

 170 Int. J. Web and Grid Services, Vol. 3, No. 2, 2007

Relevance measures for XML information retrieval

Olli Luoma
Department of Information Technology
University of Turku, FIN-20014, Finland
E-mail: olli.luoma@it.utu.fi

Abstract: In recent years, a lot of work has been carried out to develop
efficient methods for storing and querying XML data. Most of the proposals
have approached the subject from the database point of view, i.e., they
have primarily aimed at providing exact matching capabilities. The problem
can, however, also be addressed as an information-retrieval problem, which
obviously introduces some challenges, such as the need for relevance ranking.
The vast majority of the previous proposals have based the ranking primarily
on content and, furthermore, if structural properties were taken into account,
only containment relationships have been considered. In this paper, we
focus on ranking the results based on their structural properties and aim
at supporting a wide range of structural operations, such as operations
based on preceding/following relationships. Our method is based on a fuzzy
interpretation of the XPath query language which is also discussed in this
paper. Finally, we discuss a relational implementation of our model and present
the results of our experiments.

Keywords: information retrieval; semistructured documents; XML;
relevance ranking.

Reference to this paper should be made as follows: Luoma, O. (2007)
‘Relevance measures for XML information retrieval’, Int. J. Web and Grid
Services, Vol. 3, No. 2, pp.170–193.

Biographical notes: Olli Luoma is currently working as a Researcher at
the University of Turku. His research interests include XML databases, XML
information retrieval, XML compression and data mining.

1 Introduction

XML (W3C, 2006), a markup language recommended by the World Wide Web
Consortium (W3C), plays a major role in many modern applications, and thus several
methods for managing XML data have been proposed. The previous proposals, however,
have primarily approached the issue as a database problem, and thus they have aimed
at providing exact matching capabilities. As a consequence, they are based on the
assumption that the user is fully aware of the structure of the documents. In an
information retrieval setting, however, this is often not true. For example, consider the
XML excerpts in Figure 1, which contain information about customers, orders and
products. The user is trying to find information on customers who ordered the product
of the name ‘xyz’, so (s)he writes a query to find all customer elements that contain

 Copyright © 2007 Inderscience Enterprises Ltd.

 Relevance measures for XML information retrieval 171

an order element that contains a product element that contains a name element that
contains the word ‘xyz’. In terms of XPath (W3C, 2007), a query language developed
for querying XML documents, this is expressed as //customer[//order//
product//name=‘xyz’].

Figure 1 Examples of different documents describing similar information

<customer>

 <name>Orimatti Teuras</name>

 <address>Teuraantie 100</address>

 <orders>

 <order id=“2” date=“01012006”>

 <product id=“1”>

 <name>xyz</name>

 <price>100</price>

 </product>

 </order>

 </orders>

</customer>

<product id=“1”>

 <name>xyz</name>

 <price>100</price>

 <orders>

 <order id=“2” date=“01012006”>

 <customer>

 <name>Mikki Hiiri</name>

 <address>Ankkalinna 313</address>

 </customer>

 </order>

 </orders>

</product>

In a database setting, the answer to this query is clear. Only the left excerpt matches the
query; the right excerpt is rejected because the product element, for example, does not
appear between <customer> and </customer> tags. However, one could argue
that both excerpts should be returned but the right one should just be given a lower
relevance rank. In many previous XML information-retrieval proposals, this would
have been impossible since they based their ranking on the content of the documents and
often interpreted the structural part of the query strictly. In this paper, we therefore aim at
defining relevance measures for structural ranking. In summary, this paper contributes to
the XML information-retrieval research as follows:

• We formulate a fuzzy interpretation of XPath queries. More accurately, we propose
a method for calculating the relevance of any XML element with respect to an
XPath query.

• In order to support structural ranking, we propose relevance measures for all
12 XPath axes, such as ancestor, descendant, preceding, following,
parent and child. This sets our approach apart from previous proposals, which
have considered only containment relationships among the elements, i.e., the
descendant axis. Furthermore, our proposal differs from the previous work in
the sense that our relevance measures are based on simple geometric properties of
the preorder and postorder ranks of the nodes in a tree rather than, for example,
computationally expensive tree edit distances.

• We describe how our structural relevance measures can also be used to rank the
results based on their content.

• Our proposal can be implemented efficiently on different platforms. To exemplify
this, we describe an implementation based on a relational database.

 172 O. Luoma

The paper proceeds in the following manner. In Section 2, we review the related work
and in Section 3, we briefly discuss the basics of the XPath query language. Section 4
discusses a fuzzy interpretation of XPath queries and Section 5 presents the similarity
measures for XPath operations, such as axes, node tests and content tests. Section 6
discusses a relational implementation of our ideas and Section 7 presents the results
of our experimental evaluation. Section 8 concludes this article and discusses our
future work.

2 Related work

In recent years, XML has gained tremendous popularity and many methods for managing
XML documents have therefore been proposed (Lee et al., 1996; Shanmugasundaram
et al., 1999; Luoma, 2005a; 2005b). Early examples, such as BitCube (Poon et al., 2001)
and Signature File Hierarchy (Chen and Aberer, 1998), typically aim at retrieving whole
documents rather than parts of them. The main intuition behind BitCube, for example, is
to generalise the idea of (document, keyword) bitmap into three dimensions to index
(document, keyword, path) triplets. Since such an index can obviously be very large and
sparse, the paper also describes a method for clustering the bitmap into smaller and
denser cubes. This proposal is suitable only for finding all documents which contain
certain paths, certain keywords, or certain keywords at the end of certain paths.
Furthermore, whole documents must be returned as query results, and thus the
practicability of this method is somewhat limited, especially if we have to deal with large
XML documents.

It is interesting to notice, however, that both BitCube and Signature File Hierarchy
can be used to support coordinate queries, and thus they can be used to rank query results
according to their relevances. When retrieving all record elements which contain the
words ‘John’ and ‘Scofield’, for example, we could first return all documents containing
a record element which actually contains the words, then documents containing elements
with other tags which contain the words or record elements which contain either ‘John’
or ‘Scofield’, etc. Signature File Hierarchy, on the other hand, provides access to
individual elements. However, since both BitCube and Signature File Hierarchy only
index (element, keyword) pairs, queries like ‘find all record elements which contain a
name element’ cannot be supported without considerable extensions.

Recent XML information-retrieval proposals have typically aimed at more
sophisticated relevance-ranking capabilities and greater granularity by providing access
to parts of the documents (Kotsakis, 2002; Hatano et al., 2002; Fuhr et al., 2002;
Schlieder and Meuss, 2002; List et al., 2003; Weigel et al., 2005). In many of these, an
element is considered an individual document, which is then indexed using traditional
information-retrieval methods for text documents, such as the tf ⋅ idf model (Salton,
1971). In our view, however, they more or less ignore the problem of matching the
structural part of the queries; and even if it is considered, only containment relationships
are taken into account. Since XML documents can be represented as trees, we can view
these proposals as attempts to solve a fuzzy version of the tree inclusion problem
(Kilpeläinen, 1992). A good example of this is the proposal of Weigel et al. (2005), in
which the subtrees were considered structured terms, i.e., flat (nonhierarchical)
representations of trees, which were then indexed using traditional information-retrieval
methods. Amer-Yahia et al. (2005) aimed at supporting both containment and direct

 Relevance measures for XML information retrieval 173

containment by proposing a method for relaxing the structural conditions. For example, if
we are searching for record elements which directly contain the word ‘Scofield’, we
get record elements which directly or indirectly contain ‘Scofield’. In the latter case,
the results are obviously assigned a lower relevance.

Restriction of tree inclusion is also evident in the field of XML information retrieval
in general. INEX (Initiative for XML Information Retrieval),1 for example, lists two
tasks: the Content Only task (CO) and the Content and Structure task (CAS). In CO, only
content is queried, whereas in CAS, some simple restrictions can be set to the structure of
the returned elements. For example, if one is to retrieve all record elements which
contain the words ‘John’ and ‘Scofield’, only elements with tag record are returned;
the ranking of the results is performed based on content. In other words, structural
conditions are interpreted strictly, which can hardly be regarded as structural ranking. In
this paper, we aim at providing more sophisticated structural ranking capabilities and
supporting a wide range of structural operations. Our proposal is able to support queries
like ‘find all bids by person X that were made after a bid by person Y’ or ‘find all acts in
a play which precede an act in which words “Hamlet” and “danger” appear’. Rather than
being based on tree edit distances (Bille, 2005; Campi et al., 2006), our method is based
on simple geometric properties of the nodes, which makes it both efficient and easy
to implement.

3 XPath basics

According to XPath (W3C, 2007), every XML document can be represented as a partially
ordered, labelled XML tree in which each element, attribute and text node corresponds
to an element, attribute and piece of text in the document, respectively. The
ancestor/descendant relationships of the nodes correspond to the nested relationships
between elements, attributes and pieces of text. A simple example of an XML tree is
presented in Figure 2. The nodes are numbered in both pre- and postorder, which encodes
a lot of information on the structural relationships among the nodes (Grust, 2002).

Figure 2 An XML tree corresponding to the XML document <c d=“y”/><c
d=“y”><e>kl</e></c><c><e>ez</e></c>

 174 O. Luoma

In addition to the tree representation of XML documents, the XPath recommendation also
lists 12 axes, i.e., operators for tree traversals, which are listed in Table 1. These axes are
used in location steps, which start from a context node and result in a set of nodes
that satisfy the conditions of the step; the document node is used as the initial context
node. More specifically, a location step is of the form /axis::test[predicate],
where axis is one of the XPath axes and test is either a node type test or a name
test. Optional predicates can be used to further restrict the result. An XPath query,
then, is simply a sequence of location steps. For example, we might issue query
/descendant::*[descendant::e] to select all descendants of the document
node that have one or more descendant nodes with tag ‘e’. In the case of the tree
presented in Figure 2, for example, nodes (1,10), (4,6) and (8,9) satisfy the query.

Table 1 XPath axes and their semantics

Axis Semantics of n/axis

parent

child

ancestor

descendant

ancestor-or-self

descendant-or-self

preceding

following

preceding-sibling

following-sibling

attribute

self

Parent of n

Children of n, no attribute nodes

Transitive closure of parent

Transitive closure of child, no attribute nodes

Like ancestor, plus n

Like descendant, plus n, no attribute nodes

Nodes preceding n, no ancestors or attribute nodes

Nodes following n, no descendants or attribute nodes

Preceding sibling nodes of n, no attribute nodes

Following sibling nodes of n, no attribute nodes

Attribute nodes of n

Node n

XPath also provides means for querying content using string value tests. For example, the
XPath query /descendant::*[descendant::e=‘ez’] selects all descendants
of the document node which have a descendant node with tag ‘e’, such that the content
of the descendant is ‘ez’. In our example case, nodes (1,10) and (8,9) satisfy these
conditions. More accurately, the XPath recommendation defines the string value of an
element node as the concatenation of the string values of all text node descendants of the
element node in document order.

4 A fuzzy interpretation of XPath

As discussed in the previous section, three kinds of conditions can be set using XPath:
axis conditions, node tests and string value tests, i.e., content tests. It should therefore be
obvious that the relevance-ranking algorithm of an XML information-retrieval engine
should be able to assign ranks for nodes based on these three factors. Before defining the
concept of step relevance, let us first define axis relevance, node test relevance and string
value relevance.

 Relevance measures for XML information retrieval 175

Definition 1 Let N denote the set of nodes in an XML tree and let A denote the set of

XPath axes. Any function raxis(n0, n1, a) : N × N × A → [0,1] is an axis
relevance for n1 ∈ N with respect to n0 ∈ N and a ∈ A.

In simple terms, this function answers the following question: “To what extent is node n1
an ancestor, descendant, preceding sibling, following sibling, parent, child, etc. of node
n0, i.e., the context node?” Notice that our definition is very general and any function that
fills the requirements qualifies as an axis relevance function. To obtain relevant results,
however, the function obviously has to be selected carefully. One possibility of defining
relevance functions for the axes is discussed in Section 5.

Definition 2 Let N denote the set of nodes in an XML tree and let T denote the set
of node tests. Any function rtest(n,t) : N × T → [0,1] is a node test
relevance for n ∈ N with respect to t ∈ T.

The definition is again very broad, but it is rather easy to select a function to measure
node test relevances. We could, for example, assign value 1 for cases in which a node
satisfies the node test and 0.1 for other cases.

Definition 3 Let N denote the set of nodes in an XML tree and let C denote the set of
string value tests. Any function rcontent(n, c) : N × C →[0,1] is a string
value relevance for n ∈ N with respect to c ∈ C.

This function could be defined by indexing the content of each element using traditional
information-retrieval concepts, such as the tf ⋅ idf model (Salton, 1971). However, since
the string value of a node is a concatenation of the text node descendants of the node
(W3C, 2007), string value tests can be regarded as descendant tests, i.e., axis tests. The
next section therefore discusses an alternative relevance measure for string values which
utilises axis relevances. Finally, we use the concepts of axis, node test and string value
relevances to define the step relevance as follows:

Definition 4 Let N, A, T and C denote the same sets as before. Function
rstep(n0, n1, s) : N × N × (A × T × C) → [0,1] is the step relevance
for n1∈ N with respect to n0∈ N and location step s, consisting of a∈ A,
t∈ T and c∈ C starting from n0∈ N, defined as rstep(n0, n1, s) = raxis(n0,
n1, a) ⋅ rtest(n1, t) ⋅ rcontent(n1, c).

In simple terms, the step relevance is defined as a product of axis, node test and string
value relevances. This function could also have been defined as a minimum of relevances
or some other t-norm. Notice that our model is flexible enough to support many different
approaches. The INEX CAS task, for example, can be regarded as a case in which the
node test relevance is defined as a binary function, i.e., nothing is retrieved if any of the
node tests in a query does not match with any node in an XML tree. In the INEX CO
family of methods, on the other hand, the node test relevance is always 1.

Armed with these concepts, we are ready to define the relevance for a node with
respect to a query. An XPath query can always be represented as a query tree, in which
each node corresponds to a location step in the query and branches correspond to
predicates. Furthermore, every query tree has exactly one active step, i.e., a step which

 176 O. Luoma

corresponds to the node set that is finally returned. An example of a query tree is
presented in Figure 3; the active node is underlined. We assign a unique identifier to all
nodes in the query tree; the nodes are numbered in preorder.

Figure 3 A query tree corresponding to /descendant::a/following::b=‘abc’
[preceding::c]/child::*=‘ijk’

It is now important to notice that each step in a query is performed starting from the
nodes resulting from the step corresponding to the parent of the step in the query tree. To
denote the identifier of the parent of step s in the XPath query tree, we use par(s); if s is
the root, par(s) = 0. The following definition, then, defines the relevance of a multiset of
XML tree nodes with respect to an XPath query using n0 as an initial context node.

Definition 5 Let N = {n1, n2,..., nl} denote an ordered multiset of nodes in an XML
tree and S = {s1, s2,..., sl} an ordered set of location steps in an XPath
query tree. Function rquery(N, S) is the query relevance for N with

respect to S, defined as r N ()1 iquery step par s i ii
(,) (, ,).

l
S r n n s

=
= ∏

The relevance of an individual node n with respect to a query, then, is simply defined as
rquery(N, S), such that n is the node in N which corresponds to the active location step. In
other words, we are interested in finding a multiset of nodes such that performing the
steps in a query via these nodes produces the maximum relevance with respect to the
query; notice that one single node can appear in this multiset multiple times. However,
given context node n0, finding the most relevant node with respect to n0 and a query
consisting of location steps s1, s2,..., sl can obviously involve checking |N|l node
sequences, and thus we need to apply some heuristics in order to perform queries
efficiently. For example, if the user is interested in finding the ten most relevant nodes,
we could approximate the process and only take the 100 or 1000 most relevant nodes into
account when performing the steps. After the final step, we would return the ten most
relevant nodes.

5 Relevance measures for XPath

5.1 Relevance measures for the XPath axes

Four of the XPath axes, namely ancestor, descendant, preceding and
following, can be regarded as the major axes. This is because of the fact that these
axes partition the nodes of an XML tree into four disjoint partitions according to the
following observation (Grust, 2002):

 Relevance measures for XML information retrieval 177

(1, 1).−
(1,1), (1, 1)− − − (1,1),

Proposition 1 Let N denote the set of nodes in an XML tree and let pre(ni) and
post(ni) denote pre- and postorder numbers of node ni, respectively.
For any two nodes n0, n1 ∈ N, n1 ∈ n0/ancestor::* iff pre(n1)
< pre(n0) and post(n1) > post(n0), n1 ∈ n0/descendant::* iff
pre(n1) > pre(n0) and post(n1) < post(n0), n1 ∈ n0/preceding::*
iff pre(n1) < pre(n0) and post(n1) < post(n0), and n1 ∈ n0/
following::* iff pre(n1) > pre(n0) and post (n1) > post(n0).

This partitioning is illustrated on the left side of Figure 4, which shows the partitioning
created by the axes among the nodes of the XML tree in Figure 2 using the node (4,6) as
the context node.2

Figure 4 Examples of partitioning (left) and measuring the following relevance (right) with
respect to node (4,6)

0

2

4

6

8

01

0 2 4 6 8 01

p
o

s
t

erp

0

2

4

6

8

01

0 2 4 6 8 01

p
o

s
t

erp

)6,4(

)9,8(

)5,6(

The same observation also gives us an idea for defining the relevances for the major axes.
One can rather easily see that the descendants of any context node tend to be located in
direction Similarly, the ancestors, predecessors and followers can, in general, be
found in directions and

 r
,1

 respectively. We can therefore determine
the following elevance, for example, for node n1 with respect to n0 by measuring the
angle between (1) 1), p

,1)
 and the vector from (pre(n0), post(n0)) to (pre(n ost(n1)). This is

illustrated on the right side of Figure 4, which shows the direction (1

,1)

 and the vector
from node (4,6) node (8,9) as well as the vector from node (4,6) to node (6,5). The
angle between (1

 to
 and the vector from (4,6) to (8,9) is smaller than the angle between

(1,1) and the vector from (4,6) to (6,5), and thus we can say that node (8,9) is a follower
of node (4,6) to a greater extent than node (6,5).

More formally, the relevance for node n1 with respect to node n0 and the
following axis is calculated using the formula shown:

0 1
0 1

0 1

0 1

1 ((), (1,1))
if

(, ,) 2
 if

axis

a

cos n n
n n

r n n

n n

α

ε

⎧ +
≠⎪= ⎨

⎪ =⎩

following

 178 O. Luoma

where denotes the vector from (pre(n0 1(n nα) 0), post(n0)) to (pre(n1), post(n1)),

 denotes the cosine of the angle between vectors 1 2(,)cos v v 1v and 2 ,v and εa ∈ [0,1] is a

constant used to define the extent to which a node is considered to be a follower of itself.
The cosine can be calculated using the dot product as follows:

0 1
0 1

0 1

() (1,1)
((), (1,1))

() (1,1)

n n
cos n n

n n

α
α

α

⋅
=

⋅

The similarities for the other major axes can also be defined using their general
directions. Notice that the ancestor and descendant axes, as well as the
preceding and following axes, can be regarded as opposites, and thus the
preceding similarity, for example, can alternatively be defined as:

1 0 0 1
0 1

0 1

(, ,) if
(, ,)

 if .
axis

axis
a

r n n n n
r n n

n nε
≠⎧

= ⎨ =⎩

following
preceding

The ancestor-or-self and descendant-or-self axes are similar to
their major axis counterparts with the exception that a node has much greater
relevance with respect to itself; in this case, the similarity is defined as 1. Thus, the
ancestor-or-self relevance, for example, is defined as follows:

0 1 0 1
0 1

0 1

(, ,) if
(, ,)

1 if .
axis

axis

r n n n n
r n n

n n

≠⎧
= ⎨ =⎩

ancestor
ancestor-or-self

Relevances for other minor axes, i.e., parent, child, preceding-sibling,
following-sibling, attribute and self, have to be defined using a somewhat
different approach. In the case of parent and child relevances, we extend the
pre-/postorder plane with a third dimension, namely the level or the height of the nodes.
We define the level of root of the tree as 1, the level of the children of the root as 2, etc.
Again, the relevance is defined using the cosine of the angle between two vectors but
now the vectors e-dimensional. As the vector for the general direction of the
parent axis,

 are thre
(1,1, 1)− − is used. In other words, the parent of a node is an ancestor of

the node and is located one level lower in the tree. The parent relevance is therefore
calculated using the following formula:

1 0
0 1

0 1

0 1

1 ((),(1,1, 1))
if

(, ,) 2
 if

axis

a

cos n n
n n

r n n

n n

β

ε

⎧ + − −
≠⎪= ⎨

⎪ =⎩

parent

where serves as a denotation for the vector from (pre(n0 1(n nβ) 0), post(n0), level(n0))

to (pre(n1), post(n1), level(n1)). The relevance for the child axis, then, can be
defined as:

0 1 0 1
0 1

0 1

(, ,) if
(, ,)

 if .
axis

axis
a

r n n n n
r n n

n nε
≠⎧

= ⎨ =⎩

parent
child

 Relevance measures for XML information retrieval 179

We have to use a slightly different representation of the nodes to evaluate the relevances
for the preceding-sibling and following-sibling axes. In this case, node n
is uniquely identified as a triplet (pre(par(n)), post(par(n)), ord(n)) where par(n) denotes
the parent of node n and ord(n) the order number of node n among its siblings.
As the parent of the root node, the document node of the XPath recommendation can be

used. It is obvious that all siblings share the same parent, and thus (0,0, 1)− can be used

as a general direction for the preceding-sibling axis and (0,0,1) for the
following-sibling axis. The following formula is used as a relevance measure for
the preceding-sibling axis:

0 1
0 1

0 1

0 1

1 ((),(0,0, 1))
if

(, ,) 2
 if

axis

a

cos n n
n n

r n n

n n

γ

ε

⎧ + −
≠⎪= ⎨

⎪ =⎩

preceding-sibling

where denotes the vector from (pre(par(n0 1(n nγ) 0)), post(par(n0)), ord(n0)) to

(pre(par(n1)), post(par(n1)), ord(n1)). Furthermore, since these axes can be regarded as
opposites, we can define the following-sibling relevance as:

1 0 0 1
0 1

0 1

(, ,) if
(, ,)

 if .
axis

axis
a

r n n n n
r n n

n nε
≠⎧

= ⎨ =⎩

preceding-sibl.
following-sibl.

In order to support all XPath axes, we still need to define relevance measures for the
self and attribute axes. We could use Euclidean distance to define the self
relevance, but we can also simply remove the location steps involving the self axis.
The attribute axis, on the other hand, can be treated as a combination of child
axis, node type test and name test; the node test relevance measures are presented in the
following section. Table 2 exemplifies our relevance measures using the XML tree
presented in Figure 2; node (4,6) was used as the context node and value 0.1 for εa.

Table 2 Examples of axis relevances with respect to node (4,6)

Node

Axis (1,10) (2,2) (3,1) (4,6) (5,3) (6,5) (7,4) (8,9) (9,8) (10,7)

parent 0.95 0.37 0.22 0.10 0.06 0.03 0.04 0.44 0.29 0.18

child 0.05 0.63 0.78 0.10 0.94 0.97 0.96 0.56 0.71 0.82

ancestor 0.99 0.34 0.22 0.10 0.05 0.03 0.01 0.43 0.30 0.21

descendant 0.01 0.66 0.78 0.10 0.95 0.97 0.99 0.57 0.70 0.79

preceding 0.42 0.97 0.91 0.10 0.72 0.34 0.40 0.01 0.04 0.09

following 0.58 0.03 0.09 0.10 0.28 0.66 0.60 0.99 0.96 0.91

prec-sibl 0.79 1.00 0.56 1.10 0.60 0.50 0.57 0.00 0.57 0.56

foll-sibl 0.21 0.00 0.44 0.10 0.40 0.50 0.43 1.00 0.43 0.44

attribute 0.00 0.06 0.78 0.05 0.94 0.10 0.0 0.06 0.07 0.08

 180 O. Luoma

Although the axis relevances were defined using simple cosine functions, they actually
work rather well. As an interesting detail in Table 2, one might notice that the child
relevance of node (4,6) with respect to node (7,4) is rather large, 0.96, although node
(7,4) is actually a grandchild of node (4,6). In general, our method tends to exaggerate the
parent and child relevances especially in the case of small documents, i.e., when
the nodes have a small number of descendants compared to the number of ancestors.

Although our relevance measures do not have metric properties, which rules out the
use of M-tree indexes (Ciaccia et al., 1997), it should be rather easy to design an index to
avoid unnecessary axis relevance computations. One possibility is to assign each node n

to a partition
() ()

() , , ()
pre n post n

q n level n
p p

⎛ ⎞⎢ ⎥ ⎢ ⎥
= ⎜ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎝ ⎠
⎟ using a relatively large p. We can

then calculate the axis relevances between these disjoint partitions similarly as we did
with individual nodes, store these values, and use them as estimates for axis relevances.
For example, the estimated relevance for n1 with respect to n0 and the ancestor axis
would therefore be defined as follows:

α⎧ + −
≠⎪= ⎨

⎪ =⎩

ancestor

ancestor

0 1
0 1

0 1

0 1 0 1

1 ((() ()), (1,1))
if () ()

(, ,) 2
(, ,) if () ().

estimate

axis

cos q n q n
q n q n

r n n

r n n q n q n

Using this approach, the axis relevances are computed only for nodes residing in the
same partition with the context node; for nodes in other partitions, the precomputed
estimates are used. By using the preorder and postorder numbers of their parents
and the order number of the nodes as partitioning criteria, the relevances for
preceding-sibling and following-sibling axes can be indexed similarly.

One could also take advantage of some well-known multidimensional XML indexing
approaches based on R-trees (Grust, 2002) or UB-trees (Krátký et al., 2004). In this case,
the relevance with respect to descendant axis, for instance, could be defined simply
as 1 for the nodes which are actual descendants of the context node, 0.5 for the followers
and predecessors, and 0 for the nodes which are ancestors of the context node. However,
one could argue that node (10,7) of the tree in Figure 2, for example, is a descendant
of node (4,6) to a greater extent than node (8,9), since (10,7) is a descendant of the
immediately following sibling of (4,6) whereas (8,9) is the immediately following
sibling. Nevertheless, if we were to rely on the simple definition of descendant axis
relevance, both nodes would have a relevance of 0.5. Our method based on the cosine
measure, on the other hand, gives a relevance of 0.79 for (10,7) and 0.57 for (8,9).

5.2 Relevance measures for node tests

As discussed in the previous section, defining relevance functions for the node tests is
rather easy. We define the relevance for node n with respect to node test t as follows
(εt ∈ [0,1] can be used to tune the importance of node tests):

1 if matches
(,)

if does not match .test
t

n t
s n t

n tε
⎧

= ⎨
⎩

 Relevance measures for XML information retrieval 181

We could actually formulate a more accurate relevance measure for node type tests.
For example, element and attribute nodes could be regarded as more similar than element
and comment nodes. We could also take the semantics of different tags into account,
use edit distances to allow spelling errors, etc. In this paper, however, we rely on the
simple definition.

5.3 Relevance measures for content conditions

It is interesting to notice that our structural relevance measures can also be used to
support queries involving content conditions. The basis for this is again the XPath
recommendation (W3C, 2007), which defines the string value of an element node
as follows: “The string-value of an element node is the concatenation of the string-values
of all text node descendants of the element node in document order”.

To evaluate string value tests as descendant queries, we split text nodes containing
many words into multiple nodes that all contain only one word. After this, we can
evaluate our example query /descendant::*=‘kl ez’ by checking which
descendants of the document node have descendant text nodes ‘kl’ and ‘ez’. More
precisely, the query is transformed into /descendant::*[descendant-or
-self::text()=‘kl’] [descendant-or-self::text()=‘ez’]. We
assign value 1 for the cases in which the value matches the string value test and value
εc ∈ [0,1] for other cases. Obviously, some standard information-retrieval methods, such
as stemming, can be applied before indexing the text nodes.

Using the axis, node test and string value test relevances discussed in this section, we
now take a look at how some example queries match with nodes of the XML tree in
Figure 2. Our query set is presented in Table 3 and the relevances of the nodes with
respect to these queries in Table 4. In the case of Q1, for example, nodes (6,5) and (9,8)
actually belong to the result of the query, and thus they are assigned large relevances,
0.92 and 0.96, respectively. Nodes (4,6), (7,4), (8,9) and (10,7) are also somewhat
relevant since they follow a node with label ‘c’. Value 0.1 was used for εa and value 0.5
for εt and εc.

3

Table 3 Query examples

Query
Q1 /descendant-or-self::c/following::e
Q2 /descendant-or-self::c[attribute::d=“y”]
Q3 /descendant-or-self::c[attribute::d=“x”]
Q4 /descendant-or-self::*=“ez”
Q5 /descendant-or-self::*=“kl ez”

Table 4 Relevances with respect to query examples

Node
(1,10) (2,2) (3,1) (4,6) (5,3) (6,5) (7,4) (8,9) (9,8) (10,7)
Q1 0.37 0.09 0.12 0.45 0.22 0.92 0.44 0.50 0.96 0.46
Q2 0.48 0.92 0.11 0.93 0.12 0.31 0.19 0.62 0.26 0.21
Q3 0.23 0.46 0.06 0.47 0.06 0.16 0.10 0.31 0.13 0.11
Q4 0.87 0.56 0.25 0.74 0.27 0.63 0.50 0.84 0.86 0.24
Q5 0.79 0.36 0.14 0.66 0.17 0.57 0.13 0.61 0.54 0.12

 182 O. Luoma

6 Relational implementation

6.1 Relational schema

To put our ideas to the test, we implemented a simple XML information-retrieval engine
on top of a relational database. In many proposals which aim at providing exact matching
capabilities (Grust, 2002; Luoma, 2005a; 2005b; 2006), a single relation was used to
store both structure and content, but in order to support efficient string value matching,
we store the nodes using relation Node and the keywords, i.e., individual words
appearing in the text nodes, using the relation Word.

Node(Pre, Post, Level, Order, Par, Type, Name)
Word(Pre, Order, Word)

In the relation Node, the database attributes Pre, Post and Level correspond to the
preorder number, the postorder number and the level of the node, respectively. The
database attribute Order corresponds to the order number of the node among its
siblings, and Par to the preorder number of the parent of the node. Finally, the database
attributes Type and Name correspond to the type and name of the node, respectively.
In the relation Word, the database attributes Pre, Order and Word correspond to the
preorder number of the text node, the number of the word among the words in the node,
and the keyword itself, respectively. For simplicity, we identify attribute nodes as
element nodes; the values of the attributes are treated as text nodes. The underlined
database attributes serve as the primary key in both relations.

In order to perform XPath queries one step at a time, we also need a relation to store
the intermediate results. To do this, we employ the relation Result:

Result(Step, Context, Pre, Relevance)

In this relation, the database attribute Step corresponds to the preorder number of the
step in the query tree, and Context to the preorder number of the context node from
which the step was performed. Pre corresponds to the preorder number of the resulting
node, and the database attribute Relevance to the relevance of node Pre with respect
to node Context and step Step.

6.2 SQL queries for performing the steps

The XPath-to-SQL query translation of our prototype system is based on the algorithms
described in this section. Algorithm evaluate(S) issues the SQL queries corresponding to
query tree S. As mentioned earlier, the document node is used as the initial context node,
and thus the algorithm starts by issuing an SQL query in order to insert the document
node into the Result table with relevance 1. After this, the algorithm traverses the
query tree in preorder and issues two SQL queries for each location step in the tree. The
first of these queries inserts the context nodes, i.e., the nodes stored in the table Result,
and their relevances with respect to themselves into the Result table. Since the
document node is not in the result of any of the axes, the first query is not performed
during the first iteration. The second query calculates and stores the relevances of other
nodes with respect to the context nodes. After all of the nodes in the query tree have been
processed, a query generated by algorithm genRankSQL(S) is issued to actually rank the
nodes. Algorithm id(s) returns the id of step s in a query tree:

 Relevance measures for XML information retrieval 183

evaluate(S)
IN: Query tree S
OUT: Set of nodes sorted according to their relevance with respect to S
 issue(“INSERT INTO Result VALUES (0, –1, 0, 1)”)
 for each s ∈ S do
 if (id(s)> 1) then
 issue(genEvalSQL(s, true))
 issue(genEvalSQL(s, false))
 issue(genRankSQL(S))

Algorithm genEvalSQL(s, f) simply generates the SELECT, FROM and WHERE parts
of the SQL query corresponding to location step s; the boolean value f is used to express
whether we are inserting the context nodes themselves or other nodes:

genEvalSQL(s, f)
IN: Location step s, boolean f
OUT: SQL query corresponding to s
 return “INSERT INTO Res” +
 genEvalSELECT(s, f) +
 genEvalFROM(s, f) +
 genEvalWHERE(s, f)

A very straightforward algorithm, genEvalSELECT(s, f), is used to generate the
SELECT parts of the queries:

genEvalSELECT(s, f)
IN: Location step s, boolean f
OUT: SELECT part of SQL query corresponding to s
 if (f) then
 return “SELECT” + id(s) + “n.Pre, n.Pre,” + genRel(s, f)
 else
 return “SELECT” + id(s) + “c.Pre, n.Pre,” + genRel(s, f)

Algorithm genEvalFROM(s, f) generates the right tuple variables into the
FROM part. In general, this is rather simple; but if the axis of the step is either
preceding-sibling or following-sibling, we need extra tuple variables cp
and np, which correspond to the parents of the context nodes and resulting nodes,
respectively. Furthermore, if the step involves a string value test, we need an extra tuple
variable w to check the values of the nodes. Algorithm axis(s) simply returns the axis of
step s and valueTest(s) returns the string value test involved in s; if there is no test the
algorithm returns null. Algorithm par(s) returns the id of the parent of step s in a query
tree; if s is the root, the algorithm returns as 0:

genEvalFROM(s, f)
IN: Location step s, boolean f
OUT: FROM part of SQL query corresponding to s
 result ← “FROM Res r, Node n”
 if (not f) then
 result ← result + “, Node c”
 if (axis(s) = preceding-sibling or axis(s) = following-sibling) then

 184 O. Luoma

 result ← result + “, Node cp, Node np”
 if (not valueTest(s) = null) then
 result ← result + “, Word w”
 return result

The WHERE parts of the SQL queries are generated using algorithm
genEvalWHERE(s, f). Again, if the axis of the step is preceding-sibling or
following-sibling, or the step involves a string value test, we need to generate
extra join conditions to match tuple variables cp, np and w:

genEvalWHERE(s, f)
IN: Location step s, boolean f
OUT: WHERE part of SQL query corresponding to s
 result ← “WHERE r.Step=” + par(s)
 if (f) then
 result ← result + “AND n.Pre=r.Pre”
 else
 result ← result + “AND c.Pre=r.Pre AND NOT n.Pre=c.Pre”
 if (axis(s) = preceding-sibling or axis(s) = following-sibling)
 then
 result ← result + “AND cp.Pre=c.Par AND np.Pre=n.Par”
 if (not valueTest(s) = null) then
 result ← result + “AND w.Pre=n.Pre”
 return result + “;”

Finally, the algorithm genEvalRel(s, f) generates the expression to calculate the
relevances. In general, the axis relevance measures discussed earlier are calculated using
tuple variables c and n, and thus we have omitted the code generating the axis relevances
for the sake of brevity. For the preceding-sibling and following-sibling
axes, however, we need to use cp.Pre, cp.Post, np.Pre and np.Post to
determine the preorder and postorder numbers of the parents.

genEvalRel(s, f)
IN: Location step s, boolean f
OUT: Expression for the relevance of SQL query corresponding to s
 if (not nodeTest(s) = null and not nodeTest(s) = “*”) then
 result ← result + “((l–εt)*(n.Name=\’” + nodeTest(s) + “\’)+εt)*”
 if (not valueTest(s) = null) then
 result ← result + “((l–εc)*(w. Value=\’” + valueTest(s) + “\’)
 + εc)*”
 if (f) then
 if (axis(s) = ancestor-or-self or axis(s) = descendant-or-self)
 then
 result ← result + “1”
 else
 result ← result + εa

 else
 Calculate the axis relevances as discussed earlier.
 return result

 Relevance measures for XML information retrieval 185

Using these algorithms, the step preceding::c in the query tree presented in Figure 3
is transformed into the following two SQL queries:

INSERT INTO Result
SELECT 3, n.Pre, n.Pre, (0.5 * (n.Name=‘c’) + 0.5) * 0.1
FROM Result r, Node n
WHERE r.Step=2
AND n.Pre=r.Pre;

INSERT INTO Result
SELECT 3, c.Pre, n.Pre, (0.5 * (n.Name=‘c’) + 0.5) *
((1 + (n.Pre – c.Pre) * (–1) + (n.Post – c.Post)*(–1))/
(SQRT(2) * SQRT(POWER(n.Pre – c.Pre, 2) *
POWER(n.Post – c.Post, 2)))) / 2
FROM Result r, Node c, Node n
WHERE r.Step=2
AND c.Pre=r.Pre
AND NOT n.Pre=c.Pre;

6.3 SQL queries for ranking the nodes

After processing all the steps in the query, algorithm genRankSQL(S) is used to generate
the query which ranks the nodes according to their relevances. Different algorithms are
used to generate the SELECT, FROM and WHERE parts of the query. In simple terms,
the algorithm constructs the XML tree node multisets by matching the database attribute
Step with the identifier of the step that the tuple variable in question corresponds to and
matching the preorder numbers of the context nodes with the preorder numbers of the
nodes resulting from the parent step of the corresponding location step. Algorithm
active(S) returns the identifier of the active step in S.

genRankSQL(S)
IN: Query tree S
OUT: SQL query to rank the nodes with respect to S
 genRankSELECT(S) +
 genRankFROM(S) +
 genRankWHERE(S) +
 “GROUP BY r” + active(S) “.Pre” +
 “ORDER BY Relevance DESC;”

genRankSELECT(S)
IN: Query tree S
OUT: SELECT part of SQL query to rank the nodes with respect to S
 result ← “SELECT r” + active(S) + “.Pre, MAX(r1.Relevance”
 for each s ∈ S such that id(s)> 1 do
 result ← result + “* r” + id(s) + “.Relevance”
 return result + “) AS Relevance”

 186 O. Luoma

genRankFROM(S)

IN: Query tree S
OUT: FROM part of SQL query to rank the nodes with respect to S
 result ← “FROM r1”
 for each s ∈ S such that id(s)> 1 do
 result ← result + “, r” + id(s)
 return result

genRankWHERE(S)
IN: Query tree S
OUT: WHERE part of SQL query to rank the nodes with respect to S
 result ← “WHERE r1.Step=1 AND”
 for each s ∈ S do
 result ← result + “r.Step” + id(s)
 result ← result + “AND r” + id(s) + “.Context=r” + par(s) + “.Pre”
 return result

Using the SQL query generated by these algorithms, it is possible to obtain the final node
ranks. For example, the final results of the query tree presented in Figure 3 can be
determined using the following query:

SELECT r4.Pre, MAX(r1.Relevance * r2.Relevance *
r3.Relevance * r4.Relevance) AS Relevance
FROM Result r1, Result r2, Result r3, Result r4
WHERE r1.Step=1 AND r2.Step=2 AND r3.Step=3 AND r4.Step=4
AND r2.Context=r1.Pre AND r3.Context=r2.Pre AND
r4.Context=r2.Pre
GROUP BY r4.Pre
ORDER BY Relevance DESC;

6.4 Practical issues

With the exception of perhaps very small XML documents, it is obviously not practical to
perform an exhaustive search, i.e., to check all possible multisets of nodes in an XML
tree. Thus, we need a way to prune the intermediate results. Most relational database
management systems provide means for retrieving only the top of the result relation. In
MySQL, for example, this is done by adding the limiting condition LIMIT n, which
returns only the top n rows. This can be used to store, for example, only the best matches
of each step to the relation Result. Obviously, we also need to add ORDER BY clauses
to our queries to sort the nodes in descending order according to their relevances in order
to obtain the most relevant nodes.

This, however, is not enough, since in order to locate the most relevant nodes
with respect to a given context node and a step, the database management system
still has to visit all nodes in the database. For this reason, we need to move the
conditions used to calculate the node test and string value relevances from the fourth
expression of the SELECT part to the WHERE part of the query. The expression
(0.5 * (n.Name=‘c’) + 0.5), for example, is thus removed from the SELECT part

 Relevance measures for XML information retrieval 187

and n.Name=‘c’ is added to the WHERE part. Similarly, we can remove conditions
corresponding to string value tests from the SELECT part and add them to
the WHERE part. This greatly improves the query performance since the database
management system only has to visit nodes which satisfy the node test or the string
value test.

However, if no nodes satisfy the node test, we need means to quickly obtain some
rather relevant nodes to act as context nodes for the next step. For this purpose, we can
use the query conditions intended for exact matching (Grust, 2002; Luoma, 2005a;
2005b). Since we can now basically obtain any nodes with high axis relevance – after all,
there were no nodes that satisfied the node test – we select some subsets of the nodes
which belong to the result of the axis. More accurately, we perform parent instead of
ancestor and ancestor-or-self axes, and preceding-sibling instead of
preceding axis. Similarly, we perform child instead of descendant and
descendant-or-self, and following-sibling instead of following. For
example, if we cannot obtain any node satisfying a node test and we are dealing with
a step involving the following axis, we simply add AND n.Pre>c.Pre AND
n.Par=c.Par to the WHERE part of our query and multiply the relevance by 0.5, i.e.,
by εn. This query can also be executed efficiently since the relevances are only computed
for the following siblings rather than for all following nodes, let alone the whole node set.
The other alternative, of course, is to define εt as 0. In this case, nothing is returned if one
of the name tests in a query does not match any node in the database.

Analogously, we need to ensure that if there are no keywords which match the string
value test, we still add some relevant nodes into the relation Result. Before performing
a step which retrieves nodes matching a string value test, we thus always issue an SQL
query to insert all context nodes into the relation Result with themselves with
relevance εc. In a sense, this is indeed correct since every node has a string value and
any string value matches any string value test at least with relevance εc. After this, we
perform the SQL query, which retrieves the nodes which actually satisfy the string
value tests.

7 Experimental results

We tested our relevance measures by implementing a simple XML information retrieval
engine on top of a relational database, as described in Section 6. In simple terms, our
prototype system traverses query trees in preorder and issues a series of SQL queries to
retrieve and store the resulting nodes and their relevances for each step. After all steps
have been processed, our system issues an SQL query to reconstruct the node multisets
and computes the final relevances for the nodes. We conducted the experimental
evaluation using a 2.00 GHz Pentium PC running Windows XP and MySQL Server 5.0.
The PC was equipped with 512 MB of RAM and standard IDE disks. In order to support
querying multiple documents within one database, we extended all relations in our
database with document identifier Doc. The algorithms for generating the SQL queries
were obviously extended accordingly, i.e., we added conditions to match the document
identifiers. Values 0.1, 0 and 0.5 were used for εa, εt and εc, respectively.

 188 O. Luoma

One should keep in mind, however, that our prototype system was implemented as a
proof of concept rather than as a practicable XML information-retrieval engine. In order
to support retrieval from massive data sets, less precise and more efficient methods
should be applied. To this end, we feel that processing partitions instead of individual
nodes as described earlier could greatly enhance query speed and yet provide sufficient
search quality. Furthermore, our relevance measures should obviously be validated using
some commonly agreed-on benchmark. However, all current benchmarks are focused on
content-based retrieval, whereas our method is aimed at supporting retrieval based on
structure, and thus there were no suitable benchmarks for testing our model.

7.1 Test set-up

As our test data, we used the complete works of Shakespeare marked up in XML.4 This
7.5 MB collection consisted of 37 documents, 327 131 nodes and 887 660 keywords in
total. Thus, an average document contained 8841 nodes and 23 991 keywords; the
average depth of a node was 5.3. It is worth noticing that the documents were rather large
compared to, for example, normal XHTML documents both in terms of kilobytes and
number of nodes. In our evaluation, we used the queries presented in Table 5. This table
also lists the number of nodes which were considered relevant with respect to each query.

Table 5 Query set

Query Nodes

Q1 /child::ACT/descendant::SCENE=‘Puck’/
preceding-sibling::SCENE

 2

Q2 /descendant::ACT=‘Hamlet danger’ 47

Q3 /descendant::ACT=‘Hamlet danger’/following::ACT 77

Q4 /descendant::SPEECH=‘murder Caesar’ 204

Q5 /descendant::ACT/descendant::SPEECH 155 140

In the case of Q1, no nodes satisfied the XPath query, since the root nodes in all
documents are titled ‘PLAY’ rather than ‘ACT’; nodes with label ‘ACT’ are actually
children of ‘PLAY’ nodes. Nevertheless, we considered relevant the nodes with the name
‘SCENE’ which were preceding siblings of nodes with the name ‘SCENE’ and string
value ‘Puck’. All of these nodes resided in the play ‘A Midsummer Night’s Dream’. In
the case of Q2, a node was considered relevant if its name was ‘ACT’ and one of its text
node descendants contained either ‘Hamlet’ or ‘danger’; relevant nodes for Q4 were
defined similarly. A node was relevant with respect to Q3 if its name was ‘ACT’ and it
followed a node which was relevant with respect to Q2. Finally, we considered a node
relevant with respect to Q5 if it (in a strict sense) satisfied the XPath query
/descendant:: ACT/descendant:: SPEECH. These sets of relevant nodes were
used to study the precision and recall of our method.

7.2 Query times

We started by studying the effect of pruning with respect to query times. According to
our initial experiments, only modest pruning can be applied to the context node sets
without lowering search precision. As a rule of thumb, one can use node sets 50 or 100

 Relevance measures for XML information retrieval 189

times larger than the number of relevant nodes. However, node sets resulting from steps
checking string values do not act as context nodes for any step, and thus they can be
pruned rather aggressively. We studied three alternatives, retrieving and storing the 100
and the 1000 most relevant text nodes and retrieving all matching text nodes. One should
notice that the methods discussed in Section 6.4 were used in order to make the string
value and node test matching more efficient. These results are presented in Table 6.
Obviously, the pruning affects not only the time consumed by the queries which compute
and store the relevances (Query), i.e., the SQL queries generated using algorithms
presented in Section 6.2, but also the time needed to evaluate the query which finally
ranks the nodes (Rank), i.e., the SQL query generated using algorithms presented in
Section 6.3.

Table 6 Query times in seconds

100 1000 All

Query Rank Query Rank Query Rank

Q1 6.5 0.3 7.8 0.5 6.9 0.5

Q2 0.3 0.1 0.3 0.1 0.4 0.1

Q3 0.3 0.0 0.3 0.1 0.4 0.2

Q4 39.5 1.4 40.5 1.45 525.1 17.4

Q5 21.5 1.5 21.5 1.5 21.5 1.5

Overall, the queries were evaluated rather efficiently, and thus the pruning had quite
a small effect on query times. An exception, of course, is Q4, which consumed an
extremely long time, especially when pruning was not applied. This was actually
expected since there were over 150 000 nodes with the name ‘SPEECH’, which all had to
be retrieved and stored. In the case of Q4, pruning had a great effect, since instead of
considering 370 000 text nodes, the system only had to check 200 or 2000 text nodes, i.e.,
100 or 1000 for ‘murder’ and 100 or 1000 for ‘Caesar’. Similarly, the time needed to rank
the nodes was considerably shorter with these smaller node sets. One should also notice
that in the case of Q5, no text nodes were retrieved, and thus cases 100, 1000 and all
share similar query times.

7.3 Search performance

We were also interested in finding out how the pruning affects search precision and
recall. For each query Q1, Q2, Q3 and Q4, we selected r/2, r, 2r and 4r most relevant
nodes, where r is the number of relevant nodes with respect to the query as presented in
Table 5. Query Q5 was left out since it did not contain any string value tests, and thus no
pruning took place. As one can notice in Tables 7–10, the effect of the pruning clearly
depends on the number of relevant nodes or, more accurately, the number of text nodes
which are relevant with respect to the string value tests in the query. In the case of Q1,
Q2 and Q3, there was only a small number of relevant text nodes, and thus the results
were very good even when the greediest pruning was applied. In the case of Q4, in which
the number of relevant text nodes as well as the number of relevant nodes in general was
larger, the pruning played a bigger role. Nevertheless, the results were quite good even

 190 O. Luoma

when only the 100 most relevant text nodes were taken into account. Furthermore, in the
case of the 1000 most relevant text nodes, the search precision and recall were very close
to the case in which no pruning was applied. The total query times with no pruning were
ten times longer, and thus pruning less relevant text nodes is a worthwhile idea.

Table 7 Search performance with different degrees of pruning for Q1

100 1000 All

Nodes Precision Recall Precision Recall Precision Recall

r/2 1.00 0.50 1.00 0.50 1.00 0.50

r 1.00 0.50 1.00 0.50 1.00 0.50

2r 1.00 0.50 1.00 0.50 1.00 0.50

4r 1.00 0.50 1.00 0.50 1.00 0.50

Table 8 Search performance with different degrees of pruning for Q2

100 1000 All

Nodes Precision Recall Precision Recall Precision Recall

r/2 0.92 0.47 0.96 0.49 0.96 0.49

r 0.83 0.83 0.83 0.83 0.83 0.83

2r 0.50 1.00 0.50 1.00 0.50 1.00

4r 0.25 1.00 0.25 1.00 0.25 1.00

Table 9 Search performance with different degrees of pruning for Q3

100 1000 All

Nodes Precision Recall Precision Recall Precision Recall

r/2 1.00 0.50 1.00 0.50 1.00 0.50

r 0.97 0.97 0.97 0.97 0.97 0.97

2r 0.50 1.00 0.50 1.00 0.50 1.00

4r 0.25 1.00 0.25 1.00 0.25 1.00

Table 10 Search performance with different degrees of pruning for Q4

100 1000 All

Nodes Precision Recall Precision Recall Precision Recall

r/2 0.65 0.33 0.60 0.30 0.62 0.31

r 0.46 0.46 0.63 0.63 0.64 0.64

2r 0.23 0.47 0.48 0.96 0.48 0.96

4r 0.13 0.51 0.25 1.00 0.25 1.00

Overall, we saw our relevance measures behave as expected and assign intuitively correct
ranks for the nodes. In the case Q1, for example, our prototype system assigned a
relevance of 0.73 for nodes that were actually considered relevant. A node which was in
the result of the preceding axis rather than preceding-sibling axis was

 Relevance measures for XML information retrieval 191

ranked third with relevance 0.57. After this node our system ranked the ‘SCENE’ nodes,
which were preceding siblings of some ‘SCENE’ node; these nodes had relevances
smaller than 0.45. We also replaced the first axis in this query with descendant axis to
see how the relevances grow if some nodes actually match the XPath query in the strict
sense. In this case, the relevances of the first two nodes were 0.80 and the relevance of
the third node, 0.62; the nodes were obviously in the same order as in the previous case.
After this, the relevance of the next nodes dropped to 0.50.

8 Conclusion

This paper discussed relevance measures for XML information retrieval. In order to
support XPath, an XML query language recommended by W3C, we first described a
fuzzy interpretation of XPath and then moved on to discussing the actual relevance
measures. Our main focus was on axis relevances, which were defined using simple
cosine measures, but our relevance functions can also be used to support querying string
values, i.e., textual content. One of the strong points of our relevance measures is their
simplicity. To exemplify this, we implemented a prototype system based on relational
databases and described how an XPath query can be transformed into a series of SQL
queries. A more efficient implementation could be achieved by partitioning the nodes of
an XML tree into disjoint partitions and storing the axis relevances between these
partitions. These stored relevances can then be used as approximations for axis
relevances. Thus, the relevances actually have to be computed only for nodes in the same
partition with the context node. Investigating this possibility will be an important part of
our future work.

It is also easy to tune our model by changing the values of different parameters.
Although our relevance measures are rather intuitive and easy to tune, we still feel
that finding suitable values for εa, εt and εc requires relevance tests conducted with a
large group of users (Lehtonen, 2006). There are also other interesting open issues
concerning structural relevance measures. For example, is it correct to regard the
ancestor and descendant or parent and child axes as opposites, or should we
somehow group these axes together to form a symmetric relevance measure for
‘nestedness’? For example, consider finding all products from brand ‘X’ in documents
…<product brand = “X”>…</product>… and …<brand name=“X”>
<product>…</product>…</brand>… In these documents, attribute ‘brand’
appears either as a parent or as a child of a ‘product’ node, and thus the result of the
search depends on which axis the user chooses to use in his or her query. This problem
could be avoided if we only consider the fact that in both cases, ‘product’ nests inside
‘brand’ or vice versa.

All in all, we feel that there is still room for many interesting discoveries in the field
of XML information retrieval. For example, the very fundamental problem of measuring
the search performance is still under discussion (Hiemstra and Mihajlović, 2005;
Piwowarski and Dupret, 2006). Furthermore, since the result of a query can be thought of
as a ranked set of subtrees rather than a ranked set of individual nodes, we may have to
deal with overlapping results (Clarke, 2005). For example, if we have retrieved two
subtrees s1 and s2 with relevances 1.0 and 0.5, respectively, such that s2 is a part of s1,
should we return s2 at all? After all, s2 is returned as a part of s1 with much higher
relevance. It would also be interesting to study how taking the length or size of the

 192 O. Luoma

elements (Kamps et al., 2004) into account would affect our relevance measures,
especially the string value relevance. Most importantly, however, we feel that there is a
need for an XML information-retrieval benchmark, in which the possibility of querying
based on structural relationships or axes is taken into account.

Acknowledgement

This work was supported by the Academy of Finland.

References

Amer-Yahia, S., Koudas, N., Marian, A., Srivastava, D. and Toman, D. (2005) ‘Structure and
content scoring for XML’, in K. Böhm et al. (Eds.) Proceedings of the 31st International
Conference on Very Large Databases, pp.361–372.

Bille, P. (2005) ‘A survey of tree edit distance and related problems’, Theoretical Computer
Science, Vol. 337, Nos. 1–3, pp.217–239.

Campi, A., Guinea, S. and Spoletini, P. (2006) ‘Fuzzy querying of semi-structured data’, in
N. Guimarães et al. (Eds.) Proceedings of the 3rd IADIS International Conference on Applied
Computing, pp.241–248.

Chen, Y. and Aberer, K. (1998) ‘Layered index structures in document database systems’, in
D.J. DeWitt et al. (Eds.) Proceedings of the 7th International ACM Conference on
Information and Knowledge Management, pp.406–413.

Ciaccia, P., Patella, M. and Zezula, P. (1997) ‘M-tree: an efficient access method for similarity
search in metric spaces’, in M. Jarke et al. (Eds.) Proceedings of the 23rd International
Conference on Very Large Databases, pp.426–435.

Clarke, C.L.A. (2005) ‘Controlling overlap in content-oriented XML retrieval’, in
R.A. Baeza-Yates et al. (Eds.) Proceedings of the 28th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp.314–321.

Fuhr, N., Gövert, N. and Großjohann, K. (2002) ‘HyREX: Hyper-media retrieval engine for XML’,
in M. Beaulieu et al. (Eds.) Proceedings of the 25th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, p.449.

Grust, T. (2002) ‘Accelerating XPath location steps’, in M.J. Franklin et al. (Eds.) Proceedings of
the 2002 ACM SIGMOD Conference on Management of Data, pp.109–120.

Hatano, K., Kinutani, H., Yoshikawa, M. and Uemura, S. (2002) ‘Information retrieval system for
XML documents’, in A. Hameurlain et al. (Eds.) Proceedings of the 13th International
Conference on Database and Expert Systems Applications, pp.758–767.

Hiemstra, D. and Mihajlović, V. (2005) ‘The simplest evaluation measures for XML information
retrieval that could possibly work’, in A. Trotman et al. (Eds.) Proceedings of the INEX 2005
Workshop on Element Retrieval Methodology, pp.6–13.

Kamps, J., de Rijke, M. and Sigurbjörnsson, B. (2004) ‘Length normalization in XML retrieval’,
in M. Sanderson et al. (Eds.) Proceedings of the 27th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp.80–87.

Kilpeläinen, P. (1992) ‘Tree matching problems with applications to structured text databases’,
PhD Thesis, University of Helsinki.

Kotsakis, E. (2002) ‘Structured information retrieval in XML documents’, in G.B. Lamont et al.
(Eds.) Proceedings of the 2002 ACM Symposium on Applied Computing, pp.663–667.

Krátký, M., Pokorný, J. and Snášel, V. (2004) ‘Implementation of XPath axes in the
multi-dimensional approach to indexing XML data’, Proceedings of Current Trends in
Database Technology, pp.219–229.

 Relevance measures for XML information retrieval 193

Lee, Y.K., Yoo, S., Yoon, K. and Berra, B. (1996) ‘Index structures for structured documents’, in

E.A. Fox and G. Marchionini (Eds.) Proceedings of the First ACM International Conference
on Digital Libraries, pp.91–99.

Lehtonen, M. (2006) ‘Designing user studies for XML retrieval’, in A. Trotman et al. (Eds.)
Proceedings of the SIGIR 2006 Workshop on XML Element Retrieval Methodology, pp.28–34.

List, J., Mihajlovic, V., de Vries, A.P., Ramirez, G. and Hiemstra, D. (2003) ‘The TIJAH XML-IR
system at INEX 2003’, in N. Fuhr et al. (Eds.) Proceedings of the 2nd International Workshop
on the Initiative for the Evaluation of XML Retrieval, pp.102–109.

Luoma, O. (2005a) ‘Modeling nested relationships in XML documents using relational databases’,
in P. Vojtáš et al. (Eds.) Proceedings of the 31st Conference on Current Trends in Theory and
Practice of Computer Science, pp.259–268.

Luoma, O. (2005b) ‘Supporting XPath axes with relational databases using a proxy index’, in
S. Bressan et al. (Eds.) Proceedings of the 3rd International XML Database Symposium,
pp.99–113.

Luoma, O. (2006) ‘Xeek: an efficient method for supporting XPath evaluation with relational
databases’, in Y. Manolopoulos et al. (Eds.) Communications of the Tenth East-European
Conference on Advances in Databases and Information Systems, pp.30–45.

Piwowarski, B. and Dupret, G. (2006) ‘Evaluation in (XML) information retrieval: expected
precision-recall with user modelling (EPRUM)’, in E.N. Efthimiadis et al. (Eds.) Proceedings
of the 29th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp.260–267.

Poon, J.P., Raghavan, V., Chakilam, V. and Kerschberg, L. (2001) ‘BitCube: a three-dimensional
bitmap indexing for XML documents’, Journal of Intelligent Information Systems, Vol. 17,
Nos. 2–3, pp.241–254.

Salton, F. (1971) The SMART Retrieval System – Experiments in Automatic Document Processing,
New Jersey: Prentice-Hall.

Schlieder, T. and Meuss, H. (2002) ‘Querying and ranking XML documents’, Journal of the
American Society for Information Science and Technology, Vol. 53, No. 6, pp.489–503.

Shanmugasundaram, J., Tufte, K., He, G., Zhang, C., DeWitt, D.J. and Naughton, J.F. (1999)
‘Relational databases for querying XML documents: limitations and opportunities’, in
M.P. Atkinson et al. (Eds.) Proceedings of the 25th International Conference on Very Large
Databases, pp.302–314.

Weigel, F., Schulz, K.U. and Meuss, H. (2005) ‘Ranked retrieval of structured documents with the
s-term vector space model’, in N. Fuhr et al. (Eds.) Proceedings of the 4th International
Workshop on the Initiative for the Evaluation of XML Retrieval, pp.238–252.

World Wide Web Consortium (W3C) (2006) Extensible Markup Language (XML) 1.0,
www.w3c.org/TR/REC-xml.

World Wide Web Consortium (W3C) (2007) XML path language (XPath) 2.0, www.w3c.org/
TR/xpath20.

Notes

1 inex.is.informatik.uni-duisburg.de

2 The document node was left out of Figure 4 since it does not belong to the result of any
XPath axis.

3 A text node cannot be an ancestor of any node, and thus the minimum relevance for a text
node matching a string value test with respect to any node is (1 + cos(135°))/2 = 0.15.
However, since our focus is mainly on structural ranking, we use a larger value, 0.5, in order
to emphasise the structural part of the queries.

4 Available at www.ibiblio.org/xml/examples.

