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Abstract

An algorithm for variable quality image compression is given. The idea is
to encode di�erent parts of an image with di�erent bit rates depending on
their importance. Variable quality image compression (VQIC) can be applied
when a priori knowledge on some regions or details being more important than
others is available. Our target application is digital mammography, where high
compression rates achieved with lossy compression are necessary due to the
vast image sizes, while relatively small regions containing signs of cancer must
remain practically unchanged. We show how VQIC can be implemented on top
of SPIHT [11], an embedded wavelet encoding scheme. We have revised the
algorithm to use matrixes, which gives more eÆcient implementation both
in terms of memory usage and execution time. The e�ect of the VQIC on
the quality of compressed images is demonstrated with two test pictures: a
drawing and a more relevant mammogram image.

1 Introduction

The number of large digital image archives is increasing rapidly in many �elds,
including health care. The cost eÆcient archiving causes a need for high quality
image compression techniques aiming at major savings in storage space and
network bandwidth when transmitting the images. Despite the potentionally
critical nature of medical images, some degeneration of the image quality must
be allowed, since the best lossless compression methods can only about half
the size of a typical medical image. For example a digital mammogram with
pixel size of 50�m is approximately of size 5000x5000 pixels with 12 bits per
pixel, and thus needs about 50 Mb for storage without compression. This
clearly demonstrates the need for lossy compression.

Lossy image compression methods are usually designed to preserve perceived
image quality by removing subtle details, that are diÆcult to see with hu-
man eye. The frequent quality measure used for evaluation of the distortion
in a compressed image is the mean square error (MSE). However, in medical
imaging, the distortion of an image is de�ned as the impact that compression
causes to diagnostic accuracy, and �nally to clinical actions taken on the basis
of the image [1]. In this application area, there is an evident con
ict between
the two opposite goals; achieving high compression ratio and maintaining di-
agnostically lossless reconstruction accuracy. One possible way to alleviate this
con
ict is to design an image compression method that uses lossy compression,

but saves more details in important regions of the image than in other regions.

General-purpose image compression methods can also be considered to �t into
this scheme; important regions and details are those, that the human visual
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system is sensitive to. In medical imaging, the de�nition of important regions
involves application speci�c medical knowledge. Obviously the accuracy of
this knowledge is crucial for good performance of the system. If the criteria
for important regions are too loose, the gain in compression ratio is lost. On
the other hand, with too strict criteria the quality requirements are not met,
since some important regions are treated erroneously as unimportant.

Today, the standard in lossy image compression is the JPEG [2] algorithm,
which is based on the scalar quantization of the coeÆcients of the windowed
Discrete Cosine Transforms (DCT), followed by entropy coding of the quan-
tization results. JPEG is generally accepted and works well in most cases,
but because it uses DCT and divides the image into blocks of �xed size, it
may distort or even eliminate small and subtle details. This can be a serious
drawback in digital mammography, where images contain a large number of
diagnostically important small low contrast details, that must preserve their
shape and intensity.

Wavelet based image compression methods are popular and some of them can
be considered to be \state of the art" in general-purpose lossy image compres-
sion (see [6] for an introduction to the topic). Wavelet compression methods
can be divided into three stages: wavelet transform, lossy quantization and en-
coding of the wavelet coeÆcients and lossless entropy coding [14]. The wavelet
transform is used to de-correlate the coeÆcients representing the image. The
transform collects the image energy to relatively small number of coeÆcients,
compared to the original highly correlated pixel representation. In the quanti-
zation phase this sparse representation and dependencies between coeÆcients
are exploited with specially tailored quantization and coding schemes. The
widely know embedded zerotree encoding (EZW) by Shapiro [12] is an excel-
lent example of such coding scheme, and also a good reference to wavelet based
image compression in general.

One of the most advanced wavelet based image compression techniques is
SPIHT (Set Partitioning In Hierarchical Trees) by Said and Pearlman [11].
SPIHT is clearly a descendant of EZW using similar zerotree structure and
bitplane coding. In bitplane coding bits of wavelet coeÆcients are transmitted
in the order of their importance, i.e. the coeÆcients are encoded gradually
with increasing accuracy. Because of this, the encoding can be stopped at any
stage. The decoder then approximates the values of the original coeÆcients
with precision depending on the number of bits coded for each coeÆcient.
This property called embedded coding is the main reason for choosing SPIHT
as the basis of the Variable Quality Image Compression system (VQIC). The
implementation of variable quality property is straightforward in embedded
coding: the encoding of the coeÆcients of the whole image is ceased somewhere
in the middle, and subsequently only bits of coeÆcients that in
uence the
important regions are encoded.
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Another reason for choosing SPIHT is that it appears to perform very well
in terms of compression ratio; in the case of digital chest X-rays, a compres-
sion ratio of 40:1 has been reported to cause no signi�cant di�erence when
compared to the original in a radiologist evaluation [4]. In an other study
SPIHT compression of mammograms to ratio 80:1 has been found to yield
image quality with no statistically signi�cant di�erences from the original
mammogram [9]. A further indication of good performance is the fact that
the output of SPIHT encoding is so dense, that additional compression with
lossless entropy coding gives an extra gain of only few percentages [11].

VQIC technique can be applied to any image that is spatially segmentable
to a set of regions that must be saved in better quality. We do not cover the
segmentation problem in this paper since it is completely application speci�c.
Since we are targeting at applications where important regions are small, the
segmentation is done with some kind of feature detector. The feature detection
task for VQIC purpose is considerable easier compared to applications, where
the interest is in the presence or absence of the feature. In VQIC, a moderate
number of false positive detections can be tolerated, as long as all of the true
features are detected. Thus most existing feature detection algorithms are
suitable, because they can be tuned to be oversensitive. Several suitable fully
automatic segmentation methods exists for this purpose in the �eld of medical
imaging [5], especially for mammography [3].

Before describing further details, we brie
y discuss relevant research. VQIC
has been used in the compression of image sequences in video conferencing
[10]. In this work, the pixel values are predicted and the prediction errors are
transformed by 2D-DCT. CoeÆcients of the blocks with minor importance are
quantized with coarser level than more important details, heads and shoulders.
In another research, the importance of a region is determined on the basis of
the visibility of distortions to human eye [8]. This information is used in the
construction of a constant quality MPEG stream by adjusting quantization
parameters de�ned by the MPEG standard. The focus in both papers is the
segmentation of important regions, and VQIC is achieved by variable quan-
ti�cation of DCT coeÆcients. A recent paper by D. Shin, H. Wu and J. Liu
describes a selective compression technique, which integrates detection and
compression algorithms into one system [13]. The compression technique used
is intraband coding of wavelet packet transform coeÆcients, where variable
quality is achieved by scaling the wavelet coeÆcients in important regions to
increase their priority in coding. The method is tested with a digital mammo-
gram, where detected microcalci�cations are considered as ROIs. Even though
the aims of this work are close to ours, the actual methods di�er considerably.

Our work is organized as follows. In section two we introduce an algorithm
called variable quality SPIHT (vqSPIHT ), which is basically a reimplemen-
tation of SPIHT, with the added VQIC functionality. We revise the memory
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organization of SPIHT to use matrix-based data structures. This new imple-
mentation reduces the working storage requirements of the algorithm consid-
erably. In section three we discuss the compression performance of vqSPIHT
algorithm, and show with two examples that it can be superior to SPIHT
or JPEG. We �rst demonstrate this with a set of details in a high contrast
drawing compressed to several bit rates with all three compression algorithms.
We also discuss a more relevant application for VQIC { compression of dig-
ital mammograms, and make a comparison between SPIHT and vqSPIHT
compressed images.

2 vqSPIHT algorithm

In this section we explain informally the basic ideas behind SPIHT and vqSPIHT
algorithms to facilitate the reading of the vqSPIHT algorithm in a pseudo-code
format. We also discuss the implementation based on matrix data structures
and its implications to practical memory requirements.

2.1 Structure of the wavelet transformed coeÆcient table

Wavelet transform converts an image into a coeÆcient table with approxi-
mately the same dimensions as the original image. Fig. 1 shows the structure
of the wavelet coeÆcient table, which contains three wavelet coeÆcient pyra-
mids (pyramids A, B and C) and one table of scaling coeÆcients S. The
scaling coeÆcients represent roughly the mean values of larger parts of the
image and wavelet coeÆcient details of various sizes. Since in practice the
transform is stopped before scaling table S would shrink to a single coeÆ-
cient, table S looks like a miniature version of the original image. The top
levels of the three wavelet pyramids are located adjacent to the scaling ta-
ble (level three in Fig. 1), and contain coeÆcients representing large details,
whereas coeÆcients at level zero contribute mainly to the smallest details in
the image. Pyramid A contains coeÆcients for vertical details and pyramid B

respectively for horizontal details. The third pyramid C contains correction
coeÆcients needed in the reconstruction of the image from pyramids A, B and
table S.

In the SPIHT algorithm, the pyramids are divided into sub-pyramids which
corresponds to zerotrees in EZW. A sub-pyramid has a top element somewhere
in the coeÆcient table, and contains four coeÆcients one level lower in the
corresponding spatial location in the same pyramid, 16 elements two levels
lower, and so on. The sub-pyramids are extended to the scaling coeÆcients S
in the following way. The scaling coeÆcients are grouped into groups of four.
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The coeÆcient in the upper left corner has no descendants, whereas the three
remaining coeÆcients in the group (upper right corner, lower left corner and
lower right corner) serve as top elements of three sub-pyramids in pyramids
A, B and C in corresponding order.

In our approach to VQIC we must determine which coeÆcients contribute to
the value of a given pixel in the original image. In an octave-band decomposi-

tion, which we use, a coeÆcient of any pyramid in higher level corresponds to
four coeÆcients in the next level at same spatial location. We use this rule of
multiples of four in choosing important coeÆcients.

2.2 The basic functioning of SPIHT

To understand how SPIHT works, one must keep in mind that it is not a com-
plete image compression scheme, but a method tailored for optimal embedded
encoding of wavelet transformed image coeÆcients. The encoding is optimal in
the sense of MSE. SPIHT does not presuppose any particular wavelet trans-
form. The only requirement is that the transform has the octave band de-
composition structure, as described above. Also, the optimal encoding with
respect to MSE is achieved only if the transform is unitary, which is the case
in orthogonal and biorthogonal wavelet transforms [14]. In the implementation
of vqSPIHT, we use biorthogonal B97 wavelets [14].

2.2.1 Bitplane coding in SPIHT

Optimal progressive coding of SPIHT is implemented with a bitplane coding

scheme. The order of coding is based on the energy saving property of unitary
transforms, here the wavelet transform. This property states that the larger
the wavelet coeÆcient is, the more its transmission reduces the MSE. Further-
more, since SPIHT uses uniform scalar quantization, transmission of a more
signi�cant bit in any coeÆcient reduces the MSE more than transmission of a
less signi�cant bit in a possibly larger coeÆcient [11].

According to this principle, all coeÆcients are sorted to a decreasing order by
the number of signi�cant bits. The number of signi�cant bits in the coeÆcient
having the largest absolute value is noted by n. The output is generated by
transmitting �rst all the n:th bits in coeÆcients that have at least n signi�cant
bits, then (n � 1):th bits of coeÆcients that have at least (n � 1) signi�cant
bits, and so on. Because the most signi�cant bit of a coeÆcient is always one,
the sign of the coeÆcient is transmitted in place of the most signi�cant bit.

In addition to transmitted bitplanes, the sorting order and the length of each
bitplane are needed in the decoder to resolve the location of each transmitted
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bit in the reconstructed wavelet coeÆcient table. This information is not trans-
mitted explicitly, instead the same algorithm is used in both the encoder and
the decoder, and all branching decisions made in the encoder are transmitted
to the decoder. The branching decisions are transmitted interleaved with the
bitplane coded bits and the signs of coeÆcients. Because of progressive nature
of SPIHT coding, the transmitted bit stream can be truncated at any point
and the original coeÆcient matrix approximated with optimal accuracy with
respect to the number of transmitted bits. For each coeÆcient, the most sig-
ni�cant not transmitted bit is set to one, and the rest to zero, thus achieving
a good approximation in uniform quantization.

2.2.2 Exploitation of the pyramid structure of wavelet transform

An important property in most natural images is that the low- and high fre-
quency components are spatially clustered together. This means in the wavelet
coeÆcient pyramid, that there is high correlation between the magnitudes of
the coeÆcients of di�erent levels in corresponding locations. Also, since the
variance of the frequency components tends to decrease with increasing fre-
quency, it is very probable that the coeÆcients representing �ne details in a
particular spatial location will be small, if there is a region of small coeÆ-
cients in the corresponding location on coarser level of the pyramid. Thus it is
probable that there exists sub-pyramids containing only zeroes on the current
bitplane. These zerotrees can be encoded with one bit, thus cutting down the
number of sorting decisions considerably and also the branching decisions that
must be transmitted to the decoder. The way these dependencies between co-
eÆcients are exploited in SPIHT coding is described in the presentation of
vqSPIHT algorithm.

2.3 The vqSPIHT algorithm

2.3.1 Extension of SPIHT to vqSPIHT

To expand the SPIHT algorithm to vqSPIHT, we de�ne a Region Of Interest

(ROI) as a region in the image that should be preserved in better quality than
the rest of the image. ROIs can be presented as a binary map that is highly
compressible with simple run-length encoding and thus does not a�ect bit rate
signi�cantly.

In selective coding mode of vqSPIHT, only coeÆcients a�ecting ROIs are
coded. This mode is triggered when a certain percentage � of the wanted �nal

output �le size has been reached. The choice of � is important, and its best
value is highly application dependent. Some applications might demand more
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sophisticated de�nition of � depending on the �le size, area of the ROIs and
some indicator on how ROIs are scattered, for example.

To implement selective coding, we construct a look-up-table (LUT), that is
used in the function influence(i; j) de�ning whether a coeÆcient (i; j) con-
tributes to any ROI or not. The LUT is constructed by scaling each level of
all three pyramids to the same size as the original image, and comparing the
map of ROIs to the scaled levels. All the coeÆcients that overlap with any
ROI are marked in the LUT.

2.3.2 Implementation with matrices

Instead of lists that are used in the original implementation of SPIHT, our
implementation of vqSPIHT uses two matrices for keeping track of signi�cant
and insigni�cant coeÆcients and sub-pyramids. With the matrix data struc-
tures we can considerably reduce the working storage requirements of encoding
and decoding.

We introduce a Point Signi�cance Matrix (PSM) to indicate whether a coeÆ-
cient is known to be significant, insignificant or still has an unknown state.
The labels of PSM are coded with two bits and the dimensions of the PSM are
the same as in the coeÆcient table. We also need a Sub-Pyramid List Matrix

(SPLM), which is used for maintaining an implicit list of the sub-pyramids
containing only insigni�cant coeÆcients. The list structure is needed, because
the order of sub-pyramids must be preserved in the sorting algorithm. The
dimensions of the SPLM are half of the dimensions of the coeÆcients matrix,
because the coeÆcients on the lowest level of the pyramids can not be top ele-
ments of sub-pyramids. There are two types of sub-pyramids. A sub-pyramid
of type A contains all descendants of a particular coeÆcient, excluding the
top coeÆcient itself. A sub-pyramid of type B is otherwise similar, but the
immediate o�spring of the top coeÆcient is excluded in addition to the top co-
eÆcient. The list structure with SPLM is simple: the lower bits of an element
tells the index of the next element in the list. The type of the sub-pyramid is
coded with the highest bit.

2.3.3 Pseudo-code of vqSPIHT

The algorithms for the encoder and the decoder are similar. We use notation
\input/output x", which consists of two steps: In the encoder x is �rst calcu-
lated and then transmitted to entropy coder; in the decoder x received from
decoder and then used in the construction of a new estimate for the coeÆ-
cient. Variable nbc indicates the number of bits transmitted or received thus
far. Constant filesize indicates the requested �nal �le size in bits.
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Function influence(i; j) is de�ned to be true, if the element (i; j) in the LUT
is marked to in
uence an ROI, and false otherwise. Let ci;j be the value of
the coeÆcient (i; j) in the wavelet coeÆcient table and the coordinate pair
(i; j) denote either a single coeÆcient or a whole sub-pyramid of type A or
B having coeÆcient at (i; j) as the top element. The meaning of (i; j) will be
evident from the context. Finally we de�ne the signi�cance of a coeÆcient with
function Sn(ci;j) as follows: Sn(ci;j) = 1 if the number of bits after the �rst
1-bit in the absolute value of ci;j is at least n� 1, otherwise Sn(ci;j) = 0. The
signi�cance of a sub-pyramid is de�ned with function Sn(i; j). Sn(i; j) = 0
if Sn(c) = 0 for all coeÆcients c belonging to sub-pyramid (i; j), otherwise
Sn(i; j) = 1.

The input for both the encoder and decoder is the wavelet coeÆcient table, the
ROI map, � and filesize. The output of the decoder is an approximation of
the original wavelet coeÆcient table. See Fig. 2 for an outline of the algorithm.

1. Initialization

{ Input/output n, which is the number of signi�cant bits in the coeÆcient
having the largest absolute value.

{ Construct LUT according to the given ROIs.
{ Set nbc = 0.
{ Set the PSM label of all scaling coeÆcients (coeÆcients in the area S in
Fig. 1) to insignificant and the PSM label of all other coeÆcients to
unknown.

{ Create a list of all scaling coeÆcients that have descendants in SPLM and
make them of type A.

2. Sorting step for PSM

Æ For every element (i; j) in PSM do
? If (nbc=filesize < � OR influence(i; j)) then
- If (i,j) is labeled to be insignificant do:
� Input/output Sn(ci;j).
� If Sn(ci;j) = 1 then set the PSM label (i; j) to significant and in-
put/output the sign of ci;j.

- Else If (i,j) is labeled to be significant do:
� Input/output the n-th most signi�cant bit of jci;jj.

3. Sorting step for SPLM

Æ For each element (i; j) in the list in SPLM do:
? If sub-pyramid (i; j) is of type A AND (nbc=filesize < � OR influence(i; j))
then
- Input/output Sn(i; j).
- If Sn(i; j) = 1 then
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+ For each (k; l) belonging to immediate o�spring of (i; j) do:
* If (nbc=filesize < � OR influence(k; l)) then
� Input/output Sn(ck;l).
� If Sn(ck;l) = 1 then set the PSM label (k; l) to significant and in-
put/output the sign of ck;l, else set the PSM label (k; l) to insignificant.

+ If (i; j) is not on one of the two lowest levels of the pyramid then move
(i; j) to the end of the list in SPLM and change its type to B, else
remove (i; j) from the list in SPLM.

? If sub-pyramid (i; j) is of type B AND (nbc=filesize < �OR influence(i; j))
then
- Input/output Sn(i; j).
- If Sn(i; j) = 1 then
+ For each (k; l) belonging to immediate o�spring of (i; j) do:
� If (nbc=filesize < � OR influence(k; l)) then add (k; l) to the end of
list in SPLM as sub-pyramid of type A.

+ Remove (i; j) from the list in SPLM.

4. Quantization-step update

Æ If n > 0 then
� Decrement n by 1.
� Jump to the beginning of the PSM sorting step 2.

The original SPIHT algorithm always transmits bits in two alternating phases:
In the �rst phase the branching decisions of the sorting step and the signs of
new signi�cant coeÆcients are transmitted. In the second phase the bits of all
signi�cant coeÆcients on the current bitplane are transmitted. Interrupting
the �rst phase can cause transmission of branching decisions that can not be
used in reconstruction. In vqSPIHT, we have therefore combined the sending
of the signi�cant coeÆcients to the sorting phase to avoid the problem.

3 Test results

3.1 Numerical quality indicators

As a measure of image quality, we use the Point Signal to Noise Ratio (PSNR)
for the whole image and for the ROIs:

DPSNR = 10 log10
2bpp � 1

DMSE

dB:
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It is well-known that PSNR does not give objective estimate of image quality,
but it correlates with the amount of distortion in the image and it can be
used for comparing the quality of images compressed with algorithms causing
similar distortion. As a measure for the amount of compression we use the
number of bits per pixel (bpp).

3.2 The comic test image

The vqSPIHT algorithm was constructed for the needs of digital mammogra-
phy. However, mammograms are rather smooth and thus easily hide compres-
sion artifacts. To better illustrate the e�ect of VQIC, we use a comic picture
of size 420x480 with 8 bpp as the �rst test image, Fig. 3. GIF1, JPEG, SPIHT
and vqSPIHT algorithms are used to compress the image having three ROIs
covering 2.4% of the image marked on the Fig. 3. The compression results are
presented in Table 1 and Fig. 4.

As seen in Table 1, the PSNR of SPIHT and vqSPIHT are similar. With less
compression (large bpp), JPEG is also comparable in terms of PSNR, but
its visual quality decreases rapidly with decreasing values of bpp (Fig. 4).
In JPEG, the resulting �le size can not be speci�ed exactly in advance, and
thus the bpp values of JPEG are slightly di�erent from those of SPIHT and
vqSPIHT. There are no big di�erences in the performance of these techniques,
when only the overall PSNR is evaluated.

When considering the PSNR of ROIs, the situation changes radically. SPIHT
performs signi�cantly better than JPEG, but the improvement achieved with
vqSPIHT is even greater. We have used quite high � values: 80% and 90%
of the size of the output �le. Even with these values, PSNR in the ROIs is
considerably lower in the vqSPIHT compressed images than in the SPIHT
compressed images, while good overall quality (PSNR of whole image) is still
maintained. This is partly due to the fact that the coeÆcients that in
uence
the ROIs also contribute to the areas outside the ROIs. Thus the overall image
quality is still improving outside the ROIs after the trigger value � has been
reached.

Fig. 4 shows a 88x66 pixel region taken from the comic image and compressed
with JPEG, SPIHT and vqSPIHT with di�erent bpp values. The original part
of the image is shown in the lower right corner. The selected part includes an
ROI, marked on the original image.

The �rst row of Fig. 4 shows the limit bpp value, where JPEG clearly fails to
produce acceptable quality. The image compressed to 0.50 bpp is still recog-
nizable, but the 0.25 bpp image is not. Even the 1.00 bpp image compressed
with JPEG has high-frequency noise around the sharp edges. In the 0.5 bpp
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and 0.25 bpp images the blocking e�ect introduces additional artifacts. In the
1.00 bpp SPIHT image there is no high-frequency noise. When the bpp value
gets smaller, the image gets smoother, and it thus loses small high-frequency
details. However, even the 0.25 bpp SPIHT image is recognizable.

The overall image quality of the 90% and 80% 1.00 bpp vqSPIHT images is
very close to that of the 1bpp SPIHT image. The visual quality of the 0.50
bpp SPIHT image is similar to the 0.25 bpp vqSPIHT (� = 80%) image on
the ROI. Note that the ROI of the 0.10 bpp vqSPIHT image is visually better
than the ROI on the 0.25 bpp JPEG image, and of comparable quality with
ROI on the 0.25 bpp SPIHT image. In this image, 0.25 bpp corresponds to
compression ratio 32:1. It should be noted that SPIHT is designed to perform
well on natural images. A comic drawing is a diÆcult case for SPIHT and thus
also for vqSPIHT.

The performance of the vqSPIHT was good when ROI covered only 2.4% of
the picture. With the increase of ROI � must decrease to compensate the
larger number of coeÆcients in the ROI in order to maintain the same quality.
Because bits are coded in the order of their importance, the bits used in coding
of ROI can add considerably less to whole image PSNR than the bits outside
ROI. As seen in Fig. 5, the bene�ts of VQIC rapidly disappear with large ROI.

3.3 The mammogram test image

The second test image, Fig. 6, is a mammogram of size 2185x2925 with 12 bpp.
The mammogram test image has been compressed only with vqSPIHT. How-
ever the setting of � to 100% makes vqSPIHT function similarly to SPIHT.

In this example, we assume that the micro-calci�cations are the only impor-
tant diagnostic details of a mammogram, that are easily lost in compression.
Note that in a study of the applicability of vqSPIHT to digital mammograms
also other signs of cancer, like stellate lesions and nodules, should be consid-
ered. A micro-calci�cation location map, shown in Fig. 7, was generated with a
micro-calci�cation detection algorithm slightly modi�ed from the morphologi-
cal segmentation algorithm of Dengler, Behrens and Desaga [3]. The detection
was tuned to be over-sensitive to make sure that all micro-calci�cations were
detected. Because of this, the algorithm detected also a large number of false
calci�cations, including the skin-line of the breast. In this test case, there were
323 ROIs covering �ve percent of the whole mammogram.

We used the bpp values 0.05, 0.10, 0.15, 0.25, 0.50, 0.75, 1.00 and let � take
values of 30, 40, 50, 60, 70, 80, 90 and 100 percent of the resulting �le size.
Fig. 8 shows the PSNR of the whole image as a function of � and the bpp.
Lowering � decreases the PSNR of the whole image, but the e�ect remains
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moderate with reasonable � values.

Fig. 9 shows the PSNR calculated only on the ROI as a function of � and
the bpp. The bene�ts of the VQIC on ROIs is clearly seen in comparison with
the Fig. 8. To point out, the PSNR of ROIs in 1.00 bpp mammogram jumps
from 40.29dB to 54.87dB when � decreases from 100% (i.e. SPIHT) to 80%.
This causes a very moderate change in the PSNR of the whole image, which
decreases from 38.98 to 38.38.

Fig. 10 shows a region containing a micro-calci�cation cluster taken from a
mammogram, that has been compressed using various bpp and � values. A
visual comparison between SPIHT and vqSPIHT shows that a mammogram
can be compressed to a signi�cantly lower bpp value with vqSPIHT than
with SPIHT (� = 100%) to achieve similar preservation of micro-calci�cations
in the ROIs. The region in the upper left corner has been compressed with
SPIHT to compression ratio 12:1. Even with this rather modest compression,
a comparison with the original (lower left corner) reveals that the edges of the
calci�cations have become blurred, some small calci�cations have disappeared
and some have merged together. When keeping the same bpp 1.00, we notice
that setting � = 70%, the micro-calci�cations are virtually indistinguishable
from the original. With this choice of �, the PSNR of whole image decreases
from 38.98dB to 37.51dB. Now, keeping � = 70%, the bpp value 0.15 (com-
pression ratio 1:80) gives a visually comparable reconstruction to the 1.00 bpp
SPIHT image (compression ratio 1:12). In this case, the PSNR of the whole
mammogram decreases to 34.08dB. This is, however, virtually same as the
PSNR of SPIHT 0.15 bpp compressed image, which is 34.10dB.

3.4 Practical memory requirements of the implementation

We �rst implemented the algorithm using the list data structures of the orig-
inal SPIHT algorithm [11], but found that this required a large amount of
internal memory. The amount of memory needed was very dependent on the
values of bpp and �. Typically, the compression of a 12 MB mammogram
of required at least 120 MB of internal memory during encoding, but with
some combinations of bpp and � the memory requirement was considerably
larger. The memory is mainly used for representing the coeÆcient table and
the lists that are constantly scanned through. Thus paging the memory to
hard disk increases the execution time drastically. Memory requirements can
be made independent of the bpp-ratio and � by reimplementing the algorithm
using the matrix data structures presented previously. The working memory
space dropped to about 50MB and about 40% of that could be paged to disk
without signi�cant increase of the execution time. All of the needed memory
could be allocated once, which made the memory management eÆcient in
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comparison to the slow per-node dynamical memory management of explicit
list structures.

4 Summary and conclusions

The idea of VQIC is to use more bits for important details at the cost of
unimportant details such as noise. The compression method can be applied in
applications where certain small regions in the image are especially important.
We have shown that in our target application, compression of digital mammo-
grams, the variable quality compression scheme can improve the compression
eÆciency considerably. The variable quality property has been integrated into
SPIHT, which is one of the best general-purpose compression techniques. We
have also simpli�ed the implementation of SPIHT and reduced working stor-
age requirements signi�cantly compared to the original implementation. Our
version of the algorithm allows the compression of large images such as mam-
mograms with a standard PC. A research on the clinical applicability of the
VQIC techniques in the context of very large digital mammogram archive is
planned.
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Fig. 10.
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method bpp PSNR PSNR in ROIs

GIF 4.456 1 1

JPEG 1.01 26.01 23.76

JPEG 0.50 23.09 20.21

JPEG 0.29 20.43 17.81

SPIHT 1.00 27.56 26.58

SPIHT 0.50 24.06 22.13

SPIHT 0.25 21.00 18.63

vqSPIHT � = 90% 1.00 27.26 39.85

vqSPIHT � = 90% 0.50 23.83 29.76

vqSPIHT � = 90% 0.25 20.75 23.41

vqSPIHT � = 80% 1.00 26.72 42.46

vqSPIHT � = 80% 0.50 23.40 34.36

vqSPIHT � = 80% 0.25 20.37 26.85

vqSPIHT � = 80% 0.15 18.55 22.13

vqSPIHT � = 80% 0.10 17.45 18.94

vqSPIHT � = 80% 0.05 15.15 14.55

Table 1

Comparison between SPIHT, vqSPIHT and JPEG for the comic image (Fig. 3).
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Captions of �gures:

Fig. 1. An example of a wavelet coeÆcient table, that contains three four-level
pyramids: A, B and C. Scaling coeÆcients are located on the square noted by
S.

Fig. 2. The vqSPIHT matrix implementation is illustrated on the upper half of
the picture: The wavelet coeÆcients on the left are processed one bitlevel at a
time. Each bitplane is processed in two steps (2. and 3.). The �rst step tests the
signi�cance of each coeÆcient that is labeled to be insigni�cant in PSM matrix
and transmits the necessary information. The second step processes all the
trees in SPLM and sets new points in PSM as significant or insignificant.
The bottom part of the picture illustrates the thresholding of transmitted
data. After the alpha limit has been reached, only bits of coeÆcients and
decision information that a�ects the ROI is sent.

Fig. 3. The original comic test image with three ROIs marked.

Fig. 4. A region of the comic test image containing an ROI compressed with
JPEG, SPIHT and vqSPIHT. See the table below for the explanation of sub-
regions of the �gure.

JPEG 1.00bpp JPEG 0.50bpp JPEG 0.25bpp

SPIHT 1.00bpp SPIHT 0.50bpp SPIHT 0.25bpp

vqSPIHT �90% 1.00bpp vqSPIHT �90% 0.50bpp vqSPIHT �90% 0.25bpp

vqSPIHT �80% 1.00bpp vqSPIHT �80% 0.50bpp vqSPIHT �80% 0.25bpp

vqSPIHT �80% 0.15bpp vqSPIHT �80% 0.10bpp ROI in original

Fig. 5. The two images on the left are ROI masks used in the compression
of the two rightmost images, where ROI covers 16% (the upper image) and
46% of the image. The �rst grayscale image is compressed with without ROI
(� = 100%), while 16% ROI (� = 50%) is used in the second image and 46%
ROI (� = 50%) in the last image. All the images are compressed with same
0.25 bpp bitrate.

Fig. 6. Original mammogram test image.
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Fig. 7. Micro-calci�cations found in the test mammogram (shown as black),
and the ROIs (dotted rectangles around micro-calci�cations).

Fig. 8. PSNR of the whole mammogram for vqSPIHT as a function of � and
bpp.

Fig. 9. PSNR of the ROIs in the mammogram for vqSPIHT as a function of
� and bpp.

Fig. 10. A region of vqSPIHT compressed mammograms with di�erent � and
bpp rates. Bpp values on the columns from left to right are 1.00, 0.50 and
0.15. The values of � starting from the uppermost row are 100%, 90%, 70%
and 50%. All the images have been histogram equalized to ease the evalua-
tion. The three images in the last row from left to right are: the histogram
equalized uncompressed region, original uncompressed region and a bit map
of the detected micro-calci�cations with the ROIs marked.

Table 1. Comparison between SPIHT, vqSPIHT and JPEG for the comic
image (Fig. 3).
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Footnotes

1. A common lossless image compression method.
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