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Abstract: In recent years, a lot of work has been carried out to develop 
efficient methods for storing and querying XML data. Most of the proposals 
have approached the subject from the database point of view, i.e., they  
have primarily aimed at providing exact matching capabilities. The problem 
can, however, also be addressed as an information-retrieval problem, which 
obviously introduces some challenges, such as the need for relevance ranking. 
The vast majority of the previous proposals have based the ranking primarily  
on content and, furthermore, if structural properties were taken into account, 
only containment relationships have been considered. In this paper, we  
focus on ranking the results based on their structural properties and aim  
at supporting a wide range of structural operations, such as operations  
based on preceding/following relationships. Our method is based on a fuzzy 
interpretation of the XPath query language which is also discussed in this 
paper. Finally, we discuss a relational implementation of our model and present 
the results of our experiments. 
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1 Introduction 

XML (W3C, 2006), a markup language recommended by the World Wide Web 
Consortium (W3C), plays a major role in many modern applications, and thus several 
methods for managing XML data have been proposed. The previous proposals, however, 
have primarily approached the issue as a database problem, and thus they have aimed  
at providing exact matching capabilities. As a consequence, they are based on the 
assumption that the user is fully aware of the structure of the documents. In an 
information retrieval setting, however, this is often not true. For example, consider the 
XML excerpts in Figure 1, which contain information about customers, orders and 
products. The user is trying to find information on customers who ordered the product  
of the name ‘xyz’, so (s)he writes a query to find all customer elements that contain  
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an order element that contains a product element that contains a name element that 
contains the word ‘xyz’. In terms of XPath (W3C, 2007), a query language developed  
for querying XML documents, this is expressed as //customer[//order// 
product//name=‘xyz’].  

Figure 1 Examples of different documents describing similar information 

<customer> 

 <name>Orimatti Teuras</name> 

 <address>Teuraantie 100</address> 

 <orders> 

  <order  id=“2” date=“01012006”> 

   <product id=“1”> 

    <name>xyz</name> 

    <price>100</price> 

   </product> 

  </order> 

 </orders> 

</customer> 

<product id=“1”> 

 <name>xyz</name> 

 <price>100</price> 

 <orders> 

  <order  id=“2” date=“01012006”> 

   <customer> 

    <name>Mikki Hiiri</name> 

    <address>Ankkalinna 313</address> 

   </customer> 

  </order> 

 </orders> 

</product> 

In a database setting, the answer to this query is clear. Only the left excerpt matches the 
query; the right excerpt is rejected because the product element, for example, does not 
appear between <customer> and </customer> tags. However, one could argue 
that both excerpts should be returned but the right one should just be given a lower 
relevance rank. In many previous XML information-retrieval proposals, this would  
have been impossible since they based their ranking on the content of the documents and 
often interpreted the structural part of the query strictly. In this paper, we therefore aim at 
defining relevance measures for structural ranking. In summary, this paper contributes to 
the XML information-retrieval research as follows: 

• We formulate a fuzzy interpretation of XPath queries. More accurately, we propose  
a method for calculating the relevance of any XML element with respect to an  
XPath query. 

• In order to support structural ranking, we propose relevance measures for all  
12 XPath axes, such as ancestor, descendant, preceding, following, 
parent and child. This sets our approach apart from previous proposals, which 
have considered only containment relationships among the elements, i.e., the 
descendant axis. Furthermore, our proposal differs from the previous work in 
the sense that our relevance measures are based on simple geometric properties of 
the preorder and postorder ranks of the nodes in a tree rather than, for example, 
computationally expensive tree edit distances. 

• We describe how our structural relevance measures can also be used to rank the 
results based on their content. 

• Our proposal can be implemented efficiently on different platforms. To exemplify 
this, we describe an implementation based on a relational database. 
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The paper proceeds in the following manner. In Section 2, we review the related work 
and in Section 3, we briefly discuss the basics of the XPath query language. Section 4 
discusses a fuzzy interpretation of XPath queries and Section 5 presents the similarity 
measures for XPath operations, such as axes, node tests and content tests. Section 6 
discusses a relational implementation of our ideas and Section 7 presents the results  
of our experimental evaluation. Section 8 concludes this article and discusses our  
future work. 

2 Related work 

In recent years, XML has gained tremendous popularity and many methods for managing 
XML documents have therefore been proposed (Lee et al., 1996; Shanmugasundaram  
et al., 1999; Luoma, 2005a; 2005b). Early examples, such as BitCube (Poon et al., 2001) 
and Signature File Hierarchy (Chen and Aberer, 1998), typically aim at retrieving whole 
documents rather than parts of them. The main intuition behind BitCube, for example, is 
to generalise the idea of (document, keyword) bitmap into three dimensions to index 
(document, keyword, path) triplets. Since such an index can obviously be very large and 
sparse, the paper also describes a method for clustering the bitmap into smaller and 
denser cubes. This proposal is suitable only for finding all documents which contain 
certain paths, certain keywords, or certain keywords at the end of certain paths. 
Furthermore, whole documents must be returned as query results, and thus the 
practicability of this method is somewhat limited, especially if we have to deal with large 
XML documents. 

It is interesting to notice, however, that both BitCube and Signature File Hierarchy 
can be used to support coordinate queries, and thus they can be used to rank query results 
according to their relevances. When retrieving all record elements which contain the 
words ‘John’ and ‘Scofield’, for example, we could first return all documents containing 
a record element which actually contains the words, then documents containing elements 
with other tags which contain the words or record elements which contain either ‘John’ 
or ‘Scofield’, etc. Signature File Hierarchy, on the other hand, provides access to 
individual elements. However, since both BitCube and Signature File Hierarchy only 
index (element, keyword) pairs, queries like ‘find all record elements which contain a 
name element’ cannot be supported without considerable extensions. 

Recent XML information-retrieval proposals have typically aimed at more 
sophisticated relevance-ranking capabilities and greater granularity by providing access 
to parts of the documents (Kotsakis, 2002; Hatano et al., 2002; Fuhr et al., 2002; 
Schlieder and Meuss, 2002; List et al., 2003; Weigel et al., 2005). In many of these, an 
element is considered an individual document, which is then indexed using traditional 
information-retrieval methods for text documents, such as the tf ⋅ idf model (Salton, 
1971). In our view, however, they more or less ignore the problem of matching the 
structural part of the queries; and even if it is considered, only containment relationships 
are taken into account. Since XML documents can be represented as trees, we can view 
these proposals as attempts to solve a fuzzy version of the tree inclusion problem 
(Kilpeläinen, 1992). A good example of this is the proposal of Weigel et al. (2005), in 
which the subtrees were considered structured terms, i.e., flat (nonhierarchical) 
representations of trees, which were then indexed using traditional information-retrieval 
methods. Amer-Yahia et al. (2005) aimed at supporting both containment and direct 
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containment by proposing a method for relaxing the structural conditions. For example, if 
we are searching for record elements which directly contain the word ‘Scofield’, we 
get record elements which directly or indirectly contain ‘Scofield’. In the latter case, 
the results are obviously assigned a lower relevance. 

Restriction of tree inclusion is also evident in the field of XML information retrieval 
in general. INEX (Initiative for XML Information Retrieval),1 for example, lists two 
tasks: the Content Only task (CO) and the Content and Structure task (CAS). In CO, only 
content is queried, whereas in CAS, some simple restrictions can be set to the structure of 
the returned elements. For example, if one is to retrieve all record elements which 
contain the words ‘John’ and ‘Scofield’, only elements with tag record are returned; 
the ranking of the results is performed based on content. In other words, structural 
conditions are interpreted strictly, which can hardly be regarded as structural ranking. In 
this paper, we aim at providing more sophisticated structural ranking capabilities and 
supporting a wide range of structural operations. Our proposal is able to support queries 
like ‘find all bids by person X that were made after a bid by person Y’ or ‘find all acts in 
a play which precede an act in which words “Hamlet” and “danger” appear’. Rather than 
being based on tree edit distances (Bille, 2005; Campi et al., 2006), our method is based 
on simple geometric properties of the nodes, which makes it both efficient and easy  
to implement. 

3 XPath basics 

According to XPath (W3C, 2007), every XML document can be represented as a partially 
ordered, labelled XML tree in which each element, attribute and text node corresponds  
to an element, attribute and piece of text in the document, respectively. The 
ancestor/descendant relationships of the nodes correspond to the nested relationships 
between elements, attributes and pieces of text. A simple example of an XML tree is 
presented in Figure 2. The nodes are numbered in both pre- and postorder, which encodes 
a lot of information on the structural relationships among the nodes (Grust, 2002). 

Figure 2 An XML tree corresponding to the XML document <b><c d=“y”/><c 
d=“y”><e>kl</e></c><c><e>ez</e></c></b> 
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In addition to the tree representation of XML documents, the XPath recommendation also 
lists 12 axes, i.e., operators for tree traversals, which are listed in Table 1. These axes are 
used in location steps, which start from a context node and result in a set of nodes  
that satisfy the conditions of the step; the document node is used as the initial context 
node. More specifically, a location step is of the form /axis::test[predicate], 
where axis is one of the XPath axes and test is either a node type test or a name  
test. Optional predicates can be used to further restrict the result. An XPath query,  
then, is simply a sequence of location steps. For example, we might issue query 
/descendant::*[descendant::e] to select all descendants of the document 
node that have one or more descendant nodes with tag ‘e’. In the case of the tree 
presented in Figure 2, for example, nodes (1,10), (4,6) and (8,9) satisfy the query. 

Table 1 XPath axes and their semantics 

Axis Semantics of n/axis 

parent 

child 

ancestor 

descendant 

ancestor-or-self 

descendant-or-self 

preceding 

following 

preceding-sibling 

following-sibling 

attribute 

self 

Parent of n 

Children of n, no attribute nodes 

Transitive closure of parent 

Transitive closure of child, no attribute nodes 

Like ancestor, plus n 

Like descendant, plus n, no attribute nodes 

Nodes preceding n, no ancestors or attribute nodes 

Nodes following n, no descendants or attribute nodes 

Preceding sibling nodes of n, no attribute nodes 

Following sibling nodes of n, no attribute nodes 

Attribute nodes of n 

Node n 

XPath also provides means for querying content using string value tests. For example, the 
XPath query /descendant::*[descendant::e=‘ez’] selects all descendants 
of the document node which have a descendant node with tag ‘e’, such that the content  
of the descendant is ‘ez’. In our example case, nodes (1,10) and (8,9) satisfy these 
conditions. More accurately, the XPath recommendation defines the string value of an 
element node as the concatenation of the string values of all text node descendants of the 
element node in document order. 

4 A fuzzy interpretation of XPath 

As discussed in the previous section, three kinds of conditions can be set using XPath: 
axis conditions, node tests and string value tests, i.e., content tests. It should therefore be 
obvious that the relevance-ranking algorithm of an XML information-retrieval engine 
should be able to assign ranks for nodes based on these three factors. Before defining the 
concept of step relevance, let us first define axis relevance, node test relevance and string 
value relevance. 

    
 
 

   

   
 

   

   

 

   

       
 



   

 

   

   
 

   

   

 

   

    Relevance measures for XML information retrieval 175    
 

 
Definition 1 Let N denote the set of nodes in an XML tree and let A denote the set of 

XPath axes. Any function raxis(n0, n1, a) : N × N × A → [0,1] is an axis 
relevance for n1 ∈ N with respect to n0 ∈ N and a ∈ A. 

In simple terms, this function answers the following question: “To what extent is node n1 
an ancestor, descendant, preceding sibling, following sibling, parent, child, etc. of node 
n0, i.e., the context node?” Notice that our definition is very general and any function that 
fills the requirements qualifies as an axis relevance function. To obtain relevant results, 
however, the function obviously has to be selected carefully. One possibility of defining 
relevance functions for the axes is discussed in Section 5. 

Definition 2 Let N denote the set of nodes in an XML tree and let T denote the set  
of node tests. Any function rtest(n,t) : N × T → [0,1] is a node test 
relevance for n ∈ N with respect to t ∈ T. 

The definition is again very broad, but it is rather easy to select a function to measure 
node test relevances. We could, for example, assign value 1 for cases in which a node 
satisfies the node test and 0.1 for other cases. 

Definition 3 Let N denote the set of nodes in an XML tree and let C denote the set of 
string value tests. Any function rcontent(n, c) : N × C →[0,1] is a string 
value relevance for n ∈ N with respect to c ∈ C. 

This function could be defined by indexing the content of each element using traditional 
information-retrieval concepts, such as the tf ⋅ idf model (Salton, 1971). However, since 
the string value of a node is a concatenation of the text node descendants of the node 
(W3C, 2007), string value tests can be regarded as descendant tests, i.e., axis tests. The 
next section therefore discusses an alternative relevance measure for string values which 
utilises axis relevances. Finally, we use the concepts of axis, node test and string value 
relevances to define the step relevance as follows: 

Definition 4 Let N, A, T and C denote the same sets as before. Function  
rstep(n0, n1, s) : N × N × (A × T × C) →  [0,1] is the step relevance  
for n1∈ N with respect to n0∈ N and location step s, consisting of a∈ A, 
t∈ T and c∈ C starting from n0∈ N, defined as rstep(n0, n1, s) = raxis(n0, 
n1, a) ⋅ rtest(n1, t) ⋅ rcontent(n1, c). 

In simple terms, the step relevance is defined as a product of axis, node test and string 
value relevances. This function could also have been defined as a minimum of relevances 
or some other t-norm. Notice that our model is flexible enough to support many different 
approaches. The INEX CAS task, for example, can be regarded as a case in which the 
node test relevance is defined as a binary function, i.e., nothing is retrieved if any of the 
node tests in a query does not match with any node in an XML tree. In the INEX CO 
family of methods, on the other hand, the node test relevance is always 1. 

Armed with these concepts, we are ready to define the relevance for a node with 
respect to a query. An XPath query can always be represented as a query tree, in which 
each node corresponds to a location step in the query and branches correspond to 
predicates. Furthermore, every query tree has exactly one active step, i.e., a step which  
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corresponds to the node set that is finally returned. An example of a query tree is 
presented in Figure 3; the active node is underlined. We assign a unique identifier to all 
nodes in the query tree; the nodes are numbered in preorder. 

Figure 3 A query tree corresponding to /descendant::a/following::b=‘abc’ 
[preceding::c]/child::*=‘ijk’ 

It is now important to notice that each step in a query is performed starting from the 
nodes resulting from the step corresponding to the parent of the step in the query tree. To 
denote the identifier of the parent of step s in the XPath query tree, we use par(s); if s is 
the root, par(s) = 0. The following definition, then, defines the relevance of a multiset of 
XML tree nodes with respect to an XPath query using n0 as an initial context node. 

Definition 5 Let N = {n1, n2,..., nl} denote an ordered multiset of nodes in an XML 
tree and S = {s1, s2,..., sl} an ordered set of location steps in an XPath 
query tree. Function rquery(N, S) is the query relevance for N with 

respect to S, defined as r N  ( )1 iquery step par s i ii
( , ) ( , , ).

l
S r n n s

=
= ∏

The relevance of an individual node n with respect to a query, then, is simply defined as 
rquery(N, S), such that n is the node in N which corresponds to the active location step. In 
other words, we are interested in finding a multiset of nodes such that performing the 
steps in a query via these nodes produces the maximum relevance with respect to the 
query; notice that one single node can appear in this multiset multiple times. However, 
given context node n0, finding the most relevant node with respect to n0 and a query 
consisting of location steps s1, s2,..., sl can obviously involve checking |N|l node 
sequences, and thus we need to apply some heuristics in order to perform queries 
efficiently. For example, if the user is interested in finding the ten most relevant nodes, 
we could approximate the process and only take the 100 or 1000 most relevant nodes into 
account when performing the steps. After the final step, we would return the ten most 
relevant nodes. 

5 Relevance measures for XPath 

5.1 Relevance measures for the XPath axes 

Four of the XPath axes, namely ancestor, descendant, preceding and 
following, can be regarded as the major axes. This is because of the fact that these 
axes partition the nodes of an XML tree into four disjoint partitions according to the 
following observation (Grust, 2002): 

    
 
 

   

   
 

   

   

 

   

       
 



   

 

   

   
 

   

   

 

   

    Relevance measures for XML information retrieval 177    
 

 

(1, 1).−
( 1,1),  ( 1, 1)− − − (1,1),

Proposition 1 Let N denote the set of nodes in an XML tree and let pre(ni) and 
post(ni) denote pre- and postorder numbers of node ni, respectively. 
For any two nodes n0, n1 ∈ N, n1 ∈ n0/ancestor::* iff pre(n1)  
< pre(n0) and post(n1) > post(n0), n1 ∈ n0/descendant::* iff 
pre(n1) > pre(n0) and post(n1) < post(n0), n1 ∈ n0/preceding::*  
iff pre(n1) < pre(n0) and post(n1) < post(n0), and n1 ∈ n0/ 
following::* iff pre(n1) > pre(n0) and post (n1) > post(n0). 

This partitioning is illustrated on the left side of Figure 4, which shows the partitioning 
created by the axes among the nodes of the XML tree in Figure 2 using the node (4,6) as 
the context node.2 

Figure 4 Examples of partitioning (left) and measuring the following relevance (right) with 
respect to node (4,6) 
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The same observation also gives us an idea for defining the relevances for the major axes. 
One can rather easily see that the descendants of any context node tend to be located in 
direction  Similarly, the ancestors, predecessors and followers can, in general, be 
found in directions  and 

 r
,1

 respectively. We can therefore determine 
the following elevance, for example, for node n1 with respect to n0 by measuring the 
angle between (1 ) 1), p

,1)
 and the vector from (pre(n0), post(n0)) to (pre(n ost(n1)). This is 

illustrated on the right side of Figure 4, which shows the direction (1

,1)

 and the vector 
from node (4,6) node (8,9) as well as the vector from node (4,6) to node (6,5). The 
angle between (1

 to 
 and the vector from (4,6) to (8,9) is smaller than the angle between 

(1,1) and the vector from (4,6) to (6,5), and thus we can say that node (8,9) is a follower 
of node (4,6) to a greater extent than node (6,5). 

More formally, the relevance for node n1 with respect to node n0 and the 
following axis is calculated using the formula shown: 

0 1
0 1

0 1

0 1

1 ( ( ), (1,1))
if 

( , , ) 2
                            if 

axis

a

cos n n
n n

r n n

n n

α

ε

⎧ +
≠⎪= ⎨

⎪ =⎩

following  
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where  denotes the vector from (pre(n0 1(n nα ) 0), post(n0)) to (pre(n1), post(n1)), 

 denotes the cosine of the angle between vectors 1 2( , )cos v v 1v  and 2 ,v  and εa ∈ [0,1] is a 

constant used to define the extent to which a node is considered to be a follower of itself. 
The cosine can be calculated using the dot product as follows: 

0 1
0 1

0 1

( ) (1,1)
( ( ), (1,1))

( ) (1,1)

n n
cos n n

n n

α
α

α

⋅
=

⋅
 

The similarities for the other major axes can also be defined using their general 
directions. Notice that the ancestor and descendant axes, as well as the 
preceding and following axes, can be regarded as opposites, and thus the 
preceding similarity, for example, can alternatively be defined as: 

1 0 0 1
0 1

0 1

( , , ) if  
( , , )

                                 if .
axis

axis
a

r n n n n
r n n

n nε
≠⎧

= ⎨ =⎩

following
preceding  

The ancestor-or-self and descendant-or-self axes are similar to  
their major axis counterparts with the exception that a node has much greater  
relevance with respect to itself; in this case, the similarity is defined as 1. Thus, the 
ancestor-or-self relevance, for example, is defined as follows: 

0 1 0 1
0 1

0 1

( , , ) if  
( , , )

1                                 if .
axis

axis

r n n n n
r n n

n n

≠⎧
= ⎨ =⎩

ancestor
ancestor-or-self  

Relevances for other minor axes, i.e., parent, child, preceding-sibling, 
following-sibling, attribute and self, have to be defined using a somewhat 
different approach. In the case of parent and child relevances, we extend the  
pre-/postorder plane with a third dimension, namely the level or the height of the nodes. 
We define the level of root of the tree as 1, the level of the children of the root as 2, etc. 
Again, the relevance is defined using the cosine of the angle between two vectors but 
now the vectors e-dimensional. As the vector for the general direction of the 
parent axis, 

 are thre
( 1,1, 1)− −  is used. In other words, the parent of a node is an ancestor of 

the node and is located one level lower in the tree. The parent relevance is therefore 
calculated using the following formula: 

1 0
0 1

0 1

0 1

1 ( ( ),( 1,1, 1))
if 

( , , ) 2
                                    if 

axis

a

cos n n
n n

r n n

n n

β

ε

⎧ + − −
≠⎪= ⎨

⎪ =⎩

parent  

where  serves as a denotation for the vector from (pre(n0 1(n nβ ) 0), post(n0), level(n0))  

to (pre(n1), post(n1), level(n1)). The relevance for the child axis, then, can be  
defined as: 

0 1 0 1
0 1

0 1

( , , ) if  
( , , )

                           if .
axis

axis
a

r n n n n
r n n

n nε
≠⎧

= ⎨ =⎩

parent
child  
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We have to use a slightly different representation of the nodes to evaluate the relevances 
for the preceding-sibling and following-sibling axes. In this case, node n 
is uniquely identified as a triplet (pre(par(n)), post(par(n)), ord(n)) where par(n) denotes 
the parent of node n and ord(n) the order number of node n among its siblings.  
As the parent of the root node, the document node of the XPath recommendation can be 

used. It is obvious that all siblings share the same parent, and thus (0,0, 1)− can be used 

as a general direction for the preceding-sibling axis and (0,0,1) for the 
following-sibling axis. The following formula is used as a relevance measure for 
the preceding-sibling axis: 

0 1
0 1

0 1

0 1

1 ( ( ),(0,0, 1))
if 

( , , ) 2
                                   if 

axis

a

cos n n
n n

r n n

n n

γ

ε

⎧ + −
≠⎪= ⎨

⎪ =⎩

preceding-sibling  

where  denotes the vector from (pre(par(n0 1(n nγ ) 0)), post(par(n0)), ord(n0)) to 

(pre(par(n1)),  post(par(n1)), ord(n1)). Furthermore, since these axes can be regarded as 
opposites, we can define the following-sibling relevance as: 

1 0 0 1
0 1

0 1

( , , ) if  
( , , )

                                                if .
axis

axis
a

r n n n n
r n n

n nε
≠⎧

= ⎨ =⎩

preceding-sibl.
following-sibl.  

In order to support all XPath axes, we still need to define relevance measures for the 
self and attribute axes. We could use Euclidean distance to define the self 
relevance, but we can also simply remove the location steps involving the self axis. 
The attribute axis, on the other hand, can be treated as a combination of child 
axis, node type test and name test; the node test relevance measures are presented in the 
following section. Table 2 exemplifies our relevance measures using the XML tree 
presented in Figure 2; node (4,6) was used as the context node and value 0.1 for εa. 

Table 2 Examples of axis relevances with respect to node (4,6) 

Node 

Axis (1,10) (2,2) (3,1) (4,6) (5,3) (6,5) (7,4) (8,9) (9,8) (10,7) 

parent 0.95 0.37 0.22 0.10 0.06 0.03 0.04 0.44 0.29 0.18 

child 0.05 0.63 0.78 0.10 0.94 0.97 0.96 0.56 0.71 0.82 

ancestor 0.99 0.34 0.22 0.10 0.05 0.03 0.01 0.43 0.30 0.21 

descendant 0.01 0.66 0.78 0.10 0.95 0.97 0.99 0.57 0.70 0.79 

preceding 0.42 0.97 0.91 0.10 0.72 0.34 0.40 0.01 0.04 0.09 

following 0.58 0.03 0.09 0.10 0.28 0.66 0.60 0.99 0.96 0.91 

prec-sibl 0.79 1.00 0.56 1.10 0.60 0.50 0.57 0.00 0.57 0.56 

foll-sibl 0.21 0.00 0.44 0.10 0.40 0.50 0.43 1.00 0.43 0.44 

attribute 0.00 0.06 0.78 0.05 0.94 0.10 0.0 0.06 0.07 0.08 
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Although the axis relevances were defined using simple cosine functions, they actually 
work rather well. As an interesting detail in Table 2, one might notice that the child 
relevance of node (4,6) with respect to node (7,4) is rather large, 0.96, although node 
(7,4) is actually a grandchild of node (4,6). In general, our method tends to exaggerate the 
parent and child relevances especially in the case of small documents, i.e., when 
the nodes have a small number of descendants compared to the number of ancestors. 

Although our relevance measures do not have metric properties, which rules out the 
use of M-tree indexes (Ciaccia et al., 1997), it should be rather easy to design an index to 
avoid unnecessary axis relevance computations. One possibility is to assign each node n 

to a partition 
( ) ( )
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pre n post n
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then calculate the axis relevances between these disjoint partitions similarly as we did 
with individual nodes, store these values, and use them as estimates for axis relevances. 
For example, the estimated relevance for n1 with respect to n0 and the ancestor axis 
would therefore be defined as follows:  
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Using this approach, the axis relevances are computed only for nodes residing in the 
same partition with the context node; for nodes in other partitions, the precomputed 
estimates are used. By using the preorder and postorder numbers of their parents  
and the order number of the nodes as partitioning criteria, the relevances for 
preceding-sibling and following-sibling axes can be indexed similarly. 

One could also take advantage of some well-known multidimensional XML indexing 
approaches based on R-trees (Grust, 2002) or UB-trees (Krátký et al., 2004). In this case, 
the relevance with respect to descendant axis, for instance, could be defined simply 
as 1 for the nodes which are actual descendants of the context node, 0.5 for the followers 
and predecessors, and 0 for the nodes which are ancestors of the context node. However, 
one could argue that node (10,7) of the tree in Figure 2, for example, is a descendant  
of node (4,6) to a greater extent than node (8,9), since (10,7) is a descendant of the 
immediately following sibling of (4,6) whereas (8,9) is the immediately following 
sibling. Nevertheless, if we were to rely on the simple definition of descendant axis 
relevance, both nodes would have a relevance of 0.5. Our method based on the cosine 
measure, on the other hand, gives a relevance of 0.79 for (10,7) and 0.57 for (8,9). 

5.2 Relevance measures for node tests 

As discussed in the previous section, defining relevance functions for the node tests is 
rather easy. We define the relevance for node n with respect to node test t as follows  
(εt ∈ [0,1] can be used to tune the importance of node tests): 

1 if  matches            
( , )

if  does not match .test
t

n t
s n t
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We could actually formulate a more accurate relevance measure for node type tests.  
For example, element and attribute nodes could be regarded as more similar than element 
and comment nodes. We could also take the semantics of different tags into account,  
use edit distances to allow spelling errors, etc. In this paper, however, we rely on the 
simple definition. 

5.3 Relevance measures for content conditions 

It is interesting to notice that our structural relevance measures can also be used to 
support queries involving content conditions. The basis for this is again the XPath 
recommendation (W3C, 2007), which defines the string value of an element node  
as follows: “The string-value of an element node is the concatenation of the string-values 
of all text node descendants of the element node in document order”. 

To evaluate string value tests as descendant queries, we split text nodes containing 
many words into multiple nodes that all contain only one word. After this, we can 
evaluate our example query /descendant::*=‘kl ez’ by checking which 
descendants of the document node have descendant text nodes ‘kl’ and ‘ez’. More 
precisely, the query is transformed into /descendant::*[descendant-or 
-self::text()=‘kl’] [descendant-or-self::text()=‘ez’]. We 
assign value 1 for the cases in which the value matches the string value test and value  
εc ∈ [0,1] for other cases. Obviously, some standard information-retrieval methods, such 
as stemming, can be applied before indexing the text nodes. 

Using the axis, node test and string value test relevances discussed in this section, we 
now take a look at how some example queries match with nodes of the XML tree in 
Figure 2. Our query set is presented in Table 3 and the relevances of the nodes with 
respect to these queries in Table 4. In the case of Q1, for example, nodes (6,5) and (9,8) 
actually belong to the result of the query, and thus they are assigned large relevances, 
0.92 and 0.96, respectively. Nodes (4,6), (7,4), (8,9) and (10,7) are also somewhat 
relevant since they follow a node with label ‘c’. Value 0.1 was used for εa and value 0.5 
for εt and εc.

3 

Table 3 Query examples 

# Query 
Q1 /descendant-or-self::c/following::e 
Q2 /descendant-or-self::c[attribute::d=“y”] 
Q3 /descendant-or-self::c[attribute::d=“x”] 
Q4 /descendant-or-self::*=“ez” 
Q5 /descendant-or-self::*=“kl ez” 

Table 4 Relevances with respect to query examples 

Node 
# (1,10) (2,2) (3,1) (4,6) (5,3) (6,5) (7,4) (8,9) (9,8) (10,7) 
Q1 0.37 0.09 0.12 0.45 0.22 0.92 0.44 0.50 0.96 0.46 
Q2 0.48 0.92 0.11 0.93 0.12 0.31 0.19 0.62 0.26 0.21 
Q3 0.23 0.46 0.06 0.47 0.06 0.16 0.10 0.31 0.13 0.11 
Q4 0.87 0.56 0.25 0.74 0.27 0.63 0.50 0.84 0.86 0.24 
Q5 0.79 0.36 0.14 0.66 0.17 0.57 0.13 0.61 0.54 0.12 
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6 Relational implementation 

6.1 Relational schema 

To put our ideas to the test, we implemented a simple XML information-retrieval engine 
on top of a relational database. In many proposals which aim at providing exact matching 
capabilities (Grust, 2002; Luoma, 2005a; 2005b; 2006), a single relation was used to 
store both structure and content, but in order to support efficient string value matching, 
we store the nodes using relation Node and the keywords, i.e., individual words 
appearing in the text nodes, using the relation Word. 

Node(Pre, Post, Level, Order, Par, Type, Name) 
Word(Pre, Order, Word) 

In the relation Node, the database attributes Pre, Post and Level correspond to the 
preorder number, the postorder number and the level of the node, respectively. The 
database attribute Order corresponds to the order number of the node among its 
siblings, and Par to the preorder number of the parent of the node. Finally, the database 
attributes Type and Name correspond to the type and name of the node, respectively.  
In the relation Word, the database attributes Pre, Order and Word correspond to the 
preorder number of the text node, the number of the word among the words in the node, 
and the keyword itself, respectively. For simplicity, we identify attribute nodes as 
element nodes; the values of the attributes are treated as text nodes. The underlined 
database attributes serve as the primary key in both relations. 

In order to perform XPath queries one step at a time, we also need a relation to store 
the intermediate results. To do this, we employ the relation Result: 

Result(Step, Context, Pre, Relevance) 

In this relation, the database attribute Step corresponds to the preorder number of the 
step in the query tree, and Context to the preorder number of the context node from 
which the step was performed. Pre corresponds to the preorder number of the resulting 
node, and the database attribute Relevance to the relevance of node Pre with respect 
to node Context and step Step. 

6.2 SQL queries for performing the steps 

The XPath-to-SQL query translation of our prototype system is based on the algorithms 
described in this section. Algorithm evaluate(S) issues the SQL queries corresponding to 
query tree S. As mentioned earlier, the document node is used as the initial context node, 
and thus the algorithm starts by issuing an SQL query in order to insert the document 
node into the Result table with relevance 1. After this, the algorithm traverses the 
query tree in preorder and issues two SQL queries for each location step in the tree. The 
first of these queries inserts the context nodes, i.e., the nodes stored in the table Result, 
and their relevances with respect to themselves into the Result table. Since the 
document node is not in the result of any of the axes, the first query is not performed 
during the first iteration. The second query calculates and stores the relevances of other  
nodes with respect to the context nodes. After all of the nodes in the query tree have been 
processed, a query generated by algorithm genRankSQL(S) is issued to actually rank the 
nodes. Algorithm id(s) returns the id of step s in a query tree: 
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evaluate(S)  
IN: Query tree S 
OUT: Set of nodes sorted according to their relevance with respect to S  
 issue(“INSERT INTO Result VALUES (0, –1, 0, 1)”)  
 for each s ∈ S do  
  if (id(s)> 1) then 
   issue(genEvalSQL(s, true))  
  issue(genEvalSQL(s, false))  
 issue(genRankSQL(S)) 

Algorithm genEvalSQL(s, f ) simply generates the SELECT, FROM and WHERE parts 
of the SQL query corresponding to location step s; the boolean value f is used to express 
whether we are inserting the context nodes themselves or other nodes: 

genEvalSQL(s, f ) 
IN: Location step s, boolean f 
OUT: SQL query corresponding to s 
 return “INSERT INTO Res” + 
 genEvalSELECT(s, f ) + 
 genEvalFROM(s, f ) + 
 genEvalWHERE(s, f ) 

A very straightforward algorithm, genEvalSELECT(s, f ), is used to generate the 
SELECT parts of the queries: 

genEvalSELECT(s, f ) 
IN: Location step s, boolean f 
OUT: SELECT part of SQL query corresponding to s  
 if (f) then 
  return “SELECT” + id(s) + “n.Pre, n.Pre,” + genRel(s, f ) 
 else 
  return “SELECT” + id(s) + “c.Pre, n.Pre,” + genRel(s, f ) 

Algorithm genEvalFROM(s, f ) generates the right tuple variables into the  
FROM part. In general, this is rather simple; but if the axis of the step is either 
preceding-sibling or following-sibling, we need extra tuple variables cp 
and np, which correspond to the parents of the context nodes and resulting nodes, 
respectively. Furthermore, if the step involves a string value test, we need an extra tuple 
variable w to check the values of the nodes. Algorithm axis(s) simply returns the axis of 
step s and valueTest(s) returns the string value test involved in s; if there is no test the 
algorithm returns null. Algorithm par(s) returns the id of the parent of step s in a query 
tree; if s is the root, the algorithm returns as 0: 

genEvalFROM(s, f ) 
IN: Location step s, boolean f 
OUT: FROM part of SQL query corresponding to s  
 result ← “FROM Res r, Node n”  
 if (not f ) then 
  result ← result + “, Node c” 
  if (axis(s) = preceding-sibling or axis(s) = following-sibling) then 
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   result ← result + “, Node cp, Node np”  
 if (not valueTest(s) = null) then  
  result ← result + “, Word w”  
 return result 

The WHERE parts of the SQL queries are generated using algorithm 
genEvalWHERE(s, f ). Again, if the axis of the step is preceding-sibling or 
following-sibling, or the step involves a string value test, we need to generate 
extra join conditions to match tuple variables cp, np and w: 

genEvalWHERE(s, f )  
IN: Location step s, boolean f 
OUT: WHERE part of SQL query corresponding to s  
 result ← “WHERE r.Step=” + par(s)  
 if (f ) then 
  result ← result + “AND n.Pre=r.Pre”  
 else 
  result ← result + “AND c.Pre=r.Pre AND NOT n.Pre=c.Pre” 
  if (axis(s) = preceding-sibling or axis(s) = following-sibling)  
  then 
   result ← result + “AND cp.Pre=c.Par AND np.Pre=n.Par”  
 if (not valueTest(s) = null) then 
  result ← result + “AND w.Pre=n.Pre”  
 return result + “;” 

Finally, the algorithm genEvalRel(s, f ) generates the expression to calculate the 
relevances. In general, the axis relevance measures discussed earlier are calculated using 
tuple variables c and n, and thus we have omitted the code generating the axis relevances 
for the sake of brevity. For the preceding-sibling and following-sibling 
axes, however, we need to use cp.Pre, cp.Post, np.Pre and np.Post to 
determine the preorder and postorder numbers of the parents. 

genEvalRel(s, f )  
IN: Location step s, boolean f 
OUT: Expression for the relevance of SQL query corresponding to s  
 if (not nodeTest(s) = null and not nodeTest(s) = “*”) then 
  result ← result + “((l–εt)*(n.Name=\’” + nodeTest(s) + “\’)+εt)*”  
 if (not valueTest(s) = null) then 
  result ← result + “((l–εc)*(w. Value=\’” + valueTest(s) + “\’) 
  + εc)*”  
 if (f ) then 
  if (axis(s) = ancestor-or-self or axis(s) = descendant-or-self)  
  then 
   result ← result + “1”  
  else 
   result ← result + εa  

 else 
  Calculate the axis relevances as discussed earlier. 
 return result 
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Using these algorithms, the step preceding::c in the query tree presented in Figure 3 
is transformed into the following two SQL queries: 

INSERT INTO Result 
SELECT 3, n.Pre, n.Pre, (0.5 * (n.Name=‘c’) + 0.5) * 0.1 
FROM Result r, Node n 
WHERE r.Step=2 
AND n.Pre=r.Pre; 

INSERT INTO Result 
SELECT 3, c.Pre, n.Pre, (0.5 * (n.Name=‘c’) + 0.5) * 
((1 + (n.Pre – c.Pre) * (–1) + (n.Post – c.Post)*(–1))/ 
(SQRT(2) * SQRT(POWER(n.Pre – c.Pre, 2) * 
POWER(n.Post – c.Post, 2)))) / 2 
FROM Result r, Node c, Node n 
WHERE r.Step=2 
AND c.Pre=r.Pre 
AND NOT n.Pre=c.Pre; 

6.3 SQL queries for ranking the nodes 

After processing all the steps in the query, algorithm genRankSQL(S) is used to generate 
the query which ranks the nodes according to their relevances. Different algorithms are 
used to generate the SELECT, FROM and WHERE parts of the query. In simple terms, 
the algorithm constructs the XML tree node multisets by matching the database attribute 
Step with the identifier of the step that the tuple variable in question corresponds to and 
matching the preorder numbers of the context nodes with the preorder numbers of the 
nodes resulting from the parent step of the corresponding location step. Algorithm 
active(S) returns the identifier of the active step in S. 

genRankSQL(S) 
IN: Query tree S 
OUT: SQL query to rank the nodes with respect to S 
 genRankSELECT(S) + 
 genRankFROM(S) + 
 genRankWHERE(S) + 
 “GROUP BY r” + active(S) “.Pre” + 
 “ORDER BY Relevance DESC;” 

genRankSELECT(S) 
IN: Query tree S 
OUT: SELECT part of SQL query to rank the nodes with respect to S 
 result ← “SELECT r” + active(S) + “.Pre, MAX(r1.Relevance” 
 for each s ∈ S such that id(s)> 1 do 
  result ← result + “* r” + id(s) + “.Relevance” 
 return result + “) AS Relevance” 
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genRankFROM(S) 

IN: Query tree S 
OUT: FROM part of SQL query to rank the nodes with respect to S 
 result ← “FROM r1” 
 for each s ∈ S such that id(s)> 1 do  
  result ← result + “, r” + id(s) 
 return result 

genRankWHERE(S) 
IN: Query tree S 
OUT: WHERE part of SQL query to rank the nodes with respect to S  
 result ← “WHERE r1.Step=1 AND”  
 for each s ∈ S do 
  result ← result + “r.Step” + id(s) 
  result ← result + “AND r” + id(s) + “.Context=r” + par(s) + “.Pre”  
 return result 

Using the SQL query generated by these algorithms, it is possible to obtain the final node 
ranks. For example, the final results of the query tree presented in Figure 3 can be 
determined using the following query: 

SELECT r4.Pre, MAX(r1.Relevance * r2.Relevance * 
r3.Relevance * r4.Relevance) AS Relevance 
FROM Result r1, Result r2, Result r3, Result r4 
WHERE r1.Step=1 AND r2.Step=2 AND r3.Step=3 AND r4.Step=4 
AND r2.Context=r1.Pre AND r3.Context=r2.Pre AND 
r4.Context=r2.Pre 
GROUP BY r4.Pre 
ORDER BY Relevance DESC; 

6.4 Practical issues 

With the exception of perhaps very small XML documents, it is obviously not practical to 
perform an exhaustive search, i.e., to check all possible multisets of nodes in an XML 
tree. Thus, we need a way to prune the intermediate results. Most relational database 
management systems provide means for retrieving only the top of the result relation. In 
MySQL, for example, this is done by adding the limiting condition LIMIT n, which 
returns only the top n rows. This can be used to store, for example, only the best matches 
of each step to the relation Result. Obviously, we also need to add ORDER BY clauses 
to our queries to sort the nodes in descending order according to their relevances in order 
to obtain the most relevant nodes. 

This, however, is not enough, since in order to locate the most relevant nodes  
with respect to a given context node and a step, the database management system  
still has to visit all nodes in the database. For this reason, we need to move the  
conditions used to calculate the node test and string value relevances from the fourth 
expression of the SELECT part to the WHERE part of the query. The expression  
(0.5 * (n.Name=‘c’) + 0.5), for example, is thus removed from the SELECT part  
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and n.Name=‘c’ is added to the WHERE part. Similarly, we can remove conditions 
corresponding to string value tests from the SELECT part and add them to  
the WHERE part. This greatly improves the query performance since the database 
management system only has to visit nodes which satisfy the node test or the string  
value test. 

However, if no nodes satisfy the node test, we need means to quickly obtain some 
rather relevant nodes to act as context nodes for the next step. For this purpose, we can 
use the query conditions intended for exact matching (Grust, 2002; Luoma, 2005a; 
2005b). Since we can now basically obtain any nodes with high axis relevance – after all, 
there were no nodes that satisfied the node test – we select some subsets of the nodes 
which belong to the result of the axis. More accurately, we perform parent instead of 
ancestor and ancestor-or-self axes, and preceding-sibling instead of 
preceding axis. Similarly, we perform child instead of descendant and 
descendant-or-self, and following-sibling instead of following. For 
example, if we cannot obtain any node satisfying a node test and we are dealing with  
a step involving the following axis, we simply add AND n.Pre>c.Pre AND 
n.Par=c.Par to the WHERE part of our query and multiply the relevance by 0.5, i.e., 
by εn. This query can also be executed efficiently since the relevances are only computed 
for the following siblings rather than for all following nodes, let alone the whole node set. 
The other alternative, of course, is to define εt as 0. In this case, nothing is returned if one 
of the name tests in a query does not match any node in the database. 

Analogously, we need to ensure that if there are no keywords which match the string 
value test, we still add some relevant nodes into the relation Result. Before performing 
a step which retrieves nodes matching a string value test, we thus always issue an SQL 
query to insert all context nodes into the relation Result with themselves with 
relevance εc. In a sense, this is indeed correct since every node has a string value and  
any string value matches any string value test at least with relevance εc. After this, we 
perform the SQL query, which retrieves the nodes which actually satisfy the string  
value tests. 

7 Experimental results 

We tested our relevance measures by implementing a simple XML information retrieval 
engine on top of a relational database, as described in Section 6. In simple terms, our 
prototype system traverses query trees in preorder and issues a series of SQL queries to 
retrieve and store the resulting nodes and their relevances for each step. After all steps 
have been processed, our system issues an SQL query to reconstruct the node multisets 
and computes the final relevances for the nodes. We conducted the experimental 
evaluation using a 2.00 GHz Pentium PC running Windows XP and MySQL Server 5.0. 
The PC was equipped with 512 MB of RAM and standard IDE disks. In order to support 
querying multiple documents within one database, we extended all relations in our 
database with document identifier Doc. The algorithms for generating the SQL queries 
were obviously extended accordingly, i.e., we added conditions to match the document 
identifiers. Values 0.1, 0 and 0.5 were used for εa, εt and εc, respectively. 
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One should keep in mind, however, that our prototype system was implemented as a 
proof of concept rather than as a practicable XML information-retrieval engine. In order 
to support retrieval from massive data sets, less precise and more efficient methods 
should be applied. To this end, we feel that processing partitions instead of individual 
nodes as described earlier could greatly enhance query speed and yet provide sufficient 
search quality. Furthermore, our relevance measures should obviously be validated using 
some commonly agreed-on benchmark. However, all current benchmarks are focused on 
content-based retrieval, whereas our method is aimed at supporting retrieval based on 
structure, and thus there were no suitable benchmarks for testing our model. 

7.1 Test set-up 

As our test data, we used the complete works of Shakespeare marked up in XML.4 This 
7.5 MB collection consisted of 37 documents, 327 131 nodes and 887 660 keywords in 
total. Thus, an average document contained 8841 nodes and 23 991 keywords; the 
average depth of a node was 5.3. It is worth noticing that the documents were rather large 
compared to, for example, normal XHTML documents both in terms of kilobytes and 
number of nodes. In our evaluation, we used the queries presented in Table 5. This table 
also lists the number of nodes which were considered relevant with respect to each query. 

Table 5 Query set 

# Query Nodes 

Q1 /child::ACT/descendant::SCENE=‘Puck’/ 
preceding-sibling::SCENE 

      2 

Q2 /descendant::ACT=‘Hamlet danger’      47 

Q3 /descendant::ACT=‘Hamlet danger’/following::ACT      77 

Q4 /descendant::SPEECH=‘murder Caesar’     204 

Q5 /descendant::ACT/descendant::SPEECH 155 140 

In the case of Q1, no nodes satisfied the XPath query, since the root nodes in all 
documents are titled ‘PLAY’ rather than ‘ACT’; nodes with label ‘ACT’ are actually 
children of ‘PLAY’ nodes. Nevertheless, we considered relevant the nodes with the name 
‘SCENE’ which were preceding siblings of nodes with the name ‘SCENE’ and string 
value ‘Puck’. All of these nodes resided in the play ‘A Midsummer Night’s Dream’. In 
the case of Q2, a node was considered relevant if its name was ‘ACT’ and one of its text 
node descendants contained either ‘Hamlet’ or ‘danger’; relevant nodes for Q4 were 
defined similarly. A node was relevant with respect to Q3 if its name was ‘ACT’ and it 
followed a node which was relevant with respect to Q2. Finally, we considered a node 
relevant with respect to Q5 if it (in a strict sense) satisfied the XPath query 
/descendant:: ACT/descendant:: SPEECH. These sets of relevant nodes were 
used to study the precision and recall of our method. 

7.2 Query times 

We started by studying the effect of pruning with respect to query times. According to 
our initial experiments, only modest pruning can be applied to the context node sets 
without lowering search precision. As a rule of thumb, one can use node sets 50 or 100 
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times larger than the number of relevant nodes. However, node sets resulting from steps 
checking string values do not act as context nodes for any step, and thus they can be 
pruned rather aggressively. We studied three alternatives, retrieving and storing the 100 
and the 1000 most relevant text nodes and retrieving all matching text nodes. One should 
notice that the methods discussed in Section 6.4 were used in order to make the string 
value and node test matching more efficient. These results are presented in Table 6. 
Obviously, the pruning affects not only the time consumed by the queries which compute 
and store the relevances (Query), i.e., the SQL queries generated using algorithms 
presented in Section 6.2, but also the time needed to evaluate the query which finally 
ranks the nodes (Rank), i.e., the SQL query generated using algorithms presented in 
Section 6.3. 

Table 6 Query times in seconds 

100 1000 All 

# Query Rank Query Rank Query Rank 

Q1  6.5 0.3  7.8 0.5   6.9  0.5 

Q2  0.3 0.1  0.3 0.1   0.4  0.1 

Q3  0.3 0.0  0.3 0.1   0.4  0.2 

Q4 39.5 1.4 40.5  1.45 525.1 17.4 

Q5 21.5 1.5 21.5 1.5  21.5  1.5 

Overall, the queries were evaluated rather efficiently, and thus the pruning had quite  
a small effect on query times. An exception, of course, is Q4, which consumed an 
extremely long time, especially when pruning was not applied. This was actually 
expected since there were over 150 000 nodes with the name ‘SPEECH’, which all had to 
be retrieved and stored. In the case of Q4, pruning had a great effect, since instead of 
considering 370 000 text nodes, the system only had to check 200 or 2000 text nodes, i.e., 
100 or 1000 for ‘murder’ and 100 or 1000 for ‘Caesar’. Similarly, the time needed to rank 
the nodes was considerably shorter with these smaller node sets. One should also notice 
that in the case of Q5, no text nodes were retrieved, and thus cases 100, 1000 and all 
share similar query times. 

7.3 Search performance 

We were also interested in finding out how the pruning affects search precision and 
recall. For each query Q1, Q2, Q3 and Q4, we selected r/2, r, 2r and 4r most relevant 
nodes, where r is the number of relevant nodes with respect to the query as presented in 
Table 5. Query Q5 was left out since it did not contain any string value tests, and thus no 
pruning took place. As one can notice in Tables 7–10, the effect of the pruning clearly 
depends on the number of relevant nodes or, more accurately, the number of text nodes 
which are relevant with respect to the string value tests in the query. In the case of Q1, 
Q2 and Q3, there was only a small number of relevant text nodes, and thus the results 
were very good even when the greediest pruning was applied. In the case of Q4, in which 
the number of relevant text nodes as well as the number of relevant nodes in general was 
larger, the pruning played a bigger role. Nevertheless, the results were quite good even  
 

    
 
 

   

   
 

   

   

 

   

       
 



   

 

   

   
 

   

   

 

   

   190 O. Luoma    
 

when only the 100 most relevant text nodes were taken into account. Furthermore, in the 
case of the 1000 most relevant text nodes, the search precision and recall were very close 
to the case in which no pruning was applied. The total query times with no pruning were 
ten times longer, and thus pruning less relevant text nodes is a worthwhile idea. 

Table 7 Search performance with different degrees of pruning for Q1 

100 1000 All 

Nodes Precision Recall Precision Recall Precision Recall 

r/2 1.00 0.50 1.00 0.50 1.00 0.50 

r 1.00 0.50 1.00 0.50 1.00 0.50 

2r 1.00 0.50 1.00 0.50 1.00 0.50 

4r 1.00 0.50 1.00 0.50 1.00 0.50 

Table 8 Search performance with different degrees of pruning for Q2 

100 1000 All 

Nodes Precision Recall Precision Recall Precision Recall 

r/2 0.92 0.47 0.96 0.49 0.96 0.49 

r 0.83 0.83 0.83 0.83 0.83 0.83 

2r 0.50 1.00 0.50 1.00 0.50 1.00 

4r 0.25 1.00 0.25 1.00 0.25 1.00 

Table 9 Search performance with different degrees of pruning for Q3 

100 1000 All 

Nodes Precision Recall Precision Recall Precision Recall 

r/2 1.00 0.50 1.00 0.50 1.00 0.50 

r 0.97 0.97 0.97 0.97 0.97 0.97 

2r 0.50 1.00 0.50 1.00 0.50 1.00 

4r 0.25 1.00 0.25 1.00 0.25 1.00 

Table 10 Search performance with different degrees of pruning for Q4 

100 1000 All 

Nodes Precision Recall Precision Recall Precision Recall 

r/2 0.65 0.33 0.60 0.30 0.62 0.31 

r 0.46 0.46 0.63 0.63 0.64 0.64 

2r 0.23 0.47 0.48 0.96 0.48 0.96 

4r 0.13 0.51 0.25 1.00 0.25 1.00 

Overall, we saw our relevance measures behave as expected and assign intuitively correct 
ranks for the nodes. In the case Q1, for example, our prototype system assigned a 
relevance of 0.73 for nodes that were actually considered relevant. A node which was in 
the result of the preceding axis rather than preceding-sibling axis was 
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ranked third with relevance 0.57. After this node our system ranked the ‘SCENE’ nodes, 
which were preceding siblings of some ‘SCENE’ node; these nodes had relevances 
smaller than 0.45. We also replaced the first axis in this query with descendant axis to 
see how the relevances grow if some nodes actually match the XPath query in the strict 
sense. In this case, the relevances of the first two nodes were 0.80 and the relevance of 
the third node, 0.62; the nodes were obviously in the same order as in the previous case. 
After this, the relevance of the next nodes dropped to 0.50. 

8 Conclusion 

This paper discussed relevance measures for XML information retrieval. In order to 
support XPath, an XML query language recommended by W3C, we first described a 
fuzzy interpretation of XPath and then moved on to discussing the actual relevance 
measures. Our main focus was on axis relevances, which were defined using simple 
cosine measures, but our relevance functions can also be used to support querying string 
values, i.e., textual content. One of the strong points of our relevance measures is their 
simplicity. To exemplify this, we implemented a prototype system based on relational 
databases and described how an XPath query can be transformed into a series of SQL 
queries. A more efficient implementation could be achieved by partitioning the nodes of 
an XML tree into disjoint partitions and storing the axis relevances between these 
partitions. These stored relevances can then be used as approximations for axis 
relevances. Thus, the relevances actually have to be computed only for nodes in the same 
partition with the context node. Investigating this possibility will be an important part of 
our future work. 

It is also easy to tune our model by changing the values of different parameters. 
Although our relevance measures are rather intuitive and easy to tune, we still feel  
that finding suitable values for εa, εt and εc requires relevance tests conducted with a  
large group of users (Lehtonen, 2006). There are also other interesting open issues 
concerning structural relevance measures. For example, is it correct to regard the 
ancestor and descendant or parent and child axes as opposites, or should we  
somehow group these axes together to form a symmetric relevance measure for 
‘nestedness’? For example, consider finding all products from brand ‘X’ in documents 
…<product brand = “X”>…</product>… and …<brand name=“X”> 
<product>…</product>…</brand>… In these documents, attribute ‘brand’ 
appears either as a parent or as a child of a ‘product’ node, and thus the result of the 
search depends on which axis the user chooses to use in his or her query. This problem 
could be avoided if we only consider the fact that in both cases, ‘product’ nests inside 
‘brand’ or vice versa. 

All in all, we feel that there is still room for many interesting discoveries in the field 
of XML information retrieval. For example, the very fundamental problem of measuring 
the search performance is still under discussion (Hiemstra and Mihajlović, 2005; 
Piwowarski and Dupret, 2006). Furthermore, since the result of a query can be thought of 
as a ranked set of subtrees rather than a ranked set of individual nodes, we may have to 
deal with overlapping results (Clarke, 2005). For example, if we have retrieved two 
subtrees s1 and s2 with relevances 1.0 and 0.5, respectively, such that s2 is a part of s1, 
should we return s2 at all? After all, s2 is returned as a part of s1 with much higher 
relevance. It would also be interesting to study how taking the length or size of the  
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elements (Kamps et al., 2004) into account would affect our relevance measures, 
especially the string value relevance. Most importantly, however, we feel that there is a 
need for an XML information-retrieval benchmark, in which the possibility of querying 
based on structural relationships or axes is taken into account. 
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Notes 

1 inex.is.informatik.uni-duisburg.de 

2 The document node was left out of Figure 4 since it does not belong to the result of any  
XPath axis. 

3 A text node cannot be an ancestor of any node, and thus the minimum relevance for a text 
node matching a string value test with respect to any node is (1 + cos(135°))/2 = 0.15. 
However, since our focus is mainly on structural ranking, we use a larger value, 0.5, in order 
to emphasise the structural part of the queries. 

4 Available at www.ibiblio.org/xml/examples. 

    
 
 

   

   
 

   

   

 

   

       
 


