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On the Karystinos-Pados Bounds and Optimal Binary
DS-CDMA Signature Ensembles

Valery P. Ipatov, Member, IEEE

Abstract—Tightness of the Karystinos–Pados bounds was orig-
inally proved with four exceptions. In this letter, we modify the al-
gorithm of constructing signatures removing three of these excep-
tions. For the fourth one the tighter bound are derived.

Index Terms—Code-division-multiple-access (CDMA) signa-
tures, Karystinos-Pados bounds, Welch bound.

I. INTRODUCTION

I N DESIGNING synchronous direct-sequence code-divi-
sion-multiple-access (DS-CDMA) systems an adequate

choice of a set of user signature sequences is of critical impor-
tance. In recent years considerable attention has been focused
on signature sets attaining the lower Welch bound [1]–[3]. As
shown in [1], signature sets of this sort maximize Shannon
capacity of CDMA channels with Gaussian noise and Gaussian
input, the latter constraint being immaterial whenever receive
signal-to-noise ratio is small enough.

Let be matrix whose columns are user’s sig-
nature sequences of lengths normalized so that their ener-
gies (squared Euclidean norms) are equal to unity. The total
squared correlation of the signature set [3] is then
the sum of all squared inner products (correlations)
of columns of the matrix . According to the Welch bound [4]
(properly modified to evaluate the total squared correlation [1],
[2]) with .

In this letter we consider binary signatures whose elements
are antipodal. When is not divisible by 4, binary signature
set can not achieve the “pure” Welch bound, since matrix can
not have orthogonal rows or columns [2].
This fact stimulated the authors of [5] to produce a new version
of the Welch bound, specified for binary antipodal signature al-
phabet. In space-saving form the Karystinos-Pados bound may
be presented as

(1)
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where , and stand for rounding
toward zero and infinity respectively.

In [5] the Hadamard-matrix-based algorithm is also proposed
to construct binary signature sets achieving the bound (1),
thereby proving the tightness of the latter at least for cases
where an appropriate Hadamard matrix exists. However, four
exceptions are listed in [5] which are not covered by this
algorithm. In our designations they are reduced to three:

(2)

In Section II we show that the first two of these exceptions
(three in the notation of [5]) are easily removed by a slight sim-
plification of the algorithm of [5]. The construction is identical
to that of [6] but the author could not be aware of it at the mo-
ment of submitting the letter, since [6] was published later. Dis-
cussion of the third exception in Section III results in a new
bound on which is tighter than the Karystinos-Pados
one.

II. BINARY SIGNATURE SET CONSTRUCTION

The algorithm works whenever is not a multiple of 4
and a Hadamard matrix exists of an order which is the least a
multiple of 4 greater than . If or are multiples of 4
it coincides with the one in [5], We therefore dwell only on the
case . Let denote weight, i.e., the number
of negative elements, of the th row of the binary matrix. Sup-
pose a Hadamard matrix of the order exists and,
if , multiply all its rows element-wise by the first row.
The matrix obtained is again a Hadamard one whose first row
has zero weight, i.e., consists only of elements , while all the
other rows are of weight due to their orthogonality to the
first row. Rearranging the columns we arrive at a Hadamard ma-
trix whose first columns start with two-element prefix

, while the rest of the columns have the prefix .
Select and columns correspondingly out of the
first and second halves of the columns of and then exclude
the two-element prefixes of the selected columns to arrive at
the matrix . It is readily seen that after dropping the
prefixes any inner product of two different columns in either
remains zero (if the prefixes removed are different) or changes
to when the prefixes are the same. Now normalize by
dividing it by and transpose the resulting matrix if
(using the “row-column equivalence” of the sums of the squared
inner products [3]). In the binary matrix thus produced
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correlations of columns are equal to , so that
equals the minimum predicted by (1). Thus is the desired ma-
trix whose columns are binary signatures meeting the bound (1).
Thereby 2 of the 3 exceptions (2) (three of four in the notation of
[5]) are eliminated, and the tightness of bounds found in [5] ap-
pears to be true for any with the only stipulation
of existence of an appropriate Hadamard matrix, any relations
between and being irrelevant.

III. BOUNDS FOR CASE

Let us now show that in the case the
bound (1) ramifies further depending on the specific value
of . Since the correlations of columns of binary square
matrix of the odd order can only take on the values

the three least candidate values of
are

(3)

where is the number of pairs of columns with corre-
lation , the rest of all nonunity correlations being .

Proposition 1: There are two necessary conditions of exis-
tence binary signatures satisfying (3)

(4)

(5)

where are integers;
if and if .

Proof: Since , a column in exists which
does not enter any pair with correlation . Deleting this
column leads to matrix with

(6)

Let us calculate in terms of row inner products.
Due to “row–column equivalence”, is the number of pairs of
rows (as well as columns) in having the correlation ,
all other pairs of different rows having correlation . After
discarding any one column in , row inner products change from

to 0 or and from to or . It is
clear that the number of row pairs in whose inner product is

can not exceed . Denote the number of
rows in having even weight by and take into account that
with row length an inner product
occurs only for rows whose weights are of different
parities. Allowing for the changing squared norms of rows from
1 to as a result of column elimination and counting
the number of all possible row inner products in , we obtain

(7)

Equating the right-hand sides of expressions (6) and (7) and
solving the equation thereby produced in gives

Since is natural we put where is a
nonnegative integer, which results in (4), the minus sign in the
preceding expression having been ignored, since and

generate the same series of integers when .
To prove condition (5), let us return to matrix and delete in

it a column entering a column pair with correlation . In
the matrix thus obtained there are no column
pairs with correlation if and no more than one
such pair if . Designating the number of such pairs by ,
the number of rows in whose inner product is by
and repeating exactly all the steps described above we arrive at
(5), thereby completing proof of the proposition.

Since should obey both conditions (4) and (5) integers
and are tied to each other by the equation

(8)

where again , if and
, if . Under substitution (3) coin-

cides with the bound (1) and in (8), (4), and (5) only zero values
of are allowed. Thereby we have proved the following
necessary condition.

Proposition 2: binary signa-
tures meeting the bound (1) may exist only for values

The signature ensemble attaining the bound (1) for
is trivial and consists of five cyclic shifts of the properly nor-
malized sequence . Less obvious but still simple is
the construction of the signatures for : they are 13 cyclic
shifts of binary sequence formed on the basis of (13, 4, 1) Singer
difference set [6], [7]. Nothing is known so far (at least to the
author) about the existence of the sets in question for further
from the list above.

Proposition 3: The only size allowing existence of
binary signatures having minimum

defined by (3) with is .
Proof: When , trying substitutions and

in (8) and finding its integer solutions for leaves only
two possibilities: , of which the first is discarded due
to the existence of the set with lower .

Finally, for solving (8) under running over their
ranges (all values of covered with excluded) leads to
the following statement.

Proposition 4: binary signatures
having a minimum defined by (3) with may
exist only for or .

In fact, should be removed from this list. Indeed, when
(4) gives , i.e.,

normalized row correlations of take on only values ,
four rows being of even and five of odd weight. This in turn
entails the orthogonality of any rows having weights of equal
parity. After multiplying all rows symbol-wise by the first one
and rearranging the columns (and if necessary the rows), matrix

may be transformed into having the same row correla-
tions, with the first four rows being four Walsh-Hadamard func-
tions (scaled by ) and the other rows having odd weights as
before. Since each of five odd-weight rows has a squared cor-
relation with each of four Walsh–Hadamard function en-
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tering , it is easily deduced that the sum of its squared cor-
relations with the other four Walsh-Hadamard functions not en-
tering will be , possible values of every correlation being
only and (the latter follows from the evenness of
the weights of Walsh–Hadamard functions). The sum can
be derived from these values squared if exactly one correlation
is leaving the rest equal to . There are five such
rows altogether but only four Walsh–Hadamard functions not
entering . Therefore, at least two odd-weight rows have cor-
relation with the same Walsh–Hadamard function. Cal-
culating their inner product in the Walsh-Hadamard basis gives

plus seven terms assuming values . Obviously,
this never results in zero, in contradiction with the orthogonality
of the odd-weight rows of . This proves the nonexistence of
9 binary signatures having a total squared correlation given by
(3) with . The same fact is proved in [6] with the support
of a computer search.

We can now note that the next in magnitude value of
corresponds to a substitution in (3) (one column pair with
correlation , the rest having correlations , produces
equal ). Then combining what was obtained for

derives the new bound

or

.

(9)

A simple example of a set of 9 signatures of length 9
achieving the bound (9) can be found in [6].

IV. CONCLUSION

Using an algorithm of the elimination of columns
of the Hadamard matrix, we have demonstrated that
the Karystinos–Pados bound is tight, whenever

and a Hadamard matrix of size
exists, thereby removing doubts as to three out of four

cases referred to in [5]. For the fourth case
a new version of bound is derived, improving the estimation
of the total squared correlation from below for the majority of
values .
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