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Overview

Compared to univariate analysis of genome-wide association

(GWA) studies, machine learning–based models have been shown

to provide improved means of learning such multilocus panels of

genetic variants and their interactions that are most predictive of

complex phenotypic traits. Many applications of predictive

modeling rely on effective variable selection, often implemented

through model regularization, which penalizes the model com-

plexity and enables predictions in individuals outside of the

training dataset. However, the different regularization approaches

may also lead to considerable differences, especially in the number

of genetic variants needed for maximal predictive accuracy, as

illustrated here in examples from both disease classification and

quantitative trait prediction. We also highlight the potential pitfalls

of the regularized machine learning models, related to issues such

as model overfitting to the training data, which may lead to over-

optimistic prediction results, as well as identifiability of the

predictive variants, which is important in many medical applica-

tions. While genetic risk prediction for human diseases is used as a

motivating use case, we argue that these models are also widely

applicable in nonhuman applications, such as animal and plant

breeding, where accurate genotype-to-phenotype modeling is

needed. Finally, we discuss some key future advances, open

questions and challenges in this developing field, when moving

toward low-frequency variants and cross-phenotype interactions.

Introduction

Supervised machine learning aims at constructing a genotype–

phenotype model by learning such genetic patterns from a labeled

set of training examples that will also provide accurate phenotypic

predictions in new cases with similar genetic background. Such

predictive models are increasingly being applied to the mining of

panels of genetic variants, environmental, or other nongenetic

factors in the prediction of various complex traits and disease

phenotypes [1–8]. These studies are providing increasing evidence

in support of the idea that machine learning provides a

complementary view into the analysis of high-dimensional genetic

datasets as compared to standard statistical association testing

approaches. In contrast to identifying variants explaining most of

the phenotypic variation at the population level, supervised

machine learning models aim to maximize the predictive (or

generalization) power at the level of individuals, hence providing

exciting opportunities for e.g., individualized risk prediction based

on personal genetic profiles [9–11]. Machine learning models can

also deal with genetic interactions, which are known to play an

important role in the development and treatment of many

complex diseases [12–16], but are often missed by single-locus

association tests [17]. Even in the absence of significant single-loci

marginal effects, multilocus panels from distinct molecular

pathways may provide synergistic contribution to the prediction

power, thereby revealing part of such hidden heritability compo-

nent that has remained missing because of too small marginal

effects to pass the stringent genome-wide significance filters [18].

Multivariate modeling approaches have already been shown to

provide improved insights into genetic mechanisms and the

interaction networks behind many complex traits, including

atherosclerosis, coronary heart disease, and lipid levels, which

would have gone undetected using the standard univariate

modeling [2,19–22]. However, machine learning models also

come with inherent pitfalls, such as increased computational

complexity and the risk for model overfitting, which must be

understood in order to avoid reporting unrealistic prediction

models or over-optimistic prediction results.

We argue here that many medical applications of machine

learning models in genetic disease risk prediction rely essentially

on two factors: effective model regularization and rigorous model

validation. We demonstrate the effects of these factors using

representative examples from the literature as well as illustrative

case examples. This review is not meant to be a comprehensive

survey of all predictive modeling approaches, but we focus on

regularized machine learning models, which enforces constraints

on the complexity of the learned models so that they would ignore

irrelevant patterns in the training examples. Simple risk allele

counting or other multilocus risk models that do not incorporate

any model parameters to be learned are outside the scope of this

review; in fact, such simplistic models that assume independent

variants may lead to suboptimal prediction performance in the

presence of either direct or indirect interactions through epistasis

effects or linkage disequilibrium, respectively [23,24]. Perhaps the

simplest models considered here as learning approaches are those

based on weighted risk allele summaries [23,25]. However, even

with such basic risk models intended for predictive purposes, it is
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important to learn the model parameters (e.g., select the variants

and determine their weights) based on training data only;

otherwise there is a severe risk of model overfitting, i.e., models

not being capable of generalizing to new samples [5]. Represen-

tative examples of how model learning and regularization

approaches address the overfitting problem are briefly summa-

rized in Box 1, while those readers interested in their implemen-

tation details are referred to the accompanying Text S1. We

Figure 1. Performance of regularized machine learning models. Upper panel: Behavior of the learning approaches in terms of their predictive
accuracy (y-axis) as a function of the number of selected variants (x-axis). Differences can be attributed to the genotypic and phenotypic
heterogeneity as well as genotyping density and quality. (A) The area under the receiver operating characteristic curve (AUC) for the prediction of
Type 1 diabetes (T1D) cases in SNP data from WTCCC [118], representing ca. one million genetic features and ca. 5,000 individuals in a case-control
setup. (B) Coefficient of determination (R2) for the prediction of a continuous trait (Tunicamycin) in SNP data from a cross between two yeast strains
(Y2C) [44], representing ca. 12,000 variants and ca. 1,000 segregants in a controlled laboratory setup. The peak prediction accuracy/number of most
predictive variants are listed in the legend. The model validation was implemented using nested 3-fold cross-validation (CV) [5]. Prior to any analysis
being done, the data was split into three folds. On each outer round of CV, two of the folds were combined forming a training set, and the remaining
one was used as an independent test set. On each round, all feature and parameter selection was done using a further internal 3-fold CV on the
training set, and the predictive performance of the learned models was evaluated on the independent test set. The final performance estimates were
calculated as the average over these three iterations of the experiment. In learning approaches where internal CV was not needed to select model
parameters (e.g., log odds), this is equivalent to a standard 3-fold CV. T1D data: the L2-regularized (ridge) regression was based on selecting the top
500 variants according to the x2 filter. For wrappers, we used our greedy L2-regularized least squares (RLS) implementation [30], while the embedded
methods, Lasso, Elastic Net and L1-logistic regression, were implemented through the Scikit-Learn [119], interpolated across various regularization
parameters up to the maximal number of variants (500 or 1,000). As a baseline model, we implemented a log odds-ratio weighted sum of the minor
allele dosage in the 500 selected variants within each individual [25]. Y2C: the filter method was based on the top 1,000 variants selected according to
R2, followed by L2-regularization within greedy RLS using nested CV. As a baseline model, we implemented a greedy version of least squares (LS),
which is similar to the stepwise forward regression used in the original work [44]; the greedy LS differs from the greedy RLS in terms that it
implements regularization through optimization of L0 norm instead of L2. It was noted that the greedy LS method drops around the point where the
number of selected variants exceeds the number training examples (here, 400). Lower panel: Overlap in the genetic features selected by the different
approaches. (C) The numbers of selected variants within the major histocompatibility complex (MHC) are shown in parentheses for the T1D data. (D)
The overlap among then maximally predictive variants in the Y2C data. Note: these results should be considered merely as illustrative examples.
Differing results may be obtained when other prediction models are implemented in other genetic datasets or other prediction applications.
doi:10.1371/journal.pgen.1004754.g001
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Box 1. Synthesis of Learning Models for
Genetic Risk Prediction

The aim of risk models is to capture in a mathematical form
the patterns in the genetic and non-genetic data most
important for the prediction of disease susceptibility. The
first step in model building involves choosing the
functional form of the model (e.g., linear or nonlinear),
and then making use of a given training data to determine
the adjustable parameters of the model (e.g., a subset of
variants, their weights, and other model parameters). While
it is often sufficient for a statistical model to enable high
enough explanatory power in the discovery material,
without being overly complicated, a predictive model is
also required to generalize to unseen cases.
One consideration in the model construction is how to
encode the genotypic measurements using genotype
models, such as the dominant, recessive, multiplicative,
or additive model, each implying different assumptions
about the genetic effects in the data [79]. Categorical
variables 0, 1, and 2 are typically used for treating genetic
predictor variables (e.g., minor allele dosage), while
numeric values are required for continuous risk factors
(e.g., blood pressure). Expected posterior probabilities of
the genotypes can also be used, especially for imputed
genotypes. Transforming the genotype categories into
three binary features is an alternative way to deal with
missing values without imputation (used in the T1D
example; see Text S1 for details).
Statistical or machine learning models identify statistical or
predictive interactions, respectively, rather than biological
interactions between or within variants [12,80]. While
nonlinear models may better capture complex genetic
interactions [7,81], linear models are easier to interpret and
provide a scalable option for performing supervised
selection of multilocus variant panels at the genome-wide
scale [3]. In linear models, genetic interactions are modeled
implicitly by selecting such variant combinations that
together are predictive of the phenotype, rather than
considering pairwise gene–gene relationships explicitly.
Formally, trait yi to be predicted for an individual i is
modeled as a linear combination of the individual’s
predictor variables xij:

yi~w0z
Xp

j~1

wjxij i~1,2, . . . ,n: ð1Þ

Here, the weights wj are assumed constant across the n
individuals, w0 is the bias offset term and p indicates the
number of predictors discovered in the training data. In its
basic form, Eq. 1 can be used for modeling continuous
traits y (linear regression). For case-control classification,
the binary dependent variable y is often transformed using
a logistic loss function, which models the probability of a
case class given a genotype profile and other risk factor
covariates x (logistic regression). It has been shown that
the logistic regression and naı̈ve Bayes risk models are
mathematically very closely related in the context of
genetic risk prediction [81].
Model regularization refers to the technique of controlling
the model complexity, with the aim of preventing over-
fitting the model to the training data, and hence to
improve its generalization capability to new samples.
Classical regularization approaches rely on explicit penal-
ization of the model complexity through penalty terms

such as L1 and L2 norms for model weights (Figure 2A).
Together with the squared loss function (Figure 2B), which
is often used to measure the fit between the observed yi

and estimated ŷyi phenotypes (Eq.1), these functional
norms give rise to the optimization problem used in
various types of linear genetic risk prediction models:

Squared loss L1 penalty L2 penalty

Xn

i~1

yi{ŷyið Þ2zl1

Xp

j~1

wj

�� ��zl2

Xp

j~1

w2
j :

ð2Þ

Ridge regression is the special case of Eq. 2, in which
l1~0, and the regularization parameter l2 is used to
shrink the variable weights toward zero to prevent any
particular variable from having too large effect on the
model. However, the use of L2 penalty alone tends to favor
models that depend on all the variables. In Lasso, l2~0,
and through adjusting the regularization parameter l1, it is
possible to favor sparse models with only a few nonzero
weights, leading to variable selection within the model
fitting [82]. The Elastic Net model makes use of both
penalty terms L1 and L2 to select also correlated features
[83]; for instance, groups of variants within a pathway that
together contribute to the predictive accuracy.
Methods such as Lasso and Elastic Net are traditionally
known as embedded models, since the feature selection is
embedded into the learning algorithm itself [5]. These
methods select the features simultaneously and therefore
do not provide the user with a direct control over the
number of variables to be selected in the final prediction
model, although heuristics based on absolute weights and
other tuning criterion can be used for ranking the variables
[24,84]. In contrast, wrapper models enable the user to
preset the number of features in the final model. However,
due to the exponentially increasing size of the genetic
search spaces, in practice one must resort to local search
methods, such as greedy feature selection implemented
e.g., in L2-RLS wrappers [30].
The wrapper and embedded methods are not distinct
classes of algorithms. Scalable wrappers often incorporate
elements of embedded methods to guarantee computa-
tional efficacy. For instance, RLS shares similar properties
with Lasso and linear variants of SVMs. The accompanying
Text S1 describes interrelationships between different
learning models in terms of their norms and loss functions
(Figure 2), including squared loss (RLS, Lasso and Elastic
Net), logistic loss (logistic regression) and hinge loss
(SVMs). It also presents a generic optimization framework
that implements some of the most efficient methods
currently available for genome-wide data. There are also
other implementations available, including Mendel [85],
HyperLasso [86] and SparSNP [87], gpu-lasso [88], and
PUMA [89].
In addition to the classical regularization approaches,
where an explicit model complexity penalization term is
included in the optimization problem (Eq. 2), alternative
strategies have been developed for avoiding overfitting.
Among the most popular ones are ensemble learning,
implemented e.g., in the popular Random Forests (RF)
algorithm [90–92], as well as in the Bayesian modeling
approaches, where probabilistic prior distributions on the
model parameters are used for the shrinkage and
regularization purposes [93–95]. Other approaches are
based on the ensemble of models composed of varying
number of features [96], bagging or boosting and various
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specifically promote here the use of such regularized machine

learning models that are scalable to the entire genome-wide scale,

often based on linear models, which are easy to interpret and also

enable straightforward variable selection. Genome-scale ap-

proaches avoid the need of relying on two-stage approaches [26],

which apply standard statistical procedures to reduce the number

of variants, since such prefiltering may miss predictive interactions

across loci and therefore lead to reduced predictive performance

[8,24,25,27,28].

Preview: Selection of Genetic Variants into the
Predictive Models

A recent perspective article gave an excellent overview of the

common concepts and potential pitfalls when making predictions

of complex phenotypes using genotypic data [28]; however, one of

the key components in the construction of predictive models—

variant selection—was ignored in this and many other previous

works. In the context of machine learning, a method known as

feature selection is commonly implemented to identify the subset of

variants having most predictive power for the particular pheno-

typic trait. The aims of feature selection include the reduction of

the dimensionality of the genetic search space, excluding

correlated variants without independent contribution to the

prediction, and facilitating the implementation of the final

prediction model, for instance, in clinical setup. Three main types

of feature selection methods have traditionally been considered in

the context of genetic predictors: filters, wrappers, and embedded

methods (Box 1). These methods have different characteristics in

terms of their computational complexities, potential to detect joint

effects between variants, and whether the feature selection is done

explicitly in the optimization process or implicitly through model

regularization, which make them more or less suitable for different

application cases [5–8].

A class of widely used filter approaches includes the standard

multilocus genetic risk models, where the risk alleles and their

weights are determined through single-locus statistical tests, such

as odds–ratio, x2, or Fisher’s exact text (so-called weighted risk

scores). While such standard models have provided relatively good

predictive accuracies, as assessed using simulation studies or

hypothetical effect size distributions [29], we argue here that it

makes sense to use machine learning both for selecting the subsets

of the most predictive genetic features as well as training the final

prediction model using regularized learning approaches [5,30].

The recent work of Chatterjee et al., where they estimated the

effect size distributions for various quantitative and disease traits,

highlighted the benefits gained from more holistic models that

make use of the whole spectrum of genetic variation toward

improving the predictive power of the genetic risk prediction

models [31]. By design, the performance of any prediction model

will depend on the sample size of the training set, as well as

heritability of the disease trait, its underlying genetic architecture,

and whether there is additional information available such as

family history [29–33].

Representative Examples of Supervised Predictive
Modeling Studies

Predictive modeling can be treated either as a classification

problem (e.g., disease prediction in a case-control setting) or as a

regression formulation (e.g., prediction of height in a general

population cohort). Regardless of the problem formulation,

however, the critical issue is how to guarantee that the model

estimated in the training sample enables generalization power on

search-based algorithms [3]. From the theoretical view-
point, however, all of these learning approaches can be
considered as different types of regularization approaches
[97–100].
Whereas classical, univariate filter methods evaluate the
relevance of each genetic feature independently of the
others, more advanced multivariate filters have also been
proposed, including the Relief family of approaches
[101]. The main advantage of the multivariate filters over
the univariate ones is that they can detect complex
relationships between multiple genetic features and also
yield smaller feature sets with less redundancy. Results
from the ReliefF runs can also be aggregated, similar to
ensemble learning, to yield more robust variant rankings
and identification of gene–gene interactions [102].
However, multivariate filters also have specific limita-
tions, such that their selection criteria are not directly
connected to the generalization capability of the final
prediction model, which may lead to suboptimal results
[103].
Even advanced machine learning methodologies have
been shown to be negatively affected by the presence
of population stratification, leading to either false
positives or false negative detections. To avoid the
need to cluster the data into smaller substrata accord-
ing to population structures, learning machines can be
complemented by information of such substructures
extracted using feature extraction methods, such as
EIGENSTRAT, PCA, or MDS [104]. Lasso has been
extended to account for population structures through
linear mixed models [105], which are gaining much
popularity in association studies [106]. Machine learn-
ing methods enable also the detection of population
substructures, for instance, by learning ensembles of
decision trees that are capable of accurately predicting
individual’s subcontinental ancestry [107].
Linkage disequilibrium (LD) tends to lead to the selection of
highly correlated genetic features when using unpenalized
modeling approaches [24]. A simple strategy is to select
SNPs in linkage equilibrium, but this cannot distinguish the
functionally relevant variants from the nonfunctional ones.
Alternative approaches have revised, for instance, the tree-
building process or importance measure calculation in RF
[108], or replaced the univariate split functions by
nonlinear multivariate split functions of contiguous SNPs,
modeled as decision trees, to better account for SNP
correlations [109]. Penalization strategies, such as ridge
regression, Lasso and RLS, allow the model to avoid
placing too much weight on potentially overfit variables in
the presence of LD, which can lead to improved selection
of causal variants [110,111].
Finally, whole-genome prediction (WGP) models fit all of
the genotyped variants of the genetic data onto ridge
regression type of linear models, such as genomic best
linear unbiased prediction (GBLUP) or its variants
[34,112]. WGP approach has been widely used in animal
and plant breeding applications [113–115] and, with
recent improvements, increasingly also in human genet-
ics [116,117]. However, imperfect LD between markers
and the causal loci can impose suboptimal prediction
accuracy of WGP, especially when analyzing unrelated
individuals, but this can be improved through variable
selection or other model regularization approaches [61].
Moreover, due to the lack of direct control for the
number of variants, WGP approaches are not optimal for
those applications in which the size of the genotyped
variant panel is limited.
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new sets of individuals using appropriate learning models and

regularization approaches. Another important issue is how to

evaluate and quantify the predictive performance of these models

using procedures such as cross validation (CV) and statistics such

as the area under the curve (AUC) or coefficient of determination

(R2) (Text S1). These factors are next highlighted using

representative examples from the recent literature [1–4,34,35],

where various machine learning models have been implemented to

gain insights and prediction capability beyond that obtained using

standard statistical analyses of single nucleotide polymorphism

(SNP) data.

In one of the first machine learning applications, Wei et al.

showed that support vector machines (SVM) and L2-regularized

(ridge) logistic regression enabled construction of a highly

predictive risk model for type 1 diabetes (T1D) using less than

500 variants that passed a relatively stringent prefiltering threshold

(p,1025) on a case-control GWA dataset [1]. In contrast, relying

merely on a collection of known T1D susceptibility loci led to poor

performance in the predictive setting. More specifically, when the

predictive accuracy was evaluated in terms of within-study 5-fold

CV, they obtained extremely good prediction power (AUC close

to 0.9). However, it is known that simple CV may lead to over-

optimistic results due to information leakage between the two

stages of the feature selection process [5]. Indeed, when the

predictive models were evaluated using totally independent

validation cohort, the between-study performance dropped

drastically (AUC 0.84 for SVM) [1], highlighting the importance

of independent samples in the model validation.

Recently, Wei et al. made use of larger sample sizes (.10,000

individuals), using variant data from 15 European countries for

risk prediction of Crohn’s disease (CD) and ulcerative colitis (UC)

[4]. They applied a custom Immunochip that provides a more

comprehensive catalog of both common variants and certain rare

variants missed in the first generation of GWA studies. Using a

relatively liberal threshold (p,1024), they preselected around

10,000 variants and applied regularized logistic regression with L1

penalty for sparse genetic risk modeling. In an independent

validation set from the meta-analysis cohort, the predictive models

achieved the best prediction performance reported for CD and

UC (AUCs of 0.86 and 0.83, respectively) so far. In contrast, the

simple odds–ratio-weighted genetic risk model showed relatively

poor results (AUC of 0.730 and 0.685, respectively). The study also

confirmed the projections from previous works [31–33], suggesting

that predictive accuracy is highly dependent on the sample sizes

and the spectrum of variants included in the model, in addition to

the heritability of the disease trait.

The final example comes from the regression formulation. With

the aim to explain a part of the missing heritability of height, Yang

et al. [34] went beyond the two-stage approach and fit a simple

linear regression model to all directly genotyped 294,831 variants

that passed their quality control. Using such a whole genome

prediction (WGP) approach, without any variant selection, the

authors were able to explain 45% of the phenotypic variation in

height in a cohort of approximately 4,000 European descents.

Similarly high R2 values were also confirmed in another study [35]

where the WGP approach was trained in an European cohort;

however, R2 values dropped dramatically when the fitted model

was applied to an independent validation dataset using 10-fold CV

(R2 ranging around 0.2, depending on the number of variants and

whether familial information was used) [35]. These studies

highlight the risk of overfitting to the training sample when no

feature selection or model regularization is used in the model

construction.

Prediction Performance Using Examples of Model
Regularization

To illustrate the similarities and differences in their behavior, we

ran a number of common regularization approaches on two

example datasets (Figure 1). In both datasets, the two embedded

methods, Lasso and Elastic Net, showed strikingly similar

prediction behavior, but needed a larger number of variants for

their peak performance, compared to the greedy regularized least-

squares (RLS) wrapper, which peaked much earlier but resulted in

Figure 2. Penalty terms and loss functions. (A) Penalty terms: L0-norm imposes the most explicit constraint on the model complexity as it
effectively counts the number of nonzero entries in the model parameter vector. While it is possible to train prediction models with L0-penalty using,
e.g., greedy or other types of discrete optimization methods, the problem becomes mathematically challenging due to the nonconvexity of the
constraint, especially when other than the squared loss function is used. The convexity of the L1 and L2 norms makes them easier for the optimization.
While the L2 norm has good regularization properties, it must be used together with either L0 or L1 norms to perform feature selection. (B) Loss
functions: The plain classification error is difficult to minimize due to its nonconvex and discontinuous nature, and therefore one often resorts to its
better behaving surrogates, including the hinge loss used with SVMs, the cross-entropy used with logistic regression, or the squared error used with
regularized least-squares classification and regression. These surrogates in turn differ both in their quality of approximating the classification error
and in terms of the optimization machinery they can be minimized with (Text S1).
doi:10.1371/journal.pgen.1004754.g002
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lower prediction accuracy. As was expected, the top performance

of the L2-regularized logistic (ridge) regression required a very

large number of features, while showing reduced accuracy at a

lower number of variants. Surprisingly, the popular L1-penalized

logistic model showed slightly suboptimal performance; although

its peak performance was similar to that of greedy RLS, it required

a much larger number of variants in these datasets. We note that

the relative behavior of these methods may well change in other

genetic datasets and applications. In line with the previous results

in CD and UC cases [4], the simple log odds-weighted risk model

also showed poor results in the T1D case. While for some other

traits such accuracies would be considered excellent, the high

heritability and dependence on the human leukocyte antigen

(HLA) region often leads to higher predictive performance for

T1D [1]. However, these accuracies are better than expected for a

sample of this size if the standard, nonmachine learning,

multilocus genetic models were utilized in the risk prediction [28].

The relatively small overlap in the selected features highlights

an interesting point that the models tend to select different panels

of variants while achieving rather similar prediction performance

(Figure 1C, D), suggesting that the selected variants may provide

complementary views of the genetic mechanisms behind the

phenotypes. In the T1D case, for instance, most of the variants

selected by the L2-logistic and greedy RLS were from the major

histocompatibility complex (MHC) region (95% and 67%,

respectively), in line with the previous studies [1,4], whereas Lasso

also selected novel variants mostly outside the MHC region (15%),

which may provide complementary information for the risk

assessment. This difference is likely due to its embedded nature;

Lasso selects variants simultaneously, rather than one at a time,

which often requires further optimization in applications where

the size of the variant panel is limited. As expected, the univariate

filters tend to select larger numbers of correlated features, since

they cannot consider interactions with already selected variants. At

the other extreme, greedy RLS selects relatively uncorrelated

variants while the embedded methods lie in between. These

example cases suggest that there is no golden rule for feature

selection, but that the model should be selected based on the

characteristics of the data and goals of the genetic application (e.g.,

whether small number of variants is preferred over the overall

predictive accuracy).

Perspective: Current Challenges and Emerging
Developments

While rare variants have been proposed as one explanation for

the missing heritability [36,37], there has been a divergence of

opinion over whether rare variants of large effect or common

variants of small effect are contributing most to the phenotypic

variability [38]. It has been suggested that incorporating low-

frequency or rare variants will make the disease risk prediction

increasingly more accurate [4,28,29,31]. However, recent reports

have shown only incremental impact of rare variants on disease

susceptibility and prediction of complex diseases, as evaluated at the

population level using either simulated data [39] or by sequencing of

known risk variants for autoimmune disease traits [40]. We believe

that a more systematic investigation of the variants across portions

of the allelic spectrum will likely contribute to explaining more of the

missing heritability. While the presented machine learning

algorithms easily scale to a GWA level, the emerging sequencing

data, either from genotype imputation or whole-exome and genome

profiling, are posing new technical challenges, where parallelization

and cloud technologies for distributed memory and high-perfor-

mance computing will become increasingly important. Placing the

focus on individual-level predictions should help also with the low-

frequency variants shared only by a small portion of the individuals.

For instance, selection of the most robust variants was shown to

improve various prediction models, especially when the variants are

poorly tagged or have low minor allele frequency (MAF) [41]. Since

most rare variants are highly population-specific, it may be

necessary to borrow prior biological information from shared

regulatory regions, genes, or pathways, similar to the recent

collapsing methods for rare association analyses [42]. However,

improved model regularization options that allow more flexibility

and sparsity in the selected panels of variants across various

subgroups of individuals will likely be needed to deal with the rare

variants and to account for population stratification. Regularization

methods based on sparse group Lasso, for instance, can be extended

to rare variants and pathway-driven variant selection [22,43].

It has been argued that, even with increasingly large-scale and

dense genomic data, genetic prediction alone may still not reach the

accuracy regarded as clinically informative for the population at

large [18]. High-quality and controlled genetic data from model

organisms will likely give the first estimates on how much

sequencing data can really add to the predictive accuracy of

complex phenotypes [44,45]. Lessons from model organisms have

already shown that additional information originating from

environmental and stochastic factors, as well as from phenotypic

robustness and transgenerational effects, will be necessary for

accurate predictions at an individual level [46–48]. In particular,

gene expression should prove especially useful, since such interme-

diate phenotype captures both genetic and nongenetic contributions

to phenotypic variation [49]. For instance, epigenetic gene

expression variability of genetic interaction partners plays an

important role in explaining complex regulatory relationships,

characterized using concepts such as ‘‘epigenetic epistasis’’ [50] or

‘‘eQTL epistasis’’ [51]. Although modeling of gene expression

variability poses some technical challenges, similar to those already

encountered when modeling GWA datasets [52,53], incorporating

such continuous features into the disease prediction models should

be relatively straightforward. Adding the nongenetic information

will likely be instrumental when going toward less heritable diseases,

such as some cancer subtypes, which traditionally have been

challenging to predict using standard GWA approaches

[29,32,33,54–56]. Finally, including family medical history and

other clinical data from electronic health records should improve

the personal risk assessment models, as well as provide guidance on

lifestyle changes for those currently healthy individuals that have

increased genetic risk for the disease susceptibility [57,58].

An interesting question under debate is how many genetic

features should be incorporated into the prediction models

[3,28,31,59,60]. Although the WGP methods have been success-

fully applied in animal and plant breeding applications [61], these

are not suitable for applications in which the number of genetic

markers is constrained. In embedded models, the number of

features to be selected is often dependent on the regularization

parameter. However, in the current Lasso and Elastic Net

implementations, the user cannot explicitly specify the number

of variants to be included in the final model, but the selection of

final predictors often requires further grid searches or other tuning

options. Such lack of direct control over the size of the variant

panel may be an important practical consideration in medical

applications, where the size of the variant panel is often associated

with an additional cost, for instance, in disease screening

applications, or when the goal is to select a few of the variants

for follow-up experimentation, for instance, using functional

assays. Greedy feature selection offers full control to the user

and often leads to smaller panels of predictive, uncorrelated
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variants, which may be beneficial when the size of clinical assay is

limited. However, the trade-off is a slight drop in the overall

predictive accuracy (Figure 1), indicating that more in-depth and

effective wrapper selection strategies need to be implemented.

There are also other strategies to reduce the dimensionality of

genetic feature spaces using data transformations, such as principal

components analysis (PCA), multidimensional scaling (MDS),

partial least squares (PLS), or discrete wavelet transformation

(DWT), which may in some cases lead to improved predictive

accuracy [62]. However, rather than selecting combinations of

transformed features, feature selection on the original variant

space offers directly actionable modeling outcomes, such as a

selected set of predictive genetic loci for follow-up applications and

experimentation.

We envision a number of future directions for improvements in

disease risk prediction. One exciting development involves model-

ing of cross-phenotype interactions (pleiotropy). Many genetic

variants are associated with multiple disease phenotypes, particu-

larly across autoimmune diseases, cancers, and neuropsychiatric

disorders [63]. Statistical approaches have been suggested for

making use of the complementary information from multiple

phenotypes to gain power to detect small effects that would have

been missed if tested individually [64–65]. Bayesian learning

approaches seem particularly fitting for multivariate modeling of

pleiotropic associations, especially for the lower-frequency variants

where shared genetic features across individuals for any single

phenotype become increasingly rare [66–71]. We expect that

regularized machine learning models will also prove useful when

translating the subtle multivariant–multiphenotype relationships

into genetic risk prediction models. Modeling studies in yeast have

already shown that multiple phenotypic measurements enable

mapping of genetic interaction networks with distinct biological

processes across pathways [72]. Networks of genetic and/or physical

interactions may therefore serve as useful prior information for the

prediction models to move from variant-level features towards

pathway-level features [5,73–75]. Using such functional relation-

ships to assemble or collapse higher-level predictive features might

better account for the interindividual genetic variation at the lower

end of variant frequency. For instance, predictive subnetwork

modules could enable more robust personalized medicine strategies

by allowing that individuals with the same disease phenotype may

show interindividual genetic heterogeneity in the sense that their

disease predisposing variants may lie in distinct loci within the

shared pathways. Such advances will rely on the next generation of

machine learning models that can effectively deal with the

complexity arising from massive number of interactions between

rare and common genetic and nongenetic factors [76–78].

Conclusions

The current evidence contradicts the idea of a universally optimal

model across datasets and prediction applications; rather, the model

should be selected based on whether one is trying to achieve a

maximally predictive model without restricting the number or type of

variants, or whether the goal is to build a sufficiently predictive model

with a limited number of genetic and nongenetic features. This

highlights the importance of feature selection as a key component in

the construction of prediction models, whether it is done explicitly in

the optimization process (e.g., wrappers) or implicitly through the

model regularization (embedded models). One common finding is

that those variants not meeting the stringent genome-wide signifi-

cance levels may also contribute to the predictive signals when

combined in the multilocus prediction modes [2,4,24,25,27,28,

31,33]. Another consensus point is that regularized models often

outperform their unregularized counterparts [24], which was also

supported by our example results (Figure 1).

Regardless of the model used, however, careful evaluation of its

generalizability is critical for prediction applications. We encourage

using systematic and unbiased procedures, such as nested CV, for the

selection of genetic variables and other model parameters and for the

evaluation of the generalization performance of the model. The final

model construction and feature selection should be performed on the

complete set of samples using standard CV options. However, the

eventual predictive power must be assessed by implementing the final

model on a sufficiently large, representative, and independent test set

in order to avoid reporting over-optimistic prediction results. The

model evaluation also depends on the application case; for instance, if

the aim is to carry out disease screening in Finland, then a relatively

large Finnish population sample should be used both in the model

construction and validation.

Genetic risk prediction through supervised machine learning

models goes beyond the single-locus association testing with the

complex disease phenotypes. The main objective of regularized

learning approaches is to find the most predictive combinations of

variants, the functional roles of which must to be validated using

follow-up experimentation. However, it is likely that predictive

power is linked to the underlying biological mechanisms and even

causality, but whether this comes through the selected variants and

their interactions, or via synthetic associations or other nondirect

relationships needs to be evaluated mechanistically. Genotype–

phenotype modeling is a highly challenging problem, but we

believe that through appropriate implementation and application

of the supervised machine learning methods, such as those

presented here, increasingly predictive relationships and biological

understanding will be extracted from the current and emerging

genetic and phenotypic datasets.

Supporting Information

Text S1 Implementation details for a range of regularized

machine learning models.

(PDF)
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