
Noname manuscript No.
(will be inserted by the editor)

Efficient Regularized Least-Squares Algorithms for

Conditional Ranking on Relational Data

Tapio Pahikkala, Antti Airola, Michiel Stock,

Bernard De Baets, Willem Waegeman

the date of receipt and acceptance should be inserted later

Abstract In domains like bioinformatics, information retrieval and social network
analysis, one can find learning tasks where the goal consists of inferring a ranking
of objects, conditioned on a particular target object. We present a general kernel
framework for learning conditional rankings from various types of relational data,
where rankings can be conditioned on unseen data objects. We propose efficient
algorithms for conditional ranking by optimizing squared regression and ranking
loss functions. We show theoretically, that learning with the ranking loss is likely to
generalize better than with the regression loss. Further, we prove that symmetry
or reciprocity properties of relations can be efficiently enforced in the learned
models. Experiments on synthetic and real-world data illustrate that the proposed
methods deliver state-of-the-art performance in terms of predictive power and
computational efficiency. Moreover, we also show empirically that incorporating
symmetry or reciprocity properties can improve the generalization performance.

1 Introduction

We first motivate the study by presenting some examples relevant for the consid-
ered learning setting in Section 1.1. Next, we briefly review and compartmentalize
related work in Section 1.2, and present the main contributions of the paper in
Section 1.3.

Tapio Pahikkala · Antti Airola
Department of Information Technology and Turku Centre for Computer Science, University of
Turku, FI-20014, Turku, Finland
E-mail: firstname.lastname@utu.fi

Michiel Stock · Bernard De Baets · Willem Waegeman
Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University,
Coupure links 653, 9000 Ghent, Belgium
E-mail: firstname.lastname@ugent.be



2 Pahikkala et al.

1.1 Background

Let us start with two introductory examples to explain the problem setting of
conditional ranking. First, suppose that a number of persons are playing an online
computer game. For many people it is always more fun to play against someone
with similar skills, so players might be interested in receiving a ranking of other
players, ranging from extremely difficult to beat to unexperienced players. Un-
fortunately, pairwise strategies of players in many games – not only in computer
games but also in board or sports games – tend to exhibit a rock-paper-scissors
type of relationship (Fisher, 2008), in the sense that player A beats player B (with
probability greater than 0.5), who on his term beats C (with probability greater
than 0.5), while player A loses from player C (as well with probability greater
than 0.5). Mathematically speaking, the relation between players is not transitive,
leading to a cyclic relationship and implying that no global (consistent) ranking
of skills exists. Yet, a conditional ranking can always be obtained for a specific
player (Pahikkala et al, 2010b).

As a second introductory example, let us consider the supervised inference
of biological networks, like protein-protein interaction networks, where the goal
usually consists of predicting new interactions from a set of highly-confident inter-
actions (Yamanishi et al, 2004). Similarly, one can also define a conditional ranking
task in such a context, as predicting a ranking of all proteins in the network that
are likely to interact with a given target protein (Weston et al, 2004). However,
this conditional ranking task differs from the previous one because (a) rankings are
computed from symmetric relations instead of reciprocal ones and (b) the values
of the relations are here usually not continuous but discrete.

Applications for conditional ranking tasks arise in many domains where rela-
tional information between objects is observed, such as relations between persons
in preference modelling, social network analysis and game theory, links between
database objects, documents, websites, or images in information retrieval (Geerts
et al, 2004; Grangier and Bengio, 2008; Ng et al, 2011), interactions between genes
or proteins in bioinformatics, graph matching (Caetano et al, 2009), et cetera.
When approaching conditional ranking from a graph inference point of view, the
goal consists of returning a ranking of all nodes given a particular target node, in
which the nodes provide information in terms of features and edges in terms of
labels or relations. At least two properties of graphs play a key role in such a set-
ting. First, the type of information stored in the edges defines the learning task:
binary-valued edge labels lead to bipartite ranking tasks (Freund et al, 2003),
ordinal-valued edge labels to multipartite or layered ranking tasks (Fürnkranz
et al, 2009) and continuous labels result in rankings that are nothing more than
total orders (when no ties occur). Second, the relations that are represented by
the edges might have interesting properties, namely symmetry or reciprocity, for
which conditional ranking can be interpreted differently.

1.2 Learning Setting and Related Work

We present a kernel framework for conditional ranking, which covers all above
situations. Unlike existing single-task or multi-task ranking algorithms, where the
conditioning is respectively ignored or only happening for training objects, our



Algorithms for Conditional Ranking on Relational Data 3

�!
�

���
�$

�"
���

���

�#

���
�%

���

�����

���

���

���

�&

�'
���

�!
�

��� �#

�"

���� �

(a) C, R, T

�!
�

��� �#

�"

���� �

(b) C, R, I

�!
�

��� �#

�"

���� �

(c) C, S, T

�!
�

��� �#

�"

���� �

(d) C, S, I

�!
�

��� �#

�"

��� ���

(e) V, R, T

�!
�

��� �#

�"

��� ���

(f) V, R, I

�!
�

��� �#

�"

��� ���

(g) V, S, T

�!
�

��� �#

�"

��� ���

(h) V, S, I

Fig. 1 Left: example of a multi-graph representing the most general case where no additional
properties of relations are assumed. Right: examples of eight different types of relations in a
graph of cardinality three. The following relational properties are illustrated: (C) crisp, (V)
valued, (R) reciprocal, (S) symmetric, (T) transitive and (I) intransitive. For the reciprocal
relations, (I) refers to a relation that does not satisfy weak stochastic transitivity, while (T)
is showing an example of a relation fulfilling strong stochastic transitivity. For the symmetric
relations, (I) refers to a relation that does not satisfy T -transitivity w.r.t. the  Lukasiewicz
t-norm TL(a, b) = max(a+ b− 1, 0), while (T) is showing an example of a relation that fulfills
T -transitivity w.r.t. the product t-norm TP(a, b) = ab – see e.g. Luce and Suppes (1965); De
Baets et al (2006) for formal definitions.

approach also allows to condition on new data objects that are not known during
the training phase. Thus, in light of Figure 1 that will be explained below, the
algorithm is not only able to predict conditional rankings for objects A to E, but
also for objects F and G that do not participate in the training dataset. From this
perspective, one can define four different learning settings in total:

– Setting 1: predict a ranking of objects for a given conditioning object, where
both the objects to be ranked and the conditioning object were contained in
the training dataset (but not the ranking of the objects for that particular
conditioning object).

– Setting 2: given a new conditioning object unseen in the training phase, predict
a ranking of the objects encountered in the training phase.

– Setting 3: given a set of new objects unseen in the training phase, predict
rankings of those objects with respect to the conditioning objects encountered
in the training phase.

– Setting 4: predict a ranking of objects for a given conditioning object, where
neither the conditioning object nor the objects to be ranked were observed
during the training phase.

These four settings cover as special cases different types of conventional machine
learning problems. The framework that we propose in this article can be used for
all four settings, in contrast to many existing methods. In this paper, we focus
mainly on setting 4.

Setting 1 corresponds to the imputation type of link prediction setting, where
missing relational values between known objects are predicted. In this setting
matrix factorization methods (see e.g. Srebro et al (2005)) are often applied. Many
of the approaches are based solely on exploiting the available link structure, though



4 Pahikkala et al.

approaches incorporating feature information have also been proposed (Menon
and Elkan, 2010; Raymond and Kashima, 2010). Setting 2 corresponds to the
label ranking problem (Hüllermeier et al, 2008), where a fixed set of labels is
ranked given a new object. Setting 3 can be modeled as a multi-task ranking
problem where the the number of ranking tasks is fixed in advance (Agarwal, 2006).
Finally, setting 4 requires that the used methods are able to generalize both over
new conditioning objects and objects to be ranked (see e.g. Park and Marcotte
(2012) for some recent discussion about this setting). Learning in setting 4 may be
realized by using joint feature representations of conditioning objects and objects
to be ranked.

In its most general form the conditional ranking problem can be considered
as a special case of the listwise ranking problem, encountered especially in the
learning to rank for information retrieval literature (see e.g. (Cao et al, 2006; Yue
et al, 2007; Xia et al, 2008; Qin et al, 2008; Liu, 2009; Chapelle and Keerthi, 2010;
Qin et al, 2008; Kersting and Xu, 2009; Xu et al, 2010; Airola et al, 2011b)).
For example, in document retrieval one is supplied both with query objects and
associated documents that are ranked according to how well they match the query.
The aim is to learn a model that can generalize to new queries and documents,
predicting rankings that capture well the relative degree to which each document
matches the test query.

Previous learning approaches in this setting have typically been based on us-
ing hand-crafted low-dimensional joint feature representations of query-document
pairs. In our graph-based terminology, this corresponds to having a given feature
representation for edges, possibly encoding prior knowledge about the ranking
task. A typical example of this kind of joint feature particularly designed for the
domain of information retrieval is the well-known Okapi BM25 score, indicating
how well a given query set of words matches a given set of words extracted from a
text document. While this type of features are often very efficient and absolutely
necessary in certain practical tasks, designing such application-specific features
requires human experts and detailed information about every different problem to
be solved, which may not be always available.

In contrast, we focus on a setting in which we are only given a feature repre-
sentation of nodes from which the feature representations of the edges have to be
constructed, that is, the learning must be performed without access to the prior
information about the edges. This opens many possibilities for applications, since
we are not restricted to the setting where explicit feature representations of the
edges are provided. In our experiments, we present several examples of learning
tasks for which our approach can be efficiently used. In addition, the focus of our
work is the special case where both the conditioning objects and the objects to
be ranked come from the same domain (see e.g. Weston et al (2004); Yang et al
(2009) for a similar settings). This allows us to consider how to enforce relational
properties such as symmetry and reciprocity, a subject not studied in previous
ranking literature. To summarize, the considered learning setting is the following:

(a) We are given a training set of objects (nodes), which have a feature representa-
tion of their own, either an explicit one or an implicit representation obtained
via a nonlinear kernel function.



Algorithms for Conditional Ranking on Relational Data 5

(b) We are also given observed relations between these objects (weighted edges),
whose values are known only between the nodes encountered in the training
set. This information is distinct from the similarities in point (a).

(c) The aim is to learn to make predictions for pairs of objects (edges) for which
the value of this relation is unknown, by taking advantage of the features or
kernels given in point (a), and in the conditional ranking setting, the goal is
to learn a ranking of the object pairs.

(d) The node kernel is used as a building block to construct a pairwise kernel
able to capture similarities of the edges, which in turn, is used for learning to
predict the edge weights considered in point (b).

The proposed framework is based on the Kronecker product kernel for gener-
ating implicit joint feature representations of conditioning objects and the sets of
objects to be ranked. This kernel has been proposed independently by a number
of research groups for modelling pairwise inputs in different application domains
(Basilico and Hofmann, 2004; Oyama and Manning, 2004; Ben-Hur and Noble,
2005). From a different perspective, it has been considered in structured output
prediction methods for defining joint feature representations of inputs and outputs
(Tsochantaridis et al, 2005; Weston et al, 2007).

While the usefulness of Kronecker product kernels for pairwise learning has
been clearly established, computational efficiency of the resulting algorithms re-
mains a major challenge. Previously proposed methods require the explicit com-
putation of the kernel matrix over the data object pairs, hereby introducing bot-
tlenecks in terms of processing and memory usage, even for modest dataset sizes.
To overcome this problem, one typically applies sampling strategies to avoid com-
puting the whole kernel matrix for training. However, non-approximate methods
can be implemented by taking advantage of the Kronecker structure of the kernel
matrix. This idea has been traditionally used to solve certain linear regression
problems (see e.g. Van Loan (2000) and references therein). More recent and re-
lated applications have emerged in link prediction tasks by (Kashima et al, 2009a;
Raymond and Kashima, 2010), which can be considered under setting 1.

An alternative approach known as the Cartesian kernel has been proposed
by Kashima et al (2009b) for overcoming the computational challenges associ-
ated with the Kronecker product kernels. This kernel indeed exhibits interesting
computational properties, but it can be solely employed in selected applications,
because it cannot make predictions for (couples of) objects that are not observed
in the training dataset, that is, in setting 4 (see Waegeman et al (2012) for further
discussion and experimental results).

There exists a large body of literature about relational kernels, with values
obtained from e.g. similarity graphs of data points, random walk and path kernels,
et cetera. These can be considered to be complementary to the Kronecker product
based pairwise kernels in the sense that they are used to infer similarities for data
points rather than for pairs of data points. Thus, if relational information, such
as paths or random walks for example, is used to form a kernel for the points in a
graph, a pairwise kernel could be subsequently used to construct a kernel for the
edges of the same graph.

Yet another family of related methods consists of the generalization of the
pairwise Kronecker kernels framework to tasks, in which the condition and target
objects come from different domains. Typical examples of this type of Kronecker



6 Pahikkala et al.

kernel applications are found in bioinformatics, such as the task of predicting inter-
actions between drugs and targets (van Laarhoven et al, 2011). To our knowledge,
none of these studies still concern the fourth setting. While the algorithms con-
sidered in this paper can be straightforwardly generalized to the two domain case,
we only focus on the single domain case for simplicity, because the concepts of
symmetric and reciprocal relations would not be meaningful with two domains.

1.3 Contributions

The main contributions of this paper can be summarized as follows:

1 We propose kernel-based conditional ranking algorithms for setting 4, that is,
for cases where predictions are performed for (couples of) objects that are not
observed in the training dataset. We consider both regression and ranking based
losses, extending regularized least-squares (RLS) (Saunders et al, 1998; Evgeniou
et al, 2000) and the RankRLS (Pahikkala et al, 2009) algorithms to conditional
ranking. We propose both update rules for iterative optimization algorithms, as
well as closed-form solutions, exploiting the structure of the Kronecker prod-
uct in order to make learning efficient. The proposed methods scale to graphs
consisting of millions of labeled edges.

2 We show how prior knowledge about the underlying relation can be efficiently
incorporated in the learning process, considering the specific cases of symmetric
and reciprocal relations. These properties are enforced on the learned models via
corresponding modifications of the Kronecker product kernel, namely the sym-
metric kernel studied by Ben-Hur and Noble (2005) and the reciprocal kernel
introduced by us (Pahikkala et al, 2010b). We prove that, for RLS, symmetry
and reciprocity can be implicitly encoded by including each edge in the train-
ing set two times, once for each direction. To our knowledge, the only related
result so far has been established for the support vector machine classifiers by
Brunner et al (2012). We also prove that this implicitness, in turn, ensures the
computational efficiency of the training phase with symmetric and reciprocal
Kronecker kernels. These results are, to our knowledge, completely novel in the
field of both machine learning and matrix algebra.

3 We present new generalization bounds, showing the benefits of applying
RankRLS instead of basic RLS regression in conditional ranking tasks. The
analysis presented in this paper shows that the larger expressive power of the
space of regression functions compared to the corresponding space of conditional
ranking functions indicates the learning to be likely to generalize better if the
space of functions available for the training algorithm is restricted to conditional
ranking functions rather than all regression functions.

4 Finally, we evaluate the proposed algorithms with an array of different practical
problems. The results demonstrate the ability of the algorithms to solve learning
problems in setting 4. Moreover, in our scalability experiments, we show that
the algorithms proposed by us scale considerably better to large data sets than
the state-of-the-art RankSVM solvers, even in cases where the SVMs use fast
primal training methods for linear kernels.



Algorithms for Conditional Ranking on Relational Data 7

1.4 Organization

The article is organized as follows. We start in Section 2 with a formal descrip-
tion of conditional ranking from a graph-theoretic perspective. The Kronecker
product kernel is reviewed in Section 3 as a general edge kernel that allows for
modelling the most general type of relations. In addition, we briefly recall two
important subclasses of relations, namely symmetric and reciprocal relations, for
which more specific, knowledge-based kernels can be derived. The proposed learn-
ing algorithms are presented in Section 4, and the connections and differences with
related learning algorithms are discussed in Section 5, with a particular empha-
sis on the computational complexity of the algorithms. In Section 6 we present
promising experimental results on synthetic and real-world data, illustrating the
advantages of our approach in terms of predictive power and computational scal-
ability.

2 General Framework

Let us start with introducing some notations. We consider ranking of data struc-
tured as a graph G = (V,E,Q), where V ⊆ V corresponds to the set of nodes,

where nodes are sampled from a space V, and E ⊆ 2V
2

represents the set of
edges e, for which labels are provided in terms of relations. Moreover, these rela-
tions are represented by weights ye on the edges and they are generated from an
unknown underlying relation Q : V2 → [0, 1]. We remark that the interval [0, 1]
is used here only due to certain properties that are historically defined for such
relations. However, relations taking values in arbitrary closed real intervals can
be straightforwardly transformed to this interval with an appropriate increasing
bijection and vice versa.

Following the standard notations for kernel methods, we formulate our learning
problem as the selection of a suitable function h ∈ H, with H a certain hypothesis
space, in particular a reproducing kernel Hilbert space (RKHS). Given an input
space X and a kernel K : X × X → R, the RKHS associated with K can be
considered as the completion of

{
f ∈ R

X

f(x) =
m∑

i=1

βiK(x, xi)

}
,

in the norm

‖f‖K =

√∑

i,j

βiβjK(xi, xj) ,

where βi ∈ R,m ∈ N, xi ∈ X .
Hypotheses h : V2 → R are usually denoted as h(e) = 〈w, Φ(e)〉 with w a vector

of parameters that need to be estimated based on training data. Let us denote
a training dataset of cardinality q = |E| as a set T = {(e, ye) | e ∈ E} of input-
label pairs, then we formally consider the following variational problem in which
we select an appropriate hypothesis h from H for training data T . Namely, we
consider an algorithm

A(T ) = argmin
h∈H

L(h, T ) + λ‖h‖2H (1)



8 Pahikkala et al.

with L a given loss function and λ > 0 a regularization parameter.
According to the representer theorem (Kimeldorf and Wahba, 1971), any min-

imizer h ∈ H of (1) admits a dual representation of the following form:

h(e) = 〈w, Φ(e)〉 =
∑

e∈E

aeK
Φ(e, e) , (2)

with ae ∈ R dual parameters, KΦ the kernel function associated with the RKHS
and Φ the feature mapping corresponding to KΦ.

Given two relations Q(v, v′) and Q(v, v′′) defined on any triplet of nodes in V,
we compose the ranking of v′ and v′′ conditioned on v as

v′ �v v′′ ⇔ Q(v, v′) ≥ Q(v, v′′) . (3)

Let the number of correctly ranked pairs for all nodes in the dataset serve as evalu-
ation criterion for verifying (3), then one aims to minimize the following empirical
loss when computing the loss over all conditional rankings simultaneously:

L(h, T ) =
∑

v∈V

∑

e,e∈Ev:ye<ye

I(h(e)− h(e)) , (4)

with I the Heaviside function returning one when its argument is strictly positive,
returning 1/2 when its argument is exactly zero and returning zero otherwise.
Importantly, Ev denotes the set of all edges starting from, or the set of all edges
ending at the node v, depending on the specific task. For example, concerning the
relation “trust” in a social network, the former loss would correspond to ranking
the persons in the network who are trusted by a specific person, while the latter
loss corresponds to ranking the persons who trust that person. So, taking Figure 1
into account, we would in such an application respectively use the rankings A ≻C

E ≻C D (outgoing edges) and D ≻C B (incoming edges) as training info for node
C.

Since (4) is neither convex nor differentiable, we look for an approximation
that has these properties as this considerably simplifies the development of efficient
algorithms for solving the learning problem. Let us to this end start by considering
the following squared loss function over the q observed edges in the training set:

L(h, T ) =
∑

e∈E

(ye − h(e))2 . (5)

Such a setting would correspond to directly learning the labels on the edges in a
regression or classification setting. For the latter case, optimizing (5) instead of the
more conventional hinge loss has the advantage that the solution can be found by
simply solving a system of linear equations (Saunders et al, 1998; Suykens et al,
2002; Shawe-Taylor and Cristianini, 2004; Pahikkala et al, 2009). However, the
simple squared loss might not be optimal in conditional ranking tasks. Consider
for example a node v and we aim to learn to predict which of the two other nodes,
v′ or v′′, would be closer to it. Let us denote e = (v, v′) and e = (v, v′′), and let ye
and ye denote the relation between v and v′ and between v and v′′, respectively.
Then it would be beneficial for the regression function to have a minimal squared
difference (ye − ye − h(e) + h(e))2, leading to the following loss function:

L(h, T ) =
∑

v∈V

∑

e,e∈Ev

(ye − ye − h(e) + h(e))2 , (6)

which can be interpreted as a differentiable and convex approximation of (4).



Algorithms for Conditional Ranking on Relational Data 9

3 Relational Domain Knowledge

Above, a framework was defined where kernel functions are constructed over the
edges, leading to kernels of the form KΦ(e, e). In this section we show how these
kernels can be constructed using domain knowledge about the underlying relations.
The same discussion was put forward for inferring relations. Details and formal
proofs can be found in our previous work on this topic (Pahikkala et al, 2010b;
Waegeman et al, 2012).

3.1 Arbitrary Relations

When no further restrictions on the underlying relation can be specified, the fol-
lowing Kronecker product feature mapping is used to express pairwise interactions
between features of nodes:

Φ(e) = Φ(v, v′) = φ(v)⊗ φ(v′) ,

where φ represents the feature mapping for individual nodes and ⊗ denotes the
Kronecker product. As shown by Ben-Hur and Noble (2005), such a pairwise fea-
ture mapping yields the Kronecker product pairwise kernel in the dual model:

KΦ
⊗(e, e) = KΦ

⊗(v, v
′, v, v′) = Kφ(v, v)Kφ(v′, v′) , (7)

with Kφ the kernel corresponding to φ.
It can be formally proven that with an appropriate choice of the node kernel

Kφ, such as the Gaussian RBF kernel, the RKHS of the corresponding Kronecker
product edge kernel KΦ allows approximating arbitrarily closely any relation that
corresponds to a continuous function from V2 to R. Before summarizing this im-
portant result, we recollect the definition of universal kernels.

Definition 1 (Steinwart, 2002) A continuous kernel K on a compact metric space
X (i.e. X is closed and bounded) is called universal if the RKHS induced by K is
dense in C(X ), where C(X ) is the space of all continuous functions f : X → R.

Accordingly, the hypothesis space induced by the kernel K can approximate any
function in C(X ) arbitrarily well, and hence it has the universal approximating
property.

Theorem 1 (Waegeman et al, 2012) Let us assume that the space of nodes V is a

compact metric space. If a continuous kernel Kφ is universal on V, then KΦ
⊗ defines a

universal kernel on V2.

The proof is based on the so-called Stone-Weierstraß theorem (see e.g. Rudin
(1991)). The above result is interesting because it shows, given that an appropri-
ate loss is optimized and a universal kernel applied on the node level Kφ, that the
Kronecker product pairwise kernel has the ability to assure universal consistency,
guaranteeing that the expected prediction error converges to its the lowest possible
value when the amount of training data approaches infinity. We refer to (Steinwart
and Christmann, 2008) for a more detailed discussion on the relationship between
universal kernels and consistency. As a consequence, the Kronecker product kernel



10 Pahikkala et al.

can always be considered a valid choice for learning relations if no specific a priori
information other than a kernel for the nodes is provided about the relation that
underlies the data. However, we would like to emphasize that Theorem 1 does
not guarantee anything about the speed of the convergence or how large train-
ing sets are required for approximating the function closely enough. As a rule of
thumb, whenever we have an access to useful prior information about the relation
to be learned, it is beneficial to restrict the expressive power of the hypothesis
space accordingly. The following two sections illustrate this more in detail for two
particular types of relational domain knowledge: symmetry and reciprocity.

3.2 Symmetric Relations

Symmetric relations form an important subclass of relations in our framework. As
a specific type of symmetric relations, similarity relations constitute the underlying
relation in many application domains where relations between objects need to be
learned. Symmetric relations are formally defined as follows.

Definition 2 A binary relation Q : V2 → [0, 1] is called a symmetric relation if for
all (v, v′) ∈ V2 it holds that Q(v, v′) = Q(v′, v).

More generally, symmetry can be defined for real-valued relations analogously as
follows.

Definition 3 A binary relation h : V2 → R is called a symmetric relation if for all
(v, v′) ∈ V2 it holds that h(v, v′) = h(v′, v).

For symmetric relations, edges in multi-graphs like Figure 1 become undirected.
Applications arise in many domains and metric learning or learning similarity
measures can be seen as special cases. If the relation is 2-valued as Q : V2 → {0, 1},
then we end up with a classification setting instead of a regression setting.

Symmetry can be easily incorporated in our framework via the following mod-
ification of the Kronecker kernel:

KΦ
⊗S(e, e) =

1

2

(
Kφ(v, v)Kφ(v′, v′) +Kφ(v, v′)Kφ(v′, v)

)
. (8)

The symmetric Kronecker kernel has been previously used for predicting protein-
protein interactions in bioinformatics (Ben-Hur and Noble, 2005). The following
theorem shows that the RKHS of the symmetric Kronecker kernel can approximate
arbitrarily well any type of continuous symmetric relation.

Theorem 2 (Waegeman et al, 2012) Let

S(V2) = {t | t ∈ C(V2), t(v, v′) = t(v′, v)}

be the space of all continuous symmetric relations from V2 to R. If Kφ on V is universal,

then the RKHS induced by the kernel KΦ
⊗S defined in (8) is dense in S(V2).

In other words the above theorem states that using the symmetric Kronecker
product kernel is a way to incorporate the prior knowledge about the symmetry
of the relation to be learned by only sacrificing the unnecessary expressive power.
Thus, consistency can still be assured, despite considering a smaller hypothesis
space.



Algorithms for Conditional Ranking on Relational Data 11

3.3 Reciprocal Relations

Let us start with a definition of this type of relation.

Definition 4 A binary relation Q : V2 → [0, 1] is called a reciprocal relation if for
all (v, v′) ∈ V2 it holds that Q(v, v′) = 1−Q(v′, v).

For general real-valued relations, the notion of antisymmetry can be used in place
of reciprocity:

Definition 5 A binary relation h : V2 → R is called an antisymmetric relation if
for all (v, v′) ∈ V2 it holds that h(v, v′) = −h(v′, v).

For reciprocal and antisymmetric relations, every edge e = (v, v′) in a multi-
graph like Figure 1 induces an unobserved invisible edge eR = (v′, v) with appro-
priate weight in the opposite direction. Applications arise here in domains such
as preference learning, game theory and bioinformatics for representing preference
relations, choice probabilities, winning probabilities, gene regulation, et cetera.
The weight on the edge defines the real direction of such an edge. If the weight
on the edge e = (v, v′) is higher than 0.5, then the direction is from v to v′, but
when the weight is lower than 0.5, then the direction should be interpreted as
inverted, for example, the edges from A to C in Figures 1 (a) and (e) should be
interpreted as edges starting from A instead of C. If the relation is 3-valued as
Q : V2 → {0, 1/2, 1}, then we end up with a three-class ordinal regression setting
instead of an ordinary regression setting. Analogously to symmetry, reciprocity
can also be easily incorporated in our framework via the following modification of
the Kronecker kernel:

KΦ
⊗R(e, e) =

1

2

(
Kφ(v, v)Kφ(v′, v′)−Kφ(v, v′)Kφ(v′, v)

)
. (9)

Thus, the addition of kernels in the symmetric case becomes a subtraction of
kernels in the reciprocal case. One can also prove that the RKHS of this so-
called reciprocal Kronecker kernel allows approximating arbitrarily well any type
of continuous reciprocal relation.

Theorem 3 (Waegeman et al, 2012) Let

R(V2) = {t | t ∈ C(V2), t(v, v′) = −t(v′, v)}

be the space of all continuous antisymmetric relations from V2 to R. If Kφ on V is

universal, then the RKHS induced by the kernel KΦ
⊗R defined in (9) is dense in R(V2).

Unlike many existing kernel-based methods for relational data, the models ob-
tained with the presented kernels are able to represent any symmetric or recip-
rocal relation, respectively, without imposing additional transitivity properties of
the relations.

4 Algorithmic Aspects

This section gives a detailed description of the different algorithms that we pro-
pose for conditional ranking tasks. Our algorithms are primarily based on solving
specific systems of linear equations, in which domain knowledge about the under-
lying relations is taken into account. In addition, a detailed discussion about the
differences between optimizing (5) and (6) is provided.



12 Pahikkala et al.

4.1 Matrix Representation of Symmetric and Reciprocal Kernels

Let us define the so-called commutation matrix, which provides a powerful tool
for formalizing the kernel matrices corresponding to the symmetric and reciprocal
kernels.

Definition 6 (Commutation matrix) The s2 × s2-matrix

Ps2 =
s∑

i=1

s∑

j=1

e(i−1)s+je
T
(j−1)s+i

is called the commutation matrix (Abadir and Magnus, 2005), where ei are the

standard basis vectors of Rs2 .

We use the superscript s2 to indicate the dimension s2 × s2 of the matrix P

but we omit this notation when the dimensionality is clear from the context or
when the considerations do not depend on the dimensionality. For P, we have
the following properties. First, PP = I, where I is the identity matrix, since P is
a symmetric permutation matrix. Moreover, for every square matrix M ∈ R

s×s,
we have Pvec(M) = vec(MT), where vec is the column vectorizing operator that
stacks the columns of an s× s-matrix in an s2-dimensional column vector, that is,

vec(M) = (M1,1,M2,1, . . . ,Ms,1,M1,2, . . . ,Ms,s)
T . (10)

Furthermore, for M,N ∈ R
s×t, we have

Ps2(M⊗N) = (N⊗M)Pt2 .

The commutation matrix is used as a building block in constructing the fol-
lowing types of matrices:

Definition 7 (Symmetrizer and skew-symmetrizer matrices) The matrices

S =
1

2
(I+P) and A =

1

2
(I−P)

are known as the symmetrizer and skew-symmetrizer matrix, respectively (Abadir
and Magnus, 2005).

Armed with the above definitions, we will now consider how the kernel matrices
corresponding to the reciprocal kernel KΦ

⊗R and the symmetric kernel KΦ
⊗S can be

represented in a matrix notation. Note that the next proposition covers also the
kernel matrices constructed between, say, nodes encountered in the training set
and the nodes encountered at the prediction phase, and hence the considerations
involve two different sets of nodes.

Proposition 1 Let K ∈ R
r×p be a kernel matrix consisting of all kernel evalua-

tions between nodes in sets V ⊆ V and V ⊆ V, with |V | = r and |V | = p, that is,

Ki,j = Kφ(vi, vj), where vi ∈ V and vj ∈ V . The ordinary, symmetric and reciprocal

Kronecker kernel matrices consisting of all kernel evaluations between edges in V × V

and edges in V × V are given by

K = K⊗K , K
S
= Sr2

(K⊗K) , K
R
= Ar2

(K⊗K) .



Algorithms for Conditional Ranking on Relational Data 13

Proof The claim concerning the ordinary Kronecker kernel is an immediate con-
sequence of the definition of the Kronecker product, that is, the entries of K are
given as

K(h−1)r+i,(j−1)p+k = Kφ(vh, vj)K
φ(vi, vk) ,

where 1 ≤ h, i ≤ r and 1 ≤ j, k ≤ p. To prove the other two claims, we pay closer
attention to the entries of K⊗K. In particular, the ((j−1)p+k)-th column of K⊗K

contains all kernel evaluations of the edges in V ×V with the edge (vj , vk) ∈ V ×V .
By definition (10) of vec, this column can be written as vec(M), where M ∈ R

r×r

is a matrix whose i, h-th entry contains the kernel evaluation between the edges
(vh, vi) ∈ V × V and (vj , vk) ∈ V × V :

Kφ(vh, vj)K
φ(vi, vk) .

We have the following properties of the symmetrizer and skew-symmetrizer matri-
ces that straightforwardly follow from those of the commutation matrix. For any
M ∈ R

s×s

Svec(M) =
1

2
vec(M+MT) (11)

Avec(M) =
1

2
vec(M−MT) .

Thus, the ((j−1)p+k)-th column of Sr2

(K⊗K) can, according to (11), be written
as 1

2vec(M+MT), where the i, h-th entry of M+MT contains the kernel evaluation

1

2

(
Kφ(vh, vj)K

φ(vi, vk) +Kφ(vi, vj)K
φ(vh, vk)

)
,

which corresponds to the symmetric Kronecker kernel between the edges (vi, vh) ∈
V × V and (vj , vk) ∈ V × V . The reciprocal case is analogous. ⊓⊔

We also note that for M ∈ R
s×t the symmetrizer and skew-symmetrizer ma-

trices commute with the s2 × t2-matrix M⊗M in the following sense:

Ss2(M⊗M) = (M⊗M)St2 (12)

As2(M⊗M) = (M⊗M)At2 , (13)

where Ss2 and As2 in the left-hand sides are s2 × s2-matrices and St2 and At2 are
t2 × t2-matrices in the right-hand sides. Thus, due to (12), the above-considered

symmetric Kronecker kernel matrix may as well be written as (K ⊗ K)Sp2

or as

Sr2

(K ⊗ K)Sp2

. The same applies to the reciprocal Kronecker kernel matrix due
to (13).

4.2 Regression with Symmetric and Reciprocal Kernels

Let p and q, respectively, represent the number of nodes and edges in T . In the
following, we make an assumption that T contains, for each ordered pair of nodes
(v, v′), exactly one edge starting from v and ending to v′, that is, q = p2 and T

corresponds to a complete directed graph on p nodes which includes a loop at each
node. As we will show below, this important special case enables the use of many



14 Pahikkala et al.

computational short-cuts for the training phase. This assumption is dropped in
Section 4.4, where we present training algorithms for the more general case.

In practical applications, a fully connected graph is most commonly available
in settings where the edges are generated by comparing some direct property of
the nodes, such as whether they belong to same or similar class in a classification
taxonomy (for examples, see the experiments). In experimental research on small
sample data, such as commonly considered in many bioinformatics applications
(see e.g. (Park and Marcotte, 2012)), it may also be feasible to gather the edge
information directly for all pairs through experimental comparisons. If this is not
the case, then imputation techniques can be used to fill in the values for missing
edges in the training data in case only a small minority is missing.

Using the notation of Proposition 1, we let K ∈ R
p×p be the kernel matrix of

Kφ, containing similarities between all nodes encountered in T . Due to the above
assumption and Proposition 1, the kernel matrix containing the evaluations of the

kernels KΦ
⊗, K

ΦS
⊗ and KΦR

⊗ between the edges in T can be expressed as K, K
S

and K
R
, respectively.

Recall that, according to the representer theorem, the prediction function ob-
tained as a solution to problem (1) can be expressed with the dual representation
(2), involving a vector of so-called dual parameters, whose dimension equals the
number of edges in the training set. Here, we represent the dual solution with a

vector a ∈ R
p2

containing one entry per each possible edge between the vertices
occurring in the training set.

Thus, using standard Tikhonov regularization (Evgeniou et al, 2000), the ob-
jective function of problem (1) with kernel KΦ

⊗ can be rewritten in matrix notation
as

L(y,Ka) + λaTKa , (14)

where L : Rq ×R
q → R is a convex loss function that maps the vector y of training

labels and the vector Ka of predictions to a real value.
Up to multiplication with a constant, the loss (5) can be represented in matrix

form as

(y −Ka)T(y −Ka) . (15)

Thus, for the regression approach, the objective function to be minimized becomes:

(y −Ka)T(y −Ka) + λaTKa . (16)

By taking the derivative of (16) with respect to a, setting it to zero, and solving
with respect to a, we get the following system of linear equations:

(KK+ λK)a = Ky . (17)

If the kernel matrix K is not strictly positive definite but only positive semi-
definite, K should be interpreted as limǫ→0+(K + ǫI). Accordingly, (17) can be
simplified to

(K+ λI)a = y . (18)

Due to the positive semi-definiteness of the kernel matrix, (18) always has a unique
solution. Since the solution of (18) is also a solution of (17), it is enough to con-
centrate on solving (18).



Algorithms for Conditional Ranking on Relational Data 15

Using the standard notation and rules of Kronecker product algebra, we show
how to efficiently solve shifted Kronecker product systems. For a more in-depth
analysis of the shifted Kronecker product systems, we refer to Martin and Van Loan
(2006).

Proposition 2 Let M,N ∈ R
p×p be diagonalizable matrices, that is, the matrices can

be eigen decomposed as

M = VΛV−1 , N = UΣU−1 ,

where V,U ∈ R
p×p contain the eigenvectors and the diagonal matrices Λ,Σ ∈ R

p×p

contain the corresponding eigenvalues of M and N. Then, the following type of shifted

Kronecker product system

(M⊗N+ λI)a = vec(Y) , (19)

where λ > 0 and Y ∈ R
p×p, can be solved with respect to a in O(p3) time if the inverse

of M⊗N+ λI exists.

Proof Before starting the actual proof, we recall certain rules concerning the Kro-
necker product (see e.g. Horn and Johnson (1991)) and introduce some notations.
Namely, for M ∈ R

a×b, U ∈ R
c×d, N ∈ R

b×s and V ∈ R
d×t, we have:

(M⊗U)(N⊗V) = (MN)⊗ (UV) .

From this, it directly follows that

(M⊗N)−1 = M−1 ⊗N−1 . (20)

Moreover, for M ∈ R
a×b, N ∈ R

b×c, and U ∈ R
c×d, we have:

(UT ⊗M)vec(N) = vec(MNU) .

Furthermore, for M,N ∈ R
a×b, let M ⊙ N denote the Hadamard (elementwise)

product, that is, (M⊙N)i,j = Mi,jNi,j . Further, for a vector v ∈ R
s, let diag(v)

denote the diagonal s× s-matrix, whose diagonal entries are given as diag(v)i,i =

vi. Finally, for M,N ∈ R
a×b, we have:

vec(M⊙N) = diag(vec(M))vec(N) .

By multiplying both sides of Eq. (19) with (M ⊗N+ λI)−1 from the left, we
get

a = (M⊗N+ λI)−1vec(Y)

= ((VΛV−1)⊗ (UΣU−1) + λI)−1vec(Y)

= ((V ⊗U)(Λ⊗Σ)(V−1 ⊗U−1) + λI)−1vec(Y)

= (V ⊗U)(Λ⊗Σ+ λI)−1(V−1 ⊗U−1)vec(Y) (21)

= (V ⊗U)(Λ⊗Σ+ λI)−1vec(U−1YV−T)

= (V ⊗U)vec(C⊙E)

= vec(U(C⊙E)VT) , (22)

where E = U−1YV−T and diag(vec(C)) = (Λ ⊗ Σ + λI)−1. In line (21), we use
(20) and therefore we can write λI = λ(V ⊗ U)(V−1 ⊗ U−1) after which we can
add λ directly to the eigenvalues Λ ⊗ Σ of M ⊗ N. The eigen decompositions of
M and N as well as all matrix multiplications in (22) can be computed in O(p3)
time. ⊓⊔



16 Pahikkala et al.

Corollary 1 A minimizer of (16) can be computed in O(p3) time.

Proof Since the kernel matrix K is symmetric and positive semi-definite, it is di-
agonalizable and it has nonnegative eigenvalues. This ensures that the matrix
K⊗K+ λI has strictly positive eigenvalues and therefore its inverse exists. Con-
sequently, the claim follows directly from Proposition 2, which can be observed by
substituting K for both M and N. ⊓⊔

We continue by considering the use of the symmetric and reciprocal Kronecker
kernels and show that, with those, the dual solution can be obtained as easily as
with the ordinary Kronecker kernel. We first present and prove the following two
inversion identities:

Lemma 1 Let N = N⊗N for some square matrix N. Then,

(SNS+ λI)−1 = S(N+ λI)−1S+
1

λ
A , (23)

(ANA+ λI)−1 = A(N+ λI)−1A+
1

λ
S , (24)

if the considered inverses exist.

Proof For a start, we note certain directly verifiable properties of the symmetrizer
and skew-symmetrizer matrices. Namely, the matrices S and A are idempotent,
that is,

SS = S and AA = A .

Furthermore, S and A are orthogonal to each other, that is,

SA = AS = 0 . (25)

We prove (23) by multiplying SNS + λI with its alleged inverse matrix and
show that the result is the identity matrix:

(SNS+ λI)(S(N+ λI)−1S+
1

λ
A)

= SNSS(N+ λI)−1S+
1

λ
SNSA (26)

+λS(N+ λI)−1S+ λ
1

λ
A

= SN(N+ λI)−1 + λS(N+ λI)−1 +A (27)

= S(I− λ(N+ λI)−1) + λS(N+ λI)−1 +A (28)

= S− λS(N+ λI)−1 + λS(N+ λI)−1 +A

= I .

When going from (26) to (27), we use the fact that S commutes with (N+ λI)−1,
because it commutes with both N and I. Moreover, the second term of (26) van-
ishes, because of the orthogonality of S and A to each other. In (28) we have used
the following inversion identity known in matrix calculus literature (Henderson
and Searle, 1981)

N(N+ I)−1 = I− (N+ I)−1 .

Identity (24) can be proved analogously. ⊓⊔



Algorithms for Conditional Ranking on Relational Data 17

These inversion identities indicate that we can invert a diagonally shifted sym-
metric or reciprocal Kronecker kernel matrix simply by modifying the inverse of
a diagonally shifted ordinary Kronecker kernel matrix. This is an advantageous
property, since the computational short-cuts provided by Proposition 2 ensure the
fast inversion of the shifted ordinary Kronecker kernel matrices, and its results
can thus be used to accelerate the computations for the symmetric and reciprocal
cases too.

The next result uses the above inversion identities to show that, when learning
symmetric or reciprocal relations with kernel ridge regression (Saunders et al, 1998;
Suykens et al, 2002; Shawe-Taylor and Cristianini, 2004; Pahikkala et al, 2009),
we do not explicitly have to use the symmetric and reciprocal Kronecker kernels.
Instead, we can just use the ordinary Kronecker kernel to learn the desired model
as long as we ensure that the symmetry or reciprocity is encoded in the labels.

Proposition 3 Using the symmetric Kronecker kernel for RLS regression with a label

vector y is equivalent to using an ordinary Kronecker kernel and a label vector Sy.

One can observe an analogous relationship between the reciprocal Kronecker kernel and

a label vector Ay.

Proof Let

a = (SKS+ λI)−1y

b = (K+ λI)−1Sy

be solutions of (16) with the symmetric Kronecker kernel and label vector y and
with the ordinary Kronecker kernel and label vector Sy, respectively. Using identity
(23), we get

a = (S(K+ λI)−1S+
1

λ
A)y

= (K+ λI)−1Sy+
1

λ
Ay .

In the last equality, we again used the fact that S commutes with (K + λI)−1,
because it commutes with both K and I. Let (v, v′) be a new couple of nodes
for which we are supposed to do a prediction with a regressor determined by
the coefficients a. Moreover, let kv,kv

′ ∈ R
p denote, respectively, the base kernel

Kφ evaluations of the nodes v and v′ with the nodes in the training data. Then,
kv ⊗ k

v
′ ∈ R

q contains the Kronecker kernel KΦ
⊗ evaluations of the edge (v, v′)

with all edges in the training data. Further, according to Proposition 1, the cor-
responding vector of symmetric Kronecker kernel evaluations is S(kv ⊗k

v
′). Now,

the prediction for the couple (v, v′) can be expressed as

(kv ⊗ k
v
′)TSa = (kv ⊗ k

v
′)TS((K+ λI)−1Sy+

1

λ
Ay)

= (kv ⊗ k
v
′)TS(K+ λI)−1Sy

+
1

λ
(kv ⊗ k

v
′)TSAy (29)

= (kv ⊗ k
v
′)TS(K+ λI)−1Sy

= (kv ⊗ k
v
′)TSb ,

where term (29) vanishes due to (25). The analogous result for the reciprocal
Kronecker kernel can be shown in a similar way. ⊓⊔



18 Pahikkala et al.

As a consequence of this, we also have a computationally efficient method for
RLS regression with symmetric and reciprocal Kronecker kernels. Encoding the
properties into the label matrix ensures that the corresponding variations of the
Kronecker kernels are implicitly used.

4.3 Conditional Ranking with Symmetric and Reciprocal Kernels

Now, we show how loss function (6) can be represented in matrix form. This
representation is similar to the RankRLS loss introduced by Pahikkala et al (2009).
Let

Cl = I− 1

l
1l1l

T
, (30)

where l ∈ N, I is the l× l-identity matrix, and 1l ∈ R
l is the vector of which every

entry is equal to 1, be the l× l-centering matrix. The matrix Cl is an idempotent
matrix and multiplying it with a vector subtracts the mean of the vector entries
from all elements of the vector. Moreover, the following equality can be shown

1

2l2

l∑

i,j=1

(ci − cj)
2 =

1

l
cTClc ,

where ci are the entries of a vector c. Now, let us consider the following quasi-
diagonal matrix:

L =




Cl1

. . .

Clp


 , (31)

where li is the number of edges starting from vi for i ∈ {1, . . . , p}. Again, given the
assumption that the training data contains all possible edges between the nodes
exactly once and hence li = p for all 1 ≤ i ≤ p, loss function (6) can be, up to
multiplication with a constant, represented in matrix form as

(y −Ka)TL(y −Ka) , (32)

provided that the entries of y − Ka are ordered in a way compatible with the
entries of L, that is, the training edges are arranged according to their starting
nodes.

Analogously to the regression case, the training phase corresponds to solving
the following system of linear equations:

(K
T
LK+ λK)a = K

T
Ly . (33)

If the ordinary Kronecker kernel is used, we get a result analogous to Corollary 1.

Corollary 2 A solution of (33) can be computed in O(p3) time.

Proof Given that li = p for all 1 ≤ i ≤ p and that the ordinary Kronecker kernel
is used, matrix (31) can be written as (I⊗Cp) and the system of linear equations
(33) becomes:

((K⊗K)(I⊗Cp)(K⊗K) + λK⊗K)a
= (K⊗K)(I⊗Cp)y .



Algorithms for Conditional Ranking on Relational Data 19

While the kernel matrix K⊗K is not necessarily invertible, a solution can still be
obtained from the following reduced form:

((K⊗K)(I⊗Cp) + λI)a = (I⊗Cp)y .

This can, in turn, be rewritten as

(K⊗KCp + λI)a = (I⊗Cp)y . (34)

The matrix Cp is symmetric, and hence if K is strictly positive definite, the prod-
uct KCp is diagonalizable and has nonnegative eigenvalues (see e.g. (Horn and
Johnson, 1985, p. 465)). Therefore, (34) is of the form which can be solved in
O(p3) time due to Proposition 2. The situation is more involved if K is positive
semi-definite. In this case, we can solve the so-called primal form with an empirical
kernel map (see e.g. Airola et al (2011a)) instead of (34) and again end up with a
Kronecker system solvable in O(p3) time. We omit the details of this consideration
due to its lengthiness and technicality. ⊓⊔

4.4 Conjugate Gradient-Based Training Algorithms

Interestingly, if we use the symmetric or reciprocal Kronecker kernel for conditional
ranking, we do not have a similar efficient closed-form solution as those indicated
by Corollaries 1 and 2. The same concerns both regression and ranking if the
above assumption of the training data having every possible edge between all
nodes encountered in the training data (i.e. li = p for all 1 ≤ i ≤ p) is dropped.
Fortunately, we can still design algorithms that take advantage of the special
structure of the kernel matrices and the loss function in speeding up the training
process, while they are not as efficient as the above-described closed-form solutions.

Before proceeding, we introduce some extra notation. Let B ∈ {0, 1}q×p2

be
a bookkeeping matrix of the training data, that is, its rows and columns are
indexed by the edges in the training data and the set of all possible pairs of
nodes, respectively. Each row of B contains a single nonzero entry indicating to
which pair of nodes the edge corresponds. This matrix covers both the situation
in which some of the possible edges are not in the training data and the one in
which there are several edges adjacent to the same nodes. Objective function (14)
can be written as

L(y,BKa) + λaTKa

with the ordinary Kronecker kernel and analogously with the symmetric and re-
ciprocal kernels. Note that the number of dual variables stored in vector a is still
equal to p2, while the number of labels in y is equal to q. If an edge is not in the
training data, the corresponding entry in a is zero, and if a particular edge occurs
several times, the corresponding entry is the sum of the corresponding variables
ae in representation (2). For the ranking loss, the system of linear equations to be
solved becomes

(KBTLBK+ λK)a = KBTLy .

If we use an identity matrix instead of L in (32), the system corresponds to the
regression loss.



20 Pahikkala et al.

To solve the above type of linear systems, we consider an approach based on
conjugate gradient type of methods with early stopping regularization. The Kro-

necker product (K ⊗K)v can be written as vec(KVK), where v = vec(V) ∈ R
p2

and V ∈ R
p×p. Computing this product is cubic in the number of nodes. Moreover,

multiplying a vector with the matrices S or A does not increase the computational
complexity, because they contain only O(p2) nonzero elements. Similarly, the ma-
trix B has only q non-zero elements. Finally, we observe from (30) and (31) that
the matrix L can be written as L = I − QQT, where Q ∈ R

q×p is the following
quasi-diagonal matrix:

Q =




1√
l1
1l1

. . .
1√
lp
1lp


 . (35)

The matrices I and Q both have O(q) nonzero entries, and hence multiplying a
vector with the matrix L can also be performed in O(q) time.

Conjugate gradient methods require, in the worst case, O(p4) iterations in
order to solve the system of linear equations (33) under consideration. However, the
number of iterations required in practice is a small constant, as we will show in the
experiments. In addition, since using early stopping with gradient-based methods
has a regularizing effect on the learning process (see e.g. Engl et al (1996)), this
approach can be used instead of or together with Tikhonov regularization.

4.5 Theoretical Considerations

Next, we give theoretical insights to back the idea of using RankRLS-based learning
methods instead of ordinary RLS regression. As observed in Section 4.3, the main
difference between RankRLS and the ordinary RLS is that RankRLS enforces the
learned models to be block-wise centered, that is, the aim is to learn models that,
for each node v, correctly predict the differences between the utility values of the
edges (v, v′) and (v, v′′), rather than the utility values themselves. This is common
for most of the pairwise learning to rank algorithms, since learning the individual
utility values is, in ranking tasks, relevant only with relation to other utility values.
Below, we consider whether the block-wise centering approach actually helps in
achieving this aim. This is done via analyzing the regression performance of the
utility value differences.

We start by considering the matrix forms of the objective functions of the
ordinary RLS regression

J(a) = (y −Ka)T(y −Ka) + λaTKa (36)

and RankRLS for conditional ranking

F (a) = (y −Ka)TL(y −Ka) + λaTKa , (37)

where L ∈ R
q×q is a quasi-diagonal matrix whose diagonal blocks are p×p-centering

matrices. Here we make the further assumption that the label vector is block-
wise centered, that is, y = Ly. We are always free to make this assumption with
conditional ranking tasks.



Algorithms for Conditional Ranking on Relational Data 21

The following lemma indicates that we can consider the RankRLS problem as
an ordinary RLS regression problem with a modified kernel.

Lemma 2 Objective functions (37) and

W (a) = (y − LKLa)T(y − LKLa) + λaTLKLa (38)

have a common minimizer.

Proof By repeatedly applying the idempotence of L and the inversion identities of
Henderson and Searle (1981), one of the solutions of (37) can be written as

a = (LK+ λI)−1Ly

= (LLK+ λI)−1Ly

= L(LKL+ λI)−1y

= L(LKLL+ λI)−1y

= (LLKL+ λI)−1Ly

= (LKL+ λI)−1y ,

which is also a minimizer of (38). ⊓⊔

This lemma provides us a different perspective on RankRLS. Namely, if we have a
prior knowledge that the underlying regression function to be learned is block-wise
centered (i.e. we have a conditional ranking task), this knowledge is simply encoded
into a kernel function, just like we do with the knowledge about the reciprocity
and symmetry.

In the literature, there are many results (see e.g. De Vito et al (2005) and
references therein) indicating that the expected prediction error of the regularized
least-squared based kernel regression methods obey the following type of proba-
bilistic upper bounds. For simplicity, we only consider the regression error. Namely,
for any 0 < η < 1, it holds that

P
[
I[f̂λ,T ]− inff∈HK

I[f ] ≤ B(λ,K, η)
]
≥ 1− η . (39)

where P [·] denotes the probability, I[·] is the expected prediction error, f̂λ,T is
the prediction function obtained via regularized risk minimization on a training
set T and a regularization parameter λ, HK is the RKHS associated to the kernel
K, and B(λ,K, η) is a complexity term depending on the kernel, the amount of
regularization, and the confidence level η.

According to Lemma 2, if the underlying regression function y is block-wise
centered, which is the case in the conditional ranking tasks, we can consider learn-
ing with conditional RankRLS as performing regression with a block-wise centered
kernel, and hence the behaviour of RLS regression and RankRLS can be compared
with each other under the framework given in (39). When comparing the two ker-
nels, we first have to pay attention to the corresponding RKHS constructions HK .
The RKHS of the original kernel is more expressive than that of the block-wise
centered kernel, because the former is able to express functions that are not block-
wise centered while the latter can not. However, since we consider conditional
ranking tasks, this extra expressiveness is of no help and the terms inff∈HK

I[f ]
are equal for the two kernels.



22 Pahikkala et al.

Next, we focus our attention on the complexity term. A typical example of
the term is the one proposed by De Vito et al (2005), which is proportional to
κ = supe K(e, e). Now, the quantity κ is lower for the block-wise centered kernel
than for the original one, and hence the former has tighter error bounds than
the latter. This, in turn, indicates that RankRLS is indeed a more promising
approach for learning to predict the utility value differences than the ordinary
RLS. It would be interesting to extend the analysis from the regression error to
the pairwise ranking error itself but the analysis is far more challenging and it is
considered as an open problem by De Vito et al (2005).

5 Links with Existing Ranking Methods

Examining the pairwise loss (4) reveals that there exists a quite straightforward
mapping from the task of conditional ranking to that of traditional ranking. Re-
lation graph edges are in this mapping explicitly used for training and prediction.
In recent years, several algorithms for learning to rank have been proposed, which
can be used for conditional ranking, by interpreting the conditioning node as a
query (see e.g. Joachims (2002); Freund et al (2003); Pahikkala et al (2009)). The
main application has been in information retrieval, where the examples are joint
feature representations of queries and documents, and preferences are induced
only between documents connected to the same query. One of the earliest and
most successful of these methods is the ranking support vector machine RankSVM
(Joachims, 2002), which optimizes the pairwise hinge loss. Even much more closely
related is the ranking regularized least-squares method RankRLS (Pahikkala et al,
2009), previously proposed by some of the present authors. The method is based
on minimizing the pairwise regularized squared loss and becomes equivalent to the
algorithms proposed in this article, if it is trained directly on the relation graph
edges.

What this means in practice is that when the training relation graph is sparse
enough, say consisting of only a few thousand edges, existing methods for learning
to rank can be used to train conditional ranking models. In fact this is how we
perform the rock-paper-scissors experiments, as discussed in Section 6.1. However,
if the training graph is dense, existing methods for learning to rank are of quite
limited use.

Let us assume a training graph that has p nodes. Furthermore, we assume that
most of the edges in the graph are connected, meaning that the number of edges
is of the order p2. Using a learning algorithm that explicitly calculates the kernel
matrix for the edges would thus need to construct and store a p2 × p2 matrix,
which is intractable already when p is less than thousand. When the standard
Kronecker kernel is used together with a linear kernel for the nodes, primal training
algorithms (see e.g. Joachims (2006)) could be used without forming the kernel
matrix. Assuming on average d non-zero features per node, this would result in
having to form a data matrix with p2d2 non-zero entries. Again, this would be
both memory-wise and computationally infeasible for relatively modest values of
p and d.

Thus, building practical algorithms for solving the conditional ranking task
requires computational shortcuts to avoid the above-mentioned space and time
complexities. The methods presented in this article are based on such shortcuts,



Algorithms for Conditional Ranking on Relational Data 23

because queries and objects come from the same domain, resulting in a special
structure of the Kronecker product kernel and a closed-form solution for the min-
imizer of the pairwise regularized squared loss.

6 Experiments

In the experiments we consider conditional ranking tasks on synthetic and real-
world data in various application domains, illustrating different aspects of the
generality of our approach. The first experiment considers a potential application
in game playing, using the synthetic rock-paper-scissors data set, in which the un-
derlying relation is both reciprocal and intransitive. The task is to learn a model for
ranking players according to their likelihood of winning against any other player
on whom the ranking is conditioned. The second experiment considers a poten-
tial application in information retrieval, using the 20-newsgroups data set. Here
the task consists of ranking documents according to their similarity to any other
document, on which the ranking is conditioned. The third experiment summarizes
a potential application of identifying bacterial species in microbiology. The goal
consists of retrieving a bipartite ranking for a given species, in which bacteria
from the same species have to be ranked before bacteria from a different species.
On both the newsgroups and bacterial data we test the capability of the models
to generalize to such newsgroups or species that have not been observed during
training.

In all the experiments, we run both the conditional ranker that minimizes the
convex edgewise ranking loss approximation (6) and the method that minimizes
the regression loss (5) over the edges. Furthermore, in the rock-paper-scissors ex-
periment we also train a conditional ranker with RankSVM. For the 20-newsgroups
and bacterial species data this is not possible due to the large number of edges
present in the relational graph, resulting in too high memory requirements and
computational costs for RankSVM training to be practical. We use the Kronecker
kernel KΦ

⊗ for edges in all the experiments. We also test the effects of enforcing do-
main knowledge by applying the reciprocal kernel KΦ

⊗R in the rock-paper-scissors

experiment, and applying the symmetric kernel KΦ
⊗S in the 20-newsgroups and

bacterial data experiments. The linear kernel is used for individual nodes (thus,
for Kφ). In all the experiments, performance is measured using the ranking loss (4)
on the test set.

We use a variety of approaches for minimizing the squared conditional ranking
and regression losses, depending on the characteristics of the task. All the solvers
based on optimizing the standard, or pairwise regularized least-squares loss are
from the RLScore software package1. For the experiment where the training is per-
formed iteratively, we apply the biconjugate gradient stabilized method (BGSM)
(van der Vorst, 1992). The RankSVM based conditional ranker baseline considered
in the rock-paper-scissors experiment is trained with the TreeRankSVM software
(Airola et al, 2011b).

1 Available at http://www.tucs.fi/RLScore



24 Pahikkala et al.

6.1 Game Playing: the Rock-Paper-Scissors Dataset

The synthetic benchmark data, whose generation process is described in detail by
Pahikkala et al (2010b), consists of simulated games of the well-known game of
rock-paper-scissors between pairs of players. The training set contains the out-
comes of 1000 games played between 100 players, the outcomes are labeled ac-
cording to which of the players won. The test set consists of another group of 100
players, and for each pair of players the probability of the first player winning
against the second one. Different players differ in how often they play each of the
three possible moves in the game. The data set can be considered as a directed
graph where players are nodes and edges played games, the true underlying relation
generating the data is in this case reciprocal. Moreover, the relation is intransitive.
It represents the probability that one player wins against another player. Thus, it
is not meaningful to try to construct a global ranking of the players. In contrast,
conditional ranking is a sensible task, where players are ranked according to their
estimated probability of winning against a given player.

We experiment with three different variations of the data set, the w1, w10
and w100 sets. These data sets differ in how balanced the strategies played by
the players are. In w1 all the players have close to equal probability of playing
any of the three available moves, while in w100 each of the players has a favorite
strategy he/she will use much more often than the other strategies. Both the
training and test sets in the three cases are generated one hundred times and the
hundred ranking results are averaged for each of the three cases and for every
tested learning method.

Since the training set consists of only one thousand games, it is feasible to adapt
existing ranking algorithm implementations for solving the conditional ranking
task. Each game is represented as two edges, labeled as +1 if the edge starts from
the winner, and as −1 if the edge starts from the loser. Each node has only 3
features, and thus, the explicit feature representation where the Kronecker kernel
is used together with a linear kernel results in 9 product features for each edge.
In addition, we generate an analogous feature representation for the reciprocal
Kronecker kernel. We use these generated feature representations for the edges to
train three algorithms. RLS regresses directly the edge scores, RankRLS minimizes
pairwise regularized squared loss on the edges, and RankSVM minimizes pairwise
hinge loss on the edges. For RankRLS and RankSVM, pairwise preferences are
generated only between edges starting from the same node.

In initial preliminary experiments we noticed that on this data set regulariza-
tion seemed to be harmful, with methods typically reaching optimal performance
for close to zero regularization parameter values. Further, cross-validation as a
parameter selection strategy appeared to work very poorly, due to the small train-
ing set size and the large amount of noise present in the training data. Thus, we
performed the runs using a fixed regularization parameter set to a close to zero
value (2−30).

The results of the experiments for the fixed regularization parameter value are
presented in Table 1. Clearly, the methods are successful in learning conditional
ranking models, and the easier the problem is made, the better the performance
is. For all the methods and data sets, except for the conditional ranking method
with w1 data, the pairwise ranking error is smaller when using the reciprocal
kernel. Thus enforcing prior knowledge about the properties of the true underlying



Algorithms for Conditional Ranking on Relational Data 25

c.reg c.reg (r) c.rank c.rank (r) RankSVM RankSVM (r)
w1 0.4875 0.4868 0.4876 0.4880 0.4987 0.4891
w10 0.04172 0.04145 0.04519 0.04291 0.04535 0.04116
w100 0.001380 0.001366 0.001424 0.001354 0.006997 0.005824

Table 1 Overview of the measured rank loss for rock-paper-scissors. The abbreviations c.reg
and c.rank here refer to the RLS and RankRLS algorithm, respectively, and (r) refers to the
use of a reciprocal Kronecker kernel instead of the ordinary Kronecker kernel.

Newsgr. 1 Newsgr. 2 Bacterial 1 Bacterial 2
c. rank 0.2562 0.2895 0.1082 0.07631
c. reg 0.3685 0.3967 0.1084 0.07762

Table 2 Overview of the measured rank loss for the 20-Newsgroups and the bacterial species
ranking tasks in the large-scale experiments, where c.rank and c.reg are trained using the
closed-form solutions.

relation appears to be beneficial. On this data set, standard regression proves
to be competitive with the pairwise ranking approaches. Similar results, where
regression approaches can yield an equally good, or even a lower ranking error
than rank loss optimizers, are known in the recent literature, see e.g. Pahikkala
et al (2009); Kotlowski et al (2011). Somewhat surprisingly, RankSVM loses to
the other methods in all the experiments other than the w10 experiment with
reciprocal kernel, with difference being especially large in the w100 experiment.

In order to have a more comprehensive view of the differences between the RLS,
RankRLS and RankSVM results, we plotted the average test performance for the
methods over the 100 repetitions of the experiments, for varying regularization
parameter choices. The results are presented in Figure 2. For w1 and w10 data
sets all the methods share a similar behaviour. The optimal ranking error can be
reached for a range of smaller parameter values, until a point is reached where the
error starts increasing. However, on w100 data sets RankSVM has quite a different
type of behaviour2. On this data, RankSVM can reach as good as, or even better
performance than RLS or RankRLS, but only for a very narrow range of parameter
values. Thus, for this data prior knowledge about the suitable parameter value
would be needed in order to make RankSVM work, whereas the other approaches
are more robust as long as the parameter is set to a fairly small value.

In conclusion, we have shown in this section that highly intransitive relations
can be modeled and successfully learned in the conditional ranking setting. More-
over, we have shown that when the relation graph of the training set is sparse
enough, existing ranking algorithms can be applied by explicitly using the edges
of the graph as training examples. Further, the methods benefit from the use of
the reciprocal Kronecker kernel instead of the ordinary Kronecker kernel. Finally,
for this dataset it appears that a regression-based approach performs as good as
the pairwise ranking methods.

2 In order to ascertain that the difference was not simply caused by problems in the im-
plementation or the underlying optimization library, we checked our results against those
of the SVMrank implementation available at http://www.cs.cornell.edu/People/tj/svm_

light/svm_rank.html



26 Pahikkala et al.

10-910-810-710-610-510-410-310-210-1100 101 102 103 1040.480

0.485

0.490

0.495

0.500

0.505

0.510

0.515

0.520

ra
nk

in
g 

er
ro

r

RLS
RankRLS
RankSVM

10-910-810-710-610-510-410-310-210-1100 101 102 103 1040.480

0.485

0.490

0.495

0.500

0.505

0.510

0.515

0.520
RLS
RankRLS
RankSVM

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 104

0.050

0.100

0150

0.200

ra
nk

in
g 

er
ro

r

RLS
RankRLS
RankSVM

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 104

0.050

0.100

0150

0.200
RLS
RankRLS
RankSVM

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 104

regularization parameter
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

ra
nk

in
g 

er
ro

r

RLS
RankRLS
RankSVM

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 104

regularization parameter
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007
RLS
RankRLS
RankSVM

Fig. 2 Rock-paper-scissors data. Ranking test error as a function of regularization parame-
ter for the tested methods. Vertically: w1 (up), w10 (middle), w100 (bottom). Horizontally:
standard Kronecker kernel (left), reciprocal kernel (right).

6.2 Document Retrieval: the 20-Newsgroups Dataset

In the second set of experiments we aim to learn to rank newsgroup documents ac-
cording to their similarity with respect to a document the ranking is conditioned
on. We use the publicly available 20-newsgroups data set3 for the experiments.
The data set consists of documents from 20 newsgroups, each containing approxi-

3 Available at: http://people.csail.mit.edu/jrennie/20Newsgroups/



Algorithms for Conditional Ranking on Relational Data 27

mately 1000 documents, the document features are word frequencies. Some of the
newsgroups are considered to have similar topics, such as the rec.sport.baseball,
and rec.sport.hockey newsgroups, which both contain messages about sports. We
define a three-level conditional ranking task. Given a document, documents from
the same newsgroup should be ranked the highest, documents from similar news-
groups next, and documents from unrelated newsgroups last. Thus, we aim to
learn the conditional ranking model from an undirected graph, and the underlying
similarity relation is a symmetric relation. The setup is similar to that of Agar-
wal (2006), the difference is that we aim to learn a model for conditional ranking
instead of just ranking documents against a fixed newsgroup.

Since the training relation graph is complete, the number of edges grows
quadratically with the number of nodes. For 5000 training nodes, as considered in
one of the experiments, this results already in a graph of approximately 25 mil-
lion edges. Thus, unlike in the previous rock-paper-scissors experiment, training a
ranking algorithm directly on the edges of the graph is no longer feasible. Instead,
we solve the closed-form presented in Proposition 2. At the end of this section we
also present experimental results for the iterative conjugate gradient method, as
this allows us to examine the effects of early stopping, and enforcing symmetry on
the prediction function.

In the first two experiments, where the closed-form solution is applied, we
assume a setting where the set of available newsgroups is not static, but rather
over time old newsgroups may wither and die out, or new groups may be added.
Thus, we cannot assume, when seeing new examples, that we have seen documents
from the same newsgroup already when training our model. We simulate this by
selecting different newsgroups for testing than for training. We form two disjoint
sets of newsgroups. Set 1 contains the messages from the newsgroups rec.autos,
rec.sport.baseball, comp.sys.ibm.pc.hardware and comp.windows.x, while set 2
contains the messages from the newsgroups rec.motorcycles, rec.sport.hockey,
comp.graphics, comp.os.ms-windows.misc and comp.sys.mac.hardware. Thus the
graph formed by set 1 consists of approximately 4000 nodes, while the graph
formed by set 2 contains approximately 5000 nodes. In the first experiment, set 1
is used for training and set 2 for testing. In the second experiment, set 2 is used
for training and set 1 for testing. The regularization parameter is selected by using
half of the training newsgroups as a holdout set against which the parameters are
tested. When training the final model all the training data is re-assembled.

The results for the closed-form solution experiments are presented in Table 2.
Both methods are successful in learning a conditional ranking model that gen-
eralizes to new newsgroups which were not seen during the training phase. The
method optimizing a ranking-based loss over the pairs greatly outperforms the one
regressing the values for the relations.

Finally, we investigate whether enforcing the prior knowledge about the un-
derlying relation being symmetric is beneficial. In this final experiment we use the
iterative BGSM method, as it is compatible with the symmetric Kronecker kernel,
unlike the solution of Proposition 2. The change in setup results in an increased
computational cost, since each iteration of the BGSM method costs as much as
using Proposition 2 to calculate the solution. Therefore, we simplify the previous
experimental setup by sampling a training set of 1000 nodes, and a test set of 500
nodes from 4 newsgroups. The task is now easier than before, since the training
and test sets have the same distribution. All the methods are trained for 200 it-



28 Pahikkala et al.

0 50 100 150 200
iterations

0.20

0.25

0.30

0.35

0.40

0.45

0.50

te
st

 e
rr

or
conditional ranking
conditional ranking, symmetric
conditional regression
conditional regression, symmetric

Fig. 3 Experimental results for the 20-Newsgroups data in the small-scale experiment, in
which all four models are learned using conjugate gradient descent algorithms.

erations, and the test error is plotted. We do not apply any regularization, but
rather rely on the regularizing effect of early stopping, as discussed in Section 4.

Figure 3 contains the performance curves. Again, we see that the pairwise
ranking loss quite clearly outperforms the regression loss. Using prior knowledge
about the learned relation by enforcing symmetry leads to increased performance,
most notably for the ranking loss. The error rate curves are not monotonically
decreasing, but rather on some iterations the error may momentarily rise sharply.
This is due to the behaviour of the conjugate gradient optimization scheme, which
sometimes takes steps that lead further away from the optimal solution. The per-
formance curves flatten out within the 200 iterations, demonstrating the feasibility
of early stopping.

In conclusion, we have demonstrated various characteristics of our approach
in the newsgroups experiments. We showed that the introduced methods scale
to training graphs that consist of tens of millions of edges, each having a high-
dimensional feature representation. We also showed the generality of our approach,
as it is possible to learn conditional ranking models even when the test newsgroups
are not represented in the training data, as long as data from similar newsgroups is
available. Unlike the earlier experiments on the rock-paper-scissors data, the pair-
wise loss yields a dramatic improvement in performance compared to a regression-
based loss. Finally, enforcing prior knowledge about the type of the underlying
relation with kernels was shown to be advantageous.



Algorithms for Conditional Ranking on Relational Data 29

6.3 Microbiology: Ranking Bacterial Species

We also illustrate the potential of conditional ranking for multi-class classifica-
tion problems with a huge number of classes. For such problems it often happens
that many classes are not represented in the training dataset, simply because no
observations of these classes are known at the moment that the training dataset
is constructed and the predictive model is learned. It speaks for itself that ex-
isting multi-class classification methods cannot make any correct predictions for
observations of these classes, which might occur in the test set.

However, by reformulating the problem as a conditional ranking task, one is
still capable of extracting some useful information for these classes during the test
phase. The conditional ranking algorithms that we introduced in this article have
the ability to condition a ranking on a target object that is unknown during the
training phase. In a multi-class classification setting, we can condition the ranking
on objects of classes that are not present in the training data. To this end, we
consider bacterial species identification in microbiology.

In this application domain, one normally defines a multi-class classification
problem with a huge number of classes as identifying bacterial species, given their
fatty acid methyl ester (FAME) profile as input for the model (Slabbinck et al,
2010; MacLeod et al, 2010). Here we reformulate this task as a conditional ranking
task. For a given target FAME profile of a bacteria that is not necessarily present
in the training dataset, the algorithm should rank all remaining FAME profiles
of the same species higher than FAME profiles of other species. For the most
challenging scenario, none of these FAME profiles appears in the training dataset.

As a result, the underlying relational graph consists of two types of edges,
those connecting FAME profiles of identical species and those connecting FAME
profiles of different species. When conditioned on a single node, this setting realizes
a bipartite ranking problem, based on an underlying symmetric relation.

The data we used is described in more detail in Slabbinck et al (2010). Its
original version consists of 955 FAME profiles, divided into 73 different classes
that represent different bacterial species. A training set and two separate test sets
were formed as follows. The data points belonging to the largest two classes were
randomly divided between the training set, and test set 1. Of the remaining smaller
classes, 26 were included entirely in the training set, and 27 were combined together
to form test set 2. The difference between the test sets was thus that FAME profiles
from classes contained in test set 1 appear also in the training set, while this is
not the case for test set 2. The resulting set sizes were as follows. Training set: 473
nodes, test set 1: 308 nodes and test set 2: 174 nodes. Since the graphs are fully
connected, the number of edges grows quadratically with respect to the number
of nodes. The regularization parameter is chosen on a separate holdout set.

Due to the large number of edges, we train the rankers using the closed-form
solution. We also ran an experiment where we tested the effects of using the
symmetric Kronecker kernel, together with the iterative training algorithm. In
this experiment, using the symmetric Kronecker kernel leads to a very similar
performance as not using it, therefore we do not present these results separately.

Table 2 summarizes the resulting rank loss for the two different test sets, ob-
tained after training the conditional regression and ranking methods using the
closed-form solutions. Both methods are capable of training accurate ranking mod-
els that can distinguish bacteria of the same and different species groups, as the



30 Pahikkala et al.

conditioning data points. Furthermore, comparing the results for test sets 1 and 2,
we note that for this problem it is not necessary to have bacteria from the same
species present in both the test and training sets, for the models to generalize. In
fact, the test error on test set 2 is lower than the error on test set 1. The ranking-
based loss function leads to a slightly better test performance than regression.

6.4 Bioinformatics: Functional ranking of enzymes

As a last application we consider the problem of ranking a database of enzymes
according to their catalytic similarity to a query protein. This catalytic similar-
ity, which serves as the relation of interest, represents the relationship between
enzymes w.r.t. their biological function. For newly discovered enzymes, this cat-
alytic similarity is usually not known, so one can think of trying to predict it
using machine learning algorithms and kernels that describe the structure-based
or sequence-based similarity between enzymes. The Enzyme Commission (EC)
functional classification is commonly used to subdivide enzymes into functional
classes. EC numbers adopt a four-label hierarchical structure, representing differ-
ent levels of catalytic detail.

We base the conditional rankings on the EC numbers of the enzymes, informa-
tion which we assume to be available for the training data, but not at prediction
time. This ground truth ranking can be deduced from the catalytic similarity (i.e.
ground truth similarity) between the query and all database enzymes. To this end,
we count the number of successive correspondences from left to right, starting from
the first digit in the EC label of the query and the database enzymes, and stopping
as soon as the first mismatch occurs. For example, an enzyme query with number
EC 2.4.2.23 has a similarity of two with a database enzyme labeled EC 2.4.99.12,
since both enzymes belong to the family of glycosyl transferases. The same query
manifests a similarity of one with an enzyme labeled EC 2.8.2.23. Both enzymes
are transferases in this case, but they show no further similarity in the chemistry
of the reactions to be catalyzed.

Our models were built and tested using a dataset of 1730 enzymes with known
protein structures. All the enzyme structures had a resolution of at least 2.5 Å,

they had a binding site volume between 350 and 3500 Å
3
, and they were fully

EC annotated. For evaluation purposes our database contained at least 20 ob-
servations for every EC number, leading to a total of 21 different EC numbers
comprising members of all 6 top level codes. A heat map of the catalytic simi-
larity of the enzymes is given in Figure 4. This catalytic similarity will be our
relation of interest, constituting the output of the algorithm. As input we consider
five state-of-the-art kernel matrices for enzymes, denoted cb (CavBase similarity),
mcs (maximum common subgraph), lpcs (labeled point cloud superposition), wp
(fingerprints) and wfp (weighted fingerprints). More details about the generation
of these kernel matrices can be found in Stock et al (2012).

The dataset was randomized and split in four equal parts. Each part was
withheld as a test set while the other three parts of the dataset were used for
training and model selection. This process was repeated for each part so that every
instance was used for training and testing (thus, four-fold outer cross-validation).
In addition, a 10-fold inner cross validation loop was implemented for estimating
the optimal regularization parameter λ, as recommended by Varma and Simon



Algorithms for Conditional Ranking on Relational Data 31

cb fp wfp mcs lpcs
unsupervised 0.0938 0.1185 0.1533 0.1077 0.1123
c. reg 0.0052 0.0050 0.0019 0.0054 0.0073
c. rank 0.0049 0.0050 0.0019 0.0056 0.0048

Table 3 A summary of the results obtained for the enzyme ranking problem.

(2006). The value of the hyperparameter was selected from a grid containing all
the powers of 10 from 10−4 to 105. The final model was trained using the whole
training set and the median of the best hyperparameter values over the ten folds.

We benchmark our algorithms against an unsupervised procedure that is com-
monly used in bioinformatics for retrieval of enzymes. Given a specific enzyme
query and one of the above similarity measures, a ranking is constructed by com-
puting the similarity between the query and all other enzymes in the database.
Enzymes having a high similarity to the query appear on top of the ranking, those
exhibiting a low similarity end up at the bottom. More formally, let us represent
the similarity between two enzymes by K : V2 → R, where V represents the set of
all potential enzymes. Given the similarities K(v, v′) and K(v, v′′) we compose the
ranking of v′ and v′′ conditioned on the query v as:

v′ �v v′′ ⇔ K(v, v′) ≥ K(v, v′′) . (40)

This approach follows in principle the same methodology as a nearest neighbour
classifier, but rather a ranking than a class label should be seen as the output of
the algorithm.

Table 3 gives a global summary of the results obtained for the different rank-
ing approaches. All models score relatively well. One can observe that supervised
ranking models outperform unsupervised ranking for all five kernels. Three impor-
tant reasons can be put forward for explaining the improvement in performance.
First of all, the traditional benefit of supervised learning plays an important role.
One can expect that supervised ranking methods outperform unsupervised rank-
ing methods, because they take ground-truth rankings into account during the
training phase to steer towards retrieval of enzymes with a similar EC number.
Conversely, unsupervised methods solely rely on the characterization of a mean-
ingful similarity measure between enzymes, while ignoring EC numbers.

Second, we also advocate that supervised ranking methods have the ability
to preserve the hierarchical structure of EC numbers in their predicted rankings.
Figure 4 supports this claim. It summarizes the values used for ranking one fold of
the test set obtained by the different models as well as the corresponding ground
truth. So, for supervised ranking it visualizes the values h(v, v′), for unsupervised
ranking it visualizes K(v, v′). Each row of the heatmap corresponds to one query.
For the supervised models one notices a much better correspondence with the
ground truth. Furthermore, the different levels of catalytic similarity can be better
distinguished.

A third reason for improvement by the supervised ranking method can be found
in the exploitation of dependencies between different similarity values. Roughly
speaking, if one is interested in the similarity between enzymes v and u, one can
try to compute the similarity in a direct way, or derive it from the similarity with
a third enzyme z. In the context of inferring protein-protein interaction and sig-
nal transduction networks, both methods are known as the direct and indirect



32 Pahikkala et al.

Fig. 4 Heatmaps of the values used for ranking the database during one fold in the testing
phase. Each row of the heat map corresponds to one query. The corresponding ground truth
is given in the lower right picture. The supervised model is trained by optimizing the pairwise
ranking loss.

approach, respectively (Vert et al, 2007; Geurts et al, 2007). We argue that unsu-
pervised ranking boils down to a direct approach, while supervised ranking should
be interpreted as indirect. Especially when the kernel matrix contains noisy val-
ues, one can expect that the indirect approach allows for detecting the back bone

entries and correcting the noisy ones.

The results for the two supervised conditional ranking approaches are in many
cases similar, with both models having same predictive performance on two of the
kernels (fp and wfp). For one of the kernels (lpcs) ranking loss gives much better
performance than the regression one, for another kernel (cb) ranking loss has a
slight advantage, and in the remaining experiment (mcs) the regression approach
performs slightly better. An appropriate choice of the node-level kernel proves to
be much more important than the choice of the loss function, as the supervised
models trained using the wfp kernel clearly outperform all other approaches.

6.5 Runtime performance

In the runtime experiment we compare the computational efficiency of the con-
ditional ranking approaches considered in Section 4. We consider conjugate gra-



Algorithms for Conditional Ranking on Relational Data 33

101 102 103

training nodes
10-3

10-2

10-1

100

101

102

103

104

105

CP
U 

se
co

nd
s

RankSVM
RankRLS
Early stopping CG
Closed-form solution

104 105

training edges
10-1

100

101

102

103

104

105

CP
U 

se
co

nd
s

RankSVM
RankRLS
Early stopping CG

101 102

features
10-2

10-1

100

101

102

103

104

CP
U 

se
co

nd
s

RankSVM
RankRLS
Early stopping CG
Closed-form solution

Fig. 5 Scalability experiments for training different algorithms on a sample of the 20-
Newsgroups data. We consider both a fully connected training graph with varying amount
of nodes (top) as well as a graph with 1000 nodes and varying degrees of sparsity (middle). Fi-
nally, we consider linear solvers with a fully connected graph of 100 nodes and varying number
of features (bottom)



34 Pahikkala et al.

dient training with early stopping and the closed-form solution, as well as two
off-the-shelf ranking algorithms trained directly on the edges, namely RankRLS
and RankSVM. For kernel RankSVM, we use the SVMlight package, implementing
the Kronecker product kernel in the kernel.h file. The linear RankSVM experi-
ments are run using the SVMrank package. The other methods are implemented
in the RLScore software. All experiments are run on a single core with an Intel
Core i7-3770 processor, with 16 GB memory available. The experiments are per-
formed with regularization parameter λ = 1, and a limit of 200 iterations for the
conjugate gradient method.

In the first two experiments, we consider the efficiency of the different kernel-
ized solvers on samples of the Reuters data. First, we measure the scalability of
the methods on a fully connected graph with a varying number of nodes. Second,
we fix the number of nodes to 1000 and vary the number of edges.

The results are presented in Figure 5 (top and middle). First, let us consider
the scaling behaviour on a fully connected graph. The kernel RankRLS solver has
cubic time complexity, training it on all the edges in the fully connected training
graph thus results in O(p6) time complexity. It can be observed that in practice
the approach does not scale beyond tens of nodes (thousands of edges), meaning
that it cannot be applied beyond small toy problems. The RankSVM solver has
even worse scaling. In contrast, the iterative training algorithm (Early stopping
CG) and the closed-form solution allow efficient scaling to graphs with thousands
of nodes, and hence millions of edges. While the iterative training method and the
closed-form share the same O(p3) asymptotic behaviour, the closed-form solution
allows an order of magnitude faster training, making it the method of choice
whenever applicable.

Next, we consider training the algorithms on sparse graphs. When the graph
is very sparse, meaning that there are only on average around ten or less edges
for each node, the RankSVM solver is the most efficient method to use. Once the
graph becomes denser, using the Kronecker product shortcuts becomes necessary.
Beyond 32000 edges only the Early stopping CG method, whose iteration cost
does not depend on the number of edges, proves feasible to use.

Finally, we performed an experiment where we compare the proposed algo-
rithms to existing linear solvers, using low-dimensional data and the linear kernel.
We sampled 100 data points from the UCI repository USPS data set, and generated
a fully connected label graph by assigning label 1 to data point pairs belonging
to the same, and 0 to pairs belonging to different classes. We vary the dimen-
sionality of the data by sampling the features. The linear solvers are trained on
explicitly computed Kronecker product features. As shown in Figure 5 (bottom),
the RankSVM and RankRLS solvers are feasible to use and even competitive if
the number of features is very low (e.g. 10 or less), as in this case the number of
generated product features is also low enough to allow for efficient training. As the
number of features grows, using basic RankSVM or RankRLS, however, becomes
first inefficient and then infeasible, we did not perform experiments for more than
128 features since soon after this point the data matrix no longer fits into memory.
We also performed experiments with 1000 nodes, in this case linear RankRLS and
RankSVM did not scale beyond 20 features.

The results further demonstrate our claims about the scalability of the pro-
posed algorithms to large dense graphs. Even with a non-optimized high-level
programming language implementation (Python), one can handle training a ker-



Algorithms for Conditional Ranking on Relational Data 35

nel solver on million edges in a matter of minutes. On very sparse graphs, or when
applying linear models with low-dimensional data using existing solvers may also
prove feasible.

7 Conclusion

We presented a general framework for conditional ranking from various types of
relational data, where rankings can be conditioned on unseen objects. We proposed
efficient least-squares algorithms for optimizing regression and ranking-based loss
functions, and presented generalization bounds motivating the advantages of using
the ranking based loss. Symmetric or reciprocal relations can be treated as two
important special cases of the framework, we prove that such prior knowledge can
be enforced without having to sacrifice computational efficiency. Experimental
results on both synthetic and real-world datasets confirm that the conditional
ranking problem can be solved efficiently and accurately, and that optimizing a
ranking-based loss can be beneficial, instead of aiming to predict the underlying
relations directly. Moreover, we also showed empirically that incorporating domain
knowledge about the underlying relations can boost the predictive performance.

Briefly summarized, we have discussed the following three approaches for solv-
ing conditional ranking problems:

– off-the-shelf ranking algorithms can be used when they can be computationally
afforded, i.e., when the number of edges in the training set is small;

– the above-presented approach based on the conjugate gradient method with
early stopping and taking advantage of the special matrix structures is recom-
mended when using off-the-shelf methods becomes intractable;

– the closed-form solution presented in Proposition 2 is recommended in case
the training graph is fully connected, since its computational complexity is
equivalent to that of a single iteration of the conjugate gradient method.

Both the computational complexity analysis and the scalability experiments
demonstrate, that the introduced algorithms allow solving orders of magnitudes
larger conditional ranking problems than was previously possible with existing
ranking algorithms.

Acknowledgments

We would like to thank the anonymous reviewers for their insightful comments.
T.P. and A.A. are both supported for this work by the Academy of Finland (grant
134020 and 128061, respectively). W.W. is supported by the Research Foundation
of Flanders. A preliminary version of this work was presented at the European
Conference on Machine Learning in 2010 (Pahikkala et al, 2010a).

References

Abadir M, Magnus J (2005) Matrix Algebra. Cambridge University Press, Cam-
bridge, UK



36 Pahikkala et al.

Agarwal S (2006) Ranking on graph data. In: Cohen WW, Moore A (eds) Pro-
ceedings of the 23rd International Conference on Machine Learning, ACM, ACM
International Conference Proceeding Series, vol 148, pp 25–32

Airola A, Pahikkala T, Salakoski T (2011a) On learning and cross-validation with
decomposed Nyström approximation of kernel matrix. Neural Processing Letters
33(1):17–30

Airola A, Pahikkala T, Salakoski T (2011b) Training linear ranking SVMs in lin-
earithmic time using red-black trees. Pattern Recognition Letters 32(9):1328–
1336

Basilico J, Hofmann T (2004) Unifying collaborative and content-based filtering.
In: Brodley CE (ed) Proceedings of the twenty-first international conference on
Machine learning (ICML’04), ACM, ACM International Conference Proceeding
Series, vol 69

Ben-Hur A, Noble W (2005) Kernel methods for predicting protein-protein inter-
actions. Bioinformatics 21 Suppl 1:38–46

Brunner C, Fischer A, Luig K, Thies T (2012) Pairwise support vector machines
and their application to large scale problems. Journal of Machine Learning Re-
search 13:2279–2292

Caetano T, McAuley J, Cheng L, Le Q, Smola A (2009) Learning graph matching.
IEEE Transactions on Pattern Analysis and Machine Intelligence 31(6):1048–
1058

Cao Y, Xu J, Liu TY, Li H, Huang Y, Hon HW (2006) Adapting ranking SVM
to document retrieval. In: Efthimiadis EN, Dumais ST, Hawking D, Järvelin
K (eds) Proceedings of the 29th annual international ACM SIGIR conference
on research and development in information retrieval (SIGIR 2006), ACM, pp
186–193

Chapelle O, Keerthi SS (2010) Efficient algorithms for ranking with SVMs. Infor-
mation Retrieval 13(3):201–215

De Baets B, De Meyer H, De Schuymer B, Jenei S (2006) Cyclic evaluation of
transitivity of reciprocal relations. Social Choice and Welfare 26:217–238

De Vito E, Rosasco L, Caponnetto A, De Giovannini U, Odone F (2005) Learning
from examples as an inverse problem. Journal of Machine Learning Research
6:883–904

Engl H, Hanke M, Neubauer A (1996) Regularization of Inverse Problems, Math-
ematics and Its Applications, vol 375. Kluwer Academic Publishers

Evgeniou T, Pontil M, Poggio T (2000) Regularization networks and support vec-
tor machines. Advances in Computational Mathematics 13(1):1–50

Fisher L (2008) Rock, Paper, Scissors: Game Theory in Everyday Life. Basic Books
Freund Y, Yier R, Schapire R, Singer Y (2003) An efficient boosting algorithm for

combining preferences. Journal of Machine Learning Research 4:933–969
Fürnkranz J, Hüllermeier E, Vanderlooy S (2009) Binary decomposition methods

for multipartite ranking. In: Buntine WL, Grobelnik M, Mladenic D, Shawe-
Taylor J (eds) Proceedings of the European Conference on Machine Learning
and Knowledge Discovery in Databases (ECML/PKDD’09), Springer, Lecture
Notes in Computer Science, vol 5781, pp 359–374

Geerts F, Mannila H, Terzi E (2004) Relational link-based ranking. In: Nasci-
mento MA, Özsu MT, Kossmann D, Miller RJ, Blakeley JA, Schiefer KB (eds)
Proceedings of the Thirtieth international conference on Very large data bases,
Morgan Kaufmann, pp 552–563



Algorithms for Conditional Ranking on Relational Data 37

Geurts P, Touleimat N, Dutreix M, d’Alché-Buc F (2007) Inferring biological net-
works with output kernel trees. BMC Bioinformatics 8(2):S4

Grangier D, Bengio S (2008) A discriminative kernel-based approach to rank im-
ages from text queries. IEEE Transactions on Pattern Analysis and Machine
Intelligence 30(8):1371–1384

Henderson HV, Searle SR (1981) On deriving the inverse of a sum of matrices.
SIAM Review 23(1):53–60

Horn RA, Johnson CR (1985) Matrix Analysis. Cambridge University Press, Cam-
bridge

Horn RA, Johnson CR (1991) Topics in matrix analysis. Cambridge University
Press, New York, NY, USA

Hüllermeier E, Fürnkranz J, Cheng W, Brinker K (2008) Label ranking by learning
pairwise preferences. Artificial Intelligence 172(16-17):1897 – 1916

Joachims T (2002) Optimizing search engines using clickthrough data. In: Hand
D, Keim D, Ng R (eds) Proceedings of the 8th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD’02), ACM, pp 133–142

Joachims T (2006) Training linear SVMs in linear time. In: Eliassi-Rad T, Ungar
LH, Craven M, Gunopulos D (eds) Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining (KDD’06),
ACM, pp 217–226

Kashima H, Kato T, Yamanishi Y, Sugiyama M, Tsuda K (2009a) Link propaga-
tion: A fast semi-supervised learning algorithm for link prediction. In: Proceed-
ings of the SIAM International Conference on Data Mining (SDM 2009), SIAM,
pp 1099–1110

Kashima H, Oyama S, Yamanishi Y, Tsuda K (2009b) On pairwise kernels: An
efficient alternative and generalization analysis. In: Theeramunkong T, Kijsirikul
B, Cercone N, Ho TB (eds) Proceedings of the 13th Pacific-Asia Conference on
Advances in Knowledge Discovery and Data Mining, Springer, Lecture Notes in
Computer Science, vol 5476, pp 1030–1037

Kersting K, Xu Z (2009) Learning preferences with hidden common cause relations.
In: Buntine WL, Grobelnik M, Mladenic D, Shawe-Taylor J (eds) Proceedings
of the European Conference on Machine Learning and Knowledge Discovery in
Databases (ECML/PKDD’09), Springer, Lecture Notes in Computer Science,
vol 5781, pp 676–691

Kimeldorf G, Wahba G (1971) Some results on Tchebycheffian spline functions.
Journal of Mathematical Analysis and Applications 33(1):82–95

Kotlowski W, Dembczynski K, Hüllermeier E (2011) Bipartite ranking through
minimization of univariate loss. In: Getoor L, Scheffer T (eds) Proceedings of the
28th International Conference on Machine Learning (ICML 2011), Omnipress,
pp 1113–1120

van Laarhoven T, Nabuurs SB, Marchiori E (2011) Gaussian interaction profile
kernels for predicting drug-target interaction. Bioinformatics 27(21):3036–3043

Liu TY (2009) Learning to rank for information retrieval. Foundations and Trends
in Information Retrieval 3(3):225–331

Luce R, Suppes P (1965) Handbook of Mathematical Psychology, Wiley, chap
Preference, Utility and Subjective Probability, pp 249–410

MacLeod N, Benfield M, Culverhouse P (2010) Time to automate identification.
Nature 467:154–155



38 Pahikkala et al.

Martin CD, Van Loan CF (2006) Shifted Kronecker product systems. SIAM Jour-
nal on Matrix Analysis and Applications 29(1):184–198

Menon A, Elkan C (2010) Predicting labels for dyadic data. Data Mining and
Knowledge Discovery 21(2):327–343

Ng MKP, Li X, Ye Y (2011) Multirank: co-ranking for objects and relations in
multi-relational data. In: Apté C, Ghosh J, Smyth P (eds) Proceedings of the
17th ACM SIGKDD international conference on Knowledge discovery and data
mining (KDD’11), ACM, pp 1217–1225

Oyama S, Manning C (2004) Using feature conjunctions across examples for learn-
ing pairwise classifiers. In: Boulicaut JF, Esposito F, Giannotti F, Pedreschi D
(eds) Proceedings of the 15th European Conference on Machine Learning, Lec-
ture Notes in Computer Science, vol 3201, Springer, pp 322–333

Pahikkala T, Tsivtsivadze E, Airola A, Järvinen J, Boberg J (2009) An effi-
cient algorithm for learning to rank from preference graphs. Machine Learning
75(1):129–165

Pahikkala T, WaegemanW, Airola A, Salakoski T, De Baets B (2010a) Conditional
ranking on relational data. In: Balcázar JL, Bonchi F, Gionis A, Sebag M (eds)
Proceedings of the European Conference on Machine Learning and Knowledge
Discovery in Databases (ECML/PKDD’10), Part II, Springer, Lecture Notes in
Computer Science, vol 6322, pp 499–514

Pahikkala T, Waegeman W, Tsivtsivadze E, Salakoski T, De Baets B (2010b)
Learning intransitive reciprocal relations with kernel methods. European Jour-
nal of Operational Research 206(3):676–685

Park Y, Marcotte EM (2012) Flaws in evaluation schemes for pair-input compu-
tational predictions. Nature Methods 9(12):1134–1136

Qin T, Liu TY, Zhang XD, Wang DS, Xiong WY, Li H (2008) Learning to rank re-
lational objects and its application to web search. In: Huai J, Chen R, Hon HW,
Liu Y, Ma WY, Tomkins A, Zhang X (eds) Proceedings of the 17th international
conference on World Wide Web, ACM, pp 407–416

Raymond R, Kashima H (2010) Fast and scalable algorithms for semi-supervised
link prediction on static and dynamic graphs. In: Balcázar JL, Bonchi F, Gionis
A, Sebag M (eds) Proceedings of the 2010 European conference on Machine
learning and knowledge discovery in databases: Part III, Lecture Notes in Com-
puter Science, vol 6323, Springer, pp 131–147

Rudin W (1991) Functional Analysis, 2nd edn. International Series in Pure and
Applied Mathematics, McGraw-Hill Inc., New York, USA

Saunders C, Gammerman A, Vovk V (1998) Ridge regression learning algorithm
in dual variables. In: Shavlik JW (ed) Proceedings of the Fifteenth International
Conference on Machine Learning, Morgan Kaufmann Publishers Inc., pp 515–
521

Shawe-Taylor J, Cristianini N (2004) Kernel Methods for Pattern Analysis. Cam-
bridge University Press, Cambridge, UK

Slabbinck B, Waegeman W, Dawyndt P, De Vos P, De Baets B (2010) From
learning taxonomies to phylogenetic learning: Integration of 16S rRNA gene
data into FAME-based bacterial classification. BMC Bioinformatics 11(1):69

Srebro N, Rennie JDM, Jaakkola TS (2005) Maximum-margin matrix factoriza-
tion. In: Saul LK, Weiss Y, Bottou L (eds) Advances in Neural Information
Processing Systems, MIT Press, vol 17, pp 1433–1440



Algorithms for Conditional Ranking on Relational Data 39

Steinwart I (2002) On the influence of the kernel on the consistency of support
vector machines. Journal of Machine Learning Research 2:67–93

Steinwart I, Christmann A (2008) Support Vector Machines. Information Science
and Statistics, Springer, New York, NY, USA

Stock M, Pahikkala T, Airola A, Salakoski T, De Baets B, Waegeman W (2012)
Learning monadic and dyadic relations: three case studies in systems biology.
In: Proceedings of the ECML/PKDD 2012 workshop on learning and discovery
in symbolic systems biology, pp 74–84

Suykens J, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J (2002) Least
Squares Support Vector Machines. World Scientific Pub. Co., Singapore

Tsochantaridis Y, Joachims T, Hofmann T, Altun Y (2005) Large margin methods
for structured and independent output variables. Journal of Machine Learning
Research 6:1453–1484

Van Loan CF (2000) The ubiquitous kronecker product. Journal of Computational
and Applied Mathematics 123(1–2):85–100

Varma S, Simon R (2006) Bias in error estimation when using cross-validation for
model selection. Bioinformatics 7(1):91

Vert J, Qiu J, Noble WS (2007) A new pairwise kernel for biological network
inference with support vector machines. BMC Bioinformatics 8:S8

van der Vorst HA (1992) BI-CGSTAB: a fast and smoothly converging variant
of BI-CG for the solution of nonsymmetric linear systems. SIAM Journal on
Scientific and Statistical Computing 13(2):631–644

Waegeman W, Pahikkala T, Airola A, Salakoski T, Stock M, De Baets B (2012)
A kernel-based framework for learning graded relations from data. IEEE Trans-
actions on Fuzzy Systems 20(6):1090–1101

Weston J, Eliseeff A, Zhou D, Leslie C, Noble WS (2004) Protein ranking: from
local to global structure in the protein similarity network. Proceedings of the
National Academy of Sciences of the United States of America 101(17):6559–
6563

Weston J, Schölkopf B, Bousquet O, Mann T, Noble W (2007) Joint kernel maps.
In: Bakir G, Hofmann T, Schölkopf B, Smola A, Taskar B, Vishwanathan S (eds)
Predicting structured data, Neural Information Processing Series, MIT Press,
pp 67–83

Xia F, Liu TY, Wang J, Zhang W, Li H (2008) Listwise approach to learning
to rank: theory and algorithm. In: Cohen WW, McCallum A, Roweis ST (eds)
Proceedings of the 25th international conference on Machine learning, ACM,
ACM International Conference Proceeding Series, vol 307, pp 1192–1199

Xu Z, Kersting K, Joachims T (2010) Fast active exploration for link-based pref-
erence learning using gaussian processes. In: Balcázar JL, Bonchi F, Gionis A,
Sebag M (eds) Proceedings of the European Conference on Machine Learning
and Knowledge Discovery in Databases (ECML/PKDD’10), Part III, Springer,
Lecture Notes in Computer Science, vol 6323, pp 499–514

Yamanishi Y, Vert JP, Kanehisa M (2004) Protein network inference from multiple
genomic data: a supervised approach. Bioinformatics 20(suppl 1):i363–i370

Yang Y, Bansal N, Dakka W, Ipeirotis P, Koudas N, Papadias D (2009) Query
by document. In: Baeza-Yates RA, Boldi P, Ribeiro-Neto BA, Cambazoglu BB
(eds) Proceedings of the 2nd International Conference on Web Search and Data
Mining (WSDM 2009), ACM, pp 34–43



40 Pahikkala et al.

Yue Y, Finley T, Radlinski F, Joachims T (2007) A support vector method for
optimizing average precision. In: Kraaij W, de Vries AP, Clarke CLA, Fuhr
N, Kando N (eds) Proceedings of the 30th annual international ACM SIGIR
conference on Research and development in information retrieval (SIGIR 2007),
ACM, pp 271–278


