
COMPUTATIONAL POWER OF
INTRAMOLECULAR GENE ASSEMBLY

TSEREN-ONOLT ISHDORJ

Computational Biomodelling Laboratory,
Department of Information Technologies,

Åbo Akademi University,
Turku, 20520, Finland

and

ION PETRE

Computational Biomodelling Laboratory,
Department of Information Technologies,

Åbo Akademi University,
Turku, 20520, Finland, and

Turku Centre for Computer Science, and
Academy of Finland

and

VLADIMIR ROGOJIN

Computational Biomodelling Laboratory,
Department of Information Technologies,

Åbo Akademi University,
Turku, 20520, Finland, and

Turku Centre for Computer Science

Abstract. The process of gene assembly in ciliates, an ancient group of
organisms, is one of the most complex instances of DNA manipulation
known in any organism. Three molecular operations ld, hi, and dlad have
been postulated for the gene assembly process. We propose in this paper
a mathematical model for contextual variants of ld and dlad on strings:
recombinations can be done only if certain contexts are present. We prove
that the proposed model is Turing-universal.

Keywords: Turing universality; Gene assembly in ciliates.

1 Introduction

Ciliates are an ancient group of eukariotes (about 2.5 billion years old). They
are known to be the most complex unicellular organisms on the Earth. Their

unique feature among eukariotes is nuclear duality: ciliates have two types of nu-
clei (micronucleus and macronucleus) performing completely different functions.
Micronuclei are used mainly to store genetical information for future generations,
while macronuclei contain genes used to produce proteins during the life-time
of a cell. Genomes are stored in these two types of nuclei in two completely dif-
ferent ways: micronuclear genes are highly fragmented and shuffled, fragments
(coding blocks) are separated from each other by non-coding blocks, while in
macronuclei each DNA-molecule contains usually one gene stored in assembled
(non-fragmented) way. During sexual reproduction coding blocks from micronu-
clei get assembled into macronuclear genes. For details related to ciliates and
the gene assembly process we refer to Refs. [7, 15, 16].

Two models were proposed for the gene assembly process in ciliates: the
intermolecular model in Refs. [8, 10, 11] and the intramolecular model in Refs. [3,
17]. They both are based on so called “pointers” - short nucleotide sequences
(about 20 bp) lying on the borders between coding and non-coding blocks. Each
coding block E starts with a pointer-sequence repeating exactly the pointer-
sequence in the end of that coding block preceding E in the assembled gene.
It is currently believed that the pointers guide the alignment of coding blocks
during the gene assembly process.

The bulk of the research on the intermolecular model concentrates on the
computational power of the model, in various formulations. E.g., in Ref. [8],
the so-called guided recombination systems were introduced, defining a context-
based applicability of the model. The authors proved that this intermolecular
guided recombination system with insertion/deletion operations is computation-
ally universal. For this, they constructed for each Turing machine a guided re-
combination system, so as for each computation of the Turing machine, there
is a corresponding sequence of recombinations in the guided recombination sys-
tem. Crucially, the input of the recombination system has to be given in a large
enough number of copies.

Most of the research on the intramolecular model concentrates on the combi-
natorial properties of the gene assembly process, including the number and the
type of operations used in the assembly, parallelism, or invariants. We give more
details on the intramolecular model in Section 2.1.

In this paper we initiate a study of the intramolecular model from the per-
spective of the computability theory. Using a similar approach as in Ref. [8],
we introduce a context-based version of the intramolecular model (accepting
intramolecular recombination system) and prove that it is Turing universal.

We prove that any Turing machine may be simulated through intramolecu-
lar recombination systems: for any Turing machine M there exists an accepting
intramolecular recombination system G such that for any word w, w is accepted
by M , if and only if ϕ(w) is accepted by G, for a suitable encoding ϕ. Unlike
in the intermolecular case, no multiplicities are needed in this case, since the in-
tramolecular model conjectures that all useful (genetic) information is preserved
on a single molecule throughout the assembly.

2 Preliminaries

We assume the reader to be familiar with the basic elements of formal languages,
Turing computability, Ref. [18], and DNA computing, Ref. [14]. We present here
only some of the necessary notions and notation.

An alphabet is a finite set of symbols (letters), and a word (string) over an
alphabet Σ is a finite sequence of letters from Σ; the empty word we denote
by λ. The set of all words over an alphabet Σ is denoted by Σ∗. The set of all
non-empty words over Σ is denoted as Σ+, i.e., Σ+ = Σ∗ \ {λ}.

The length |x| of a word x is the number of symbols that x contains. We
denote by |x|S the number of letters from the subset S ⊆ Σ occurring in the
word x and by |x|a the number of letters a in x.

If w = xyz for some x, y, z ∈ Σ∗, then x is called a prefix of w, z is called a
suffix of w, and y is called a substring of w.

A rewriting system M = (S, Σ ∪ {#}, P) is called a Turing machine (we use
also abbreviation TM), Ref. [18], where:

i. S and Σ ∪ {#}, where # /∈ Σ and Σ 6= ∅, are two disjoint sets referred to
as the state and the tape alphabets; we fix a symbol from Σ, denote it as ⊔
and call it “blank symbol”.

ii. Elements s0 and sf of S are the initial and the final states respectively.
iii. The productions (rewriting rules) of P are of the forms

(1) sia −→ sjb
(2) siac −→ asjc
(3) sia# −→ asj ⊔ #
(4) csia −→ sjca
(5) #sia −→ #sj ⊔ a
(6) sfa −→ sf

(7) asf −→ sf

where si and sj are states in S, si 6= sf , and a, b, c are in Σ.
A Turing machine M is called deterministic if:

– each word sia from the left side of the rule (1) is not a subword of the left
sides from rules (2)–(5), and

– each subword sia from the left side of rules (2) and (3) is not subword from
the left side of rules (4) and (5), and viceversa, each subword sia from the
left side of rules (4) and (5) is not subword of the left side of rules (2) and
(3), and

– each left side ui of the rules (1)–(5) is corresponded exactly one right side
vi.

A configuration of the Turing machine M is presented as a word #w1siw2#
over Σ ∪ {#} ∪ S, where w1w2 ∈ Σ∗ represents the contents of the tape, #’s
are the boundary markers, and the position of the state symbol si indicates the
position of the read/write head on the tape: if si is positioned at the left of a
letter a, this indicates that the read/write head is placed over the cell containing

a. The TM M changes from one configuration to another one according to its set
of rules P . We say that the Turing machine M halts with a word w if there exists
a computation such that, when started with the read/write head positioned at
the beginning of w, the TM eventually reaches the final state, i.e., if #s0w#
derives #sf# by successive applications of the rewriting rules (1)–(7) from P .
The language L(M) accepted by the TM M is the set of words on which M
halts. If TM is deterministic, then there is only one computation possible for
each word. The family of languages accepted by Turing machines is equivalent
to the family of languages accepted by deterministic Turing machines.

Using an approach developed in a series of works, Refs. [12, 13, 4, 9], we use
contexts to restrict the application of molecular recombinations, Refs. [14, 1].

First, we give the formal definition of splicing rules. Consider an alphabet Σ
and two special symbols, #, $, not in Σ. A splicing rule (over Σ) is a string of
the form

r = u1#u2$u3#u4,

where u1, u2, u3, u4 ∈ Σ∗. (For a maximal generality, we place no restriction on
the strings u1, u2, u3, u4. The cases when u1u2 = λ or u3u4 = λ could be ruled
out as unrealistic.)

For a splicing rule r = u1#u2$u3#u4 and strings x, y, z ∈ Σ∗ we write
(x, y) ⊢r z if and only if x = x1u1u2x2, y = y1u3u4y2, z = x1u1u4y2, for some
x1, x2, y1, y2 ∈ Σ∗. We say that we splice x and y at the sites u1u2 and u3u4,
respectively, and the result is z. This is the basic operation of DNA molecule
recombination.

A splicing scheme, Ref. [5], is a pair R = (Σ,∼), where Σ is the alphabet
and ∼, the pairing relation of the scheme, ∼⊆ (Σ+)3 × (Σ+)3. Assume we have
two strings x, y and a binary relation between two triples of nonempty words
(α, p, β) ∼ (α′, p, β′), such that x = x′αpβx′′ and y = y′α′pβ′y′′; then, the strings
obtained by the recombination in the context from above are z1 = x′αpβ′y′′ and
z2 = y′α′pβx′′.

When having a pair (α, p, β) ∼ (α′, p, β′) and two strings x and y as above,
x = x′αpβx′′ and y = y′α′pβ′y′′, we consider just the string z1 = x′αpβ′y′′ as the
result of the recombination (we call it one-output-recombination), because the
string z2 = y′α′pβx′′, we consider as the result of the one-output-recombination
with the respect to the symmetric pair (α′, p, β′) ∼ (α, p, β).

2.1 The intramolecular gene assembly operations

The intramolecular operations excise non-coding blocks from the micronuclear
DNA-molecule, interchange positions of some portions of the molecule or invert
them, so as to obtain after some rearrangements the DNA-molecule containing a
continuous succession of coding blocks, i.e., the assembled gene. Contrary to the
intermolecular model, all the molecular operations in the intramolecular model
are performed within a single molecule.

We recall bellow the three intramolecular operations conjectured in Refs. [3,
17] for the gene assembly, which were proved to be complete, Ref. [2]: any se-
quence of coding and non-coding blocks can be assembled to the macronuclear

gene by means of these operations (for details related to the intramolecular model
we refer to Ref. [1]):

– ld excises a non-coding block flanked by the two occurrences of a same pointer
in the form of a circular molecule, as shown in Fig. 1.

– hi inverts part of the molecule flanked by the two occurrences of a same
pointer, where one pointer is the inversion of the other, as shown in Fig. 2.

– dlad swaps two parts of the molecule delimited by the same pair of pointers,
as shown in Fig. 3.

Fig. 1. Loop Recombination: (i) the molecule folds on itself aligning pointers in the
direct repeat to form the loop, (ii) enzymes cut on the pointer sites, (iii) hybridization
happens. As the result, a portion of the molecule in the loop is excised in the form of
a circular molecule.

Fig. 2. Hairpin Recombination: (i) the molecule folds on itself aligning pointers in
the inverted repeat to form the hairpin, (ii) enzymes cut on the pointer sites, (iii)
hybridization happens. As the result, a portion of the molecule in the hairpin is inverted.

3 The contextual intramolecular operations

To be able to do computations with the intramolecular model, we introduce in
this section a notion of context to control when an operation may be applied.
We replace ld and dlad (and we never use hi) with some more general operations
called deletion and translocation, respectively. While ld only removes a non-
coding block flanked by two occurrences of a pointer p, our deletion operation
is more general: it may remove any sequence flanked by two occurrences of p,
provided they have the correct contexts. Similarly, while dlad translocates two
sequences, both flanked by an occurrence of a pointer p and an occurrence of
a pointer q, one translocation operation does the same, provided p and q occur

Fig. 3. Double-Loop Recombination: (i) the molecule folds on itself aligning equal
pointers from the repeated pair to form a double loop, (ii) enzymes cut on the pointer
sites, (iii) hybridization happens. As the result, portions of the molecule in the loops
interchange their places. We indicate with colours the DNA segments that are inter-
changed as a result of applying this operation.

in the correct contexts. We follow here the style of contextual intermolecular
recombination operations used in Ref. [8].

We consider a splicing scheme R = (Σ,∼).

Definition 1. The contextual intramolecular translocation operation with re-
spect to R is defined as trlp,q(xpuqypvqz) = xpvqypuqz, where there are such
relations (α, p, β) ∼ (α′, p, β′) and (γ, q, δ) ∼ (γ′, q, δ′) in R, that x = x′α,
uqy = βu′ = u′′α′, vqz = β′v′, xpu = x′′γ, ypv = δy′ = y′′γ′ and z = δ′z′.

We say that operation trlp,q is applicable, if the contexts of the two occur-
rences of p as well as the contexts of the two occurrences of q are in the relation
∼. Substrings p and q we call pointers. In the result of application of trlp,q strings
u and v, each flanked by pointers p and q, are swapped. If from the non-empty
word u we get by trlp,q operation word v, we write u ⇒trlp,q

v and say that u is
recombined to v by trlp,q operation.

Definition 2. The contextual intramolecular deletion operation with respect to
R is defined as delp(xpupy) = xpy, where x = x′α, u = βu′ = u′′α′, and y = β′y′

with (α, p, β) ∼ (α′, p, β′) in R.

In the result of applying delp, the string u flanked by two occurrences of p is
removed, provided that the contexts of those occurrences of p are in the relation
∼. If from the non-empty word u we get by delp word v, we write u ⇒delp v and
say that the word u is recombined to v by delp operation.

We define the set of all contextual intramolecular operations under the guid-
ing of ∼ as follows:

R̃ = {trlp,q, delp | (α, p, β) ∼ (α′, p, β′), (γ, q, δ) ∼ (γ′, q, δ′)

for some α, α′, β, β′, γ, γ′, δ, δ′, p, q ∈ Σ+}.

We write u ⇒∗
R̃

v if u, v1, v2, . . . , vk ∈ Σ∗ such that u ⇒r1
v1 ⇒r2

v2 ⇒r3

· · · ⇒rk
vk = v, for some r1, r2, . . . , rk ∈ R̃, k ≥ 1.

Now, we define an accepting intramolecular recombination (AIR) system as
the language accepting device that captures series of dispersed homologous re-
combination events on a single micronuclear molecule with a scrambled gene.

Definition 3. An accepting intramolecular recombination system is a quadruple
G = (Σ,∼, α0, wt), where R = (Σ,∼) is the splicing scheme, α0 ∈ Σ∗ is the
start word, and wt ∈ Σ+ is the target word.

The language accepted by G is defined as L(G) = {w ∈ Σ∗ | α0w ⇒∗
R̃

wt}.

To illustrate the definitions above we give the following examples.

Example 1. We consider following four cases:

(i) Consider the word w1 = abccbccba and the context (a, b, c) ∼ (c, b, a).

The context is applicable to w1 only in the following way: ab̂ccbccb̂a, where by
underline we marked the context and by hat we marked the pointers. Deletion
delb is applicable to w1 in the context from above, i.e., ab̂ccbcĉba ⇒delb

aba.

(ii) Consider the word w2 = abcabccba and the context (a, b, c) ∼ (c, b, a).

This context we can apply to w2 in two different ways: either ab̂cabcĉba, or
abcab̂c ĉba. In this way delb being applied to w2 produces two different results in
the context (a, b, c) ∼ (c, b, a): ab̂cabcĉba ⇒delb

aba and abcab̂c ĉba ⇒delb
abcaba.

(iii) Here we show that contexts and pointers can have length greater than
one. Consider the string w3 = babababaaaabaa and the context (b, aba, ba) ∼
(aaa, aba, a). The context is applicable to w3 in the following two ways: either

bâbababaaaâbaa or babâbabaaaâbaa. In this way by applying delaba to the string
w3 in the context (b, aba, ba) ∼ (aaa, aba, a) we get the following two results:

bâbababaaaâbaa ⇒delaba
babaa and babâbabaaaâbaa ⇒delaba

bababaa.

(iv) Consider the string w4 = abcaabcabcbabcaab and the contexts (σ1)
(a, b, c) ∼ (c, b, a) and (σ2) (bc, a, abc) ∼ (c, a, a). Context (σ1) is applicable

to w4 in three different ways: either ab̂caabcabĉbabcaab or abcaab̂cabcb̂abcaab or
abcaabcâbcb̂abcaab.

Context (σ2) can be applied to w4 only in one way abcâabcabcbabcâab. In this
way, we can apply to w4 reduction delb either in one of the three different ways
or reduction dela or trlb,a reduction in the contexts both (σ1) and (σ2). One can
see, that trla,b is applicable to w4 in the contexts (σ1) and (σ2) only in a single

way: ab̂
︷︸︸︷

c âabcabĉb
︷︸︸︷
abc âab ⇒trlb,a

ab̂
︷︸︸︷
abc âabcabcb̂

︷︸︸︷
c âab. By underline we

marked the context for the pointer b and by overline we marked the context for
the pointer a.

As shown in the previous example, note that: to the same string, a context
can be obtained in many different ways, and so, different outputs can be obtained
from the same word by applications of the same operations.

In the next example we illustrate a recombination system.

Example 2. We define an intramolecular recombination system accepting words
of the form anbn, where n ≥ 2. G = ({$, #, 0, 1},∼, $1#0#1, $10##). We will
define the splicing scheme R = (Σ,∼) so as for each word of the form 0n1n0##

we would obtain the target wt = $10##:

α00
n1n0## = $1#0#10n1n0## = $1#0#1̂00̂00n−31n−311̂10̂## ⇒trl1,0

$1#0#11̂00̂00n−41n−411̂10̂0## ⇒trl1,0
· · · ⇒trl1,0

$1#0#11k−11̂00̂00n−k−3

1n−k−311̂10̂0k−10## ⇒trl1,0
· · · ⇒trl1,0

$1̂#0̂#11n−31̂00110̂0n−30##

⇒trl1,0
$100110#̂1n−1#̂0n−10## ⇒del#

$100110#̂0n−1#̂#

⇒del#
$10̂0110̂## ⇒del0

$10## = wt.

In this way, the contexts in the splicing scheme are presented in Table 1.

Table 1. Splicing relation.

(a) (#, 1, 0) ∼ (1, 1, 10) (f) (1#, 0, #) ∼ (10011, 0, 0)
(b) (1, 1, 0) ∼ (1, 1, 10) (g) (0, #, 1) ∼ (1, #, 0)
(c) (10, 0, 0) ∼ (1, 0, #) (h) (0, #, 0) ∼ (0, #, #)
(d) (10, 0, 0) ∼ (1, 0, 0) (i) ($1, 0, 0) ∼ (1, 0, ##)
(e) ($, 1, #0) ∼ (1, 1, 00110)

In these contexts the recombination steps from the word $1#0#10000n−31n−3

1110## is looking as in Table 2 (for each line i the first column from the left
contains notation of the word wi, in the second column there are shown appli-
cable contexts from Table 1, the third column contains the word wi, the forth
column contains the recombination operation of the string, context of the left
pointer of the trl operation in the string is marked by underline, context of the
right pointer is marked by overline, context for the del operation is marked by
underline, pointers are marked by the hat).

In this way, each word of the form 0n1n0## is accepted by our recombination
system G. Words of the form 0n1m0##, where n 6= m are not accepted.

Indeed, assume m < n. To the word w1 from the Table 2 only the contexts
(a) and (c) are applicable and so, we can use only trl1,0 operation which can
produce only the single result. After application of either del1 or del0 to w1 it is
not possible to reach the target. Only the contexts (b) and (d) are applicable to
the words wi with 2 ≤ i ≤ m − 2. Operation trl1,0 applied to wi, 2 ≤ i ≤ m − 2
can produce only the single result. After application of either del1 or del0 to
those words we cannot reach the target. In this way we get the string wm−2 =
$1#0#11m−4110000n−m−111000m−40##. Only the context (d) is applicable to
wm−2 and in this way, only del0 is applicable, but after that we cannot reach the
target. The case when m > n is proved in the same way.

Table 2. Recombination steps.

w1 (a)(c) $1#0#1̂00̂00n−31n−311̂10̂## trl1,0

w2 (b)(d) $1#0#11̂00̂00n−41n−411̂10̂0## trl1,0

.

wk (b)(d) $1#0#11k−211̂00̂00n−k−31n−k−3

11̂10̂00k−20## trl1,0

.

wn−2 (e)(f) $1̂#0̂#11n−411̂00110̂00n−40## trl1,0

wn−1 (g) $100110#̂11n−31#̂00n−10## del#

wn (h) $100110#̂00n−30#̂# del#

wn+1 (i) $10̂0110̂## del0

wn+2 $10##

4 The computational power of intramolecular contextual

recombinations

We prove in this section that by using intramolecular contextual operations one
can express any deterministic Turing machine. We prove that for any Turing
machine M over an alphabet Σ, we associate a recombination system R over
an alphabet Σ′. Also, for any w ∈ Σ∗, we associate a word w′ ∈ Σ′∗ such that
w ∈ L(M) iff w′ ∈ L(R). Intuitively, R simulates M in the following way: w′

encodes the word w, as well as all rules of M in a large enough number of copies.
It is important to have a large number of copies because in every step of the
simulation, R “consumes” one rule of M , which is then never “recovered”.

Theorem 1. For any deterministic Turing machine M = (S, Σ ∪{#}, P) there
exists an intramolecular recombination system GM = (Σ′,∼, α0, wt) and a string
πM ∈ Σ′∗ such that for any word w over Σ∗ there exists kw ≥ 1 such that
w ∈ L(M) if and only if w#5πkw

M #2 ∈ L(GM).

Proof. Consider a deterministic Turing machine M = (S, Σ∪{#}, P) containing
m rewriting rules in P . Each rule of P we identify uniquely by an integer 1 ≤
i ≤ m, and a rule identified as i we represent as i : ui → vi. The configuration of
the Turing machine can be represented by the string # wlsqawr#, where a ∈ Σ,
sq ∈ S and wl, wr ∈ Σ∗.

We define a recombination system GM = (Σ′,∼, α0, wt) and a string πM for
the Turing machine M in the following way:

Σ′ = S ∪ Σ ∪ {#} ∪ {$i | 0 ≤ i ≤ m + 1},

α0 = #4s0,

wt = #4sf#3,

πM = $0(
∏

1≤i≤m

p,q∈Σ∪{#}

$ipviq$i)$m+1.

For a rewriting rule i : ui → vi of the Turing machine M and all c1, c2, d1, d2, d3, p,
q ∈ Σ ∪ {#} we define the relations:

(i) (c1c2, p, uiqd1d2d3) ∼ (i, p, viqi),

(ii) (c1c2pui, q, d1d2d3) ∼ ($ipvi, q, $i),

(iii) (###sf#, #, ###$0) ∼ ($m+1, #, #).

We claim that a word w ∈ Σ∗ is accepted by M if and only if there is such kw,
that word w#####πkw

M ## is accepted by GM .
To prove the direct implication of the claim, let w be accepted by the given

Turing machine M , by the derivation

#s0w# ⇒i1 #wl1sj1wr1
⇒i2 #wl2sj2wr2

⇒i3 · · ·

⇒ik
#wlksjk

wrk
⇒ik+1

· · · ⇒in
#sf#.

We prove that there is an integer kw big enough such that the word w#5πkw

M ##
is accepted by the recombinations

α0w#5πkw

M ## = ####s0w#####πkw

M ##

⇒trlp1,q1
####wl1sj1wr1

#####π1##

⇒trlp2,q2
####wl2sj2wr2

#####π2##

⇒trlp3,q3
· · · ⇒trlpk,qk

####wlk sjk
wrk

#####πk##

⇒trlpk+1,qk+1
· · · ⇒trlpn,qn

####sf#####πn##,

where wli , wri
∈ Σ∗, sji

∈ S and πi ∈ Σ′∗ for all 1 ≤ i ≤ n and πi+1 differs from
πi only by a substring ui which replaces substring vi in πi.

Since for each k < n there is a rule ik applicable to #wlksjk
wrk

#, then

#wlksjk
wrk

= w′
lk

puik
qw′

rk
,

where sjk
is in uik

, p, q ∈ Σ ∪{#} and w′
lk

, w′
rk

∈ (Σ ∪{#})∗. We suppose, that
the string πk contains at least one copy of the substring pvik

q, i.e.,

πk = $0$1ω
′$ik

pvik
q$ik

ω′′mm+1.

Then there are two relations in our recombination system such as trlp,q operation
is applicable to the string ###w′

lk
puik

qw′
rk

####πk##.
Indeed, these relations are

(i) (c1c2, p, uik
qd1d2d3) ∼ ($ik

, p, vik
q$ik

) and

(ii) (c1c2puik
, q, d1d2d3) ∼ ($ik

pvik
, q, $ik

).

In this way, we can obtain the string

w′′
lk

pvik
qw′′

rk
$0$1ω

′$ik
puik

q$ik
ω′′$m+1## = #4wlk+1

sjk+1
wrk+1

#5πk+1#
2

from the string of

###w′
lk

puik
qw′

rk
####πk## = w′′

lk
puik

qw′′
rk

$0$1ω
′$ik

pvik
q$ik

ω′′$m+1##,

where w′′
lk

= ###w′
lk

= w′′′
lk

c1c2 and w′′
rk

= w′
rk

= d1d2d3w
′′′
rk

.
In this way, for each derivation step #wk# ⇒ik

#wk+1# from the Turing
machine M we have the corresponded recombination step

####wk#####πk## ⇒trlpk,qk
####wk+1#####πk+1##,

in the recombination system GM .
Now, we have to provide the number kw of copies of the πM big enough, so

as for each derivation #wk# ⇒ik
#wk+1# we would have at least a copy of the

substring vik
in the substring πk. Such number kw exists and it is Turing com-

putable. Indeed, this can be for instance kw ≥ n, i.e., the number of derivations
of M in order to accept the word w.

In this way, if w is accepted by M by the derivations

#s0w# ⇒ · · · ⇒ #sf#,

then we can have recombinations of

####s0w#####πkw

M ## ⇒trl · · · ⇒trl ####sf#####πn##

by trl operations in GM . In order to accept w#####πkw

M ## in GM , we have
to recombine ####sf#####πn## to the target wt = ####sf###. This
can be done by the deletion operation in the relation (iii):

####sf#####πn## ⇒del#
####sf###.

For the reverse implication of the claim, we prove that for each word

####s0w#####πkw

M ##

accepted by the recombination system GM , w is accepted by M .
Assume that there is such w ∈ Σ, with ####s0w#####πkw

M ## accepted
by GM for some kw > 0, and w not accepted by M . Thus, there are recombi-
nation operations possible which do not correspond to the derivation rules from
M , i.e., there is a recombination

####w′#####π′## ⇒
R̃

w′′,

where w′ ∈ (Σ ∪ S)∗, |w′|S = 1, π′, w′′ ∈ Σ′∗ and the recombination is not of
the form

###ω′′′puiqω
iv####ωv$ipviq$iω

vi## ⇒trlp,q

###ω′′′pviqω
iv####ωv$ipuiq$iω

vi##,

where ω′′′, ωiv ∈ (Σ ∪ {#})∗, ωv, ωvi ∈ Σ′∗ and p, q ∈ Σ ∪ {#}. Such recombi-
nations exist.

Assume that a relation of form (i) or (ii) is applicable to the string #ωviic1c2puiq
d1d2d3ω

viii#$0ω
ix$ipviq$iω

x$m+1##, where ωvii, ωviii ∈ (Σ∪{#})∗, ωix, ωx ∈
Σ′∗ and c1, c2, d1, d2, d3, p, q ∈ Σ ∪ {#}, which string has been obtained from
####s0w#####$0π

kw

M ## only by applications of translocation operations
corresponding to the rules from P . Relation (iii) is not applicable to the string
because we do not have substring ###sf# in

#ωviic1c2puiqd1d2d3ω
viii#$0ω

ix$ipviq$iω
x$m+1##.

Here we may have deletion or translocation is applied:

Case del: ̟ = #ωviic1c2puiqd1d2d3ω
viii#$0ω

ix$ipviq$iω
x$m+1##

⇒delp #ωviic1c2pviq$iω
x$m+1## = ̟′,

in the relation of the type (i), or

#ωviic1c2puiqd1d2d3ω
viii#$0ω

ix$ipviq$iω
x$m+1##

⇒delq
#ωviic1c2puiq$iω

x$m+1## = ̟′′,

in the relation of the type (ii).
Since relations of types (i) and (ii) both consider pair of pointers, one of

which is from the left side and another one is from the right side of the substring
#####$0 of string ̟, substring #####$0 is deleted, we obtain either ̟′

or ̟′′ and after that it is not possible to reach by the recombination the string
where the relation (iii) is applicable. Moreover, after the deletion operation
either in the relation (i) or relation (ii), it is not possible to remove from the
string symbol $m+1 in the relations (i) and (ii). Indeed, in any recombination in
the relations (i) and (ii) of strings ̟′ and ̟′′ the suffix $m+1## is not affected.

Case trl: ̟ = #ωviic1c2puiqd1d2d3ω
viii#$0ω

xi$ipviq$iω
xii$ipviq$iω

xiii$m+1##

⇒trlp,q
#ωviic1c2pviq$iω

xii$ipviqd1d2d3ω
viii#$0ω

xi$ipuiq$iω
xiii$m+1## = ̟′′′,

in the relations (i) and (ii), where ωxi, ωxii, ωxiii ∈ Σ′∗.
Assume uj is the substring of pviq. There is no context applicable to the string

̟′′′. Indeed, according to the definition of the Turing machine from above, the
maximal length of the suffix containing S-symbol as the prefix in the right side
of a derivation rule is three (type (3) vi = aisji

⊔ # or type (5) vi = #sji
⊔ ai,

we represent vi as vi = a′
isij

a′′
i a′′′

i , where a′
i, a

′′
i , a′′′

i ∈ (Σ ∪ {#})) and in the
rule of the type (7) asf → sf , S-symbol is the rightmost-symbol in the left side

of the rule. There are no other types of rules where S-symbol is the rightmost
in the left side of the rule. In this way, we consider that sji

= sf . I.e., we have
substring pviq$i = pa′

isfa′′
i a′′′

i q$i.
Relations (i) and (ii) are not applicable. Indeed, to the right from S-symbol

we need to have at least 4 symbols not equal to $i in order to satisfy the left
condition of (i) and (ii) (i.e., (c1c2, p, uiqd1d2d3) and (c1c2pui, q, d1d2d3)). Sim-
ilarly, we can show that to the left from S-symbol we need to have at least 3
symbols not $i in order to satisfy the left conditions of the relations (i) and
(ii). There are no other places in the string ̟′′′ where left conditions of (i) and
(ii) are satisfied, i.e., relations (i) and (ii) are not applicable as soon as the
translocation involving symbols $i is used.

There are no other recombinations possible in the relations (i), (ii) and (iii).
It follows then that as soon as we have recombination not corresponding to a
rule from P , the target wt cannot be reached, i.e., word w#####πkw

M ## is
accepted by GM if and only if w is accepted by M .

5 Final remarks

In [8] the equivalence between a Turing machine language and a set of multisets
of words was explored. Since we are working with the intramolecular model, we
can prove here a universality result in a standard way, showing the equivalence
of two families of languages.

Acknowledgements

The work of T.-O.I. is supported by the Center for International Mobility (CIMO)
Finland, grant TM-06-4036 and by Academy of Finland, project 203667. The
work of I.P. is supported by Academy of Finland, project 108421. The work of
V.R. is supported by Academy of Finland, project 203667. V.R. is on leave of
absence from Institute of Mathematics and Computer Science of Academy of
Sciences of Moldova, Chisinau MD-2028 Moldova. We are grateful to Artiom
Alhazov for useful discussions.

References

1. A. Ehrenfeucht, T. Harju, I. Petre, D. M. Prescott and G. Rozenberg, Computation

in Living Cells: Gene Assembly in Ciliates, (Springer, 2003).
2. A. Ehrenfeucht, I. Petre, D. M. Prescott and G. Rozenberg, “Universal and simple

operations for gene assembly in ciliates,” in Words, Sequences, Languages: Where

Computer Science, Biology and Linguistics Meet, eds. V. Mitrana and C. Martin-
Vide (Kluwer Academic, Dortrecht, 2001) pp. 329–342.

3. A. Ehrenfeucht, D. M. Prescott and G. Rozenberg, “Computational aspects of gene
(un)scrambling in ciliates,” in Evolution as Computation, eds. L. F. Landweber and
E. Winfree (Springer, Berlin, Heidelberg, New York, 2001) pp. 216–256.

4. B. S. Galiukschov, “Semicontextual grammars,” Mathematika Logica i Matematika

Linguistika, (Talinin University, 1981), 38–50 (in Russian).
5. T. Head, “Formal Language Theory and DNA: an analysis of the generative capacity

of specific recombinant behaviors,” Bull. Math. Biology 49 (1987) 737–759.
6. T.-O. Ishdorj, “Membrane computing, neural inspirations, gene assembly in cili-

ates,” Ph. D. Thesis, Sevilla University, 2007.
7. C. L. Jahn and L. A. Klobutcher, “Genome remodeling in ciliated protozoa,” Ann.

Rev. Microbiol. 56 (2000), 489–520.
8. L. Kari and L. F. Landweber, “Computational power of gene rearrangement,” in

Proceedings of DNA Bases Computers, V, eds. E. Winfree and D. K. Gifford (Amer-
ican Mathematical Society, 1999) pp. 207–216.

9. L. Kari and G. Thierrin, “Contextual insertion/deletions and computability,” In-

formation and Computation 131 (1996) 47–61.
10. L. F. Landweber and L. Kari, “The evolution of cellular computing: Nature’s so-

lution to a computational problem,” in Proceedings of the 4th DIMACS Meeting on

DNA-Based Computers, (Philadelphia, PA, 1998) pp. 3–15.
11. L. F. Landweber and L. Kari, “Universal molecular computation in ciliates,” in

Evolution as Computation, eds. L. F. Landweber and E. Winfree, (Springer, Berlin,
Heidelberg, New York 2002).

12. S. Marcus, “Contextual grammars”, Revue Roumaine de Matématique Pures et

Appliquées, 14 (1969) 1525–1534.
13. Gh. Păun, Marcus Contextual Grammars (Kluwer, Dordrecht, 1997).
14. Gh. Păun, G. Rozenberg and A. Salomaa, DNA Computing - New computing

paradigms (Springer-Verlag, Berlin, 1998).
15. D. M. Prescott, “The DNA of ciliated protozoa,” Microbiol. Rev. 58(2) (1994)

233–267.
16. D. M. Prescott, “Genome gymnastics: unique modes of DNA evolution and pro-

cessing in ciliates”, Nat. Rev. Genet. 1(3) (2000) 191–198.
17. D. M. Prescott, A. Ehrenfeucht and G. Rozenberg, “Molecular operations for DNA

processing in hypotrichous ciliates,” Europ. J. Protistology 37 (2001) 241–260.
18. A. Salomaa, Formal Languages (Academic Press, New York 1973).

