä iso|isä grand|father A ? N Pos Sg Nom Cmpnd ? Sg Nom

iso|isä grand|father N ? N Pfx Cmpnd ? Sg Nom

iso|isä grand|father N ? N Sg Nom Cmpnd ? Sg Nom

isoisä grandfather N Sg Nom

Top: tekeminen (doing). The two readings only differ in whether tekeminen is marked as a derivation or a

simple noun. Bottom: isoisä (grandfather). There are four readings. The top reading suggests that isoisä is

a compound of the adjective iso (big) and the noun isä (father). According to the second reading, iso is a

prefix for isä, and according to the third reading, the word is a compound of two nouns. The fourth and

final reading analyzes isoisä as a simple noun. Note that due to being a derivation, the word tekeminen
receives two POS tags from OMorFi, meaning that it has been derived from a verb, and the final

wordform, the derivation, is a noun. In compound readings, both parts of the compound receive their own

POS, marked with ‘‘?’’

The Turku Dependency Treebank

123

four readings from OMorFi. It can be analyzed as a compound of an adjective and a

noun, a noun with a noun prefix, a compound of two nouns, or a simple noun. For

practical purposes, all of these readings could be claimed to be equally plausible.

From the point of view of disambiguating OMorFi output using machine

learning, it is not desirable that tokens have multiple readings that can all be judged

correct. Thus we have, as a separate post-processing step, used rules to prune out

extraneous readings. With readings that could potentially be analyzed as deriva-

tions, we have selected the direct, non-derivational alternative. With compounds, we

have selected the simple noun reading, or in cases where all readings were

compounds, the reading with the longest non-compound lemma.

In addition to removing unnecessary readings, we have addressed the issue of

tokens that OMorFi does not recognize. There were in total 8,812 unrecognized

tokens in TDT, together with the additional 706 null tokens inserted during syntax

annotation, which were naturally not recognized either. For unknown tokens, we

have used the standard set of OMorFi tags added with new tags for symbols, foreign

words, typographical errors and colloquial words.

The treatment of unknown tokens consists of three phases. In the first phase, we

considered unknown tokens that were compounds constructed using a dash, such as

Alzheimer-projekti (Alzheimer-project). For these tokens, we separated the parts of

the compound and re-analyzed the latter part (projekti, project) with OMorFi, as in

Finnish the last part of a compound dictates its category. If the latter part alone

received an analysis, this analysis was kept and the word was given a lemma

consisting of the first part unchanged and the lemma of the latter part as analyzed by

OMorFi. In the second phase, regular expressions were used to find tokens that were

in fact not words but rather symbols.

Finally, nearly all remaining unknown tokens were annotated manually. In the

manual annotation, readings were given to unknown tokens either directly by an

annotator, or in some cases by giving the word a model wordform, which was used

to automatically acquire readings from OMorFi. Tokens that were covered by a

name dependency (see Sect. 3.1) but that did not have any other syntactic structure

marked were not, unlike other remaining unknown tokens, annotated manually.

These tokens were automatically given the morphological tags of the head of the

named entity, which in turn was manually annotated. The reasoning behind this is

that these cases are very likely to consist of either foreign words, abbreviations or

symbols, and the analysis is likely to stay the same throughout the whole named

entity. Naturally, a named entity may consist of words of different POS, but these

named entities are considered to be single units, where the internal analysis is

irrelevant, as entities consisting of foreign words or symbols are not analyzed in the

syntax, either. For the same reason, only the main tags, such as the main POS, are

inherited and more fine-grained tags, such as those indicating case and number, are

not. This strategy bears some resemblance to the Penn Treebank POS guidelines

(Santorini 1990), according to which if a string of words is capitalized as a name (as

in for instance New York), all words capitalized should be tagged as proper nouns,

regardless of their actual POS. Figure 12 illustrates analysis inheritance in named

entities consisting of unknown words.

K. Haverinen et al.

123

As mentioned above, also null tokens added during the syntax annotation are

naturally not recognized by OMorFi, and thus they, too, require special attention

with regard to their morphological analysis. The null tokens were manually

annotated so that an annotator was given each null token with its context and

instructed to assign it a model wordform, that is, a wordform that would most

naturally fit in place of the null token. This wordform was then given to OMorFi to

gain a reading or possibly several readings for the null token. Null tokens are not

given a lemma, but otherwise they receive a full morphological analysis. In some

cases a null token in fact represents several tokens, for instance a verb and its

auxiliaries, in which case it receives the morphological analysis of the head word of

the phrase it represents.

In addition to pruning out unnecessary readings and annotating unknown tokens,

we have slightly modified the regular tagset assigned by OMorFi. As mentioned

above, we have added new tags specific to unknown tokens. In addition to these

tags, we have also added the tag C (conjunction), which is the POS for both

subordinating and coordinating conjunctions. In some cases, OMorFi fails to assign

the correct subcategory for adpositions and conjunctions. Thus, in order to avoid

conflicting syntax and morphology annotations, we have added Preposition (Pr) and

Postposition (Po) readings for every adposition, and Subordinating conjunction
(CS) and Coordinating conjunction (CC) readings for every conjunction. We have

also merged some tags into one to avoid assigning readings inaccurately in cases

where evidence in the text is scarce. Such tags are PxSg3 and PxPl3, which

represent the third person singular and plural possessive suffixes. We have discarded

the number information and used the tag Px3 for both suffixes. Particles are also

merged together with adverbs, and only the adverb tag Adv is used. Finally, the tags

for different capitalizations, cap, Cap and CAP have been replaced with the single

tag up signaling a capitalized word. Due to the pruning and modifications, there are

tags that appear in the OMorFi output, but not in the final treebank. The total

amount of different morphology tags in the final treebank is 107, as opposed to the

109 tags in the unprocessed OMorFi output.

After these post-processing steps, the numbers of readings have been reduced.

Due to the manual annotation, there are no longer unrecognized tokens. In the

automatically post-processed OMorfi output, the proportion of unambiguous tokens

is approximately 62.9 %, and on average, one word has 1.6 readings, while the

average as calculated for ambiguous tokens only is 2.6 readings. After the post-

Fig. 12 Unknown words under a name dependency can inherit the morphological analysis of the
governor, given that there is no internal structure annotated for the named entity. Note how only the main
categories, N (noun) and Prop (proper) are inherited, and tags signaling less important features such as
number and case are not. The tag UNK (unknown) denotes that the token was not recognized by OMorFi.
The example sentence can be translated as The fashion show presented The Garden Collection

The Turku Dependency Treebank

123

processing, 37.0 % of all tokens are still ambiguous, and these tokens require

disambiguation using machine learning. Table 6 yet summarizes how the tokens of

TDT receive their morphological analyses. The next subsection describes the

machine learning method used for disambiguating between possible morphological

readings.

5.3 Disambiguating OMorFi output as a machine learning task

In order to automatically disambiguate OMorFi output, we rely on two insights.

First, barring exceptions discussed later in this section, morphological ambiguity is

not systematic and depends on the specific wordform. Thus, for instance while the

wordform koirasta is ambiguous between the singular partitive koiras?ta (male)

and the singular elative koira?sta (from dog), most other nouns do not exhibit this

ambiguity. In fact, as discussed in Sect. 5.2, 62.9 % of tokens in the treebank are

unambiguous, and, in addition, even wordforms such as koirasta are often

ambiguous only partially—here only the case and lemma are ambiguous. The

second insight is that the existing syntactic annotation provides cues for

morphological disambiguation. These cues can be direct, where a dependency type

such as aux uniquely specifies the POS of the dependent, as well as indirect, where

for instance the nsubj dependency type is mutually exclusive with a verbal reading

of the dependent. Combining these two insights allows us to cast the disambiguation

as a machine learning problem, where the partly or wholly unambiguous tokens

serve as training examples, and the syntactic trees provide features for the

disambiguation.

Modelling the task directly as a multi-class classification problem where each

reading corresponds to one class is impractical, as there are 1,266 unique

morphological tag combinations in the corpus. Rather, we cast the problem as a

ranking of the alternative readings for every ambiguous token, where the highest-

ranking reading is selected. In this approach, the reading is thus not a label to be

predicted by a classifier, rather, it is used to generate features for the ranking.

Throughout this section, a token will be considered unambiguous if it only has one

reading, partially ambiguous if it has several possible readings all of which have the

same main POS, and ambiguous otherwise.

All readings are represented using three general sets of features:

Table 6 The origins of the morphological analyses of TDT

(%) OMorFi output Post-processed

Unambiguous 46.1 62.9

Ambiguous 48.6 37.0

Unknown 5.2 0.0

First, all tokens are given their analyses using OMorFi. Next, post-processing is used to reduce the

amount of ambiguous tokens by pruning out unnecessary readings. In this phase, also unknown tokens are

given analyses. Finally, all remaining ambiguity is resolved using a novel machine learning method

K. Haverinen et al.

123

Reading features: For every unambiguous morphological category, i.e. a category

whose value is the same for all readings of the token at hand, a binary feature is

included specifying the category and its value. This includes also categories that

are unambiguously absent, such as tense in nouns.

Syntactic features: The syntactic features are extracted from the complete

dependency annotation, including the second layer where the analyses are not

necessarily trees, and therefore a token can have more than one governor. For

every governor, a binary feature is included that encodes the type of the

dependency both alone and in combination with the type of the dependency for

any of the governor’s governors. Separate features are used when the token, or the

token’s governor, is the root.

Agreement features: Three morphological categories are directly relevant to

agreement: person, number, and the possessive marker. For each of these

categories, we define features that encode the agreement in the given category

between the reading being ranked, and the readings of the token’s governors and

dependents. For every governor or dependent, and each of the three categories, a

binary feature is emitted, encoding the dependency type (distinguishing between

governors and dependents), the category in question, and the type of agreement.

The agreement type compares the value of the category in the reading under

consideration with the corresponding values in all readings of the governor or

dependent. It can be positive if the value is equal in all readings, possibly
conflicting if at least one reading explicitly disagrees with respect to the value

(e.g. plural versus singular number), and non-conflicting if the values are not

equal but do not explicitly disagree (e.g. plural versus unspecified number).

For computational reasons, we restrict the ranker to linear models. Under a linear

model, the syntactic features as such do not contribute to the ranking as they are the

same for all readings of any given token. We thus need to explicitly combine

readings and syntactic features into feature pairs, a technique similar to polynomial

kernel linearization in kernel-based classifiers. For every syntactic feature Si and

reading feature Rj, a new combined feature SiRj is thus introduced.

The final set of features representing each reading for ranking is the union of

agreement features with the syntactic–reading feature pairs. The agreement features

receive a constant weight of 1, while the weight of the combined syntactic–reading

features is calculated as the pointwise mutual information of the two constituent

features,

wðSiRjÞ ¼ log
PðSi;RjÞ

PðSiÞPðRjÞ
; ð1Þ

which has proved in our preliminary experiments to increase ranking accuracy over

a simple constant weight.

The ranking is performed using a ranking support vector machine (SVM),

implemented in the SVMrank package (Joachims 2006). The ranking SVM learns a

linear combination of features much like the commonly used linear SVM classifier

would, but allows a query structure to be specified at training time. Only instances

belonging to the same query are compared among each other. In our case, instances

The Turku Dependency Treebank

123

generated from the readings of a single token form one query. The training data

consist of example queries with their correct ranking, here ?1 for the correct

reading and -1 for all other readings.

There are no manually annotated training data in the present setting and only

unambiguous, or partially ambiguous tokens can be used for training. These, in turn,

have no ‘‘negative’’ lower rank instances, which is exactly why they are

unambiguous to begin with. However, recalling that the same reading with a

different lemma may be ambiguous, depending on the wordform, we generate

artificial negative examples from the three readings most often conflicting with the

current positive instance (regardless of the lemma). For example, a singular partitive

reading can be added as a negative example to the unambiguous singular elative

ikkunasta (from window), since this ambiguity is observed in wordforms such as

koirasta (from dog) discussed above. The unambiguous singular elative reading is

given the rank ?1 and all artificial negative examples are given the rank -1,

together forming one training query. This procedure is easily extended to partially

ambiguous tokens, where each reading is given the rank ?1 and contributes three

artificial negatives with the rank -1 to the training query. Both unambiguous and

partially ambiguous tokens thus serve as training data.

There is a small number of problem cases stemming from consistently ambiguous

forms which do not lend themselves to the machine learning approach described so

far. In English, an example of such a consistent ambiguity would be the verb

infinitive, imperative, and present indicative (except for the 3rd person), all three of

which systematically have the same wordform regardless of the lemma. This, in

turn, means that there are no examples of this ambiguity for the ranker to learn from.

The surrounding syntactic annotation, however, still provides cues for the

disambiguation. We therefore develop a set of 11 rules to address the most

common consistently ambiguous forms. The resulting disambiguation procedure is

thus a hybrid approach where an initial machine learning output is post-processed

with a small set of rules for specific, hard-to-learn cases.

The development of the machine learning method as well as the post-processing

rules was carried out on a development set of 413 tokens with manually annotated

morphological analyses. This set was also used for optimizing the regularization

parameter C of the rank SVM. Since the ranker does not use any manually annotated

morphological data, unambiguous and partially ambiguous tokens from the entire

treebank were used in its training. Evaluation was performed on a set of 1000

manually annotated tokens from the test section of the treebank, as will be discussed

in Sect. 6.2.

6 Evaluation

In this section, we evaluate the treebank annotation. We begin by evaluating the

accuracy of the syntax annotation, and in the second subsection, we discuss the

quality of the morphological analyses.

K. Haverinen et al.

123

6.1 Syntax annotation quality

Our evaluation of the syntax annotation is twofold. As the first and second layers of

the treebank were annotated in separate steps, the evaluation of these two tasks is

performed in two steps as well.

In order to evaluate the quality of the first layer of annotation, we measure the

performance of the annotators, henceforth called annotator accuracy (AA), using

labeled attachment score (LAS), which is defined as the proportion of tokens, out of

all tokens, that have been assigned the correct governor and dependency type. The

measurement is made between an individual annotation and the merged annotation,

not the final annotation. This is for two reasons, which stem from the annotation

process described in Sect. 4. First, we want to avoid penalizing an annotator for a

decision that was correct at annotation time but that has since then become outdated

due to slight changes in the annotation scheme. Second, due to the tokenization and

sentence splitting corrections made between the merged and final annotations, the

number of tokens and sentences may differ between the individual and final
annotations, which means that these annotations are no longer directly comparable.

The overall AA across the treebank sections and all annotators is 91.3 %. This

gives us an estimate of the overall quality of the individual annotations. Table 7 lists

annotator accuracy figures per annotator and per section. From these figures it can

be seen that the quality of the single-annotation is high overall, the annotators are

sufficiently trained and the annotation scheme is stable. Differences between

treebank sections were rather small, in fact the differences between annotators and

possibly a learning effect seem to influence the overall results more.

The overall AA and the figures in Table 7 describe the quality of the individual
annotations, but not directly the quality of the double-annotated treebank.

Therefore, we have conducted a small-scale experiment in order to evaluate the

Table 7 AA per annotator and per section

Ann. 1 Ann. 2 Ann. 3 Ann. 4 Ann. 5 Overall

Wikipedia 95.7 85.1 90.4 – 94.5 91.1

Wikinews 95.5 87.8 92.4 74.3 – 91.1

Uni. news 96.6 89.5 92.0 70.6 – 88.6

Blogs 95.1 86.9 – – 89.4 90.6

Student 95.4 86.2 88.6 72.4 – 88.6

Grammar 96.0 88.6 89.2 – 89.1 91.4

Europarl 96.0 88.1 92.5 74.6 88.9 91.8

JRC-Acquis 95.7 89.7 89.1 – 88.7 91.3

Financial 97.3 91.7 – – 94.1 94.4

Fiction 96.2 88.9 – – 91.8 92.6

Overall 95.9 88.0 90.5 71.8 90.6 91.3

Total annotated (%) 38.3 32.5 9.9 2.6 16.7 100.0

The row entitled total annotated gives the percentages of tokens annotated by each annotator, the total

being twice the size of the corpus due to each token being annotated twice

The Turku Dependency Treebank

123

quality of the final annotation; a similar experiment was previously presented in a

conference paper by Haverinen et al. (2011). The basic idea of this experiment was

to evaluate a sample of the treebank by having an expert annotator annotate it for a

third time, settle the divergences between the final annotation and the new

annotation, and measure the LAS of the final annotation. When sampling the

sentences to be annotated, sentences previously annotated by the same annotator

should be avoided. This experiment setting assumes that the more proficient an

annotator is, the more mistakes he or she will uncover from the original annotation.

However, it was not sufficient to measure the quality simply by letting Annotator

1 annotate a sample, because this annotator has previously annotated a very large

portion of the treebank. Hence it was necessary to let Annotator 5, the second-best

according to AA, evaluate the portion of the treebank previously annotated by

Annotator 1. This strategy, naturally, leaves unevaluated the portion of the treebank

(38,085 tokens, approximately 18.6 %) that was annotated by both Annotator 1 and

Annotator 5. As these two annotators are the best-performing ones, the unevaluated

section is likely the one with the highest accuracy, and thus this method of

evaluation produces a conservative estimate of the quality. On the other hand, it is

naturally possible that some errors go unnoticed due to three different annotators

producing the same, erroneous analysis.

According to the strategy described above, Annotator 1 and Annotator 5 received

a set of 200 randomly selected sentences each. These two annotators independently

annotated their respective sentences, and a regular meeting of all annotators was

then arranged to resolve the differences between the new annotation and the final
annotation of the treebank. Effectively, by this we gained a triple-annotated set of

400 sentences, out of which 200 represent the set of sentences not annotated by

Annotator 1, and the remaining 200 sentences represent the set of sentences

annotated by Annotator 1 but not annotated by Annotator 5.

We have measured the annotator accuracy of the final annotation against the

newly merged triple-annotated sample, weighted by the sizes of the portions which

the two samples represent in the treebank. We find that the weighted LAS of the

final annotation is 97.6 %. This figure gives an estimate of the quality of the final
annotation, and together with the original overall annotator accuracy of 91.3 % it

shows that full double-annotation is a thorough way to weed out errors;

approximately 72 % [(97.6 - 91.3)/(100 - 91.3)] of the errors remaining in the

single-annotated documents are eliminated by using the double-annotation protocol.

The second layer of the annotation has been evaluated in a slightly different

manner. Due to the nature of the task, that is, annotating only a limited range of

phenomena, a large number of the treebank tokens are completely irrelevant to the

second layer annotation. Therefore, if we were to use LAS to measure annotator

performance, this would result in artificially high figures due to an overwhelming

amount of tokens being trivially correct. Therefore, for evaluating the second layer

of annotation, we use the F1-score, defined as F1 ¼ 2PR
PþR

; where P (precision) is the

fraction of dependencies in the evaluated output that are present in the gold

standard, and R (recall) is the fraction of dependencies in the gold standard that are

present in the evaluated output. Table 8 gives the F1-scores for each of the six

annotators participating in the second layer annotation.

K. Haverinen et al.

123

As can be seen from these figures, the annotation quality for the second

annotation layer is consistently high. In fact, although the two measures are not

directly comparable, it would seem that the second layer annotation was the more

straightforward of the two tasks, which is an intuitive result, given that in the second

layer annotation, an annotator was not required to create a full tree structure, but

rather decide whether a suggested dependency is present, and in some cases, what

its type is.

6.2 Quality of the morphological analyses

In order to evaluate the accuracy of the disambiguation procedure described in Sect.

5.3, we have double-annotated the morphological analyses for 1,000 tokens from the

treebank test section, sampling from all tokens except for punctuation and numerals.

The morphology test set thus also includes null tokens and tokens unknown to

OMorFi. On this set, we report the accuracy of the morphological analyses on three

different granularities: the main POS, fine-grained tagging including POS and all

other morphological tags, and full morphology, which includes fine-grained tagging

Table 8 Evaluation of the second annotation layer given in precision (P), recall (R) and F1-score

Annotator P R F1

Ann. 1 98.2 97.5 97.8

Ann. 2 96.6 96.0 96.3

Ann. 3 95.3 95.5 95.4

Ann. 5 98.2 97.7 97.9

Ann. 6 95.0 93.4 94.2

Ann. 7 94.9 92.1 93.5

Overall 96.7 95.8 96.3

Table 9 Morphology assignment evaluation in terms of accuracy

POS POS?tags POS?tags?Lemma

OMorFi 1 reading 97.6 96.5 96.3

OMorFi 2? readings 95.6 91.1 90.1

OMorFi unknown/null token 100.0 94.4 94.4

All 96.7 93.7 93.1

All with punct./number 97.3 94.8 94.3

Results are given separately for tokens with only a single OMorFi reading, which do not undergo any

disambiguation, tokens with more than one OMorFi reading, which are disambiguated using the proce-

dure described in Sect. 5.3, and finally, tokens not recognized by OMorFi and null tokens, whose analyses

are given manually. The All row shows the overall result on the test set, while the last row shows the

overall accuracy for all tokens, including punctuation and numbers. Note that even without any disam-

biguation (the first row), the accuracy is not 100 %, due to cases where OMorFi analyzes a word

erroneously

The Turku Dependency Treebank

123

as well as the word lemma. The results are shown in Table 9. The table lists

separately results for unknown tokens and null tokens, which, as described in Sect.

5.2, also receive morphological analyses. The performance on all tokens including

numbers and punctuation is estimated by an average accuracy weighted by the

proportion of numbers and punctuation in the corpus, assuming that these tokens

always receive the correct analysis.

Not all errors in the morphology assignment are due to the machine learning

disambiguation method. There are also cases where OMorFi generates one or more

readings for a token, but none of the readings are correct in the given context. Thus,

we have separately evaluated the machine learning component of the morphology

assignment, by ignoring the misassignments of OMorFi or in other words, cases

where the gold standard analysis indicates that the correct reading is not one of

those given by OMorFi. In this manner of evaluation, the accuracy of the main POS

is 98.7 %, the accuracy of the fine-grained tagging 96.2 %, and the accuracy of the

full morphology 95.7 %, calculated on the test set ignoring punctuation and

numbers. Tokens originally unknown to OMorFi as well as null tokens are included

in these figures, as they are given the correct analyses manually, and thus the

disambiguation method has the valid options at its disposal. If we further restrict the

data which the evaluation is performed on by disregarding all unambiguous tokens,

as these tokens do not need the machine learning to receive a single reading, the

main POS receives an accuracy of 97.5 %, the fine-grained tagging an accuracy of

93.0 % and the full morphology an accuracy of 92.1 %.

In addition to POS, the morphological tags assigned by OMorFi belong to 16

different categories. Table 10 presents results category by category in Precision,

Recall and F1-score. Two categories, Casechange and Other,6 are not included in

the table due to fact that these tags are manually added and therefore considered to

always be correct. As can be seen from the figures, most, but not all, categories are

predicted very accurately. The category with the lowest F1-score is Clitic, largely

due to the ambiguity between a plain adverb and an adverb with a clitic. A typical

case is the wordform ainakin, which can be a plain adverb with the meaning at least
or the adverb aina (always) with the clitic -kin (also). Both of these readings are

adverb modifiers in the syntactic tree, meaning that the tree does not provide cues

for their disambiguation.

7 Treebank data and associated tools

This section describes the totality of the data, related tools and aids that are released

as parts of the contribution of this paper.

The Turku Dependency Treebank is released in its native xml-format. As

described previously in Sect. 3.1, even the first layer of the syntax annotation in

TDT does not in fact contain strict tree structures but rather directed graphs, due to

the treatment of multi-word named entities. Therefore, we have transformed the

6 The category Other contains tags that indicate tokens unknown to OMorFi, typographical errors and

colloquial wordforms. OMorFi does not produce these tags.

K. Haverinen et al.

123

treebank so that it only contains trees and distribute this version in the commonly

used CoNLL-09 format (Hajič et al. 2009). The transformation is performed by only

including the first layer of annotation and additionally modifying the name
dependencies. Name dependencies that cover multiple tokens are expanded to

chains of name dependencies from right to left, and the rightmost token of the

named entity becomes its head, meaning that the token governing the named entity

is the governor of the rightmost token. If the named entity has an internal structure

marked, this structure is deleted. The transformation of the name dependencies is

illustrated in Fig. 13.

There are two ways of accessing the treebank: it can either be downloaded, or it

can be browsed and queried directly online. Using the browseable version, it is

possible to view sentences of the treebank in their document context. The search

functions enable searching for wordforms, morphological features and syntactic

structures.

In addition to the final annotations of the treebank, we make available the

individual and merged annotations described in Sect. 4 for the first annotation layer.

Table 10 Precision (P), Recall

(R) and F1-score (F1) given

separately for each feature

category in the morphology

assignment

The feature category named

Subcategory contains tags that

amplify the main POS, such as

subordinating conjunction or

coordinating conjunction for the

main POS conjunction, or

proper noun for the main POS

noun

P R F1

Subcategory 95.2 95.2 95.2

Number 96.9 98.4 97.7

Case 97.1 98.4 97.7

Possessive suffix 94.1 100.0 97.0

Person 97.9 99.3 98.6

Voice 97.3 99.0 98.1

Tense 98.5 98.5 98.5

Mood 99.3 99.3 99.3

Negation 100.0 88.9 94.1

Participle 96.8 100.0 98.4

Infinitive 100.0 100.0 100.0

Clitic 76.9 90.9 83.3

Derivation 92.9 92.9 92.9

Comparison 93.9 95.7 94.8

Fig. 13 The original name dependencies in TDT (top), and the name dependencies as processed in order
to ensure treeness (bottom)

The Turku Dependency Treebank

123

This data is to our knowledge unique in that it allows one to study the annotation

process, which is usually not possible, due to many treebanks being single-

annotated after an initial annotator training phase.

As a technical aide, we provide a web-based parser evaluation service that

measures parser output against the strict tree version of the test set of the treebank.

The test set consists of 21,281 tokens (1,554 sentences), as selected in a random,

stratified manner on the level of documents. The syntax of the test set in its entirety

is manually double-annotated, and the morphology is manually double-annotated

for a subset of 1000 tokens, the same subset that was used for evaluating the

treebank morphology in Sect. 6.2. The service provides the user with a text-only

version of the test set, in the CoNLL-09 format. This version, naturally, lacks the

dependency analyses of the sentences, the null tokens, and the morphological

analyses. A parsed version in the CoNLL-09 format can be submitted to the system,

which will return evaluations of both the morphological tagging and the syntactic

parsing. For the morphology evaluation, the system returns the accuracy of

lemmatization, main POS, fine-grained tagging, as well as the full morphology. The

syntax evaluation results, in turn, are given in labeled as well as unlabeled

attachment scores, and dependency type accuracy. The frequency of use for the

evaluation system is restricted to 10 submissions daily and 15 submissions weekly,

in order to prevent overfitting of the test set.

The service can evaluate parser output with null tokens inserted, and in fact, in

order to achieve perfect performance scores, a parser is expected to provide these

tokens. The position of a null token in the sentence is not evaluated, as there are

often multiple possible placements due to the free word order of Finnish. The

service thus aligns all null tokens to their gold standard equivalents so as to

maximize the LAS. For each missing null token in the parser output, all the

dependents of the token are counted as having the incorrect governor, and any

extraneous null token in the parser output has its governor and dependency type

counted as incorrect. By submitting the test set otherwise fully correctly parsed, but

with null tokens omitted, it is possible to reach a labeled attachment score of

99.04 %, the unlabeled attachment score being exactly the same. In terms of

morphology evaluation, a submission without null tokens can receive an accuracy of

99.5 % in lemmatization, POS tagging, fine grained-tagging and full morphology

alike.

The syntactic analysis is evaluated on the full test set, whereas the evaluation of

the morphological analysis is carried out on the 1000-token subset that has

morphological gold standard annotation available. For a token to be considered

correct for a metric, all values relating to this metric must be correct. Accuracy is

calculated as the percentage of correct tokens out of all tokens evaluated. Some of

the null tokens of the test set are also part of the morphological gold standard, and

the aligned null tokens in the parser output will be evaluated against these null

tokens in the morphological evaluation. If no aligned null token is found, the

morphological evaluation considers the token incorrect.

This section concludes the discussion of the treebank. Next, we move on to

describe the second main contribution of the paper, the freely available statistical

parsing pipeline of Finnish.

K. Haverinen et al.

123

8 Statistical dependency parsing of Finnish

The initial main motivation for the development of the Turku Dependency Treebank

was the need for training data for statistical dependency parsing of Finnish. In this

section, we introduce a full parsing pipeline trained on the treebank, using state-of-

the-art open source tools. This pipeline constitutes the first freely available

dependency parser for Finnish and can be used as a starting point for further

research in Finnish dependency parsing, as well as incorporated in various NLP

tasks and applications. The first such applications are briefly introduced in the

second subsection.

8.1 Parsing pipeline

The parsing pipeline follows the ‘‘standard’’ task sequence of sentence splitting,

tokenization, morphological tagging, and dependency parsing. Sentence splitting

and tokenization are machine-learned using the corresponding modules from the

Apache OpenNLP toolkit.7 Dependency parsing of the morphologically tagged

input is carried out using the graph-based parser of Bohnet (2010), a state-of-the-art

statistical dependency parser. These components are used off-the-shelf and trained

in a standard manner without any adaptation.

Morphological tagging, on the other hand, requires more effort before sufficient

accuracy can be gained. In a number of preliminary experiments, we were unable to

achieve an acceptable parsing performance using purely machine-learned taggers

and lemmatizers, with a strong indication that the poor performance of statistical

lemmatization in particular was responsible for the low overall parsing accuracy.

We thus implement morphological tagging as a hybrid system combining the

OMorFi analyzer with the HunPOS statistical tagger (Halácsy et al. 2007), an open

source reimplementation of the TnT tagger of Brants (2000). The combination of

these two tools is rather straightforward, since the HunPOS tagger allows one to list

the possible readings for any token in the input. This set of readings is then used to

constrain the search space during disambiguation. For each token that is recognized

by OMorFi, the set of possible readings is passed to HunPOS, which will select one

of them. Tokens which are not recognized by OMorFi are left for HunPOS to tag

using suffix-guessing. An important aspect of this hybrid approach is that for tokens

recognized by OMorFi, which are the majority of running tokens, correct lemmas

are obtained as well. For the tokens not recognized by OMorFi, we find that the best

strategy is not to attempt any lemmatization and to set the lemma to be the token

itself.

The employed tools have several optimizable parameters: in HunPOS the

transition and emission probability order as well as two parameters governing suffix

guessing, and in the dependency parser the weight vector size and non-projectivity

threshold. The parameters were optimized separately for each tool using a grid

search evaluated on a held-out development set. A joint search across the pipeline is

computationally infeasible due to the long training times of the dependency parser.

7 http://opennlp.apache.org/

The Turku Dependency Treebank

123

http://opennlp.apache.org/

The optimal parameter combination was then used to train the final models, using a

union of the training and development data. The test data was not used at any point

during the parameter optimization, nor was it used during the overall development

of the parsing pipeline.

The overall performance of the parser is evaluated using the test set evaluation

service described in Sect. 7 and is summarized in Table 11. The labeled and

unlabeled (UAS) attachment scores are 81 and 85 % respectively, including the

approximately -1pp penalty incured on the test set by any parser that is not capable

of introducing the null tokens. Per-section results are shown in Table 12. Here we

see a wide variance in parsing performance, from 74.5 % LAS on fiction to 88 %

LAS on the JRC-Acquis legal documents.

In order to set these results in a wider context, we have collected parsing results

for a variety of languages from a range of recent studies, including the CoNLL’09

shared task (Hajič et al. 2009), the study presenting the MateTools parser used in

this work (Bohnet 2010), and the studies by Nivre et al. (2007), Nivre (2008) and

Farkas et al. (2012). In Fig. 14, we compare the Finnish parsing performance to the

results presented in these studies. Taking into account the size of the corpus, the

parsing accuracy is in the expected range.

Table 11 Dependency parser results on the test set

Metric Values tested Accuracy (%)

Labeled attachment score (LAS) Governor ? Dependency type 81.01

Unlabeled attachment score (UAS) Governor 84.97

Dependency type accuracy Dependency type 89.53

Lemmatization Lemma 91.8

Main part-of-speech tagging POS 94.4

Fine-grained tagging All morphological tags 89.8

Full morphology Lemma ? all morphological tags 87.3

Table 12 Per-section

dependency parser results on

the test set, given in labeled

(LAS) and unlabeled (UAS)

attachment scores

Section LAS UAS

Wikipedia 82.71 86.97

Wikinews 80.33 85.23

Uni. news 84.65 88.50

Blogs 76.84 80.45

Student 82.65 87.18

Grammar 79.59 83.83

Europarl 83.14 86.52

JRC-Acquis 88.01 90.98

Financial 79.93 82.48

Fiction 74.47 79.35

K. Haverinen et al.

123

8.2 Existing applications

Even while under development, earlier versions of TDT and the parsing pipeline

have so far been applied in several projects, demonstrating their utility in Finnish

NLP.

As part of the FinCLARIN consortium, the treebank and the parser were used to

produce a parsebank of the Finnish sections of the Europarl (Koehn 2005) and JRC

Acquis (Steinberger et al. 2006) corpora, in the FinnTreeBank syntactic scheme.

The result of this project is the parsebank distributed as FinnTreeBank 3, as

described by Voutilainen et al. (2012a).

TDT has also been used in a project conducted in collaboration with the machine

translation company Convertus AB.8 Part of the Bologna project, this project builds

a machine translation system from Finnish to English focusing on the educational

domain.

9 Comparison of TDT and FinnTreeBank

As mentioned in Sect. 1, FinnTreeBank (Voutilainen and Lindén 2011) is a second

publicly available Finnish treebank, published shortly after the second intermediate

Fig. 14 Parsing results for various languages from a number of studies, as related to corpus size. The
languages are given as short labels, where CAT Catalan, CHI Chinese, CZE Czech, ENG English, GER
German, JAP Japanese, SPA Spanish, ARA Arabic, BUL Bulgarian, DAN Danish, DUT Dutch, POR
Portuguese, SLO Slovene, SWE Swedish, TUR Turkish, HUN Hungarian, ITA Italian and FIN Finnish.
The different studies are indicated as subscripted numbers as follows: 1 Nivre et al. (2007), 2 Nivre
(2008), 3 Hajič et al (2009), 4 Bohnet (2010) and 5 Farkas et al. (2012). The result achieved by the
parser presented in this work is shown as a black dot

8 http://www.convertus.se/.

The Turku Dependency Treebank

123

http://www.convertus.se/.

release of the Turku Dependency Treebank. This section discusses the differences

between the two treebanks, which are summarized in Table 13.

The first difference is that FinnTreeBank has been created as a grammar

definition corpus, allowing the construction of a rule-based parser, whereas TDT has

been built with statistical parsing in mind. FinnTreeBank contains text from four

genres: example sentences from the Finnish grammar (Hakulinen et al. 2004),

Wikipedia, online news (from Helsingin Sanomat and Tietoviikko) and fiction (a

sample of the Finnish translation of Jostein Gaarder’s Sophie’s world). The latter

three genres constitute approximately 3 % of FinnTreeBank, while the grand

majority of the treebank, almost 97 %, are grammar examples. As described in Sect.

2, TDT has ten different genres. We have selected grammar examples from

FinnTreeBank as one section of TDT, so as to enable a conversion between the

schemes of the two treebanks, as discussed below. The size of FinnTreeBank is

169,450 tokens (19,764 sentences), that is, approximately 30,000 tokens smaller

than the Turku Dependency Treebank. The sentence count of FinnTreeBank is

larger than that of TDT, which is due to the most common genre of the treebank

being grammar examples, which are often rather short.

In addition to size and genres, the two treebanks differ in several other respects.

First, the annotation schemes are different. While TDT uses a modified version of a

previously existing scheme, the Stanford Dependency scheme (49 dependency

types), FinnTreeBank is annotated in a custom annotation scheme, henceforth called

the FTB scheme. This scheme contains 14 dependency types, disregarding the type

main which marks the main predicate of the sentence. Table 14 lists the dependency

types of the FTB scheme. The SD scheme is more detailed with its treatment of

several phenomena, making distinctions which the FTB scheme does not explicitly

make. For instance, the SD scheme distinguishes between different kinds of noun

premodifiers, such as adjectival modifiers, genitive modifiers and determiners,

whereas the FTB scheme analyzes all of these as attributes. Similarly, the FTB

scheme analyzes nominal modifiers after a noun as well as full relative clauses as

simply postmodifiers, whereas in the SD scheme these are distinguished using

different dependency types.

Second, FinnTreeBank is, for the most part, single-annotated (a small portion of

2039 tokens has been double-annotated (Voutilainen and Purtonen 2011)), while, as

discussed in Sect. 4, the annotation protocol in TDT is full double-annotation.

Table 13 Comparison of the main features of the Turku Dependency Treebank and FinnTreeBank

Turku Dependency Treebank FinnTreeBank

Size in tokens 204,399 169,450

Size in sentences 15,126 19,764

Genres 10 4 (97 % grammar examples)

Annotation scheme Stanford Dependency FTB scheme

Dependency types in scheme 49 14

Annotation protocol double (mostly) single

Morphology annotation OMorFi disambiguated 3 taggers

K. Haverinen et al.

123

Finally, the treebanks differ in their morphological analyses. The analyses in

FinnTreeBank, like those in TDT, are based on the tagset of the automatic tool

OMorFi. According to the manual of Voutilainen et al. (2012b, p. 8), the

morphological analyses have been created by manually checking the combined

output of three different statistical taggers. In TDT, as described in Sect. 5, the

morphological readings have been disambiguated semi-automatically based on the

manual syntax annotation.

As part of the FinCLARIN parsebank project mentioned in Sect. 8.2, we have

converted an earlier version of TDT, consisting of 190,271 tokens (93 % of the final

size), into the FTB scheme. Unlike in the current treebank, the morphology

information in this project was provided through the commercial FinCG (Karlsson

1990) analyzer by Lingsoft Inc. We used the converted version of the treebank to

train an earlier version of the statistical parser of Bohnet (2010). This parser was

used to parse a corpus of Finnish consisting of 76.3M tokens from the Europarl

(Koehn 2005) and JRC-Acquis (Steinberger et al. 2006) corpora. This parsebank is

distributed by the University of Helsinki as FinnTreeBank 3 (Voutilainen et al.

2012a). The conversion of SD into the FTB scheme was mostly rule-based, with a

machine-learning post-processing component that connected islands left in the

converted output after the rule-based step. The conversion relies on the FinCG

output and its detailed description is beyond the scope of this paper.

As part of this project, we made a focused effort to pool TDT with FinnTreeBank

so as to leverage the larger combined training set size. We were, however, unable to

increase parsing performance, likely due to the combination of errors introduced

during the necessary scheme and morphology transformations, as well as the fact

that FinnTreeBank is not developed for statistical parser training and its domain of

grammar examples is very specific.

Table 14 Dependency types

of the FTB scheme
Dependency type Description

main Main predicate of the sentence

aux Auxiliary

subj Subject

obj Object

scomp Predicative

advl Adverbial

attr Attribute

phrm Phrase marker (conjunctions, adpositions etc.)

modal The nominal part of a verb chain

phrv Phrasal verb

comp Comparison structure

idiom Idiom

conjunct Conjunct, coordination

voc Vocative

mod Post-modifier

The Turku Dependency Treebank

123

10 Conclusion

In this paper, we have presented the Turku Dependency Treebank, a publicly

available dependency-based treebank of Finnish. Prior to the earlier, smaller

versions of this treebank, Finnish did not have such a resource available, hindering

research in many areas of statistical NLP as well as preventing the development of

freely available, open source statistical dependency parser. The treebank consists of

204,399 tokens (15,126 sentences), and it contains text from ten different sources.

As the second main contribution of the paper, we have presented a freely available

statistical parsing pipeline of Finnish. The treebank and the parsing pipeline

alongside with other related tools and resources are publicly available under the

Creative Commons Attribution-Share Alike license at http://bionlp.utu.fi/.

The Turku Dependency Treebank contains gold standard syntax annotations in

the widely used Stanford Dependency (SD) scheme as well as automatically

assigned and fully disambiguated morphological analyses. The syntax annotation of

the treebank contains not only the base-syntactic layer that is grounded on the basic
variant of the SD scheme, but also a second layer, termed coordination propagation
and additional dependencies, which provides information about coordination

structures, open clausal complements and relative clauses. To our knowledge, TDT

is the first resource manually annotated for the coordination propagation contained

in the SD scheme.

The morphological analyses of the treebank are based on the output of an existing

tool, OMorFi. In order to produce high-quality morphological analyses in an

efficient manner while avoiding costly manual annotation, we have used a novel

method to disambiguate the readings assigned by OMorFi. This method employs

machine learning, using the unambiguous tokens of the treebank as training

examples and the syntactic annotation for providing features. While manually

annotating morphology is, naturally, the most precise manner of producing these

analyses, our method is more cost-efficient as the manual effort is minimized and

the existing syntactic trees are used to aid the disambiguation.

The annotation protocol of the treebank in its entirety is full double annotation,

which enables us to ensure high quality annotations, as demonstrated by a high

overall annotator accuracy of 91.3 % in LAS. This evaluates the quality of the

individual annotations, while the quality of the final annotation of the treebank is

evaluated in a separate experiment, where a portion of the treebank was triple-

annotated. The LAS of the final annotation against the triple-annotated gold

standard was 97.6 %. The annotator accuracy of the second annotation layer, where

the structures annotated are not full trees, was measured in F1-score, and the

resulting overall AA was 96.3 %. The evaluation of the morphological analyses

showed that the automatic method for morphology assignment achieves an accuracy

of 96.7 % in main POS and 93.1 % in full morphological analyses, including fine-

grained tagging and lemmatization. This goes to demonstrate that good quality

morphology disambiguation can be achieved automatically, without any manually

annotated training data specific to the task.

In addition to the final annotations of the treebank, we also release the individual
and merged annotations, which are, to our knowledge, a unique resource for

K. Haverinen et al.

123

http://bionlp.utu.fi/

studying the human annotation process. We also provide a web-based service for

evaluating parsers on our treebank test set.

As the second part of the main contribution in this work, we provide a full

statistical parsing pipeline for Finnish, including a sentence splitter, a tokenizer, a

morphological tagger and a parser. For this pipeline, we have induced a statistical

parser of Finnish, using the state-of-the-art parser of Bohnet (2010). The parsing

pipeline achieves a performance of 81 % in LAS, and is freely available alongside

with the treebank.

In the future, it would be highly useful to further enhance the annotations of

TDT. At the time of writing of this paper, we are in the process of annotating verb

argument structures using the well-known PropBank scheme as originally described

by Palmer et al. (2005). To improve the parsing performance achieved in this work,

it would be helpful to increase the size of the treebank using single-annotation,

possibly employing active learning (Cohn et al. 1996) to identify the most beneficial

examples to annotate. Additionally, identifying and correcting the most common

errors in the morphological layer of the treebank would be beneficial. Other possible

future work directions include annotating argument structures of nouns in the

NomBank scheme (Meyers et al. 2004) and parallelizing the treebank with another

language for machine translation purposes.

Acknowledgements We would like to thank the authors of the treebank text, who kindly allowed us to
use their work, either by explicit permission or by releasing their text under an open license originally.
We would also like to thank Lingsoft Inc. for making FinTWOL and FinCG available to us throughout the
project. This work has been supported by the Academy of Finland, Turun yliopiston Yliopistosäätiö, Emil
Aaltosen säätiö and TOP-säätiö.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

References

Begum, R., Dhwai, A., & Misra, D. (2008). Dependency annotation scheme for Indian languages. In

Proceedings of IJNLP’08, pp. 721–726.

Björne, J., Ginter, F., Pyysalo, S., Tsujii, J., & Salakoski, T. (2010). Complex event extraction at pubmed

scale. Bioinformatics, 26(12), 382–390.

Boguslavsky, I., Chardin, I., Grigorieva, S., Grigoriev, N., Iomdin, L., Kreidlin, L., et al. (2002).

Development of a dependency treebank for Russian and its possible applications in NLP. In

Proceedings of LREC’02, pp. 852–856.

Bohnet, B. (2010). Top accuracy and fast dependency parsing is not a contradiction. In Proceedings of
COLING’10, pp. 89–97.

Brants, S., Dipper, S., Hansen, S., Lezius, W., Smith, G. (2002). The TIGER treebank. In Proceedings of
TLT1, pp. 24–41.

Brants, T. (2000). TnT—a statistical part-of-speech tagger. In Proceedings of ANLP’00, pp. 224–231.

Cer, D., de Marneffe, M. C., Jurafsky, D., Manning, C. (2010). Parsing to stanford dependencies: Trade-

offs between speed and accuracy. In Proceedings of LREC’10, pp. 1628–1632.

Charniak, E., & Johnson, M. (2005). Coarse-to-fine n-best parsing and MaxEnt discriminative re-ranking.

In Proceedings of ACL’05, pp. 173–180.

Choi, J. D., & Palmer, M. (2011). Getting the most out of transition-based dependency parsing. In

Proceedings of ACL-HLT’11, pp. 687–692.

The Turku Dependency Treebank

123

Clegg, A. B., & Shepherd, A. (2007). Benchmarking natural-language parsers for biological applications

using dependency graphs. BMC Bioinformatics, 8(1), 24.

Cohn, D., Ghahramani, Z., & Jordan, M. (1996). Active learning with statistical models. Journal of
Artificial Intelligence Research, 4, 129–145.

de Marneffe, M. C., & Manning, C. (2008a). Stanford typed dependencies manual. Tech. rep., Stanford

University, revised for Stanford Parser v. 2.0.4 in November 2012.

de Marneffe, M. C., & Manning, C. (2008b). Stanford typed dependencies representation. In Proceedings
of COLING’08, workshop on cross-framework and cross-domain parser evaluation, pp. 1–8.

Dukes, K., & Buckwalter, T. (2010). A dependency treebank of the Quran using traditional Arabic

grammar. In Proceedings of INFOS’10, pp. 1–7.

Farkas, R., Vincze, V., & Schmid, H. (2012). Dependency parsing of hungarian: baseline results and

challenges. In Proceedings of EACL ’12, pp. 55–65.

Foster, J., Cetinoglu, O., Wagner, J., Le Roux, J., Nivre, J., Hogan, D., et al. (2011). From news to

comment: Resources and benchmarks for parsing the language of web 2.0. In Proceedings of
IJCNLP’11, pp. 893–901.

Hajič, J. (1998). Building a syntactically annotated corpus: The Prague Dependency Treebank. In Issues
of valency and meaning. Studies in Honour of Jarmila Panevová, Karolinum (pp. 106–132) Prague,

Czech Republic: Charles University Press.

Hajič, J., Ciaramita, M., Johansson, R., Kawahara, D., Martı́, M. A., Màrquez, L., et al. (2009). The

CoNLL-2009 shared task: Syntactic and semantic dependencies in multiple languages. In

Proceedings of CoNLL’09.

Hakulinen, A., Vilkuna, M., Korhonen, R., Koivisto, V., Heinonen, T. R., & Alho, I. (2004). Iso suomen

kielioppi / Grammar of Finnish. Suomalaisen kirjallisuuden seura.

Halácsy, P., Kornai, A., & Oravecz, C. (2007). HunPos—an open source trigram tagger. In Proceedings
of ACL’07, Companion Volume, pp. 209–212.

Haverinen, K. (2012). Syntax annotation guidelines for the Turku Dependency Treebank. Tech. Rep.

1034, Turku Centre for Computer Science.

Haverinen, K., Ginter, F., Laippala, V., Viljanen, T., Salakoski, T. (2009). Dependency annotation of

Wikipedia: First steps towards a Finnish treebank. In Proceedings of TLT8, pp. 95–105.

Haverinen, K., Ginter, F., Laippala, V., Viljanen, T., Salakoski, T. (2010a). Dependency-based

propbanking of clinical Finnish. In Proceedings of LAW IV, pp. 137–141.

Haverinen, K., Viljanen, T., Laippala, V., Kohonen, S., Ginter, F., & Salakoski, T. (2010b). Treebanking

Finnish. In Proceedings of TLT9, pp. 79–90.

Haverinen, K., Ginter, F., Laippala, V., Kohonen, S., Viljanen, T., Nyblom, J., et al. (2011). A dependency-

based analysis of treebank annotation errors. In Proceedings of Depling’11, pp. 115–124.

Helasvuo, M. L., & Huumo, T. (2010). Mikä on subjekti?. Virittäjä, 114(1), 165–195.

Joachims, T. (2006). Training linear SVMs in linear time. In Proceedings of the ACM conference on
knowledge discovery and data mining.

Karlsson, F. (1990). Constraint grammar as a framework for parsing running text. In Proceedings of
COLING’90, pp. 168–173.

Klein, D., & Manning, C. D. (2003). Accurate unlexicalized parsing. In Proceedings of ACL’03,

pp. 423–430.

Koehn, P. (2005). Europarl: A parallel corpus for statistical machine translation. In Proceedings of MT
Summit X, pp. 79–86.

Koskenniemi, K. (1983). Two-level model for morphological analysis. In Proceedings of IJCAI’83,

pp. 683–685.

Lee, J., & Kong, Y. H. (2012). A dependency treebank of classical Chinese poems. In Proceedings of
NAACL-HLT 2012, pp 191–199.

Lindén, K., Silfverberg, M., & Pirinen, T. (2009). HFST tools for morphology—an efficient open-source

package for construction of morphological analyzers. In State of the Art in Computational
Morphology, Communications in Computer and Information Science, vol. 41, pp 28–47.

Marcus, M., Marcinkiwicz, M. A., & Santorini, B. (1993). Building a large annotated corpus of English:

The Penn Treebank. Computational Linguistics, 19(2), 313–330.

McDonald, R., Lerman, K., & Pereira, F. (2006). Multilingual dependency analysis with a two-stage

discriminative parser. In Proceedings of CoNLL’06, pp. 216–220.

Meena, A., & Prabhakar, T. V. (2007). Sentence level sentiment analysis in the presence of conjuncts

using linguistic analysis. In Proceedings of ECIR’07, pp. 573–580.

K. Haverinen et al.

123

Meyers, A., Reeves, R., Macleod, C., Szekely, R., Zielinska, V., Young, B., et al. (2004). The NomBank

project: An interim report. In Proceedings of the NAACL/HLT workshop on frontiers in corpus
annotation.

Miwa, M., Pyysalo, S., Hara, T., & Tsujii, J. (2010). A comparative study of syntactic parsers for event

extraction. In Proceedings of BioNLP’10, pp. 37–45.

Miyao, Y., Sagae, K., Sætre, R., Matsuzaki, T., Tsujii, J. (2009). Evaluating contributions of natural

language parsers to protein-protein interaction extraction. Bioinformatics, 25(3), 394–400.

Nivre, J. (2008). Algorithms for deterministic incremental dependency parsing. Computational
Linguistics, 34(4), 513–553.

Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kübler, S., et al. (2007). MaltParser: A language-

independent system for data-driven dependency parsing. Natural Language Engineering, 13(2),

95–135.

Nivre, J., Rimell, L., McDonald, R., Gómez-Rodrı́guez, C. (2010). Evaluation of dependency parsers on

unbounded dependencies. In Proceedings of COLING’10, pp. 833–841.

Palmer, M., Gildea, D., & Kingsbury, P. (2005). The Proposition Bank: An annotated corpus of semantic

roles. Computational Linguistics, 31(1), 71–106.

Pirinen, T. (2008). Suomen kielen äärellistilainen automaattinen morfologinen jäsennin avoimen

lähdekoodin resurssein. Master’s thesis, University of Helsinki.

Qian, L., & Zhou, G. (2012). Tree kernel-based protein-protein interaction extraction from biomedical

literature. Journal of Biomedical Informatics, 45(3), 535–543.

Santorini, B. (1990). Part-of-speech tagging guidelines for the Penn Treebank project. Tech. rep.,

University of Pennsylvania, (3rd revision, 2nd printing).

Seraji, M., Megyesi, B., & Nivre, J. (2012). Bootstrapping a Persian dependency treebank. Linguistic
Issues in Language Technology, 7(18).

Steinberger, R., Pouliquen, B., Widiger, A., Ignat, C., Erjavec, T., Tufiş, D., et al. (2006). The JRC-

Acquis: A multilingual aligned parallel corpus with 20? languages. In Proceedings of LREC’06,

pp. 2142–2147.

Tratz, S., & Hovy, E. (2011). A fast, accurate, non-projective, semantically-enriched parser. In

Proceedings of EMNLP’11, pp. 1257–1268.

Valkonen, K., Jäppinen, H., & Lehtola, A. (1987). Blackboard-based dependency parsing. In Proceedings
of IJCAI’87—volume 2, pp. 700–702.

Vincze, V., Dóra, S., Almási, A., Móra, G., Alexin, Z., & Csirik, J. (2010). Hungarian dependency

Treebank. In Proceedings of LREC’10, pp. 1855–1862.

Voutilainen, A., & Lindén, K. (2011). Specifying a linguistic representation with a grammar definition

corpus. In Proceedings of corpus linguistics 2011.

Voutilainen, A., & Purtonen, T. (2011). A double-blind experiment on interannotator agreement: The case

of dependency syntax and Finnish. In Proceedings of NODALIDA’11, pp. 319–322.

Voutilainen, A., Muhonen, K., Purtonen, T., & Lindén, K. (2012a). Specifying treebanks, outsourcing

parsebanks: Finntreebank 3. In Proceedings of LREC’12.

Voutilainen, A., Purtonen, T., & Muhonen, K. (2012b). FinnTreeBank2 manual. Tech. rep., University of

Helsinki, Department of Modern Languages.

Zhuang, L., Jing, F., & Zhu, X. Y. (2006). Movie review mining and summarization. In Proceedings of
CIKM’06, pp. 43–50.

The Turku Dependency Treebank

123

	Building the essential resources for Finnish: the Turku Dependency Treebank
	Abstract
	Introduction
	Text selection
	Dependency annotation scheme
	The finnish-specific SD scheme: the first annotation layer
	Additions to the SD scheme
	Removals from the SD Scheme

	The second annotation layer: conjunct propagation and extra dependencies
	Discussion

	Annotation process
	Annotation workflow
	The first annotation layer
	The second annotation layer

	Morphological analyses
	OMorFi
	Post-processing OMorFi output and treatment of unknown tokens
	Disambiguating OMorFi output as a machine learning task

	Evaluation
	Syntax annotation quality
	Quality of the morphological analyses

	Treebank data and associated tools
	Statistical dependency parsing of Finnish
	Parsing pipeline

	Comparison of TDT and FinnTreeBank
	Conclusion
	Acknowledgements
	References

