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New Space-Time Code Constructions for
Two-User Multiple Access Channels

Hsiao-Feng (Francis) Lu, Roope Vehkalahti, Camilla Hollanti*,
Jyrki Lahtonen, Yi Hong, and Emanuele Viterbo

Abstract

This paper addresses the problem of constructing multiuser multiple-input multiple-output (MU-
MIMO) codes for two users. The users are assumed to be equipped with nt transmit antennas, and there
are nr antennas available at the receiving end. A general scheme is proposed and shown to achieve the
optimal diversity-multiplexing gain tradeoff (DMT). Moreover, an explicit construction for the special
case of nt = 2 and nr = 2 is given, based on the optimization of the code shape and density. All the
proposed constructions are based on cyclic division algebras and their orders and take advantage of
the multi-block structure. Computer simulations show that both the proposed schemes yield codes with
excellent performance improving upon the best previously known codes. Finally, it is shown that the
previously proposed design criteria for DMT optimal MU-MIMO codes are sufficient but in general too
strict and impossible to fulfill. Relaxed alternative design criteria are then proposed and shown to be still
sufficient for achieving the multiple-access channel diversity-multiplexing tradeoff.

I. INTRODUCTION

During the past five years extensive research has been carried out on single-user (SU) multiple-input
multiple-output (MIMO) space-time (ST) lattice codes based on cyclic division algebras (CDAs) [1],
[2], [3], [4], [5]. At its best, this research has resulted in codes that get very close to the outage bound
for practical numbers of antennas. Motivated by the promising outcome in the SU-MIMO scenario, the
aim in this paper is to adapt the machinery provided by CDAs to the multiuser (MU) MIMO scenario
as well, with the ultimate goal of producing diversity-multiplexing tradeoff (DMT) achieving codes in
mind. We will concentrate on the multiple-access channel (MAC), i.e., on the uplink transmission from

This work was supported in part by the Emil Aaltonen Foundation, Finland, through a grant for R. Vehkalahti, and by the
Finnish Academy of Science and Letters and the Academy of Finland (grant #210280) through grants for C. Hollanti.

H.-F. Lu is with Department of Communications Engineering, National Chiao Tung University, Hsinchu, Taiwan (e-mail:
francis@cc.nctu.edu.tw).

R. Vehkalahti, C. Hollanti (*contact person), and J. Lahtonen are with Department of Mathematics, FI-20014 University of
Turku, Finland (e-mails: {roiive,cajoho,lahtonen}@utu.fi).

Y. Hong is with the Institute of Advanced Telecommunications, Swansea University, Swansea, UK. (e-
mail:Y.Hong@swansea.ac.uk).

E. Viterbo is with DEIS - Universitá Della Calabria, Via P. Bucci, 42/C, 87036 Rende (CS), Italy. (e-
mail:viterbo@deis.unical.it).

March 30, 2009 DRAFT



2

multiple users to a single access point (AP). Both the transmitters (=users) and the receiver (=AP) may
be occupied with multiple antennas.

In general, multiuser MIMO coding is a very challenging topic. When the 3GPP (=third generation
partnership project) asked the participating companies (cell phone manufacturers, chipset manufacturers,
operators etc.) to list research topics that they find essential for the next release, MU-MIMO was
mentioned in nearly all the lists. The area is made very challenging by the diversity of potential
applications all requiring slightly different treatment and design goals.

The idea of extending the single-user ST codes to the multiuser case and the design criteria for
such MU-MIMO codes were given in [6]. An explicit (2× 2) two-user MIMO construction exploiting
independent Alamouti blocks was also introduced in [6]. By swapping columns for one user they managed
to achieve a minimum rank of three. In [7], Tse et al. extended the DMT results from [8] to the MAC.
The codes in [6] do not achieve the optimal MAC DMT. Nam et al. [9] proposed the first explicit DMT
achieving transmission scheme based on a class of structured multiple access lattice ST codes. However,
their scheme was not constructive and no explicit examples were provided. Some explicit, algebraic code
constructions for the MAC with nt > 1 were introduced in [10] and [11]. The authors of [11] state that their
construction is DMT optimal, but do not provide an explicit proof. In [10] a somewhat different approach
was taken as compared to [6]: the authors propose a design criteria based on a truncated union-bound
approximation. With the aid of these criteria they manage to outperform in error performance the other
known two-user codes for the (2×2) MAC [6], [12]. Another group of multiuser ST codes was proposed
in [12], but these codes suffer from high peak-to-average power ratio (PAPR) as the codeword matrices
contain zero entries. In [13], the authors propose design criteria for designing MAC-DMT optimal codes,
and further propose a code construction that is claimed to fulfill their criteria. The criteria proposed in
[13] are indeed sufficient for achieving the optimal DMT, but it turns out that it is not necessary to fulfill
these criteria in order to do so. It will be shown that more relaxed design criteria will still provide us
with MAC-DMT optimal codes. Especially, we will prove that it is not possible to design DMT optimal
multiuser codes having the full NVD property when we have two users using one antenna. The general
proof for an arbitrary number of users and antennas is presented in [14].

Our main goals in this paper are to

1) construct explicit, sphere-decodable codes for the (2×2) situation where both of the two
users are equipped with two transmitting antennas, and two antennas are available at the receiving
end. We will compare our codes with the best known codes for this situation [10].

2) design a general, DMT-achieving, sphere-decodable (nt ×nr) MU-MIMO scheme for two
users, that would yield good performance also at the low SNR end. We will compare our explicit
(2×4) codes with the best known codes for this situation [11].

For the use of matrix representations of cyclic division algebras and their orders as space-time codes,
we refer the reader to [15], [1], [5].

Remark I.1. Our aim is to preserve maximum-likelihood (ML) performance, hence the requirement of
sphere decodability. Other than sphere decoding considered here, there are still other ways to decode. For
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example, the MMSE-DFE combined with lattice decoding was discussed by Belfiore et al. in their paper
[11]. Suboptimal decoders were indeed proposed for any number of receivers in [16]. Albeit in some
cases they can get very close, they will always lose the ML performance at least to some extent, especially
when they are necessarily needed (e.g. a sphere decoder would not work due to a lattice dimension too
high). This is due to the fact that when the receiver is trying to decode a lattice that has higher dimension
than the receiver’s vector space, it means that there exist lattice points that are arbitrarily close to each
other and hence impossible to tell apart from each other. If, in such scenario, we pursue on suboptimal
tricks, some structure is then bound to be lost and the performance can never be as good as ML decoding
promises, though close we get.

However, when the number of antennas increases, suboptimal decoders are the only reasonable possi-
bility even for our (in principle) sphere decodable codes as sphere decoding will get too complex when
the dimension of the lattice grows big enough.

The paper is organized as follows. In Section II we provide the reader with algebraic preliminaries,
concentrating only on the facts that will be needed in this paper. Section III is devoted to designing a
2×2 two-user code, whereas Section IV gives us a general DMT optimal nt ×nr construction for two
users. In Appendix I we prove the claimed non-existence result of full-NVD multiuser codes in the case
of two users equipped with one antenna.

II. ALGEBRAIC PRELIMINARIES

In this section we introduce some concepts and results from the theory of central simple algebras for
later use. For the proofs of these results and for a proper introduction we refer the reader to [17].

In the rest of the paper we assume that all the fields are finite extensions of the field of rational numbers
Q.

Definition II.1. Let K be an algebraic number field and assume that E/K is a cyclic Galois extension
of degree n with Galois group Gal(E/K) = 〈σ〉. We can now define an associative K-algebra

A = (E/K,σ ,γ) = E⊕uE⊕u2E⊕·· ·⊕un−1E,

where u ∈ A is an auxiliary generating element subject to the relations xu = uσ(x) for all x ∈ E and
un = γ ∈ K∗. We call this type of algebra a cyclic algebra and the field K the center of the algebra. The
center is the set of elements of A that commute with all the elements of A. Throughout the paper, K
denotes the center, and F denotes its subfield F ⊆ K. The inclusion may also be trivial, i.e., we allow
K = F .

Definition II.2. A cyclic algebra is a division algebra if and only if all the non-zero elements of the
algebra are invertible.

Proposition II.1 (Norm condition). The cyclic algebra A = (E/K,σ ,γ) of degree n is a division algebra
if and only if the smallest factor t ∈ Z+ of n such that γ t is the norm of some element of E∗ is n.

Due to the above proposition, the element γ is often referred to as the non-norm element.
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Definition II.3. Let D be a K-central division algebra. We then call
√

[D : K] the index of the algebra.

Definition II.4. Suppose that E is a cyclic extension of an algebraic number field K. Let D = (E/K,σ ,γ)
be a cyclic division algebra and let γ ∈ K∗ to be an algebraic integer. We immediately see that the OK-
module

Λ = OE ⊕uOE ⊕·· ·⊕un−1OE ,

where OE is the ring of integers of E, is a subring in the cyclic algebra (E/K,σ ,γ). We refer to this
ring as the natural order. Note also that if γ is not an algebraic integer, then Λ fails to be closed under
multiplication.

Let K/F be a finite extension (could be also the trivial extension) of algebraic number fields and D

a K-central division algebra of degree n.

Definition II.5. An OF -order Λ in D is a subring of D, having the same identity element as D, and
such that Λ is a finitely generated module over OF and generates D as a linear space over F .

Proposition II.2. Every OK-order Λ⊆D is also an OF -order.

Definition II.6. An OF -order Λ is called maximal, if it is not properly contained in any other OF -order.

Proposition II.3. Any K-central division algebra D has a maximal OF -order and any order inside D is
contained in at least one maximal order.

Example II.1. Suppose that E/K is a cyclic extension of algebraic number fields. Let D = (E/K,σ ,γ)
be a cyclic algebra.

We can consider D as a right vector space over E, and every element a = x0 +ux1 + · · ·+un−1xn−1 ∈D

has the following representation as a matrix

A =




x0 γσ(xn−1) γσ2(xn−2) · · · γσn−1(x1)
x1 σ(x0) γσ2(xn−1) γσn−1(x2)
x2 σ(x1) σ2(x0) γσn−1(x3)
...

...
xn−1 σ(xn−2) σ2(xn−3) · · · σn−1(x0)




.

We call this representation the left regular representation and denote A = ψ(a).

Definition II.7. The determinant (resp. trace) of the matrix A above is called the reduced norm (resp.
reduced trace) of the element a ∈D and is denoted by nrD/K(a) (resp. trD/K(a)).

Proposition II.4. Let D be a K-central division algebra and a an element of D. Then nr(a) and tr(a)∈K.

Proposition II.5. The norm and trace maps do not depend on the maximal representation, i.e., the left
regular representation is not the only representation we can use. However, we stick to ψ for simplicity.
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Definition II.8. We then define the reduced trace and norm of a to F by

trD/F(a) = trK/F(trD/K(a)) and nrD/F(a) = nrK/F(nrD/K(a)),

where nrK/F and trK/F are the usual relative norm and trace maps of a number field extension (sometimes
also denoted by NK/F and TK/F ).

Proposition II.6. Let Λ be an OF -order in a K-central division algebra D. Then for any element a ∈ Λ
its reduced norm nrD/F(a) and reduced trace trD/F(a) are elements of the ring of integers OF of the
field F. If a is non-zero, then so is nrD/F(a).

Now we are ready to define one of the main algebraic objects needed in this paper.

Definition II.9. Let D be a K-central division algebra and m = dimF D. The OF -discriminant of the
OF -order Λ is the ideal d(Λ/OF) in OF generated by the set

{det(trD/F(xix j))m
i, j=1 | (x1, ...,xm) ∈ Λm}.

Here dimF D simply refers to the dimension of D as an F-linear vector space. If Λ is a free OF -module,
then

d(Λ/OF) = det(tr(xix j))m
i, j=1,

where {x1, . . . ,xm} is any OF -basis of Λ.

Proposition II.7. All the maximal orders of a K-central division algebra share the same discriminant.

Now we can define the following.

Definition II.10. Let D be a K-central division algebra and let Λ be some maximal order in D. Then
we refer to d(Λ/OK) = dD as the discriminant of the algebra D.

The following lemma connects the discriminants d(Λ/OK) and d(Λ/OF).

Lemma II.8. Let D be a K-central division algebra of index n and let Λ be an OK-order. If Λ is an
OF -order in D, then

d(Λ/OF) = nrK/F(d(Λ/OK))d(OK/OF)n2
.

III. A SPHERE DECODABLE MU-MIMO CODE FOR TWO USERS AND TWO RECEIVE ANTENNAS

In this section we concentrate on designing a multiuser code for two users, both equipped with two
transmit antennas, and for a receiver that has two antennas. This leads us to a situation where the single
user must use a code that is sphere decodable with one receive antenna. Such MU-MIMO codes have
been considered by Gärtner and Bölcskei [6] and by Hong and Viterbo in [10]. Our coding scheme is
directly comparable to their codes.

In what follows, we first concentrate on the optimization of the single user code and then, in the
very end of this section, we put our single-user codes into use in the multiuser scenario. The careful
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construction of the single-user code as a building block of the multiuser code is crucial, as it will then
guarantee good performance also when only one user is present.

A. Coding theoretic preliminaries of abstract multi-block codes

In this section we consider abstract multi-block codes that are matrix lattices in the space Mn×nk(C).
Particularly we are going to define the normalized minimum determinant and normalized coding gain of
such lattices and study the relation between these concepts.

We can flatten the matrices A of Mn×nk(C) to real vectors α(A) ∈ R2kn2
by first forming a vector of

length kn2 out of the entries (e.g. row by row) and then replacing a complex number z with the pair
of its real and imaginary parts ℜz and ℑz. This mapping α is clearly R-linear and maps t-dimensional
Mn×nk(C) lattices to t-dimensional R2kn2

lattices. We also have the equality ||A||F = ||α(A)||E , i.e., the
Frobenius norm of the matrix A coincides with the euclidean norm of the corresponding vector α(A).
Therefore, α is also an isometry.

Definition III.1. We say that a lattice L in Mn×nk(C) is orthogonal or rectangular if the corresponding
real lattice α(L) has a basis that is orthogonal with respect to the normal inner product of the space
R2kn2

.

We denote the measure (or hypervolume) of the fundamental parallelotope of the lattice α(L) by m(L)
and we call it the volume of the fundamental parallelotope of the lattice L. If {x1, . . . ,xt} is a basis of
L, we can form a matrix M by using the vectors α(xi) as column blocks. Then the Gram matrix of the
lattice L is

G(L) = MMT =
(

ℜtr(xix
†
j)

)
1≤i, j≤t

,

where X† indicates the complex conjugate transpose of X . The Gram matrix then has a positive deter-
minant equal to m(L)2.

Any lattice L⊆Mn×nk(C) can be scaled (i.e. multiplied by a real constant s) to satisfy m(sL) = 1.
If A is an element in the space Mn×nk(C) it can be written as (A1, . . . ,Ak) where all the matrices Ai

are elements in Mn×n. We can then define the product determinant

pdet(A) =
k

∏
i=1

det(Ai)

of the matrix A.

Definition III.2. The minimum determinant detmin (L) of a multi-block code L ⊆ Mn×nk(C) is defined
to be the infimum of the absolute values pdet(A) of all the non-zero elements of the lattice L.

The normalized minimum determinant δ (L) of a lattice L is obtained by multiplying the lattice with a
real constant such that the resulting lattice L′ has fundamental parallelotope of volume 1 and then setting

δ (L) = detmin
(
L′

)
.

Definition III.3. The coding gain CG(L) of the lattice L⊆Mn×nk(C), k≥ n, is defined to be the infimum
of the absolute values of the determinants of matrices AA† of all non-zero matrices A in the lattice.
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The normalized coding gain NCG(L) of a lattice L⊆Mn×nk(C) is obtained by multiplying the lattice
by a real constant such that the resulting lattice L′ has a fundamental parallelotope of volume 1 and then
set

NCG(L) = CG(L′).

Lemma III.1. Let us suppose that A1, . . . ,Ak are complex n×n matrices. We consider the n×nk matrix
(A1,A2, . . . ,Ak) = A. We then have det(AA†)≥ kn · (∏k

i=1 |det(Ai)|)2/k.

Proof: First the Minkwoski determinant inequality states that (det(AA†))(1/n) ≥ ∑k
i=1 |det(Ai)|2/n.

The AM-GM inequality on the arithmetic and geometric means then transforms this result into

det(AA†)1/n ≥
k

∑
i=1
|det(Ai)|2/n ≥ k · (

k

∏
i=1
|det(Ai)|2/n)1/k.

¤
In the following corollary we use the notation of the previous lemma.

Corollary III.2. Let us suppose that L is a multi-block code in Mn×nk(C). Then

CG(L)≥ kn(detmin (L))2/k and NCG(L)≥ kn(δ (L))2/k.

Particularly the following will be of great interest for us.

Corollary III.3. Let us suppose that L is a lattice in M2×4(C). Then NCG(L)≥ 22δ (L).

Remark III.1. The concept of the normalized minimum determinant of a multi-block code is related
to the performance of the code when each n× n block faces independent fading. On the other hand,
the normalized coding gain is a relevant code design criterion when the channel stays stable during the
transmission of the whole n×nk block. It is not a great surprise that these two concepts are so closely
related.

B. Constructing the single user code

In this section we study the achievable normalized minimum determinant of 8-dimensional multi-block
codes in the space M2×4(C). Notice that as we want to receive with only two antennas (equipped with
sphere decoders), we cannot use full lattices that would have dimension 16. In order to get well behaving
8-dimensional lattices we use real quadratic field as a center in the multi-block construction. We remark
that while we came up with the idea independently it was discovered already in [18].

We begin by considering maximal order codes from division algebras. By discriminant analysis we
are able to find the optimal algebras. In Section III-D we concentrate on rectangular codes and derive
a bound for normalized minimum determinant of such codes and give an example code achieving this
bound. The minimum determinant analysis we are using is similar to that used in [19].

We will take advantage of multi-block constructions from division algebras. In Section IV to follow
the same trick will be used. The exception is that now the base field F is Q and the center K is some
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quadratic field, whereas in Section IV we need full lattices; hence F = Q(i) and the center K is some
suitable extension of F .

Let us consider the field E = KL that is a compositum of two quadratic fields K and L. We suppose
that K∩L = Q and that Gal(K/Q) =< τ > and Gal(L/Q) =< σ >. We can then write that Gal(E/Q) =<

σ >⊗< τ >.
Let us now consider the cyclic division algebra D = (E/K,σ ,γ). As usually, we have the left regular

representation ψ of the algebra D so that an element a maps to a 2×2 matrix ψ(a) ∈M2(E), and the
multi-block representation φ ;

φ(a) 7→ (ψ(a),τ(ψ(a))). (1)

Let us suppose that Λ is a Z-order in D. We call the φ(Λ) an order code. In the rest of this section, we
suppose that the division algebras under consideration are of the previous type.

Lemma III.4. Let a be an element of D. Then

det(ψ(a))det((τ(ψ(a))) = nrD/Q(a) and Tr(ψ(a)+ τ(ψ(a)) = trD/Q(a),

where Tr is the usual matrix trace.

Proof: These results follow directly from Definition II.8. ¤

Proposition III.5. Let us suppose that Λ is a Z-order of a division algebra D and that φ is a multi-block
representation. The order code φ(Λ) is an 8-dimensional lattice in the space M2×4(C) and

detmin (φ(Λ)) = 1.

Proof: The claim about the dimension of the lattice is easily seen. The second claim follows directly
from Proposition II.6. ¤

Remark III.2. For every non-zero element (ψ(a),τ(ψ(a))) of an order code the rows are linearly
independent over C. This follows as det(ψ(a)) 6= 0 and therefore the first two columns are linearly
independent and generally in a matrix the number of linearly independent rows and columns is equal.

Corollary III.6. With the previous notation we have δ (φ(Λ)) = 1
m(φ(Λ))1/2 .

The previous proposition reveals that the minimum determinant of an order code depends only on the
volume of the fundamental parallelotope. The following lemma connects the volume of the fundamental
parallelotope and the discriminant of the algebra. Here we identify the ideal discriminant and the element
generating it. This allows us to discuss the absolute value of the Z-discriminant.

In the following we identify the order of the algebra and its image in M2×4(C). If the regular
representation ψ of the algebra fulfills the following conditions, then the discriminant and the fundamental
parallelotope of an order are tightly connected.
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In the case of a real center we must assume that the regular representation ψ gives us matrices of the
following Alamouti-like type (

a −b∗

b a∗

)
, (2)

where ∗ is the complex conjugation. In the case of a complex center we must assume that the automor-
phism τ is the complex conjugation. It is an easy task to check that, with these assumptions,

Tr(ψ(a)ψ(b)† + τ(ψ(a))τ(ψ(b))†) ∈ R,

when a,b ∈D.
If the representation ψ fulfills the conditions stated above, then we have the following.

Lemma III.7. Let us suppose that D is a division algebra and Λ is an order in D. Then

m(Λ) =
√
|d(Λ/Z)| and δ (Λ) =

1
|d(Λ/Z)|1/4 .

Proof: Let us suppose that Λ has a Z-basis B = {(A1,τ(A1)), . . . ,(A8,τ(A8))}, where Ai = ψ(ai),
ai ∈ Λ. We can now flatten the matrix (Ai,τ(Ai)) into an 8-tuple L(Ai,τ(Ai)) by first forming a vector of
length 4 out of the entries of Ai (e.g. row by row) and then concatenating this with the 4-tuple similarly
made out of the entries of the matrix τ(Ai). We can now easily see the identities

L(Ai,τ(Ai))L(A j,τ(A j))T = Tr(AiAT
j + τ(Ai)τ(A j)T ) (3)

and
L(Ai,τ(Ai))L(AT

j ,τ(A j)T )T = Tr(AiA j + τ(Ai)τ(A j)). (4)

The Gram matrix of the lattice Λ is

G = (ℜ(Tr(AiA
†
j + τ(Ai)τ(A j)†)))8

i, j=1.

Due to the limitations we set above on the form of the matrices Ai, Tr(AiA
†
j + τ(Ai)τ(A j)†) is already

real and we can ignore taking the real part from the traces. According to Equation (3) we can write

G = (L(Ai,τ(Ai))L(A∗j ,τ(A j)∗)T ))8
i, j=1 = L(B)L(B)†,

where the rows of the 8× 8 matrix L(B) consist of vectors L(Ai,τ(Ai)). A simple permutation of the
columns and elementary properties of determinants give us that

|det(L(B))det(L(B)†)|= |det(L(B))det(L(B)T )|= |det(L(B))det(L(B′)T )|,

where L(B′) is a matrix with the rows L((Ai)T ,τ(Ai)T ). According to Equation (4) and Lemma III.4

L(B)L(B′)T = (Tr(AiA j + τ(Ai)τ(A j))8
i, j=1 = d(Λ/Z).

¤

Proposition III.8. Of all the orders in a K-central division algebra, the maximal orders have the smallest
Z-discriminant.
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Lemma III.9. Let us suppose that Λ is an order in a division algebra D. Then

NCG(Λ) = 22(δ (Λ))2.

Proof: Let us consider the lattice Λ without the normalization. We then have CG(Λ)≥ 22(detmin (Λ))2

= 22. On the other hand, det(φ(1D)φ(1D)H) = 22 and therefore CG(Λ) = 22 = 22(detmin (Λ))2. The scaling
does not destroy this equality. ¤

C. Minimizing the discriminant

As previously stated, if we consider orders inside a fixed algebra, the smallest discriminant belongs to
the maximal orders of the algebra and all the maximal orders share the same discriminant. Among those
algebras having a regular representation fulfilling the conditions stated before Lemma III.7, minimizing
the discriminant of the algebra is now seen to be equivalent to maximizing the coding gain of a code
from a maximal order.

In the following we forget the restrictions on the form of the regular representation and simply
concentrate on finding the division algebras with the smallest possible discriminants. Only after this
we shall discuss whether the algebras have such regular representations that Lemma III.7 would be at
their disposal. Still the solution to the problem of choosing an optimal division algebra is not an obvious
one. The first step is the following. In our special case, Lemma II.8 transforms into

|d(Λ/Z)|= |nrK/Q(d(Λ/OK))|d(OK/Z)4.

Here we see that for a fixed center K the second term d(OK/Z)4 is independent on the chosen algebra
and we can concentrate on the term |nrK/Q(d(Λ/OK))|. This leads us to discuss the size of the ideals of
OK . By this we mean that ideals are ordered by the absolute values of their norms to Q, so e.g. in the
case OK = Z[i] we say that the prime ideal generated by 2+ i is smaller than the prime ideal generated
by 3 as they have norms 5 and 9, respectively.

We have divided this section into two parts depending on the type of the center. Propositions III.10
and III.12 that consider discriminants of division algebras are straightforward corollaries of well known
results and the proofs can be found for example from [17]. The minimization problems that will have
rather simple solutions here become more complicated in the case where the index of the algebra is
greater than two. This question is of major importance when we consider general MIMO codes. We refer
the interested reader to [5].

1) A complex quadratic center: In this section we consider the situation where the center K is a
complex quadratic field of degree 2.

Proposition III.10. Let us suppose that D is a K-central division algebra of index 2 containing an
OK-order Λ⊆D. Then

d(Λ/OK) = (P1 · · ·P2n)2,

where all the Pi are distinct prime ideals of the center K and n≥ 1.
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On the other hand, if we have an even numbered set of prime ideals P1, . . . ,P2k, then there exists a
unique K-central division algebra D′ of index 2 having an OK-order Λ with the discriminant

d(Λ/OK) = (P1 · · ·P2k)2.

Corollary III.11. Suppose that P1 and P2 are a pair of smallest primes in the complex quadratic field
K. Then the smallest Z-discriminant of all the index 2 K-central division algebras is

|nrK/Q(P1P2)|2d(OK/Z)4.

Example III.1. Let us consider the center Q(i). It is readily seen that (2+ i) and (1+ i) are a pair of the
smallest primes in this field. Proposition III.10 proves that there exists a Q(i)-central division algebra D

of index 2 having a maximal order Λ with the discriminant

dD = d(Λ/Z) = |(1+ i)(2+ i)|244 = 295.

If this algebra also has a suitable regular representation, then Lemma III.7 infers that

δ (Λ) =
1

(295)1/4 = 0.140....

Example III.2. Let us next consider the center K = Q(
√−3). The smallest prime ideals in this center

are 2 and
√−3. According to Proposition III.10 there exists a Q(

√−3)-central division algebra D of
index 2 having a maximal order with the discriminant

dD = d(Λ/Z) = |2
√

3|234 = 972.

If this algebra also has a suitable regular representation, then Lemma III.7 gives us that

δ (Λ) =
1

(972)1/4 = 0.179....

The discriminant 972 is already the smallest possible value we can achieve with a complex quadratic
center K. This can be proved by simply trying different centers. It is easily done because for a given
discriminant there is only one complex quadratic field. In the discriminant formula for the maximal order
of a division algebra the term d(OK/Z)4 is always a factor and we already have 64 = 1296. Therefore
it is enough to check the remaining discriminants −4 and −5 that are still possible. In the previous
example we saw that the center corresponding to discriminant −4 is Q(i) and that with this center the
discriminant cannot be smaller than 972. The discriminant of the field Q(

√−5) is −40 and there does
not exist a field with discriminant −5.

2) A real quadratic center: In this section we fix the center K to be a real quadratic field of degree 2.

Proposition III.12. Let us suppose that D is a K-central division algebra of index 2 and that Λ is a
maximal Z-order in D. Then

d(Λ/OK) = (P1 · · ·Pn)2,

where Pi are separate prime ideals of K and n≥ 0. Here we use the notation that if n = 0 then d(Λ/OK) =
OK .
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On the other hand if we have a set of prime ideal P1, . . . ,Pk then there exists a K-central division
algebra D′ of index 2 having a maximal order Λ′ with discriminant

d(Λ′/OK) = (P1 · · ·Pk)2

with the notation that if k = 0, d(Λ′/K) = OK .

Corollary III.13. Let us suppose that we have a real quadratic field K. Then the smallest discriminant
of all the index 2 division algebras with the center K is

d(OK/Z)4.

Example III.3. The smallest discriminant of all the real quadratic fields belongs to the field Q(
√

5) = K.
The following algebra

Dicos = (Q(i,
√

5)/Q(
√

5),σ ,−1)

is called the Icosian algebra. It is a known fact that |dDicos |= 1. This reveals that this division algebra has
the smallest Z-discriminant of all the index two division algebras with a real quadratic center. Lemma
II.8 then gives us that d(Λ/Z) = 54. We immediately see that the regular presentation attached to the
cyclic presentation of Dicos fulfills the expectations of Equation 2. According to Lemma III.7 we then
have that m(Λ) = 25, and according to Lemma III.6

δ (Λ) =
1
5

= 0.2.

A comparison to complex centers proves that this algebra has the smallest discriminant of all the index
two algebras where the center is a quadratic field.

Remark III.3. We remark that the order code promised to exist by the previous example actually played
part in the construction of the Icosian code in [20].

The previous example gave us an idea of the achievable coding gain with order theoretic methods. Yet
a simple modulation scheme can easily ruin the performance of such codes. For instance, if we use a
Z-module basis together with a PAM scheme the promised minimum determinant advantage might never
get realized. Therefore the next section is devoted for constructing a code with rectangular shaping.

D. A rectangular MISO code with the best achievable minimum determinant

In this section we concentrate on the question of achievable minimum determinant of rectangular
multi-block codes in the space M2×4(C).

Proposition III.14. Let us suppose that L is a rectangular multi-block code in the space M2×4(C). We
then have that

δ (L)≤ 1
16

.

Proof: We expect w.l.o.g. that L has a fundamental parallelotope of volume 1. Consider an orthogonal
basis of L. Due to the orthogonal shape at least one of the basis vectors must have length less than or
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equal to one. Let us suppose that (A1,A2) = A is a matrix corresponding to such vector. This means that
||A||F ≤ 1. Let us consider the matrix B = diag(A1,A2). According to Hadamard inequality we have that

|det(A1)det(A2)|= |det(B)| ≤ (||B||F)4

16
=

(||A||F)4

16
≤ 1

16
.

¤
In the following we are going to build an orthogonal order code that reaches the bound of the previous

proposition. Let us consider the following algebra

Dort = (Q(i,
√

2)/Q(
√

2),σ ,−1),

and the natural order Λort of this algebra. The field L = Q(i,
√

2) can be seen as a Z[i]-module with a
basis {1,ζ8}. Now the natural order can be written as

Λort = Z[i]⊕Z[i]ζ8⊕uZ[i]⊕uZ[i]ζ8.

The operation of the automorphism τ is defined as τ(ζ8) =−ζ8, τ(i) = i and σ is just the usual complex
conjugation. The multi-block representation φ now gives us that

φ(a1 +a2ζ8 +ua3 +uζ8a4) =(
(a1 +a2ζ8) −(a3 +a4ζ8) a1−a2ζ8 −(a3−a4ζ8)
(a3 +a4ζ8) (a1 +a2ζ8) a3−a4ζ8 a1−a2ζ8

)
.

By simply checking we see that

{1, i,ζ8,ζ8i,u,ui,uζ8,uζ8i}
forms a rectangular basis for the code. A particularly nice feature of this code is that we can apply
QAM-modulation here, although the general construction method did not promise this.

We could now just calculate the fundamental parallelotope of this code and then determine the
normalized minimum determinant, but we take a more general approach that sheds more light to the
question of how we first came up with this code.

Lemma III.15. [5, Lemma 2.9] Let us suppose that K is such an algebraic number field that OK is a
principal ideal domain. If D = (E/K,σ ,γ) is a K-central division algebra of index n and Λ is a natural
order in D, then

|d(Λ/Z)|= |d(E/Q)nγ2n(n−1)|.

We now return to our example algebra above and to the fixed natural order Λort in it. The discriminant
of the extension Q(i,

√
2)/Q has absolute value 256. Lemma III.15 now states that

|d(Λort/Z)|= 2562

and because the left regular representation in this case is suitable Lemma III.7 gives us that

δ (Λort) =
1
16

.

Remark III.4. The code Λort appeared in [21] as a 4×1 MISO code. It was noted that Λort is unitarily
equivalent to their L2 code.
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E. A multiuser coding scheme

In this section we propose a simple multiuser coding scheme that is based on our previous work on
MISO codes. The scheme is based on the criteria presented in [6].

As an example we apply the code of Section III-D and compare its performance to the corresponding
codes in [6] and [10].

Let us assume that

Γ =

(
ζ 0
0 ζ

)
,

where ζ is some primitive mth root of unity, m being sufficiently large so that ζ cannot possibly be a
root for the determinant polynomial, meaning that our 2-user code matrix will end up having rank 4. If
only one user is transmitting the situation is equal to delay four 2×2 single-user MIMO transmission.

The infinite code lattice for the first user is α(Λ) where

α(a) =
(

Γψ(a) τ(ψ(a))
)

,

where a ∈ Λ. The single user code lattice for the second user is β (Λ), where

β (b) =
(

ψ(b) Γτ(ψ(b))
)

,

and b ∈ Λ.
If the users are independent yet synchronized the signal sent by the two users is

C =

(
α(a)
β (b)

)
.

If we suppose that neither a or b is zero, then the determinant of the matrix C is a polynomial of ζ and
the term attached to its highest power is ψ(a)τ(ψ(b)). By our assumption this term is non-zero. If ζ is
now a suitable primitive mth root of unity, we see that as long as a and b are non-zero elements, matrix
C has rank 4. If only one user is transmitting, then by Remark III.2 the matrix has rank 2.

Let us now consider a sample code based on our orthogonal code of Section III-D.
The code for the first user is(

ζ7(a1 +a2ζ8) ζ7(−(a3 +a4ζ8)) a1−a2ζ8 −(a3−a4ζ8)
ζ7(a3 +a4ζ8) ζ7(a1 +a2ζ8) a3−a4ζ8 a1−a2ζ8

)

and for the second user(
b1 +b2ζ8 −(b3 +b4ζ8) ζ7(b1−b2ζ8) ζ7(−(b3−b4ζ8))
b3 +b4ζ8 b1 +b2ζ8 ζ7(b3−b4ζ8) ζ7(b1−b2ζ8)

)
,

where ai and bi are QAM-symbols.
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F. Simulations

In this section we compare our code construction to two previously proposed codes [10] (HV) and [6]
(GB).

In [6] the coding scheme consist of two single user codes

U1 =

(
x1(1) x1(2) x1(3) x2(4)
x1(2)∗ x1(1) x2(4)∗ x1(3)∗

)
and U2 =

(
x2(1) x2(3) x2(2) x2(4)
x∗2(1) x2(4)∗ x2(1) x2(3)∗

)
,

where in both cases the symbols xi( j) are independently chosen from some QAM-constellation. When
both users are transmitting the combined matrix has rank 3 (see [6]).

In [10] the HV code is based on the number field code used in the construction of the 4×4 Perfect
code [1]. The key parts are the field extension L/K = Q(i,ζ15 + ζ15)/Q(i), its cyclic Galois group
G(L/K) =< σ >, and an ideal I of the ring of algebraic integers OL. Here the single user codes are

U1 =

(
a σ(a) σ2(a) σ3(a)

iσ3(a) σ(a)2 σ(a) a

)
and U2 =

(
ib iσ(b) σ2(b) σ3(b)

iσ3(a) iσ(a)2 iσ(a) a

)
,

where a and b are elements of the ideal I corresponding to a given QAM constellation. When both users
are transmitting the combined 4×4 matrix has rank 4, and when only one user is transmitting the rank
is 2 (see [10]).

In Figures 1 and 2 we compare our new code (NC) to the codes in [10] (HV) and [6] (GB) in a
slow fading situation where the channel remains fixed for four channel uses. We see a considerable gain
compared to the previous code constructions. When compared to the GB code the performance advantage
is explained by the fact that when both users are transmitting, the combined matrix of the NC code has
rank 4, whereas the GB code has rank 3 only. Both codes are taking full advantage of the delay four, but
encoding of the GB code is perhaps simpler. The decoding of both the GB code and the NC code can
be simply done using a sphere decoder. Both the GB code and the NC code involve an Alamouti-like
structure which can be taken advantage of in the decoding process.

When comparing the HV code and the NC code we have tie on ranks, but the optimality of our single
user codes (see Proposition III.14) expectedly gives us an edge in coding gain. In this case the encoding
and decoding processes have similar complexity.

IV. DMT OPTIMAL CODE CONSTRUCTION FOR TWO USERS

In this section we will focus on the construction of DMT optimal multiuser codes when there are two
users in the system, communicating simultaneously to a common base station. We assume that each user
has nt transmit antennas and there are nr receive antennas at the receiving end. Further, we will assume
a symmetric MAC channel [7], meaning the users transmit at same multiplexing gain r, or equivalently,
both transmit at rate R = r log2 SNR in bits per channel use.

A. DMT for MIMO-MAC Channels

Considering a MIMO Rayleigh block fading channel, Tse et al. [7] showed that the codeword error
probability of any such multiuser codes is lower bounded by

Pcwe(SNR) ≥̇ max
{

SNR−d∗nt ,nr (r),SNR−d∗2nt ,nr (2r)
}

, (5)
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where by ≥̇ we mean the exponential inequality defined in [8], i.e. f (SNR)≥̇g(SNR) if

lim
SNR→∞

log f (SNR)
logSNR

≥ lim
SNR→∞

logg(SNR)
logSNR

.

Notions of .= and ≤̇ are defined similarly.
The negative exponent d∗nt ,nr(r) is the point-to-point DMT [8] for the case when there is only one

user with nt transmit antennas communicating at multiplexing gain r to the base station that has nr

receive antennas. d∗nt ,nr(r) is a piecewise linear function connecting the points (r,(nt − r)(nr − r)) for
r = 0,1, · · · ,min{nt ,nr}. From this, in the two-user symmetric MIMO-MAC scenario, the maximal multi-
plexing gain can be achieved by the users is upper bounded by rmax = min{nt ,

nr
2 } since d∗2nt ,nr

(2rmax) = 0.
The terms SNR−d∗nt ,nr (r) and SNR−d∗2nt ,nr (2r) are respectively the probabilities when one or both users

are in outage, i.e. the probabilities that the channel is not good enough to support the targeted rate. In
particular, due to the behaviors of d∗nt ,nr(r) and d∗2nt ,nr

(2r), Tse et al. showed that

SNR−d∗nt ,nr (r) ≥ SNR−d∗2nt ,nr (2r), r ∈
[
0,min{nt ,

nr

3
}
]
.

That is, when r ∈ [
0,min{nt ,

nr
3 }

]
, each user can achieve his/her best possible error performance as

if the other user is not present in the channel. This is called the single-user performance regime. For
min{nt ,

nr
3 }≤ r≤min{nt ,

nr
2 }, the lower bound (5) is dominated by the second term, corresponding to the

event of both users in outage. This is termed the antenna pooling regime [7]. These show a fundamental
difference between single-user (or equivalently point-to-point) DMT and multiuser DMT.

By using independent Gaussian random codebooks for each user, the converse of (5) was proved by
Tse et al. [7]. They partitioned the error events into two kinds, the kind when one of the two users is
in error, denoted by E1, and the other kind when both users are in error, denoted by E2. They showed
that when only one user is in error, the Gaussian random code is able to achieve an error performance
with Pr{E1}≤̇SNR−d∗nt ,nr (r), and similarly Pr{E2}≤̇SNR−d∗2nt ,nr (2r) for the case when both users are in
error. The above amounts to that given the multiplexing gain r, the maximal possible diversity gain can
be achieved by any multiuser codes is min{d∗nt ,nr(r),d

∗
2nt ,nr

(2r)}. This is commonly referred to as the
optimal MAC-DMT. Codes achieving this optimality are thus termed MAC-DMT optimal codes.

On the other hand, if deterministic codes were used; say code S1 for the first user and S2 for the
second. Both codes consist of (nt×T ) code matrices for some T that corresponds to the channel coherence
time, meaning the MIMO channel remains fixed during T symbol time. Further, the code matrices in S1

and S2 are required to satisfy the following power constraint:

ES1∈S1 ‖S1‖2
F ≤ T ·SNR and ES2∈S2 ‖S2‖2

F ≤ T ·SNR. (6)

By ‖A‖F we mean the Frobenius norm of matrix A. Coronel et al. studied the optimal DMT performance
of a selective fading MIMO multiple-access channel [13] and gave a sufficient criterion for designing
MAC-DMT optimal multiuser codes. Noting that Rayleigh block fading channel can be regarded as a
frequency selective fading channel with only one multipath, to our present interest, the criterion shown
in [13] is equivalent to the following.
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Theorem IV.1 ([13]). Let S1 and S2 be defined as above with T ≥ 2nt . Then codes S1 and S2 achieve
the optimal MAC-DMT if the following inequalities are all satisfied:

min
S1 6=S′1∈S1

det
(
(S1−S′1)(S1−S′1)

†) ≥̇ SNRnt−r

min
S2 6=S′2∈S2

det
(
(S2−S′2)(S2−S′2)

†) ≥̇ SNRnt−r

min
S1 6=S′1∈S1,S2 6=S′2∈S2

det
(
∆S∆S†) ≥̇ SNR2nt−2r,

where

∆S :=

[
S1−S′1
S2−S′2

]

and where by A† we mean the hermitian transpose of matrix A.

We remark that the actual result in [13] was stated in a form different from the above. It includes
the eigenvalues of channel matrix in all the above three conditions. However, by noting the equivalence
between two constraint sets [22], [23] that is used to prove the property of approximate universal cyclic
division algebra space-time codes [22], [23], [24], these results can be restated as in Theorem IV.1. For
brevity, we do not elaborate on the details. However, if we set

C1 =
{

C1 =
1
κ

S1 : S1 ∈S1

}

and similarly C2 = 1
κ S2 with κ2 = SNR1− r

nt , then the three criteria in Theorem IV.1 are equivalent to

min
C1 6=C′1∈C1

det
(
(C1−C′1)(C1−C′1)

†) ≥̇ 1 (7)

min
C2 6=C′2∈C2

det
(
(C2−C′2)(C2−C′2)

†) ≥̇ 1 (8)

min
C1 6=C′1∈C1,C2 6=C′2∈C2

det
(
∆C∆C†) ≥̇ 1 (9)

where ∆C = 1
κ ∆S. Then we immediately recognize these are the well-known non-vanishing determinant

(NVD) criteria [24], [23], [25], [26] for constructing point-to-point DMT optimal space-time codes. In
other words, Theorem IV.1 is equivalent to the following. The proof can be regarded as an alternative
proof to Theorem IV.1 in the flat fading case.

Theorem IV.2. Let C1 and C2 be defined as above, and let the code C1×C2 be obtained by vertically
concatenating the code matrices from C1 and C2. If C1, C2, and C1×C2 all satisfy NVD criterion, then
the codes are MAC-DMT optimal.

Proof: Similar to [7], we partition the error event into E1 and E2 that correspond respectively to
the events when one or both users are in error. Then we have

Pr{E1} ≤ Pcwe(C1)+Pcwe(C2) ≤̇ SNR−d∗nt ,nr (r)

Pr{E2} = Pcwe(C1×C2) ≤̇ SNR−d∗2nt ,nr (2r),
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where it follows from the fact that C1, C2, and C1×C2 are all DMT optimal in the point-to-point MIMO
scenario. The readers are referred to [24] for the details. Pcwe(C ) denotes the codeword error probability
of C . ¤

Henceforth, we will refer to the criteria (7)-(9) as the full NVD condition. We note that as stated earlier,
the full NVD condition is only sufficient for constructing MAC-DMT optimal codes, not necessary. In
fact, we report the following negative result.1

Theorem IV.3. When nt = 1, i.e., each user with only one transmit antenna, there does not exist any
multiuser codes that are full NVD.

Proof: For ease of reading, the proof is relegated to the Appendix I. ¤
In a nutshell, the proof shows that while it is possible to construct DMT optimal codes C1 and C2 for

user 1 and 2 respectively, as the existing cyclic-division algebra-based space-time codes [24] would do, it
is impossible for the product code C1×C2 to be NVD. Any such product code would be ill-conditioned,
i.e. having determinant extremely close to 0 at high SNR regime. It shows the nonexistence of codes
satisfying the design criteria provided by Coronel et al. in [13]. Therefore, we may conclude that the
full NVD condition is in general too strict to yield any MAC-DMT optimal codes. Another implication
from the proof of Theorem IV.3 is the following. The full NVD condition can be met only if the two
users cooperate in their transmission. Once without cooperation as it is in MIMO-MAC channel, the full
NVD condition can never be met and the determinant must be vanishing.

However, we may relax the full NVD condition without affecting the DMT performance. To do so, we
will use a different partition of error events. Let E1 denote again the event when one of the two users is
in error. But let E2,1 (resp. E2,2) denote the error event when two users are in error and the error matrix
is of rank nt (resp. 2nt .) Clearly E2 is a disjoint union of E2,1 and E2,2. Now the codes C1 and C2 are
MAC-DMT optimal if the following holds.

Theorem IV.4. Let C1 and C2 be defined as above. Then they are MAC-DMT optimal if the error events
have probabilities upper bounded by

Pr{E1} ≤̇ SNR−d∗nt ,nr (r),

Pr{E2,1} ≤̇ SNR−d∗nt ,nr (r),

Pr{E2,2} ≤̇ SNR−d∗2nt ,nr (2r).

The rationale behind the above theorem is the observation that in the single-user performance regime,
the error probability SNR−d∗2nt ,nr (2r) is not dominant, hence we could relax the condition such that event
E2,1 has larger probability SNR−d∗nt ,nr (r) than the actual outage probability SNR−d∗2nt ,nr (2r). This will not

1A more general result of the nonexistence of full NVD multiuser codes that satisfy the criteria given by Coronel et al. [13]
for arbitrary number of transmit antennas and for arbitrary number of users has been proved by the authors, but it will be treated
in a separate paper [14].
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affect the overall DMT performance. Compared with the full NVD condition required in Theorems IV.1
and IV.2, Theorem IV.4 relaxes greatly the code design criterion. Specifically, the full NVD condition
requires that whenever C1 6= C′1 ∈ C1 and C2 6= C′2 ∈ C2, the matrix ∆C must be nonsingular and be NVD,
i.e. having determinant det(∆C∆C†) ≥ 1. This has been shown to be impossible by Theorem IV.3. On
the other hand, Theorem IV.4 says that the difference matrix ∆C can be singular, and the only condition
is that should it happen, the resulting error performance cannot be worse than SNR−d∗nt ,nr (r), in order to
maintain the MAC-DMT optimality. In [13], event E2,1 was required to have probability absolutely zero,
which is too strict and forbids the existence of MAC-DMT optimal codes.

B. Construction of MAC-DMT Optimal Codes

In this section, we will provide a systematic construction of multiuser codes for the two-user case. The
proposed codes will not meet the full NVD criterion as such codes do not exist. In the next section we
will analyze the DMT performance of these newly proposed codes and show that they actually achieve
the relaxed criteria given in Theorem IV.4.

Let F = Q(i) be the base number field. The proposed construction calls for two additional number
fields L = F(θ) and K = F(η) that are cyclic Galois extension of F with [L : F] = nt and [K : F ] = 2.
We require further that L∩K = F . Let Gal(L/F) = 〈σ〉 and Gal(K/F) = 〈τ〉, and let E = LK = F(θ ,η)
be the compositum of the fields L and K. The relation between these field extensions is shown in Fig. 3.

E = F(θ ,η)
〈τ〉

ppppppppppp 〈σ〉
NNNNNNNNNNN

L = F(θ)

〈σ〉 NNNNNNNNNNN
K = F(η)

〈τ〉ppppppppppp

F = Q(i)

Fig. 3. Field extensions required by the proposed code constructions.

Clearly, L/F is cyclic Galois; so is E/K. Moreover, we have Gal(E/K) = 〈σ〉. Hence there exists
some suitable non-norm element γ ∈OF such that

D = (E/K,σ ,γ) = E⊕uE⊕·· ·⊕unt−1E

is a division algebra, where by OF we mean the ring of algebraic integers in F and u is an indeterminate
satisfying unt = γ and xu = uσ(x) for every x∈ E. Similarly as in Section II, let again ψ : D→Mnt (E) be
the left-regular map that represents every element x = ∑nt−1

i=0 uixi ∈D, xi ∈ E, as an nt ×nt matrix given
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by

ψ(x) :=




x0 γσ(xnt−1) · · · γσnt−1(x1)
x1 σ(x0) · · · γσnt−1(x2)
...

...
. . .

...
xnt−1 σ(xnt−2) · · · σnt−1(x0)




.

(10)

According to Definition II.7 and Proposition II.4 det(ψ(x)) ∈ K for every x ∈D, and hence clearly

nrK/F (det(ψ(x))) = det(ψ(x))τ (det(ψ(x))) ∈ F (11)

where nrK/F (a) is the algebraic norm of a from K to F . Note that when the element x is taken from the
natural order OD := OE ⊕·· ·⊕unt−1OE , it can be further shown that

nrK/F (det(ψ(x))) = det(ψ(x))τ (det(ψ(x))) ∈OF (12)

and OF = Z[i]. It in turn implies that the absolute |nrK/F (det(ψ(x))) | is bounded from below by 1
whenever 0 6= x ∈ OD. This property is termed generalized non-vanishing determinant condition in [23]
(also cf. Definition III.2) and is required in constructing the DMT optimal multi-block space-time codes.

Having said the above, the proposed construction is the following. Given the multiplexing gain r, let

A (SNR) =
{

a+bi :−SNR
r

2nt ≤ a,b≤ SNR
r

2nt , a,b odd
}

(13)

and let {e0, · · · ,e2nt−1} be an integral basis of E/F . Given A (SNR) we define the information set

A(SNR) =

{
nt−1

∑
i=0

ui
2nt−1

∑
j=0

ai, jei : ai, j ∈A (SNR)

}
. (14)

It is clear that A(SNR)⊂ OD.
If the first user wishes to transmit information x∈A(SNR), the transmitter actually sends in 2nt channel

uses the (nt ×2nt) code matrix
Sx = κ

(
ψ(x) τ (ψ(x))

)
, (15)

where κ is a constant given by
κ2 .= SNR1− r

nt (16)

and is set such that E ‖Sx‖2
F = 2nt ·SNR.

On the other hand, if the second user wishes to transmit information y ∈ A(SNR), the resulting code
matrix associated with y is

Sy = κ
(

ψ(y) −τ (ψ(y))
)

. (17)

With regard to the channel model, given the transmitted code matrices Sx and Sy from the first and the
second users, respectively, let H1 and H2 be respectively the (nr×nt) channel matrices associated with
the first and the second users. The overall received signal matrix Ro is given by

Ro = H1Sx +H2Sy +W = κ
(

H1 H2

)(
X τ(X)
Y −τ(Y )

)
+W (18)
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where X := ψ(x), Y := ψ(y), and where W is the (nr×2nt) noise matrix whose entries are i.i.d. CN (0,1)
random variables. Therefore, our proposed multiuser code may be described as follows

S =

{
κ

(
X τ(X)
Y −τ(Y )

)
:

X = ψ(x),Y = ψ(y),
x,y ∈ A(SNR)

}
. (19)

For every code matrix S ∈S , the upper half submatrix corresponds to the information sent by the first
user and the lower half comes from the second user. Clearly the two submatrices are coded independently,
and there is no cooperation between these two users.

As κ is a normalizing constant for power constraint, below we will pay our attention only to the set
of unnormalized code matrices, i.e.

C =

{(
X τ(X)
Y −τ(Y )

)
:

X = ψ(x),Y = ψ(y),
x,y ∈ A(SNR)

}
. (20)

First, we show that every code matrix C ∈ C has determinant in Z[i].

Lemma IV.5. Let C be defined as above; then for every C ∈ C , det(C) ∈ Z[i].

Proof: Clearly, the entries of C lie in OE , the ring of algebraic integers in E; hence det(C) ∈ OE .
It suffices to show that the determinant is fixed by the automorphisms τ and σ . To this end, given any
C ∈ C , we simply check

τ(det(C)) = det

(
τ(X) X
τ(Y ) −Y

)
= (−1)nt det

(
X τ(X)
−Y τ(Y )

)

= (−1)nt det

((
Int

−Int

)(
X τ(X)
Y −τ(Y )

))

= (−1)2nt det(C) = det(C)

and

σ(det(C)) = det

(
Z−1XZ τ(Z−1XZ)
Z−1Y Z −τ(Z−1Y Z)

)
= det

(
Z−1XZ Z−1τ(X)Z
Z−1Y Z −Z−1τ(Y )Z

)

= det

((
Z−1

Z−1

)(
X τ(X)
Y −τ(Y )

)(
Z

Z

))
= det(C)

where Z := ψ(u) and where we have used the fact that τ(Z) = Z as γ ∈OF . Overall, these show det(C)∈
Z[i]. ¤

While the above lemma shows that the determinant of the matrix C lies in Z[i], it does not necessarily
mean that the code satisfies the NVD property. For example, if τ : η →−η , then setting y = ηx∈A(SNR)
makes the resulting code matrix C singular as the lower half can be obtained by multiplying from the left
the upper half by matrix ψ(η). In particular, whether the code matrix C is singular or not, is completely
characterized by the following lemma.
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Lemma IV.6. Given

C =

(
X τ(X)
Y −τ(Y )

)
∈ C

with X = ψ(x) and Y = ψ(y), x,y ∈ A(SNR), if x 6= 0, then

rank(C) =

{
nt , if yx−1 + τ(yx−1) = 0
2nt , otherwise.

(21)

Moreover, if τ : η →−η then rank(C) = nt if and only if

yx−1 ∈
nt−1⊕

i=0

uiηL := L. (22)

Proof: To find out the rank of matrix C, we follow the conventional Gaussian eliminant procedure
with elementary row operations. In particular, we remark that such operations would be easier to carry
out if we change our focus to the matrix

C̃ =

(
x τ(x)
y −τ(y)

)
∈M2(D).

This is because elementary row operations in M2(D) correspond exactly to block elementary row oper-
ations in C. Specifically, we mean following

ψ
((

p q
)

C̃
)

=
(

ψ(p) ψ(q)
)

C.

Thus, if x 6= 0 by assumption we see that rank(ψ(x)) = nt as D is a division algebra, and secondly that
there must exist p ∈D such that y = px since yx−1 ∈D. Then we can rewrite C̃ as

C̃ =

(
x τ(x)
px −τ(p)τ(x)

)
.

Multiplying from the left the first row of C̃ by −p and adding to the second row yields
(

x τ(x)
0 −(τ(p)+ p)τ(x)

)
.

It is clear that C̃ is left- and right- invertible in Mnt (D) if and only if τ(p)+ p 6= 0. In other words, C is
singular if and only if yx−1 + τ(yx−1) = 0.

To prove the second claim, we first note that {1,θ , · · · ,θ nt−1} is a basis of L/F and similarly {1,η}
a basis for K/F . p = yx−1 can be uniquely represented as

p =
nt−1

∑
i=0

ui
nt−1

∑
j=0

p1,i, jθ j +
nt−1

∑
i=0

uiη
nt−1

∑
j=0

p2,i, jθ j

for some p1,i, j, p2,i, j ∈ F . Hence

τ(p) =
nt−1

∑
i=0

ui
nt−1

∑
j=0

p1,i, jθ j−
nt−1

∑
i=0

uiη
nt−1

∑
j=0

p2,i, jθ j.

Now we see p =−τ(p) if and only if p1,i, j = 0 for all i and j. This proves the claim. ¤
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Remark IV.1. The above lemma shows that the proposed construction does not satisfy the full NVD
criterion. This is not surprising as already pointed out in Theorem IV.3 that codes satisfying full NVD
criterion do not exist. Yet, as suggested by the reviewers, it is sometimes interesting to see how often the
code violates the full NVD criterion. That is, we are interested in knowing Pr{p+ τ(p) = 0}. Although
such probability depends closely upon the underlying set of base alphabet A (SNR), we can argue
heuristically to show such probability is extremely small. Furthermore, our estimate of Pr{p+τ(p) = 0}
will be asymptotically tight at high SNR regime, i.e. when the transmission rate R (in bits per channel
use) gets larger and larger.

To see the above, let us fix x, the symbol sent by the first user and consider all possible choices of y
sent by the second user. Clearly, as p = yx−1 ∈D we have p = p0 +up1 + · · ·+unt−1 pnt−1 with pi ∈ E.
Define

P :=
{

p = yx−1 : y ∈ A(SNR), p+ τ(p) = 0
}

.

Note that from (22) we have

|P|= ∣∣{p = yx−1 : y ∈ A(SNR), p ∈ L
}∣∣ ≤ |{z ∈ A(SNR) : z ∈ L}| = |A (SNR)|n2

t .

The inequality ≤̇ is because of the following. Given any p = ∑nt−1
i=0 ui pi with p+ τ(p) = 0, the element

y = px =
nt−1

∑
i=0

ui
2nt−1

∑
j=0

yi, je j

might not be in A(SNR), since

1) the element yi, j might not be a Gaussian integer, and
2) yi, j might not be in A (SNR), especially when A (SNR) is of small size.

Thus, the above estimate of |P| is generally loose for small A (SNR). However, when A (SNR) becomes
larger, px is likely to be in A(SNR) and the proposed estimate becomes more accurate. Overall, as
|A(SNR)|= SNR2nt r we see

Pr{p+ τ(p) = 0} ≤ |P|
|A(SNR)| =

1√
|A(SNR)| = SNR−nt r. (23)

When nt = 2, we numerically simulated the probability Pr{p+ τ(p) = 0} at different rates.

• At R = 4 and A (SNR) being QPSK, the probability Pr{p + τ(p) = 0} ≈ 5.15× 10−5, while (23)
gives 4−4 ≈ 4×10−3.

• At R = 6 and A (SNR) being 8QAM, we get Pr{p + τ(p) = 0} ≈ 1.104× 10−8, while (23) gives
8−4 ≈ 2×10−4.

• At R = 8 and A (SNR) being 16QAM, we report Pr{p+τ(p) = 0} ≈ 1.194×10−9, while (23) gives
16−4 ≈ 10−5.

Thus we see in general for high transmission rate, Pr{p + τ(p) = 0} is extremely close to 0, and the
difference matrix ∆C is of full rank with probability close to 1. Furthermore, from the simulations above
we see that at small size of A (SNR), the probability Pr{p+ τ(p) = 0} behaves more like

Pr{p+ τ(p) = 0} ≈ |A (SNR)|
|A(SNR)| = |A (SNR)|−(2n2

t −1)
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since not all y = px belong to A(SNR) for a fixed x and a random p with p+ τ(p) = 0.

Armed with the two above lemmas, we are now ready to show that the proposed code S is MAC-DMT
optimal. The proof will be given in the next subsection.

Theorem IV.7. Given the multiplexing gain r, the proposed code S achieves over quasi-static Rayleigh
fading channel with coherence time T ≥ 2nt the DMT

d(r) =

{
d∗nt ,nr(r), if r ≤min

{
nt ,

nr
3

}

d∗2nt ,nr
(2r), if r ∈ (

min
{

nt ,
nr
3

}
,min

{
nt ,

nr
2

}) (24)

meaning that S is MAC-DMT optimal.

C. Proof of Theorem IV.7

For any S 6= S′ ∈S with

S = κ

(
ψ(x) τ(ψ(x))
ψ(y) −τ(ψ(y))

)
, S′ = κ

(
ψ(x′) τ(ψ(x′))
ψ(y′) −τ(ψ(y′))

)
,

define dx := x− x′ and dy := y− y′. Hence

∆S = S−S′ = κ

(
ψ(dx) τ(ψ(dx))
ψ(dy) −τ(ψ(dy))

)
. (25)

Following Theorem IV.3, we will be considering the following error events:

1) Event E1 corresponds to the case when either user one or user two is in error, but not both. This
means that the difference matrix ∆S of (25) has either dx = 0 or dy = 0.

2) Error event E2,1 concerns the case when both users are in error, but the overall error matrix ∆S is
not of full rank 2nt . That is, we have both dx and dy being nonzero, but the error matrix ∆S is only
of rank nt and dy(dx)−1 + τ(dy(dx)−1) = 0.

3) Error event E2,2 is the case when both users are in error and the error matrix ∆S is of full rank 2nt .

Clearly, whenever a decoding error occurs, the error event E is a union of the above three error events,
namely, we have

E = E1 ∪ E2,1 ∪ E2,2

and the corresponding error probability achieved by S is

Pcwe(SNR) = Pr{E } ≤ Pr{E1}+Pr{E2,1}+Pr{E2,2}.

Thus, in the remaining of this section we will show

Pr{E1} ≤̇ SNR−d∗nt ,nr (r),

Pr{E2,1} ≤̇ SNR−d∗nt ,nr (r),

Pr{E2,2} ≤̇ SNR−d∗2nt ,nr (2r).
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a) Error Event E1: We first focus on analyzing the error event E1 that corresponds to the case when
either user one or user two is in error, but not both. Given the channel matrices H1 and H2 we define
the squared Euclidean distance between S and S′ as

d2
E(S,S′) := ‖H∆S‖2

F (26)

where H = [H1 H2]. Due to the structure of S , we can without loss of generality assume that dx 6= 0 but
dy = 0. The other case of dx = 0, dy 6= 0 can be analyzed in a similar fashion. Thus in this case we have

d2
E(S,S′) = ‖H1ψ(dx)‖2

F +‖H1τ(ψ(dx))‖2
F . (27)

To obtain a lower bound on d2
E(S,S′), let λ1,1 ≥ ·· · ≥ λ1,m be the set of ordered nonzero eigenvalues

of H1H†
1 where m = min{nt ,nr} and let `1,1 ≤ ·· · ≤ `1,nt and `2,1 ≤ ·· · ≤ `2,nt be the ordered nonzero

eigenvalues of ψ(dx)ψ(dx)† and τ(ψ(dx))τ(ψ(dx))†, respectively. Using the mismatch eigenvalue bound
[27], [24], [23] we see d2

E(S,S′) is lower bounded by

d2
E(S,S′) ≥ κ2

m

∑
i=1

λ1,i (`1,nt−m+i + `2,nt−m+i) . (28)

Note that
nt

∏
i=1

2

∏
j=1

` j,i =
∣∣nrK/F (det(ψ(dx)))

∣∣2 ≥ 1. (29)

Repeatedly using the arithmetic mean-geometric mean inequality and (29) along the same lines as in
[24], [23], given k, k = 1,2, · · · ,m, it can be shown that

d2
E(S,S′) ≥̇ κ2

[
m

∏
i=m−k+1

λ1,i

] 1
k [
‖ψ(dx)‖2

F +‖τ(ψ(dx))‖2
F

]− nt−k
k

≥̇ SNR1− r
nt

[
m

∏
i=m−k+1

λ1,i

] 1
k

SNR−
r
nt

nt−k
k .

Setting λ1,i = SNR−α1,i gives
d2

E(S,S′) ≥̇ SNRδ1,k(α1) (30)

where α1 = [α1,1 · · ·α1,m]t and

δ1,k(α1) :=
1
k

[
m

∑
i=m−k+1

(1−α1,i)

]
− r

k
. (31)

Following the sphere bound argument as in [24], the probability of event E1 given the channel matrices
H1 and H2 can be upper bounded by

Pr{E1|H1,H2} ≤ Pr
{
‖W‖2

F ≥ d2
E(S,S′)

4

}
= exp

(
−d2

E(S,S′)
4

)2nrnt−1

∑
j=0

(d2
E(S,S′)) j

j!
.

As d2
E(S,S′)≥̇SNRδ1,k(α1) for all k, we see from the above that Pr{E1|H1,H2} .= 0 if there exists k such

that δ1,k(α1) > 0. Since Pr{E1|H1,H2} ≤ 1, it follows that

Pr{E1}= EH1,H2 Pr{E1|H1,H2} ≤ 2Pr
{

α1 : δ1,k(α1)≤ 0, all k
}

,
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where the extra factor of 2 shown above is due to the inclusion of the other case when user two is in
error which has the same probability as the present case. Clearly, in terms of diversity analysis one can
safely neglect this factor of 2.

Arguing similarly as [23], [22] it can be shown that

{
α1 : δ1,k(α1)≤ 0,k = 1, · · · ,m}

=

{
α1 :

m

∑
i=1

(1−α1,i)
+ ≤ r

}
(32)

where (x)+ := max{x,0}. Now we see

Pr{E1} ≤ Pr

{
α1 :

m

∑
i=1

(1−α1,i)
+ ≤ r

}
= Pr

{
logdet

(
Inr +SNRH1H†

1

)
≤ r logSNR

}

.= SNR−d∗nt ,nr (r),

where the last exponential equality follows from [8].
b) Error Event E2,2: For simplicity, we will first analyze the event E2,2, and leave the most tedious

event E2,1 to the last. Recall that E2,2 is the event when both users are in error, and the error matrix ∆S
is of full rank 2nt . In other words, we have in (25) that dx,dy 6= 0 and dy(dx)−1 + τ

(
dy(dx)−1

)
6= 0.

Lemmas IV.5 and IV.6 then imply the matrix

∆C =

(
ψ(dx) τ(ψ(dx))
ψ(dy) −τ(ψ(dy))

)
(33)

must have full rank 2nt and 1 ≤ |det(∆C)| ∈ Z. Let `1 ≤ `2 ≤ ·· · ≤ `2nt be the ordered eigenvalues of
∆C∆C†, and let λ2,1 ≥ ·· · ≥ λ2,m′ be the ordered nonzero eigenvalues of HH† with H = [H1 H2] and
m′ = min{2nt ,nt}.

Following arguments similar to E1, the squared Euclidean distance d2
E(S,S′) for the pair (S,S′) falling

in the category of E2,2 is lower bounded by

d2
E(S,S′) ≥ κ2

m′

∑
i=m′−k+1

λ2,i`2nt−m′+i ≥ κ2

[
m′

∏
i=m′−k+1

λ2,i

] 1
k
[

2nt−k

∏
i=1

`i

]− 1
k

≥̇ κ2

[
m′

∏
i=m′−k+1

λ2,i

] 1
k
[

2nt−k

∑
i=1

`i

]− 2nt−k
k

≥̇SNR1− r
nt

[
m′

∏
i=m′−k+1

λ1,i

] 1
k

SNR−
r
nt

2nt−k
k

:= SNRδ2,k(α2),

for k = 1,2, · · · ,m′, where λ2,i = SNR−α2,i and

δ2,k (α2) :=
1
k

[
m′

∑
i=m′−k+1

(1−α2,i)

]
− 2r

k
. (34)

Again along the same lines as in the previous case we can show that

Pr{E2,2} ≤̇ Pr
{

α2 : δ2,k(α2)≤ 0, all k
}

= Pr

{
α2 :

m′

∑
i=1

(1−α2,i)
+ ≤ 2r

}

= Pr
{

logdet
(
Inr +SNRHH†)≤ 2r logSNR

} .= SNR−d∗2nt ,nr (2r),

proving that the code S satisfies the third condition required in Theorem IV.4.
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c) Error Event E2,1: Finally we are left with the last type of error event, the event E2,1 occurring
when both users are in error, but the error matrix does not have full rank. In other words, it is the case
when dx,dy 6= 0, p = dy(dx)−1 and p+τ(p) = 0 in (25). From the proof of Lemma IV.6 these conditions
mean

ψ(dy) = Pψ(dx) and τ(−ψ(dy)) = Pτ(ψ(dx)),

where P = ψ(p) is nonsingular in Mnt (E) and where we have used the fact that P+τ(P) = 0. Thus, the
squared Euclidean distance d2

E(S,S′) for the pair (S,S′) in this category can be rewritten as

d2
E(S,S′) = ‖H1ψ(dx)+H2Pψ(dx)‖2

F +‖H1τ(ψ(dx))+H2Pτ(ψ(dx))‖2
F

=
∥∥H3pψ(dx)

∥∥2
F +

∥∥H3pτ(ψ(dx))
∥∥2

F , (35)

where H3p := H1 + H2P. We keep the p in the subscript of H3p to indicate that H3p is a function of
the ratio p for different pairs of (dx,dy) with the required properties. For any p, the matrix H3p is of
full rank with probability one, and we can let λ3p,1 ≥ ·· · ≥ λ3p,m be the ordered nonzero eigenvalues of
H3pH†

3p with m = min{nt ,nt}. Note that (35) is the same as (27) except that the channel matrix H1 is
replaced by H3p in (35). Thus, for k = 1, · · · ,m, the squared distance d2

E(S,S′) is lower bounded by

d2
E(S,S′)≥̇SNRδ3p,k(α3p) and δ3p,k(α3p) =

1
k

[
m

∑
i=m−k+1

(1−α3p,i)

]
− r

k
(36)

where α3p = [α3p,1 · · ·α3p,m]t and λ3p,i = SNR−α3p,i .

Remark IV.2. In case the reader ponders over why we have 2r
k in (34) (or see below)

δ2,k (α2) :=
1
k

[
m

∑
i=m−k+1

(1−α2,i)

]
− 2r

k
,

and why in (36) we have r
k for δ3p,k(α3p), given both error events E2,2 and E2,1 concern with the case

of both users in error, it is simply because of the looseness of mismatch eigenvalue lower bound [27],
[24], [23] on d2

E(S,S′) we have used in both cases. The bound is loose in general since almost all
of the difference matrices ∆S in E2,2 have determinant det(∆S∆S†)À 1, and almost all det(∆X∆X†)×
det(τ(∆X)τ(∆X)†)À 1 with ∆X = ψ(dx) in E2,1. Yet, the algebraic mismatch eigenvalue lower bound
captures only the worst case, which actually has probability 0. Furthermore, the difference is also due to
the rank of the difference matrix ∆S. To elaborate on this, as the use of mismatch eigenvalue lower bound
[27], [24] is closely related to the proof of point-to-point cyclic division algebra based space-time codes
being approximately universal [24] for any number of transmit antennas nt and for any number of receive
antennas nr, below we give a brief insight into that proof, and it will in turn explain why such difference
between δ2,k (α2) and δ3p,k(α3p) would occur. Recall in [24], to construct a point-to-point DMT optimal
space-time code with multiplexing gain r and with nt transmit antennas using cyclic division algebra,
one of the keys is to set the base-alphabet B(SNR) as

B(SNR) =
{

a+bi :−SNR
r

2nt ≤ a,b≤ SNR
r

2nt , a,b odd
}

.
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Note that it is the same as A (SNR) of the present construction. Setting B(SNR) (and the same for
A (SNR)) to have size SNR

r
nt and working on a code matrix of rank nt give a mismatch eigenvalue

lower bound on d2
E(S,S′) with form

δk (α) =
1
k

[
m

∑
i=m−k+1

(1−αi)

]
− r

k

as shown in [24]. Error events E1 and E2,1 are in this category, and hence there is no surprising δ1,k(α1)
and δ3p,k(α3p) are of a form similar to δk (α). Note also that in these cases we have k = 1,2, · · · ,m, and
m = min{nt ,nr}.

The only surprising case is actually δ2,k(α2) for E2,2, not the others. In E2,2, the difference matrix ∆S
has rank 2nt . Thus according to the proof in [24], if we want to have a DMT optimal code with rank
2nt and multiplexing gain r, we should set the base-alphabet as

B′(SNR) =
{

a+bi :−SNR
r

4nt ≤ a,b≤ SNR
r

4nt , a,b odd
}

.

Note the exponent r
4nt

shown above. But we did not set the base-alphabet as the above in the present
construction. Instead, the same base-alphabet A (SNR) is used in the case of rank being 2nt . Note that
A (SNR) can be obtained by B′(SNR) by replacing the r of B′(SNR) by 2r, i.e. 2r

4nt
= r

2nt
. Thus along

the same lines as in [24] we expect the same change from r to 2r in δk (α), i.e.

δ ′k (α) =
1
k

[
m′

∑
i=m′−k+1

(1−αi)

]
− 2r

k

and it should be noted that here we have k = 1,2, · · · ,m′ with m′ = min{2nt ,nr}, another difference
between δk (α) and δ ′k (α). This is exactly what happened when analyzing the error event E2,2.

Finally we remark that unlike the MAC-DMT proof of Gaussian random codes in [7] where Tse et al.
used the union bound of pairwise error probabilities for (2nt ×T ) random multiuser codes with SNRrT -
fold for the event of one user in error and with SNR2rT -fold for the event of both users in error, here we
did not use such argument, i.e. we did not argue using the union bound of pairwise error probabilities.
Instead, we argue from the sphere bound of correct decisions, hence the number of nearest neighbors
does not come into the scene. The different r’s occurred in events E1, E2,1, and E2,2 are only due to the
“mis-setting” of base-alphabet in E2,2.

It can again be shown similarly that

{
α3p : δ3p,k(α3p)≤ 0,k = 1, · · · ,m}

=

{
α3p :

m

∑
i=1

(1−α3p,i)
+ ≤ r

}

and that

Pr{E2,1} ≤̇ Pr

{
α3p :

m

∑
i=1

(1−α3p,i)
+ ≤ r

}
= Pr

{
logdet

(
Inr +SNRH3pH†

3p

)
≤ r logSNR

}
.

To fulfill the second condition required in Theorem IV.4, we need to show

Pr
{

logdet
(

Inr +SNRH3pH†
3p

)
≤ r logSNR

}
.= SNR−d∗nt ,nr (r),
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meaning that at high SNR regime the probability is independent of the choices of p. Be warned that the
above is false at low SNR regime, and the probability would depend strongly on p.

To this end, recall that H3p = H1 + H2P and P = ψ(p) and also that for quasi-static Rayleigh fading
channel, the entries of H1 and H2 are i.i.d. CN (0,1) random variables. Let ht

3p,i be the ith row of H3p,
i = 1, · · · ,nr; then the covariance matrix of h3p,i is

Σ = Eh3p,ih
†
3p,i = Int +PtP∗,

and ht
3p,i and ht

3p, j are independent for i 6= j. PtP∗ is positive definite since P is invertible in Mnt (E), and
hence PtP∗ has the following eigen-decomposition

PtP∗ = U tΛpU∗

for some unitary matrix U ; Λp is a diagonal matrix whose main diagonal consists of the eigenvalues of
PtP∗. Thus, we see

Σ = Int +PtP∗ = U t (Λp + Int )U∗ = U tΞU∗.

The eigenvalues of Σ are lower bounded by 1, since Ξ = Λp + Int . Furthermore, by Karhunen-Loève
expansion we see that H3p is statistically equivalent to the matrix

G3 = G
√

ΞU

where G is an (nr×nt) random matrix having i.i.d. CN (0,1) entries, since both H3p and G3 have the
same joint probability density functions. As a short summary, the above shows

Pr
{

logdet
(

Inr +SNRH3pH†
3p

)
≤ r logSNR

}
= Pr

{
logdet

(
Inr +SNRGΞG†)≤ r logSNR

}
.

It should be noted that setting G3 = G
√

ΞU does not mean the matrix P is known to the receiver at all.
We are only saying that the probability Pr

{
logdet

(
Inr +SNRH3pH†

3p

)
≤ r logSNR

}
can be measured

in a different manner.
Now using Minkowski determinant inequality [28] for positive definite matrices which states

[det(A+B)]1/n ≥ [det(A)]1/n +[det(B)]1/n , (37)

if A and B are (n×n) positive definite matrices, and for some very small ε , 0 < ε < 1 setting

A = (1− ε)Inr +SNRGG† and B = εInr +SNRGΛpG†,

where it should be noted that B is positive definite with probability one (W.P.1), we can show that
[
det

(
Inr +SNRGΞG†)]1/nr = [det(A+B)]1/nr ≥ [det(A)]1/nr +[det(B)]1/nr (W.P.1)

≥ [det(A)]1/nr .=
[
det

(
Inr +SNRGG†)]1/nr

,

where the last exponential equality follows from (1− ε) .= SNR0 when ε → 0. Hence

logdet
(
Inr +SNRGΞG†) ≥̇ logdet

(
Inr +SNRGG†)

with probability one. Finally we conclude

Pr
{

logdet
(
Inr +SNRGΞG†)≤ r logSNR

}
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≤̇Pr
{

logdet
(
Inr +SNRGG†)≤ r logSNR

} .= SNR−d∗nt ,nr (r).

This completes the proof.

D. An explicit two-user code for nt = 2 and nr = 4 and simulation results

The proposed code is based on the algebra D = (Q(ξ )/Q(s),σ , 2+i
2−i), where ξ = ζ16 = eπi/8, s = ζ8 =

1+i√
2
,and σ(ξ ) =−ξ , τ(ξ ) = iξ , τ(s) =−s. This algebra has been considered before in e.g. [25], [5],

[2].
The code for a single user A is (similarly for B)

A[a1,a2,a3,a4,a5,a6,a7,a8] := ( A1, τ(A1) ),

where

A1 =

(
a1 +a2s+a3ξ +a4sξ 2+i

2−i(a5 +a6s−a7ξ −a8sξ )
a5 +a6s+a7ξ +a8sξ a1 +a2s−a3ξ −a4sξ

)
,

and

τ(A1) =

(
a1−a2s+a3iξ −a4siξ 2+i

2−i(a5−a6s−a7iξ +a8siξ )
a5−a6s+a7iξ −a8siξ a1−a2s−a3iξ +a4siξ

)
.

Note that we do not need the minus sign in the right lower corner, as nt = 2.
The code (

A1 τ(A1)
B1 τ(B1)

)
.

is DMT optimal. However, as DMT optimality only promises asymptotically good performance, we can
add the matrix

Γ =

(
ζ7 0
0 ζ7

)

in order to get full rank and hence expectedly good performance also at low and moderate SNRs. That
is, at low and moderate SNRs we may use the code

(
A1Γ τ(A1)
B1 τ(B1)Γ

)
.

The coefficients ai,bi take complex values and the code is orthogonal. By using a maximal order code
we could get even better performance, but within this time limit we could not implement the required
sphere encoding algorithm (simple PAM or QAM modulation cannot be used with non-orthogonal codes
if one wishes to get the advantage provided by the density, see [29] and [4]). In Figure 4 we have plotted
the performance of the proposed code (New code), and compare it with the best previously known code
by Badr and Belfiore [11].

At the SNR-range of our simulation, it appeared to be irrelevant whether the twist matrix Γ was present
or not until quite big SNRs, where totally expectedly the DMT optimal code without Γ clearly starts to
win over the full-rank version with Γ. In spite of the fact that adding Γ gives us no gain at low-moderate
SNRs, adding (resp. removing) such twist matrix at low-moderate SNRs (resp. high SNRs) to guarantee
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Fig. 4. The performance of the codes on 4-QAM received with 4 antennas.

ful l rank (resp. DMT optimality) may in some other case (different algebra/order/twist matrix) be a
useful trick worth checking out.

The proposed code actually has lower density as the code by Badr and Belfiore. Their code has a
normalized minimum determinant 1/20 that gets very close to the upper bound 1/16 of orthogonal
multi-block codes. We have maximal order codes that are denser than that, but as stated above, we did
not have a suitable implementation of the sphere decoder in order to simulate them. We also tried the
Badr-Belfiore code without the twist matrix Γ they propose, and the performance turned out to be only
slightly worse.

Remark IV.3. In case the reader ponders over why we cannot use the above DMT optimal code also
for the earlier situation where we have nr = 2, the reason is simply in the decoding: if we wish to use a
simple (ML performance preserving) decoding method such as sphere decoding, then receiving the above
code calls for at least four receive antennas and hence cannot be efficiently decoded with two receivers
only.

Of course we can overcome this by using suboptimal decoders [11, Section V.A], [16] but then we
lose the ML performance at least to some extent (cf. Remark I.1).
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V. CONCLUSIONS

In this paper, we have provided coding schemes based on the multi-block structure. All the codes are
sphere decodable, the latter scheme being also MAC-DMT achieving. By computer simulations we have
shown that the newly proposed codes outperform the best previously known codes. These satisfactory
results were achieved by exploiting cyclic division algebras and their orders to meet the new, relaxed
design criteria that were shown to be sufficient for achieving the optimal MAC-DMT.

APPENDIX I
NONEXISTENCE OF FULL NVD MULTIUSER CODES: PROOF OF THEOREM IV.3

Below we will prove the nonexistence of full NVD multiuser codes when each user is equipped with
single transmit antenna. Thus, as there are two users in the present case, the overall code matrix is of
size (2× 2), one row for each user. In the following we show if the (2× 2) code matrix has non-zero
determinant then it cannot have NVD. We first invoke the following well-known result in lattice theory.

Lemma I.1. A subgroup in Cn is a lattice if and only if it is discrete.

To prove Theorem IV.3, let us suppose that user one uses a code C1 that is a full lattice, i.e. it has
4 generators as an abelian group in C2. The reason for having 4 generators is that the transmission of
code takes two channel uses, and in each channel use it is a complex baseband symbol that has two
components, the in-phase and quadrature. Let us now suppose that (b1,b2) is some non-zero codeword
sent by the second user and (a1,a2) a nonzero codeword sent by the first user. The two-user matrix is
now

S =

(
a1 a2

b1 b2

)
.

We have det(S) = a1b2−a2b1. Fixing (b1,b2) for the second user gives us an idea of a natural homomor-
phism f from C1 to C where (x1,x2) 7→ x1b2− x2b1. The assumption of S having non-zero determinant
for all nonzero (a1,a2) ∈ C1 suggests that x1b2− x2b1 is zero if and only if (x1,x2) is zero, hence we
see that f is a group isomorphism from C1 to f (C1) ⊆ C. Now f (C1) is a subgroup in C and it must
have 4 generators as an abelian group because it is isomorphic to C1. As any lattice in C can have at
maximum 2 generators, we see that f (C1) cannot be a lattice. Therefore it must have an accumulation
point. Because f (C1) is a group we can suppose that it has an accumulation point at 0. This means
that there exists an element (a1,a2) in C1 so that we can get |a1b2−a2b1| arbitrarily small, yielding a
vanishing determinant. Hence this proves there does not exist any multiuser codes that are full NVD.
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