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Abstract. In this paper we present a general framework for estimating
the energy consumption of an embedded Java virtual machine (JVM).
We have designed a number of experiments to find the constant overhead
and establish an energy consumption cost for individual Java Opcodes
for two JVMs. The results show that there is a basic constant overhead
for every Java program, and that a subset of Java opcodes have an almost
constant energy cost. We also show that memory access is a crucial energy
consumption component.

1 Introduction

Several techniques have been developed to optimize the energy consumption of
embedded systems. Those techniques can be hardware based solutions, as well
as software or co-design solutions [1]. Techniques for low power optimization of
software have been mostly applied on processor instructions level [2, 3] by mainly
using processor specific instructions [4, 5]. Techniques on memory management
have also been widely applied for optimizing energy consumption [6, 7].

At the same time, the size and complexity of applications and development
constraints like getting the product to market on time, make necessary the use
of high-level languages. Due to the wide diversity of hardware and OS used in
the world of handheld devices, portability across systems is not easy and needs
efforts. Java language eases portability by allowing application developments
with an abstraction of the target platform, making the concept “write once, run
it anywhere” possible.

In this paper we present a general framework for estimating the energy con-
sumption of an embedded Java virtual machine. We present a number of exper-
iments to estimate the constant overhead of the JVMs energy consumption and
establishe an energy consumption cost for individual Java Opcodes.

The major contributions of this paper are a better understanding of the
energy consumption distribution of an embedded Java virtual machine (JVM)
and the definition of the energy cost for the Java bytecodes for two different
embedded JVMs.



The remainder of this paper is organized as follows. Section 2 presents the
two JVMs used in this study, and proposes a methodology scheme used to char-
acterize the energy consumption of an embedded JVM. Section 3 presents several
experiments in order to define some constant overheads of the JVMs and com-
ments the repartition of the JVMs energy consumption. Section 4 presents a
measurement methodology used to define the energy cost of Java bytecode by
cost comparison between two appropriate class files. Finally, section 5 concludes
the paper and suggests future possible work. This paper extends [8] with a result
comparision between two embedded JVMs.

2 An energy consumption model of Java applications

The Java Virtual machine is an abstract machine, making the interface between
platform independent applications and the hardware, through a possible oper-
ating system. Thus the use of Java language can be seen as adding one more
layer, the Java virtual machine, between the hardware and software layers. We
want to study how well applying estimation techniques on the virtual machine
opcodes level can be done, similarly to what has been done on processor instruc-
tions level. Figure 1 shows a simple view of a JVM life cycle. An efficient energy
model should characterize each stage of the life cycle model, and thus shows in
which stage(s) effort needs to be concentrated to achieve energy optimization.
It seems obvious that such model needs to consider the system’s hardware and
software configuration and therefore is not directly portable. But the methodol-
ogy used to build it can easily be applied on different configurations by changing
the platform configuration parameters. As shown in [9] the memory consumption
must also be included in the model, as the memory might represent the biggest
source of energy consumption on a typical embedded system. This is even more
important to take into account as the JVM is a stack machine and will therefore
have a relatively high memory activity.

 Start JVM Initialization of 
the VM

Interpreter loop Exit
Load the class 
containing the 
main method

Fig. 1. Simple view of the JVM life cycle

2.1 Measurements methodology

We chose to use the Sun Microsystems K Virtual Machine (KVM), CLDC v1.0.3,
and the simple Real-Time-Java (simpleRTJ) vitual machine. KVM is a small
virtual machine containing about 50-80 Kb of object code in its standard con-
figuration and has a total memory footprint in the range of 128-256 Kb. KVM
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Fig. 2. Measurements methodology scheme

can run on a 16-bit or 32-bit RISC/CISC processor clocked from 25MHz. The
simpleRTJ is a tiny JVM targeting 8/16/32 bit embedded systems and requiring
on average about 18-24KB of code memory to run.

To build an energy model of the JVMs we adapted the energy profiler enpro-

filer [10] developed by the Embedded Systems Groups at Dortmund University.
The adaptation was done in order to integrate the Java environment in the re-
sults provided by the energy profiler. With the adaptation, when summing up
the energy cost for each instruction execution or memory access the enprofiler

checks in which JVM stage the event occurred and increments the correspond-
ing costs variable. Enprofiler is a processor instructions level energy profiler for
ARM7TDMI processor cores operating in Thumb mode [11] and integrating the
consumption of memory accesses. It has been built from physical measurements
done on an Atmel AT91EB01 evaluation board consisting of a AT91M40400
processor clocked at 33MHz and an external 512K bytes SRAM. A detailed de-
scription of the energy model used by enprofiler is given in [12]. According to [12]
enprofiler shows a precision of 1.7% for the cost measurement of 12 instructions
in an endless loop.

Figure 2 shows the measurements methodology scheme used to character-
ize each stage of the JVM life cycle. The Java class generator generates, from
template classes, Java applications with the possibility to modify parameters
inside the class source code. With the Java Code Compact (JCC) we compile
and link together the KVM source code and the generated Java application.
For simpleRTJ the java application is pre-linked with all needed classes into a
single binary image. The executable code is run on the ARM7TDMI emulator
ARMulator, which traces instructions, memory accesses and events that occur
during the application execution. From this trace, we extract all information



concerning the memory access addresses, size and type (read, write, sequential,
non-sequential), the instructions addresses and their corresponding processor
opcodes. The energy profiler enprofiler reads the emulator trace and accesses
databases providing processor instruction costs and the cost of a memory access
depending of its address, size and type. The energy profiler estimates the en-
ergy consumed by the application and provides information on how the energy
is distributed between the processor and memories for each JVM stage.

3 Experiments

We have run the measurement process over several representative benchmarks
to characterize each stage of the JVMs life cycle and determine if some stages
are dominant. We used as reference an empty application in order to reflect the
JVMs basic costs. Dedicated intensive allocation applications was also used in
order to study the behavior of the JVMs stage costs.

3.1 Benchmarks

Empty application: We run the empty application through the measurement pro-
cess in order to find out if overhead constants in the JVMs energy consumption
can be determined. Its source code is the following:

public class HelloWord {

public static void main(String arg[])

{

//nothing to do

}

}
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Intensive allocation applications: Two intensive allocation applications were used
in order to study a possible application related evolutions in the JVMs costs.
The first application, called alloc1, instantiates inside a loop one object of class
MyClass. This class doesn’t contain any field and has just one main method.
Each new class MyClass created by main is stored in the heap, and will contain
only a reference to the class definitions area. Each instantiation will create a
new stack frame and call the MyClass constructor which by default will only
call java/lang/Object constructor method. The stack frame created by the main
method contains two operand stacks and three local variables to store the object
reference, the length and the loop index. This application is used to observe the
evolution of different KVM stage costs with the length of the loop. The source
code for alloc1 is the following:

public class MyClass {

public static void main(String arg[])

{

int length = X;

for(int i=0; i<=length ; i++) {

new Myclass();

}

}

}

The second intensive allocation application, called alloc2, is similar to the prece-
dent one with the difference that MyClass contain one field define by an integer
array of size 500. Alloc2 is used to observe the weight that can take the garbage
collector in comparison to the other JVMs stages in extreme allocation rate. As
each new instance takes approximatively 2Kb, with an heap size of 128Kb the
garbage collector needs to be triggered every 64th objects created in the loop to
reclaim the heap space occupied by the unreferenced objects. The source code
for alloc2 is the following:

public class MyClass {

int[] tab = new int[500];

public static void main(String arg[])

{

int length = X ;

for(int i=0; i<=length ; i++) {

new Myclass();

}

}

}

3.2 Results

This section presents the results obtained by the introduced applications through
the measurement process.
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Empty application: The empty application has been used in order to find out if
overhead constants in the JVMs energy consumption can be determined.

Tables 1 and 2 show the obtained results for respectively KVM and sim-
pleRTJ. Figures 3 and 4 present the energy consumption distribution among
repectively all KVM and simpleRTJ stages. The distribution between the en-
ergy consumed by memory accesses and processor instruction execution is also
presented on these figures.
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Table 1. Empty application - Energy consumption of KVM’s stages in µJ

StartJVM Inst. StartJVM Mem. KVMStart Inst. KVMStart Mem. Interpr. Inst. Interpr. Mem.

9,42 20,08 748,81 1639,18 3552,28 8273,34

KVM Clean Inst. KVM Clean Mem.

144,92 326,38

For the simpleRTJ virtual machine we defined only one initialization stage
and any cleanup or post interpreter stage. This is because (a)from its code imple-



Table 2. Empty application - Energy consumption of simpleRTJ stages in µJ

StartJVM Inst. StartJVM Mem. Interpr. Inst. Interpr. Mem.

10601,52 23905,32 1599,04 3866,66
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Fig. 6. Alloc1 - simpleRTJ’s stages energy consumption depending of the loop length

mentation it is logical to keep its initialization stage StartJVM as a single block,
and (b)the simpleRTJ exit almost immediately after last opcode is executed.

From figures 3 and 4 we can already notice that the energy distribution
between memory access and instruction execution is similar between the two
JVM. The second observation is the difference of weight the interpreter takes
for executing the empty application. As we will see later, this difference can be
explained by the fact that the simpleRTJ implementation implies more expensive
heap allocations than the KVM implementation. This reduce the simpleRTJ
interpreter weight compare to the StartJVM stage weight.

As the application was ′empty′ the values in table 1 represent the virtual
machines basic costs or the minimal overhead energy cost that any application
will have to dissipate.

Intensive allocation applications: From the alloc1 results in figures 5 and 6 we
note that only the energy consumed by the interpreter is dependent on the loop
length value. All other stages of the JVMs consume a constant energy including
the garbage collector, as the maximum number of created object was not enough
to fill up the Java heap and trigger off a garbage collection. It is important
to notice that the evolution of the interpreter stage energy consumption with
the loop length is different between KVM and the simpleRTJ. For KVM the
interpreter stage cost is linear and proportional to the loop length, whereas
simpleRTJ interpreter stage cost is exponential to the length of the loop. This
difference can be explain by looking at each JVM implementation for allocating
new object into the heap. KVM uses a list of free memory chunk available in
the heap. For each new allocation it traverses the list until it finds a free chunk
enough big to hold the new object. In our case it will always find the first chunk
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available to store the new MyClass object, thus executing each time the same
successive instructions. As a consequence the KVM interpreter stage cost will be
linear and proportional to the loop length. SimpleRTJ uses only a list of object
allocated in the heap. Each object contains a flag telling if the object is actually
free space or not. For each new allocation simpleRTJ is traversing the list to
find possible object having his flag set and enough big to hold the new object. If
none is found simpleRTJ will allocate a new memory bloc. In our case for each
new MyClass object allocation simpleRTJ will first probe all already allocated
MyClass objects before allocating a new memory bloc, thus executing each time
a exponential number of instructions. As a consequence simpleRTJ interpreter
stage cost will be exponential to the length of the loop.
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The energy distributions for a loop length of 1000 presented in figures 8
and 7, are similar to the first experiment with an interpreter stage even more
dominant, representing over 95% of the total energy consumed.

Alloc2 application was used to observe the garbage collector weight in com-
parison to other JVMs stages. Several factors can influence the garbage collection
behavior and thus its energy consumption: the size of the heap, the sizes and
numbers of live or dead objects,heap fragmentation and naturally the technique
used to implement it. Both JVMs use a mark and sweep garbage collection al-
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gorithm, with the difference that KVM implementation tries to do all its work
in a single pass without any recursive calls.

Figure 9 presents the garbage collector weight for a loop length of 1000. We
can observe that for an very intensive allocation rate of dead objects the KVM GC
energy consumption represents only 10% of the total KVM energy consomption.
On the other hand with the same application and parameter the simpleRTJ GC
will represent almost one thrid of the total simpleRTJ energy consomption. This
major difference is comming from the implementation variance between the JVM
garbage collections.

We also run the measurement process with simpleRTJ over the all repre-
sentative benchmarks presented in [8], and have the same following observation
than in [8]: from all experiments done it is clear that the interpreter stage is far
ahead the main source of energy consumption. Thus a better comprehension of
it is needed if someone wants to achieve energy optimization on the JVMs.

As the interpreter reads and executes the Java bytecode, having a closer view
on the interpreter implies increasing the granularity of its energy consumption
model by looking at the cost of each Java opcode interpreted.

4 Java opcode energy cost

In order to get a better understanding of the interpreter energy consumption,
an evaluation of each Java opcode energy cost is needed. As a strict class file
structure needs to be respected, it is not possible to only execute one Java
opcode. Thus a cost comparison between two class files is needed to estimate the
cost difference between them. The general measurements methodology scheme
used to characterize each JVMs stage life cycle can be re-used with different
inputs. Instead of using Java source code files we will use as input appropriate
byte-code executable class files.

4.1 Measurements methodology

Figure 10 shows an abstract view of the class files generator used to create two
class files, named ClassFile and ClassFile Ref. The opcode behavior towards
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the Java operand stack and the local variables array has to be defined for each
studied Java opcode, i.e. provide the operand stack state needed before and re-
sulting after the studied opcode execution as well as the number of local variables
needed.

To ensure the estimation quality for each opcode we generate several pairs
of class files executing the studied opcode and also monitor the possible energy
consumption differences between all other JVMs stages.

4.2 Results

From all Java opcodes we will not study the 51 opcodes which handle floating
point values as floating point is not supported by the CLDC specification. In
addition as the simpleRTJ VM does not support long type, all opcodes manipu-
lating longs are only analysed for the KVM. The opcode athrow was also omitted
from this study, it is not possible to directly estimate its energy cost using this
comparison method as its cost can not be extracted from the context cost. All
the same, in table 5 in [13] we can see from the opcode checkcast the cost of
throwing an ClassCastExeption exception and exiting the KVM.

As a general observation we can say that for most opcodes simpleRTJ gives
a more expensive implementation in terms of energy and number of cycles than
KVM. However the cost differences between opcode functional groups within
each virtual machine are similar. Due to space requirement all obtained values
for each studied opcode and each JVM are published in [13], where the opcodes
are divided in six functional groups:

Stack and local variable operations opcodes : Tables 2 and 3 in [13] show the
results concerning opcodes that operate on the operand stack and local variable.
We can notice that loading a value from the local variables array to the operand
stack is lightly more expensive than storing the same value back to the local
variable. It is also interesting to note that for KVM the opcode bipush consumes
about 9% less energy than iload and 5% less than ilaod x. Thus it is more energy
efficient to load an constant integer lower than 256 into the operand stack using
bipush than initializing the local variable array with the constant and use iload

or ilaod x. The same is true if a constant integer lower than 65536 has to be
loaded into the operand stack, it will be more efficient to use the opcode bipush

instead of iload. But in case the integer constant can be stored in the first 4 local
variables then iload x becomes the most efficient opcode.



Type conversion opcodes : Table 1 in [13] shows the results for opcodes that
convert value from one primitive type to another. The costs are in the same range
as the stack and local variable operations opcodes as the conversion opcodes pop
a value from the stack, perform a right shift or truncate the popped value and
push back the result.

Arithmetic opcodes : Table 4 in [13] shows the costs for arithmetic opcodes. As
it was easy to predict, the cost of an arithmetic operation is dependent on the
type of the operands and the operation. For the KVM operations on long types
are about 50% more expensive than on integers, except for the division of types
long which is about two times more expensive than to divide integers.

Logic opcodes : As for the arithmetic opcodes, the cost of logic opcodes is also
depending of the type of the operand and for the KVM operations on longs are
from 23% to 37% more expensive than operation on integers. Table 9 in [13]
shows the costs for logic opcodes.

Control flow opcodes : The control flow opcodes are the opcodes that implement
the following Java language statements: do-while, while, if, if-else, for and switch.
Table 8 in [13] shows the cost for the 25 control flow opcodes. For all conditional
if opcodes (i.e. opcodes from 0x99 to 0xa6 and ifnull, ifnonnull) the energy cost
depends on a two values comparison success. If the comparison success the VM
jumps to a target defined by the opcode operands, in the other case the VM
continues by executing the following opcodes.

The tableswitch opcode performs the same task as lookupswitch, with the
difference that it requires a consecutive list of case values contained between
one low and high endpoint. Thus the VM knows in advance the position of all
case values so that the retrieving cost is the same for all cases. Compared with
lookupswitch, tableswitch has a lower energy cost but generates all the more
bigger class file size as the gape between the case values is great.

Objects and arrays opcodes : Tables 5 and 6 in [13] show the cost of opcodes that
create and manipulate arrays and objects. The creation cost, with newarray, of a
single dimension array of primitive type integer, long, short, byte, char or boolean
is not directly dependent on array type and size, but more on the memory size
that needs to be allocated for its creation. That means that the creation cost is
identical for an integers array of size 8, a shorts array of size 16, or for the KVM
a longs array of size 4. The creation cost, with multiarray, of multidimensional
arrays is dependent on the array dimensions and dimensions indexes values.
Each dimension adds a basic cost to the array creation cost, thus creating a
2*2*2 integers array will be 70% more expensive than creating a 2*4 integers
array, and especially 18 times more expensive than creating a single dimension
integers array of size 8.

The objects creation cost depends on the objects themselves, i.e on the type
and size of their constant pool, interfaces, fields,methods and their super-classes,
and also on their resolution flags inside each class constant pool. A new object is



resolved only once within a same class, and its address is stored in the constant
pool structure of the class. Table 5 in [13] shows as an example the creation cost
of an object of type java.lang.Object and java.lang.String. In addition, table 5
in [13] refers to two objects called Class and subClass which is a empty (none
interface,field nor method) sub class of nonResolvedClass itself empty sub class
of java.lang.Object.

Method invocation and return opcodes Because invoking a method implies return-
ing from it at some point, table 7 in [13] shows the costs of different invoke/return
pairs. They all invoke an empty ’already resolved’ method within the same class
or instance. We can notice from this table that calling a static, public or private
method costs almost the same, and that the type of the returned value has not
a great influence on the overall cost.

It is also important to compare all obtained values with the NOP energy
consumption. As the opcode NOP is the first case statement in the interpreter
switch and doesn’t execute any instruction, its energy consumption represents
the minimum overhead cost due to the interpreter mechanism. For the most
of the stack and local variable operation opcodes the interpreter mechanism
overhead represents about 70% of their energy consumption.

4.3 Opcode costs verification

In order to verify the obtained opcode costs we calculated for each benchmark ex-
ecution used for the first experiments the value

∑
(Opcodecost∗OpcodeOccurrence).

The computed value was then compared with the cost given by the energy pro-
filer for the interpreter stage. KVM has a build-in implementation to trace all
executed opcodes. We also added such feature to the simpleRTJ VM in order to
calculate the occurrence of each opcode. For control flow opcodes we checked if
the branch was taken or not to attribute the correct opcode cost, but to keep the
verification simple we didn’t looked at the type of variable handled by putfield,
getfield, putstatic and getstatic. There respective cost for handling integer was
used for all occurrences. In addition for all other none static opcode costs only
the respective basic cost was used. The benchmark Exception from the Java
Grande Forum Benchmark Suite was not used as we didn’t studied the cost for
the opcode athrow.

Table 3. Verification results

Dhrystone50 Arith Assign Loop Create Method Math Generic

KVM 103,99 105,31 95,55 100,30 97,95 102,51 96,74 109,43

sompleRTJ 102,35 101,56 98,75 102,28 100,15 103,12 98,95 103,34

Table 3 presents the normalized verification results where the value 100 repre-
sent for each benchmark the energy cost given by the energy profiler for the inter-



preter stage. For each benchmark the accuracy obtained by calculating the value∑
(Opcodecost∗OpcodeOccurrence) is staying between -5 and +10% of the cost

given by the energy profiler. But this loss in precision has to be balanced with the
time needed to compute it. It takes only few seconds to calculate the occurrence
for each opcode and compute the value

∑
(Opcodecost ∗ OpcodeOccurrence),

compared to several hours needed by the energy profiler.

5 Conclusion

Several observations have been done in this paper concerning the energy con-
sumption of the JVMs. For the hardware configuration fixed by the energy pro-
filer, the distribution between the processor and memories is constant over the
JVMs execution with 70% of the energy consumed by memory accesses. This
shows the major importance of the memories for embedded system runtime per-
formance. We also showed that implementation differences between two embed-
ded JVMs can imply great divergence concerning the JVM energy consumption.

This paper can also guide developers to produce energy-aware java applica-
tion by limiting the use of long data type, avoiding multidimentional array and
trying to use consecutive case values inside a switch statement. Furthermore, the
opcodes energy cost can be helpful for developing a energy-aware Java compiler
as well as optimizing the JVMs by pointing out the expensive opcodes. This
paper shows the first steps toward an energy aware performance analysis tool
for Java application, as a such tool would ask for a more detailed model for a
subset of opcodes.

Also as the interpreter mechanism overhead cost is a predominant factor in
opcode execution cost, it will be interesting in the future to look at the cost
differences between the two possible Java execution modes: interpreted or JIT
compilation. JIT compilation increases significantly the execution speed, but in
the same time increases memory footprint. A trade-off between execution time
and memory footprint size will certainly have to be found to reach the optimum
optimization point for energy consumption.
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