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Abstract. Invariant based programming is an approach where we start to construct a program by first identifying
the basic situations (pre- and post-conditions as well as invariants) that could arise during the execution of the algo-
rithm. These situations are identified before any code is written. After that, we identify the transitions between the
situations, which will give us the flow of control in the program. Data refinement is a technique of building correct
programs working on concrete data structures as refinements of more abstract programs working on abstract data
types. We study in this paper data refinement for invariant based programs and we apply it to the construction of
the classical Deutsch-Schorr-Waite graph marking algorithm. Our results are formalized and mechanically proved
in the Isabelle/HOL theorem prover.

1. Introduction

Invariant based programming [Bac80b, Bac83, Bac08, BP11] is an approach to constructing correct programs
where we start by identifying all basic situations (pre-conditions, post-conditions, and loop invariants) that could
arise during the execution of the algorithm. These situations are determined and described before any code is
written. After that, we identify the transitions between the situations, which together determine the flow of control
in the program. The transitions are verified at the same time as they are constructed. The correctness of the program
is thus established as part of the construction process.

We use a diagrammatic approach to describe invariant based programs, (nested) invariant diagrams, where
situations are shown as (possibly nested) boxes and transitions are arrows between these boxes. We associate a
collection of constraints with each situation box, and a sequence of simple statements with each transition arrow.
Nesting expresses the information content of the situations: if situation B is nested within situation A, then B
inherits the constraints of A. The control structure is secondary to the situation structure, and will usually not be
well-structured in the classical sense, i.e., control is not necessarily expressible in terms of single- entry single-exit
constructs. The invariant diagram shows explicitly all the information needed in order to verify that the program is
correct: pre- and post-conditions, invariants, transitions, and termination functions.

We have been experimenting with teaching formal methods using invariant based programming for a number
of years now, mainly in the form of introductory CS courses at university levels. The experiences have been good,
the students learn quite easily how to construct programs that are correct by construction with this approach, and
appreciate the added understanding that the approach brings to how a program works. The problems encountered
have less to do with the invariants first approach than with the general problem of how to describe formally (in
predicate calculus) situations that are intuitively well understood [Bac08].

The Figure 1 shows a simple example of an invariant based program, the factorial function, expressed as an
invariant diagram.

There are three situations here, init , loop, and final . The situation init declares the program variables n and
x and restricts them to range over integers. In addition, we require that n ≥ 0. The two other situations are nested
inside init , which means that they inherit the program variables and constraints from the outer situation. Situation
final states that upon termination x = n! must hold. The intermediate situation loop declares an additional program
variable i and restricts it to range over integers in the range 1 to n + 1. In addition, it requires that x = (i − 1)!
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n, x : integer
n ≥ 0

i : integer
1 ≤ i ≤ n+ 1
x = (i− 1)!

loop n+ 1− i ∈ nat

x = n!

final

[i ≤ n] ;
x, i := x · i, i+ 1

init

[i > n]

x, i := 1, 1

Figure 1. Factorial diagram (Factorial)

holds in this situation. There are three transitions in the diagram, one leading from init to loop providing initial
values for x and i, one leading from loop back to itself that updates the variables x and i when i ≤ n holds, and
one leading from loop to final that is taken when i > n holds but which does not change any program variables.
The transitions of the diagram can update the variables which are visible in the target situation. For example, in the
factorial diagram, the transition from situation init to situation loop can update the variables x and i because x is
defined in init and is also available in loop, and i is defined in loop.

The loop situation also gives a termination function, in the form termination function ∈ W , where W is some
well founded set. In this case, the well founded set is the set of natural numbers nat and the termination function
is n+ 1− i. The property n+ 1− i ∈ nat must be provable from the constraints that hold in situation loop (in this
case, this amounts to proving that 0 ≤ n+ 1− i holds).

Execution of an invariant based program may start in any situation (not necessarily an initial situation), in a
state that satisfies the constraints of the situation. One of the transitions that are enabled in this situation will be
chosen. The transition is then executed, leading to new state in (possibly) another situation. There again one of the
enabled transitions is chosen, and executed, and so on. In this way, execution proceeds from situation to situation.
Execution terminates when a situation (not necessarily a final situation) is reached in a state for which there are no
enabled transitions. Because the execution could start and terminate in any situation, invariant-based programs can
be thought of as multiple entry, multiple exit programs. We may decide to identify some situations in an invariant
based program as initial situations and some other situations as final situation, with the idea that execution should
start in some initial situation and it should end in some final situation.

An invariant based program is consistent, if each transition preserves the situation constraints. This means that
if we start execution in a situation A and in a state where the constraints of A are satisfied, and choose a transition
that is enabled in A, then executing the transition will lead to some situation B (which could be A again) such
that the resulting state satisfies the constraints associated with B. An invariant based program is terminating, if
each execution of the program eventually terminates. For a given collection of final situations, an invariant based
program is said to be live if termination only occurs in some final situation. The semantics and proof theory for
invariant based programs are studied in detail in [BP11].

The idea of invariant based programming is not new, similar ideas were proposed in the 70’s by John Reynolds
[Rey78], Martin van Emden [VE79], and Ralph-Johan Back [Bac80b, Bac83], in different forms and variations.
Dijkstra’s later work on program construction also points in this direction [Dij76], where he emphasizes the formu-
lation of a loop invariant as a central step in deriving the program code. However, Dijkstra insists on building the
program in terms of well-structured (single-entry single-exit) control structures, whereas there are no restrictions
on the control structure in invariant based programming. Central for these approaches is that the loop invariants are
formulated before the program code is written. Eric Hehner [Heh79] was working along similar lines, but chose
relations rather than predicates as the basic construct. Pnueli [Pnu05] used a graph structure with edges labeled by
statements and nodes labeled by predicates to reason about correctness on imperative programs. His programs are
also single entry, single exit and he does not use the nesting mechanism for defining the invariants.

The purpose of this paper is to study the use of data refinement when building invariant based programs. Data
refinement [Hoa72, Bac80a, BvW00, DE99] is a technique of building correct programs working on concrete data
structures as refinements of more abstract programs working on abstract data structures. The correctness of the
final program follows from the correctness of the abstract program and from the correctness of the data refinement.
The overall complexity of the correctness proof is usually lower when using data refinement than when the final
program is developed directly on the concrete data structure. We will show how to adapt the basic idea of data
refinement to the construction of invariant based programs. At the same time, we will extend the notion of nested
invariant diagrams in a way that makes it easy to describe data refinement. On the theoretical side, this paper
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extends the work described in [BP11] by including methods for carrying out data refinement. The data refinement
theorems that we present here have all been proved mechanically in Isabelle/HOL [NPW02].

Data refinement is traditionally used as a technique for implementing data modules (or classes) with an abstract
specification that describes the interface and the intended effect of the operations on the abstract data. The concrete
implementation of the data module introduces a lot of detail that is not relevant for the way the data module is used.
Data refinement shows that you can use the concrete implementation of the data module as if it was the abstraction
itself, without having to change the interface or the way the data module is used in the rest of the program. Data
refinement is thus a technique for enforcing information hiding in large, modularized programs. Our goals in
this paper are, however, different. We are mainly interested in building complex algorithms, expressed in terms
of concrete and often quite complex data structures. We develop the concrete algorithm through a sequence of
refinement steps, starting from a rather abstract specification of the algorithm, which nails down some aspects
that we want to achieve, but not all. Each refinement makes some aspect of the algorithm more concrete, until we
have constructed an algorithm that satisfies the stated goals of efficiency and implementability. The difference to
the information hiding view is that we are specifically interested in the final concrete algorithm and its concrete
specification, expressed in terms of the concrete data structures manipulated by the algorithm.

We apply our technique to a larger case study, constructing the classical Deutsch-Schorr-Waite (DSW) [SW67,
Knu97] marking algorithm for arbitrary graphs. The DSW algorithm marks all nodes in a graph that are reachable
from a root node. The marking is achieved using only one extra bit of memory for every node. The graph is given
by two pointer functions, left and right, which for any given node return its left and right successors, respectively.
While marking, the left and right functions are altered to represent a stack that describes the path from the root
to the current node in the graph. On completion the original graph structure is restored. We construct the DSW
algorithm by a sequence of three successive data refinement steps. The entire development has been formalized
in the Isabelle/HOL theorem prover. The main difference in our case study, as compared to the previous studies
[MN05, Abr03], is that the whole refinement process is carried out using invariant diagrams. We also believe that
the way we develop the algorithm by first proving a generalization of the algorithm significantly reduces the overall
proof effort.

This paper is an extension of the paper [PB09]. We extend here the earlier version with a more general theory
of data refinement for invariant based programs, and we instantiate this theory for the special diagrams used in
[PB09]. We also introduce a new and more convenient way of handling program variables and program expressions
in programming logic, by point-wise extended function application. We also significantly enhance the presentation
of the Deutsch-Schorr-Waite case study, by adding more details about the refinement steps and by introducing
a number of theorems about the correctness of the intermediate versions of the algorithm as well as about the
refinement steps. A final theorem about the correctness of the DSW is also proved.

The paper is structured as follows. Section 2 presents the refinement calculus background. Section 3 introduces
invariant diagrams and their proof theory. Section 4 introduces the data refinement of invariant diagrams. The DSW
algorithm is constructed in Section 5. Section 6 presents some concluding remarks.

2. Refinement calculus background

We are going to formulate the proof theory of invariant diagrams in the refinement calculus. We therefore start with
some essential notions that are going to be needed in the sequel.

We will here use period for function application, if f : A → B is a function from A to B and x ∈ A, then
f.x ∈ B is the application of f to x. The function application is assumed to be left associative. This means that we
write (f.e).σ as f.e.σ.

For two functions f : X → Y and g : X → Y → Z we denote by f [x 7→ y] : X → Y and g[x, y 7→ z] :
X → Y → Z, respectively, the functions given by

f [x 7→ y].a =

{
y if x = a

f.a otherwise

g[x, y 7→ z].a.b =

{
z if x = a ∧ y = b

g.a.b otherwise

We use also the notation f [x1 7→ y1, . . . , xn 7→ yn] for f [x1 7→ y1] . . . [xn 7→ yn].

2.1. Monotonic predicate transformers

We start by defining the notion of monotonic predicate transformers, on which the semantics of invariant based
programs is based, and then continue with defining the different aspects of the correctness of program statements.

The type of Boolean values true and false is denoted by bool, and the boolean operations are ∧, ∨,⇐, and ¬.
We assume that we have a state space Σ. A state σ ∈ Σ represents the values of the program variables. Predicates
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(or sets) over Σ, denoted pred(Σ), are functions from Σ→ bool. We denote by ∪, ∩, ⊆, ¬ the union, intersection,
inclusion, and complement of predicates respectively. When Σ is fixed we write only pred.

For a set of predicates X ⊆ pred,
∨
X denotes the disjunction (union) of all predicates in X and

∧
X denotes

the conjunction (intersection) of all predicates in X . A predicate transformer S is disjunctive if for all X ⊆ pred,
S.(
∨
X) =

∨
p∈X S.p. S is conjunctive if S.(

∧
X) =

∧
p∈X S.p. S is strict disjunctive if S.(

∨
X) =

∨
p∈X S.p

for all X 6= ∅, and S is strict conjunctive if S.(
∧
X) =

∧
p∈X S.p for all X 6= ∅.

In general we may have programs that start execution in a state Σ with some program variables and end
in a state Σ′ with other program variables. We model these programs as monotonic predicate transformers, de-
noted mtran(Σ,Σ′), i.e., monotonic functions from pred(Σ′) → pred(Σ). If S ∈ mtran and q ∈ pred(Σ′), then
S.q ∈ pred(Σ) are all states from which the execution of S terminates in a state satisfying the post-condition q. Se-
quential composition of programs, denoted S ; T , is defined as the functional composition of monotonic predicate
transformers, i.e. (S ; T ).q = S.(T.q). Whenever we apply sequential composition or other operation to predicate
transformers, we assume that they have the right types. In the sequential composition S is a program from Σ to Σ′

and T from Σ′ to Σ′′. We denote by v, t, and u the point-wise extension of ⊆, ∪, and ∩, respectively. The type
mtran, together with the point-wise extension of the operations on predicates, forms a complete lattice. The partial
order v on mtran is the refinement relation [BvW98, Bac80a]. The predicate transformer S u T models demonic
choice - the choice between executing S or T is arbitrary and cannot be influenced from outside.

Definition 1. If p and q are predicates and S is a program, then a total correctness triple p {|S |} q is valid, denoted
|= p {|S |} q, if and only if p ⊆ S.q.

We introduce a number of monotonic predicate transformers:

Assert { p }.q = p ∩ q
Assume [ p ].q = ¬p ∪ q
Demonic update [R ].q.σ = (∀σ′ : R.σ.σ′ ⇒ q.σ′)

Angelic update {R }.q.σ = (∃σ′ : R.σ.σ′ ∧ q.σ′)
Magic magic.q = true

The angelic update statement is disjunctive, the demonic update statement is conjunctive, the assert statement is
disjunctive and strict conjunctive, and the assume statement is conjunctive and strict disjunctive.

2.2. Program expressions with point-wise function application

We assume that we have a number of program variables x, y, z, . . . of types Tx, Ty, Tz, . . .. In this case the
state space Σ is the Cartesian product of Tx, Ty , Tz , . . .

Σ = Tx × Ty × Tz × . . .
and each state σ is some tuple (ax, ay, az, . . . , ). Formally a program variable x is the corresponding projection
function from Σ to Tx (x = prj1, y = prj2, z = prj3, . . .). If a ∈ Tx is a value then σ[x := a] ∈ Σ is the state
obtained from σ by changing the value of x to a. If σ = (ax, ay, az, . . .), then σ[x := a] = (a, ay, az, . . .).

Lemma 2. If x and y are two distinct program variables, then the following properties hold:

x.(σ[x := a]) = a

y.(σ[x := a]) = y.σ

Program expressions of a type T are functions from Σ → T . If e : Σ → T and σ ∈ Σ, then e.σ is the value of
expression e in state σ. If e, f are program expressions and x is a program variable, then the semantic substitution
of x with f in e, denote e[x := f ], is given by

e[x := f ].σ = e.(σ[x := f.σ])

We point-wise extend all operators from values to program expressions. The point-wise extensions of plus and
universal quantification are given by:

(e+ f).σ = e.σ + f.σ

(∀x : b).σ = (∀a : (b[x := a].σ))

In the point-wise extension of the universal quantification a is a new variable which does not occur free in b. For
example the value of expression x+ y in a state σ where x.σ = 3 and y.σ = 4 is 7.
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Similarly we point-wise extend function application. For a program expression e : Σ → A and a function
f : A→ T we define the expression f.e : Σ→ T by

(f.e).σ := f.(e.σ)

Here only the second argument of application, e, is applied to the state σ. For a program expression e : Σ → A
and a function g : Σ→ A→ T we define the expression g.e : Σ→ T by

(g.e).σ := (g.σ).(e.σ)

Here both the first and the second argument of application are applied to the state σ. In the sequel we will assume
that the extended application operation is left associative, like the standard application operation. This means that
we write (f.e).σ as f.e.σ and (g.e).σ as g.e.σ.

The big advantage of using point-wise extended application is that we can be explicit about which program
variables our predicates depend upon. For example if q : Tx → Ty → bool is a function with two parameters, then
with point-wise extended application, we have that

q.x.y = (λσ : ((q.x).y).σ) = (λσ : ((q.x).σ).(y.σ)) = (λσ : q.(x.σ).(y.σ))

Here we use both forms for point-wise extended application in calculating the corresponding lambda function.
The expression q.x.y is a predicate on Σ. The expression shows explicitly that the predicate only depends on the
program variables x and y. Moreover, if we substitute program variable x by expression e in q.x.y, we get q.e.y:

(q.x.y)[x := e] = q.e.y

The point-wise extension of the function application turns out to be very convenient when calculating with
program expressions. For function application, we have that (q.x)[x := e] = q.e, i.e., the substitution of x by e in
q.x is q.e. This same property holds for point-wise extended function application, as shown above. We also get a
generalization of the point-wise extension of all other operators. For example we can use the same construction as
we used for q above to build x+ y : Σ→ integer using + : integer→ integer→ integer;

+.x.y.σ = ((+.x).σ).(y.σ) = +.(x.σ).(y.σ) = x.σ + y.σ

For us, the most important fact is that we can express Hoare correctness triples in a manner which is easy to read
and understand. For example if p.a = (0 < a) and q.a.b = (0 ≤ a < b), and if x, y are some integer program
variables, then we can state the correctness of the program x := y − 1 as

|= p.y {|x := y − 1 |} q.x.y (1)

instead of having to write this as

|= (λa, b : p.b) {|x := y − 1 |} (λa, b : q.a.b) (2)

where we also need to remember that Σ has two components for x and y.
Applying the rule for the assignment statement in (1) results in the proof obligation

p.y ⊆ q.(y − 1).y

which is true if and only if

(∀σ : p.y.σ ⇒ q.(y − 1).y.σ)

= (∀σ : p.(y.σ)⇒ q.(y.σ − 1).(y.σ))

= (∀(a, b) : p.(y.(a, b))⇒ q.(y.(a, b)− 1).(y.(a, b)))

= (∀a, b : p.b⇒ q.(b− 1).b)

2.3. Assignment statements

We define some more specific program statements as special cases of the demonic and angelic update state-
ments. These are the demonic assignment statement [x := x′ | b.x′.y.z], the angelic assignment statement
{x := x′ | b.x′.y.z}, and the assignment statement x := e. In the demonic and angelic assignment statements
we assume that the starting state has only the variables y, z and the final state has only the variables x, z. The
variable x is calculated using the values of y and z according to the relation b, and z is left unchanged. We define
these as follows:

Demonic assignement [x := x′ | b.x′.y.z ] = [λσ, σ′ : z.σ = z.σ′ ∧ b.(x.σ′).(y.σ).(z.σ) ]

Angelic assignement {x := x′ | b.y.z.x′ } = {λσ, σ′ : z.σ = z.σ′ ∧ b.(x.σ′).(y.σ).(z.σ) }
Assignment (x := e) = [x := x′ | x′ = e ]

The contexts in which these statements are used define precisely the initial variables (y, z) and the final variables
(x, z).
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Lemma 3. If b : Tx → Ty → Tz → bool, q : Tx → Tz → bool, and p : Tx → bool, then the following properties
are true

[x := x′ | b.x′.y.z ].(q.x.z) = (∀x′ : b.x′.y.z ⇒ q.x′.z)

{x := x′ | b.x′.y.z }.(q.x.z) = (∃x′ : b.x′.y.z ∧ q.x′.z)
(x := e).(p.x) = p.e

(Note that we use the point-wise extended quantifiers on the left).

Proof. We show the proof only for the first property. The others are similar.

• [x := x′ | b.x′.y.z ].(q.x.z).σ

= {Definition}
[λσ, σ′ : z.σ = z.σ′ ∧ b.(x.σ′).(y.σ).(z.σ) ].(q.x.z).σ

= {Definitions}
(∀σ′ : z.σ = z.σ′ ∧ b.(x.σ′).(y.σ).(z.σ)⇒ q.(x.σ′).(z.σ′))

= {Logic}
(∀σ′ : (∃a : x.σ′ = a) ∧ z.σ = z.σ′ ∧ b.(x.σ′).(y.σ).(z.σ)⇒ q.(x.σ′).(z.σ))

= {Logic}
(∀a, σ′ : x.σ′ = a ∧ z.σ = z.σ′ ∧ b.a.(y.σ).(z.σ)⇒ q.a.(z.σ))

= {Logic}
(∀a : (∃σ′ : x.σ′ = a ∧ z.σ = z.σ′) ∧ b.a.(y.σ).(z.σ)⇒ q.a.(z.σ))

= {Using the witness (a, z.σ) for σ′ which has only two components, for x and z}
(∀a : b.a.(y.σ).(z.σ)⇒ q.a.(z.σ))

= {Definitions}
(∀x′ : b.x′.y.z ⇒ q.x′.z).σ

In the theory part we talk about program variables x and y and we assume that they are distinct. In practical
examples we will use tuples of concrete variables instead of x and y. In this case the condition that they are distinct
is replaced by the conditions that the tuples do not have common concrete variables.

2.4. Guards

Definition 4. For a monotonic predicate transformer S ∈ mtran we introduce the guard of S by grd.S =
¬(S.false).

Theorem 5. The following properties are true.
grd.(x := e) = true
grd.[ p ] = p
grd.[x := x′ | b ] = (∃x′ : b)
grd.(S1 u S2) = grd.S1 ∪ grd.S2

3. Proof theory for invariant diagrams

We now continue with developing the proof theory of invariant based programs. The presentation here is a summary
of the work described in [BP11].

3.1. Invariant diagrams

An invariant diagram is a directed graph where nodes are labeled with invariants (predicates) and edges are
labeled with program statements (monotonic predicate transformers). The nodes of the invariant diagram are called
situations and the edges are called transitions.

Let I be a nonempty set of indexes. Formally, an invariant diagram is a tuple (P, T ) where P : I → pred are
the invariants and T : I × I → mtran are the transitions. We refer to T as a transition diagram. The guard of a
transition diagram in a situation i ∈ I , grd.T.i ∈ pred is the disjunction of the guards of all transitions from i:

grd.T.i =
∨
j∈I

grd.T.i.j

We denote by Magic the diagram in which all transitions are magic:

Magic = (λi, j : magic).
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Figure 1 is a representation for the transition diagram Factorial given by:

Factorial = Magic[

(init , loop) 7→ (x, i := 1, 1)

(loop, loop) 7→ ([i ≤ n] ; x, i := x · i, i+ 1)

(loop,final) 7→ [i > n]]

and for the invariants:

P.init = (n ≥ 0)

P.loop = (n ≥ 0 ∧ x = (i− 1)! ∧ i ≤ n+ 1)

P.final = (n ≥ 0 ∧ x = n!)

In this example the set I of situations is {init , loop, final}. A transition from situation i to situation j is assumed
to be magic (the transition which is never enabled) if it is not drawn explicitly in the diagram.

The execution of an invariant diagram may start in any situation i ∈ I , and then non-deterministically choose
some enabled transition from i leading to some new situation j ∈ I . The execution continues in this way as long
as transitions are enabled. The execution terminates when a situation i is reached where no transitions are enabled.
In [BP08, BP11], we have introduced operational semantics and predicate transformer semantics for invariant
based programs and we proved their equivalence. We have also introduced consistent and complete proof rules for
invariant diagrams. We recall these proof rules below.

An executable invariant diagram is one in which all statements in the diagram are equivalent to the form
[ p ] ; x := e, where e and p are ordinary program expressions. They should thus not contain quantifiers or specifi-
cation functions which are not part of the target programming language.

Very often in examples it is convenient to draw more than one transition between two situations i and j. We
interpret these as standing for a single transition that is the demonic choice of all transitions between i and j.

3.2. Correctness of invariant diagrams

Informally, a transition diagram T : I × I → mtran is totally correct with respect to the initial predicates P : I →
pred and final predicatesQ : I → pred, denoted P {|T |}Q, if for all initial states σ and situations i for which P.i.σ
is true, the execution always terminates, and Q.j.σ′ is true for the termination state σ′ and termination situation j.
This notion is defined more precisely in [BP11]. For this paper, we do not need the exact semantic definition of
total correctness of transition diagrams, the proof rule established in [BP11] will be sufficient.

Let us first give a proof rule for establishing a special case of total correctness, called strict total correctness.
This is ordinary total correctness, but the pre- and post-conditions have to be of a specific form. The proof rule is
the following:

|= X.w.i {|Ti,j |}X<(i,w).j, for all i, j, w
`s
∨
X {|T |} ∨X ∩ ¬grd.T

(3)

where X : W → I → pred, W is a set, < is a well ordered relation on I ×W , and

(
X<(i,w)

)
.j =

∨
(j,v)<(i,w)

X.v.j and
∨
X =

∨
w∈W

X.w

In the proof rule (3) we used for transitions valid Hoare triples (|= p {|S |} q) instead of provable Hoare triples
(` p {|S |} q). We used valid Hoare triples in order to avoid the introduction of proof rules for transitions, which
are not relevant for this paper. The equivalence between valid Hoare triples and provable Hoare triples was studied
in [BP11].

The proof rule (3) reduces the correctness of a transition diagram to total correctness assertions for all tran-
sitions, which can be proved in the ordinary refinement calculus framework. We write the index s at the proof
symbol, to indicate that the total correctness was established with this specific rule. Termination of execution of
the diagram is ensured here, because every transition must decrease a variant with respect to the well ordered rela-
tion <. Having a well ordered relation on both the set of situations and some other set W results in a rule which is
easier to apply in practical examples, as we will show on the factorial example.

Total correctness of a diagram in general is proved by combining the traditional rule of consequence with the
rule for proving strict total correctness:

P ⊆ P ′ Q′ ⊆ Q `s P ′ {|T |}Q′
` P {|T |}Q (4)
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α
init

p.w
loop w ∈ W

β

final

S1

S3

S2

Figure 2. While diagram (While)

The soundness and completeness of these rules have been proved in [BP08, BP11] and they have been mechanically
verified in the PVS theorem prover.

Definition 6. An invariant diagram (P, T ) is totally correct if ` P {|T |}P .

3.3. Correctness of while diagrams

We will specialize the rule (3) to a while diagram, which has the simple structure of Figure 2.
Here we assume that (W,<) is a well ordered set and we write w ∈ W in the upper right corner of the loop

situation to indicate that the invariant of the situation loop is in fact ∨p =
∨
w∈W p.w, even if we just write p.w as

the situation constraint. Let I = {init , loop,final} be the set of situations of the diagram from Figure 2. The order
< on I is defined by final < loop < init , and the order < on I ×W is defined as the lexicographic order, i.e.

(i, w) < (j, v)⇔ i < j ∨ (i = j ∧ w < v)

The order relation on I ×W is also a well order.
Let While : I × I → mtran be the transition diagram corresponding to Figure 2, given by

While = Magic[(init , loop) 7→ S1, (loop, loop) 7→ S2, (loop,final) 7→ S3]

If we take

X.w.init = α

X.w.loop = p.w

X.w.final = β

then the rule (3) becomes

|= X.w.init {|S1 |}X<(init,w).loop

|= X.w.loop {|S2 |}X<(loop,w).loop

|= X.w.loop {|S3 |}X<(loop,w).final

`s
∨
X {|While |} ∨X ∩ ¬grd.While

because all the other transitions are magic. We have
• X<(init,w).loop

= {Definition}∨
(loop,v)<(init,w)X.v.loop

= {Definition of X.v.loop}∨
v∈W p.v

= {Definition of union}
∨p

• X<(loop,w).loop

= {Definition}∨
(loop,v)<(loop,w)X.v.loop

= {Definition of < on pairs}∨
v<wX.v.loop

= {Definition of X}∨
v<w p.v

= {Definition}
p<w

and similarly X<(loop,w).final = β. The rule for the while diagram is simplified to
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|= α {|S1 |} ∨ p
|= p.w {|S2 |} p<w
|= p.w {|S3 |}β

`s
∨
X {|While |} ∨X ∩ ¬grd.While

where p<w =
∨
v<w p.v. Because w is chosen such that it does not occur free in β and S3, the statement |=

p.w {|S3 |}β is equivalent to |= ∨p {|S3 |}β. The rule for While becomes:

|= α {|S1 |} ∨ p
|= p.w {|S2 |} p<w
|= ∨p {|S3 |}β

`s
∨
X {|While |} ∨X ∩ ¬grd.While

(5)

In practical examples, the predicate p.w from the diagram 2 is the conjunction of the situation invariant γ and a
formula of the form t = w, where w ∈W and t is a variant term ranging over the set W . In the invariant diagram,
we then state the variant t by writing t ∈ W in the upper right corner of the loop situation (as exemplified in the
factorial example). If p.w = (γ ∧ t = w), then

∨p = γ and p<w = γ ∧ t < w

therefore the proof obligations of the while diagram can be simplified further:

|= α {|S1 |} γ
|= γ ∧ t = w {|S2 |} γ ∧ t < w

|= γ {|S3 |}β
`s
∨
X {|While |} ∨X ∩ ¬grd.While

(6)

To apply this rule for the factorial example we set

P.init = (n ≥ 0)

P.loop = (n ≥ 0 ∧ x = (i− 1)! ∧ i ≤ n+ 1)

P.final = (n ≥ 0 ∧ x = n!)

The factorial example is strictly correct, `s P {|Factorial |}P ∩ ¬grd.Factorial if the following proof obligations
are true:

|= n ≥ 0 {|x, i := 1, 1 |}n ≥ 0 ∧ x = (i− 1)! ∧ i ≤ n+ 1

|= n ≥ 0 ∧ x = (i− 1)! ∧ i ≤ n+ 1 ∧ n− i+ 1 = w {| [i ≤ n] ; x, i := x · i, i+ 1 |}
n ≥ 0 ∧ x = (i− 1)! ∧ i ≤ n+ 1 ∧ n− i+ 1 < w

|= n ≥ 0 ∧ x = (i− 1)! ∧ i ≤ n+ 1 {| [i > n] |}n ≥ 0 ∧ x = n!

3.4. Final situations and liveness

The execution of a diagrams can start from any situation, and it can end in any situation. In practice, we are mainly
interested in diagrams in which the execution is guaranteed to terminate in some predetermined final situations.
For example we want the factorial diagram presented earlier to always terminate in situation final . An invariant
diagram with final situations is a tuple (P, T, J) where (P, T ) is an invariant diagram, and J ⊆ I is a non-empty
set of final situations. Final situations are emphasized in the diagram by drawing them with a thicker border line,
as already shown in the factorial example.

The diagram (P, T, J) is correct if (P, T ) always terminates in a situation in J (we then say that the diagram
is live for the final situations J). This is made more formal in the the following definition.

Definition 7. An invariant diagram with final situations (P, T, J) is totally correct, if

` P {|T |}P J (7)

where for all i ∈ I

P J .i =

{
P.i if i ∈ J
false otherwise
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To prove ` P {|T |}P J we have to find X : W → I → pred such that(
∀i, j, w : |= X.w.i {|Ti,j |}X<(i,w).j

)
,

P ⊆
∨
X,

and(∨
X ∩ ¬grd.T ⊆ P J

)
are true. All these proof obligations are the same as in the case of a diagram without final states with the exception
of the condition(

∀i : (
∨
X).i ∩ (¬grd.T ).i ⊆ P J .i

)
.

Instantiating it for a non-final situation i /∈ J yields

(
∨
X).i ∩ (¬grd.T ).i ⊆ false

which is equivalent to

(
∨
X).i ⊆ (grd.T ).i

In a non-final situation i the invariant of i must imply the guard of i. This proof obligation guarantees that if the
execution is in a non-final situation, then at least one transition is enabled.

In the factorial example, we require that execution can only terminate in the situation final . There are then two
additional proof obligations, besides those we already identified above:

n ≥ 0⇒ true

n ≥ 0 ∧ x = (i− 1)! ∧ i ≤ n+ 1⇒ (i ≤ n ∨ i > n)

These proof obligations ensure that execution does not terminate in the situation init nor in the situation loop.

4. Data refinement of invariant diagrams

Data refinement has proved to be a powerful tool in developing software systems. When writing a complex pro-
gram, it is often useful to start with an abstract program on an abstract data structure, and gradually refine it to a
more concrete program working on a concrete data structure. Using this approach the overall proof work is split
into smaller tasks [Bac80a, BvW00, DE99].

Data refinement is often used to implement a data module with information hiding. The specification of the
module defines the effect of access procedures in terms of abstract variables. The implementation of the module is
in fact done in terms of concrete variables, in order to achieve efficiency. If we can prove data refinement for all
access methods, then a user of the module will never see a difference, and may use the module and reason about
its behavior as if it was really implemented in terms of the abstract variables.

The situation with invariant based programs is different. Here we are interested in deriving a concrete algorithm
working on concrete variables. The abstraction is only useful if it saves us some verification effort, or can simplify
the understanding and/or construction of the algorithm. It turns out that data refinement is in fact quite useful for
this purpose also. In many cases, it is easier to first design an abstract program, working on some abstraction of
the intended state, and prove that it satisfies our requirements, and then refine this to a more concrete program that
works on the state space that we really want to (or have to) use.

4.1. Data refinement of transitions

We introduce first some general concepts about data refinement of statements, and we specialize them later for
transitions of diagrams.

Definition 8. Let S, S′, D,D′ ∈ mtran be monotonic predicate transformers. The predicate transformer S is data
refined by S′ via the data abstraction statements D and D′, denoted S vD,D′ S′, if

D ; S v S′ ; D′

Data refinement satisfies some monotonicity properties which are summarized by the next theorem.

Theorem 9. (Data refinement properties).

1. S vD,D′ U ∧ S′ vD,D′ U ′ ⇒ S u S′ vD,D′ U u U ′
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2. S vD,D′ U ∧ S vD,D′ U ′ ⇒ S vD,D′ U u U ′
3. S vD,D′ magic

4. S v S′ ∧ S′ vD,D′ S′′ ⇒ S vD,D′ S′′

5. p ⊆ q ⇒ { p } v { q }
6. S v S′ ⇒ S ; S′′ v S′ ; S′′

The next theorem is the main tool for proving the correctness of a statement S′ that is a data refinement of another
statement S.

Theorem 10. If S, S′, D,D′ ∈ mtran then

(|= p {|S |} q) ∧ ({p} ; S vD,D′ S′) ⇒ |= D.p {|S′ |}D′.q
Proof. We assume (|= p {|S |} q)⇔ (p ⊆ S.q) and ({p} ; S vD,D′ S′)⇔ (D ; { p } ; S v S′ ; D′).

• |= D.p {|S′ |}D′.q
= {Definition}

D.p ⊆ (S′ ; D′).q
⇐ {Assumptions}

D.p ⊆ (D ; { p } ; S).q

= {Function composition and definitions}
D.p ⊆ D.(p ∧ S.q)

= {Assumptions}
D.p ⊆ D.p

= {Properties of set inclusion}
true

We use this theorem to establish the correctness of a concrete statement S′, given that we have already shown that
a corresponding more abstract statement is correct. Let us assume that we know (or have proved previously) that
|= p {|S |} q holds. Assume further that we can prove that S′ is a data refinement of S, {p} ; S vD,D′ S′, when D
and D′ are chosen appropriately. From this we may then deduce directly that statement S′ satisfies the correctness
requirement |= D.p {|S′ |}D′.q. Here D.p gives us the concrete precondition and D′.q the concrete post-condition
that hold for S′. We are only interested in the correctness of statement S′, but proving the correctness of S and the
data refinement may be easier in many cases than trying to prove the correctness of S′ directly.

The next theorem allows us to prove that a sequential composition of an assert statement and a demonic update
is refined by a statement S, by reducing this to proving total correctness of S with respect to specific pre- and
post-conditions.

Theorem 11. (Data refinement to Hoare). If S,D ∈ mtran, p ∈ pred, and Q,R : Σ→ pred, then

({p} ; [Q] v{R},D S) = (∀σ0 : |= (λσ : R.σ.σ0 ∧ p.σ0) {|S |}D.(Q.σ0))

Proof.

• { p } ; [Q ] v{R },D S

= {Definition of data refinement}
{R } ; { p } ; [Q ] v S ; D

= {Definition of v}
(∀q, σ : ({R }.({ p }, ([Q ].q))).σ ⇒ S.(D.q).σ)

= {Definition of angelic update, assert and demonic update}
(∀q, σ, σ0 : R.σ.σ0 ∧ p.σ0 ∧Q.σ0 ⊆ q ⇒ S.(D.q).σ)

= {Monotonicity of S}
(∀σ, σ0 : R.σ.σ0 ∧ p.σ0 ⇒ S.(D.(Q.σ0)).σ)

= {Definition of ⊆}
(∀σ0 : (λσ : R.σ.σ0 ∧ p.σ0) ⊆ S.(D.(Q.σ0)))

= {Definition of valid Hoare triple}
(∀σ0 :|= (λσ : R.σ.σ0 ∧ p.σ0) {|S |}D.(Q.σ0))

This theorem will be used to generate proof obligations for data refinement statements.
The diagram from Figure 3 describes data refinement of a transition:



12 Viorel Preoteasa and Ralph-Johan Back

α.x.z

β.x.z

α′.y.z

β′.y.z

S S′

R1.x.y.z

R2.x.y.z

Figure 3. Data refinement of a transition

The abstract statement S modifies the global variables z and abstract variables x, and leads from an initial
abstract situation α.x.z to a final abstract situation β.x.z. The concrete statement S′ modifies the global variables
z and concrete variables y and leads from an initial concrete situation α′.y.z to a final concrete situation β′.y.z.
The data abstraction relation R1.x.y.z describes how the abstract variable x is related to the concrete variables y
and z in the initial situation. Similarly for R2.x.y.z in the final situation.

We can define data abstraction in terms of an angelic statement D that computes for each concrete state some
abstract state. Let us define

D1 = {x := x′ |R1.x
′.y.z ∧ α′.y.z}

D2 = {x := x′ |R2.x
′.y.z ∧ β′.y.z}

Here the abstraction (decoding) statements D1 and D2 include both the abstraction relation and the concrete
invariant.

Let us now further assume that the abstract statement S is just a demonic assignment,

S = [x, z := x′, z′ |Q.x.z.x′.z′ ]
We want to refine the abstract statement in the context where the initial situation α.x.z holds. This is expressed

by the data refinement

{α.x.z};S vD1,D2
S′.

Theorem 12. Assume that D1, D2 and S are defined as above. The statement {α.x.z};S vD1,D2 S′ is then
equivalent to

(∀x0, z0 :|= (z = z0 ∧R1.x0.y.z ∧ α′.y.z ∧ α.x0.z0) {|S′ |} (∃x : R2.x.y.z ∧ β′.y.z ∧Q.x0.z0.x.z))
Proof.

• {α.x.z };S vD1,D2
S′

= {Definitions}
{α.x.z } ; [λσ, σ′ : Q.(x.σ).(z.σ).(x.σ′).(z.σ′) ]

v{λσ,σ′:z.σ=z.σ′∧R1.(x.σ′).(y.σ).(z.σ)∧α′.(y.σ).(z.σ) },D2
S′

= {Theorem 11}
(∀σ0 :|= (λσ : z.σ = z.σ0 ∧R1.(x.σ0).(y.σ).(z.σ) ∧ α′.(y.σ).(z.σ) ∧ α.(x.σ0).(z.σ0)) {|S′ |}

{x := x′ |R2.x
′.y.z ∧ β′.y.z }.(Q.(x.σ0).(z.σ0).x.z))

= {State σ0 has only two components x.σ0 and z.σ0}
(∀x0, z0 :|= (λσ : z.σ = z0 ∧R1.x0.(y.σ).(z.σ) ∧ α′.(y.σ).(z.σ) ∧ α.x0.z0)) {|S′ |}

{x := x′ |R2.x
′.y.z ∧ β′.y.z }.(Q.x0.z0.x.z)

= {Definitions and Lemma 3}
(∀x0, z0 :|= (z = z0 ∧R1.x0.y.z ∧ α′.y.z ∧ α.x0.z0) {|S′ |}

(∃x : R2.x.y.z ∧ β′.y.z ∧Q.x0.z0.x.z)
Consider the situation in the diagram from Figure 3. The initial situation has the constraint α′.y.z and the final
situation has the constraint β′.y.z. Assume now that we want the concrete variables y and z to also satisfy the
constraint D1.(α.x.z), which says that there exists some value x such that R1.x.y.z ∧α.x.z holds. In other words,
the variables y and z should also represent some abstract variables x that satisfy the abstract situation constraint.
This means that the initial situation has the overall constraint

(∃x : R1.x.y.z ∧ α′.y.z ∧ α.x.z)
Similarly, we can argue that the final situation has the overall constraint

(∃x : R2.x.y.z ∧ β′.y.z ∧ β.x.z)
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α.x.z

R1.x.y.z
α′.y.z

∃x

β.x.z

R2.x.y.z
β′.y.z

∃x

S′

asdasdasdasdasdasdasdasdasd(∃x : R1.x.y.z ∧ α′.y.z ∧ α.x.z)

(∃x : R2.x.y.z ∧ β′.y.z ∧ β.x.z)

S′

Figure 4. Nested vs. flattened diagram

This divides the constraint of the situation into two parts, a concrete and an abstract part. We are now looking
for a concrete transition S′ that leads from the initial situation to the final situation, when interpreted in this way.
We describe this in an invariant diagram as shown on the left hand side of Figure 4.

The notation on the left indicates that the invariant of the nested situation is the conjunction of the constraints
in the outer situation and the inner situation, but such that the variable x is removed by existentially quantifying
it. The right hand diagram is equivalent to the left hand diagram, but written without the data abstraction notation.
The advantage of the left hand side notation is that it shows the structure of the situation, how it is built up from a
concrete and an abstract requirement.

The transition S′ is now correct if

D1.(α.x.z) {|S′ |}D2.(β.x.y) (8)

or, writing it out explicitly, if

(∃x : R1.x.y.z ∧ α′.y.z ∧ α.x.z) {|S′ |} (∃x : R2.x.y.z ∧ β′.y.z ∧ β.x.z)
holds. Based on Theorem 10, we can prove (8) in two steps:

(i) the abstract transition S is correct, and
(ii) the concrete transition S′ is a data refinement of the abstract transition S.

The theorem is specialized for our purposes as follows:

Theorem 13.

α.x.z {|S |}β.x.z (i)

∧
(∀x0, z0 : z = z0 ∧R1.x0.y.z ∧ α′.y.z ∧ α.x0.z0 {|S′ |}

β′.y.z ∧ (∃x : R2.x.y.z ∧Q.x0.z0.x.z)) (ii)

⇒
D1.(α.x.z) {|S′ |}D2.(β.x.z)

Proof. This is a consequence of Theorem 10 and Theorem 12.

Proving assumptions (i) and (ii) in the theorem will in fact establish the correctness of the diagram from Figure 5.

This shows both the abstract transition and the concrete transition, and explains how the concrete transition is
derived from the abstract transition. The verification of both the abstract and the concrete transition can be done
using only information that is explicitly given in the diagram.
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α.x.z

R1.x.y.z
α′.y.z

∃x

β.x.z

R2.x.y.z
β.y.z

∃x

S S′

Figure 5. Abstract and concrete transitions

4.2. Data refinement of diagrams

The previous subsection has introduced data refinement for transitions, and it has introduced a diagrammatic no-
tation for data refinement. It has also reduced the proof of correctness for the concrete transition to the proof of
correctness for the abstract transition and the proof of data refinement between the abstract and concrete transitions.
This subsection extends these concepts to diagrams.

A transition diagram T is data refined by another transition diagram T ′ via the data abstraction statements
D : I → mtran if every transition T.i.j is data refined by T ′.i.j. Formally we have:

Definition 14. (Data refinement of transition diagrams). The transition diagram T is refined by T ′ via the data
abstraction statements D : I → mtran, denoted T vD T ′ if

(∀i, j : T.i.j vDi,Dj T
′.i.j)

In order to prove for transition diagrams a theorem similar to Theorem 10 we need to introduce a couple of new
constructs.

The sequential composition of transition diagrams is defined similarly to the product of matrices, where the
product is replaced by sequential composition and addition is replaced by the demonic choice.

Definition 15. (Sequential composition of transition diagrams) For transition diagrams T, T ′ : I → I → mtran,
the sequential composition of T and T ′, denoted T ; T ′ : I → I → mtran is defined by

(T ; T ′).i.j =uk∈IT.i.k ; T.k.j

Intuitively the transition between two situations i and j in the sequential composition T ; T ′ is the demonic choice
over situation k of executing the transition T.i.k from i to k in T followed by transition T ′.k.j from k to j in T ′.

Definition 16. (Assert transition diagram) For an indexed predicate P : I → mtran the assert transition diagram
{P } : I → I → mtran is given by

{P }.i.j =

{{P.i } if i = j

magic otherwise

The assert diagram of an indexed predicate P has the transitions {P.i } on the diagonal and it has magic (the
neutral element for demonic choice) on the other transitions. The transitions of the sequential composition of {P }
and T are

({P } ; T ).i.j = {P.i } ; T.i.j

because magic ; S = magic and magic u S = S.
If D : I → mtran are indexed transitions and P : I → mtran are indexed predicates, then D.P : I → pred is

the point-wise extension of the function application that we defined earlier:

(D.P ).i = (D.i).(P.i)

Next theorem is the main theorem used in proving total correctness of a concrete diagram T ′ by proving the
total correctness of a concrete diagram T and by proving that T is data refined by T ′.

Theorem 17. (Data refinement for diagrams) Let T, T ′ : I → I → mtran, D : I → mtran, and P : I → pred. If
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D.i are disjunctive then

(`s P {|T |}Q) ∧ ({P} ; T vD T ′) ⇒ `s D.P {|T ′ |}D.P ∩ ¬grd.T ′

Proof. Assume that `s P {|T |}Q, then there exists X : W → I → pred such that P =
∨
X and Q =

∨
X ∩

¬grd.T , and(
∀i, j, w : |= X.w.i {|T.i.j |}X<(i,w).j

)
Assume also {P} ; T vD T ′, then

(∀i, j : {P.i } ; T.i.j vDi,Dj T
′.i.j)

• `s D.P {|T ′ |}D.P ∩ ¬grd.T ′

⇔ {Definition of `s}
(∃Y : (D.P =

∨
Y ) ∧ (D.P ∩ ¬grd.T ′ =

∨
Y ∩ ¬grd.T ′)

∧(∀i, j, w : |= Y.w.i {|T ′.i.j |}Y<(i,w).j))

⇔ {Simplifications}(
∃Y : (D.P =

∨
Y ) ∧

(
∀i, j, w : |= Y.w.i {|T ′.i.j |}Y<(i,w).j

))
⇐ {Existential quantifier elimination Y.w.k = (D.k).(X.w.k)}

(D.P =
∨

(λv : λk : (D.k).(X.v.k)))

∧
(
∀i, j, w :|= (D.i).(X.w.i) {|T ′.i.j |} (λv : λk : (D.k).(X.v.k))<(i,w).j

)
⇔ {Definition of

∨
for indexed predicates (P ∪Q = (λk : P.k ∪Q.k))}

(D.P = (λk :
∨

(λv : (D.k).(P.v.k))))

∧
(
∀i, j, w :|= (D.i).(X.w.i) {|T ′.i.j |} (λk : (λv : (D.k).(X.v.k))<(i,w)).j

)
⇔ {D.k, k ∈ I are disjunctive}

(D.P = (λk : (D.k).((
∨
X).k))

∧
(
∀i, j, w :|= (D.i).(P.w.i) {|T ′.i.j |} (λk : (D.k).(X<(i,w).k))).j

)
⇔ {Assumptions and definition of

∨
}

D.P = D.P ∧
(
∀i, j, w :|= (D.i).(P.w.i) {|T ′.i.j |} (D.k).(X<(i,w).j)

)
⇔ {Simplifications}(

∀i, j, w :|= (D.i).(X.w.i) {|T ′.i.j |} (D.k).(X<(i,w).j)
)

⇐ {Universal quantifier elimination}
|= (D.i).(X.w.i) {|T ′.i.j |} (D.k).(X<(i,w).j)

⇐ {Theorem 10}
|= (X.w.i {|T.i.j |}X<(i,w).j) ∧ {X.w.i } ; T.i.j vDi,Dj

T ′.i.j
⇔ {Assumptions}

{X.w.i } ; T.i.j vDi,Dj
T ′.i.j

⇐ {Theorem 9.4, 5, 6}
{ (
∨
X).i } ; T.i.j vDi,Dj T

′.i.j
⇔ {Assumptions}

{P.i } ; T.i.j vDi,Dj
T ′.i.j

⇔ {Assumptions}
true

4.3. Data refinement of the while diagram

Next we show how this theorem applies to the While diagram introduced earlier. Consider the diagram from Figure
6. We denote by X the indexed predicates given by X.w.init = α, X.w.loop = p.w, and X.w.final = β, by P
the indexed predicate given by P.init = α, P.loop = ∨p, and P.final = β, and by D the indexed transition given
by D.init = {x := x′ |R1.x.y.z }, D.loop = {x := x′ |R2.x.y.z }, and D.final = {x := x′ |R3.x.y.z }.

We are interested in proving correctness of the concrete diagram from Figure 7.
The strict correctness statement for this diagram can be stated as

`s D.P {|ConcWhile |}D.P ∩ ¬grd.ConcWhile

and using Theorem 17 it is reduced to the following statements:

`s P {|While |}P ∧ ¬grd.While

{P } ; While vD ConcWhile
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α.x.z

R1.x.y.z

∃x

init

p.w.x.z

R2.x.y.z

∃x

loop w ∈ W

β.x.z

R3.x.y.z

∃x

final

S1 S′
1

S2
S′
2

S3 S′
3

Figure 6. Data refinement of While

D1.α

init

D2.(p.w)

loop w ∈ W

D3.β

final

S′
1

S′
3

S′
2

1

Figure 7. Concrete while diagram (ConcWhile)

Using the rule (5) we obtain the following proof obligations for the strict correctness of the abstract program:

α {|S1 |} ∨ p
p.w {|S2 |} p<w
∨p {|S3 |}β

Assuming that Si = [x, z := x′, z′ : Qi.x.z.x
′.z′], and using Theorem 12 we obtain the following proof obliga-

tions for the data refinement statement:

z = z0 ∧R1.x0.y.z ∧ α.x0.z0 {|S′1 |} (∃x : R2.x.y.z ∧Q1.x0.z0.x.z)

z = z0 ∧R2.x0.y.z ∧ (∨p).x0.z0 {|S′2 |} (∃x : R2.x.y.z ∧Q2.x0.z0.x.z)

z = z0 ∧R2.x0.y.z ∧ (∨p).x0.z0 {|S′3 |} (∃x : R3.x.y.z ∧Q3.x0.z0.x.z)

If we prove that the abstract program terminates, then any data refinement of the abstract program will also termi-
nate.
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4.4. Liveness

From Theorem 17 it follows that termination for the abstract invariant diagram implies also termination of the con-
crete diagram. The same thing does not, however, hold for liveness. If we require that termination only happens in
some specific final situations, then we need to prove this property explicitly for the concrete diagram. Termination
in a specific final situation is thus not preserved by data refinement.

For example the factorial diagram (and any other diagram) is refined by Magic diagram, but Magic is not live.
Termination occurs already in the init situation.

If in the concrete while diagram we are interested in termination only in the final situation we need to prove

` Q {|ConcWhile |}QJ

where Q = D.P and J = {final} by proving

`s Q {|ConcWhile |}Q ∩ ¬grd.ConcWhile

Q ∩ ¬grd.ConcWhile ⊆ QJ
(9)

The second relation from (9) simplifies to:

Q.init ⊆ (grd.ConcWhile).init

Q.loop ⊆ (grd.ConcWhile).loop

that is, the invariants of init and loop situations must imply the guards of the transitions from init and loop,
respectively.

5. Data refinement of the DSW marking algorithm

We will now apply the data refinement technique presented above to construct the classical Deutsch-Schorr-Waite
marking algorithm as an invariant based program. This algorithm marks all reachable nodes in an arbitrary directed
graph. The algorithm is given for a graph structure represented using two pointers, left and right, associated with
each node. A marking bit is associated with every node, and initially the marking bit is false for all nodes. An
auxiliary bit called atom is also associated with every node (initially this bit can contain any value). The algorithm
will mark exactly those nodes that are reachable from a given root node by a path on which all nodes have the atom
bit false. Thus, y will not be marked if every path from the root to y contains a node with the atom bit true. If the
algorithm should mark all reachable nodes, then the atom bit must initially be false for all nodes.

The algorithm changes the left and right pointers and the atom bit while performing the marking, but will
restore the original values to these variables upon completion. The original algorithm has pairs of transitions for
both left and right pointer functions. In order to simplify the algorithm we generalize it to solve the marking
problem for a graph structure in which each node has a collection of pointers lnk .k for k ∈ label, instead of left
and right only. This change enables us to treat uniformly the lnk.k pointers. In the original algorithm we would
need pairs of lemmas for both left and right pointer functions, however in the generalized version all these are
replaced by single lemmas about the lnk .k pointers.

We construct the classical DSW marking algorithm in four data refinement steps. First we build an algorithm
that marks all nodes that can be reached from a special root node in an arbitrary directed graph. If node is a set
of nodes (vertices), then the graph structure is given by a relation next ⊆ node × node. This initial algorithm
uses an auxiliary variable X ranging over sets of nodes. The set X is initialized with the root element and, as
long as X is nonempty, we either remove an element from X if all its successors are marked, or if there is an
unmarked successor x of an element of X , then we mark x and add it to X . The algorithm finishes when the set X
is empty. We prove that this algorithm marks all nodes reachable from root using the relation next. Also we prove
termination for this initial algorithm.

The second algorithm uses a stack of nodes instead of a set. In the first version of the algorithm, any element
of the set could be used to proceed with marking, the stack version always chooses the element at the top of the
stack. If all successors of the top are marked, then the top is removed, otherwise an unmarked successor of the top
of the stack is marked and pushed onto the stack. The stack stores the path from the current node to the root node.
We derive the second algorithm with a data refinement from the first algorithm.

A second data refinement step replaces the relation next by the collection lnk .k : node → node, k ∈ label,
of pointer functions and a function lbl : node → label which associate to every node a label from label. No extra
variables are used for the stack, the stack is represented by temporarily changing the lnk and lbl variables. The
data refinement shows that the new algorithm does the same computation as the previous algorithm, and that the
variables lnk and lbl are restored to their initial values upon completion.

Finally, a third data refinement step replaces the general lnk .k pointers with the left and right pointers, and thus
yields the classical DSW algorithm. The function lbl is also replaced by the atom bit.

Here we present the steps of the construction of the algorithm, but we do not give any proofs. However, all
proof obligations for this algorithm have been mechanically verified with the theorem prover Isabelle/HOL.
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mrk = ∅
init

finite.X
X ⊆ mrk ⊆ rch.root
rch.root ⊆ (mrk ∪ rch-um.X.mrk)

loop 2 · |mrk |+ |X| ∈ nat

mrk = rch.root

final

S1,1 u S1,2

S3

S2,1 u S2,2

(∀x • (nil, x), (x, nil) 6∈ next)
finite.mrk

Figure 8. Marking using a set (SetMark)

5.1. Marking using a set

In the first algorithm we start with a set X containing the root element. As long as the set X is non-empty we
repeat the following steps: if there exists an unmarked successor node x of a node in X , then we mark x and we
add it to X; or if there is a node x in X such that all successors of x are marked, then we remove x from X . The
algorithm terminates when the set X is empty.

Initially we know that the marking bit of all nodes is false, and we also assume that there is a finite number of
nodes. The assumption that we have a finite number of nodes will be used to prove the termination of the algorithm.
In the final state the marking bit of a node is true if and only if this node is reachable from root. While marking,
we maintain the invariant that all nodes in the set X are marked, all nodes marked so far are reachable, and for
every reachable node x either x is marked or there exists a path of un-marked nodes from a node in X to x. The
termination is given by the fact that at each step, we either mark a node and add it to the set X , or we remove a
node from X . Therefore, at each step, the term 2 · |mrk | + |X| is decreased, where mrk is the set of currently
marked nodes and |mrk | stands for the number of unmarked nodes.

The algorithm works on the following program variables and constants (that together make up the abstract data
structure):

nil : node

root : node

next ⊆ node× node

mrk ⊆ node

X ⊆ node

The type node is the type of all graph nodes. In practice this type is the type of all memory addresses (pointers).
The constant nil is the null pointer, root is the initial graph node from which we compute the reachable nodes, and
next is the relation which gives the graph structure. The set mrk is the variable in which we compute the set of
reachable nodes. Initially mrk is set to empty-set, and on completion it will hold the set of all nodes reachable
from root. The set X is an auxiliary variable which is initialized to the singleton root. We define the following
auxiliary functions:

rch.root := {x | (root, x) ∈ next∗ ∧ x 6= nil}
rch-um.X.mrk := {x | (∃y ∈ X : (y, x) ∈ next ◦ (next ∩mrk ×mrk)∗)}

where mrk = node − mrk is the set complement of mrk , and for a relation R, R∗ is the reflexive and transitive
closure of R. The set rch.root contains all nodes reachable from root and rch-um.X.mrk contains all nodes
reachable from X along unmarked nodes. The predicate finite.X is true if the set X is finite.

The invariant diagram from Figure 8 solves the marking problem in terms of the data representation above.
The statements in this diagram are defined by:
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S1,1 := [ root = nil ] ; X := ∅
S1,2 := [ root 6= nil ] ; X := {root} ; mrk := {root}]
S2,1 := [X, mrk := X ′, mrk ′ | (∃x ∈ X, y 6∈ mrk : (x, y) ∈ next

∧ X ′ = X ∪ {y} ∧mrk ′ = mrk ∪ {y})]
S2,2 := [X, mrk := X ′, mrk ′ | (∃x ∈ X : (∀y : (x, y) ∈ next⇒ y ∈ mrk)

∧ X ′ = X − {x} ∧mrk ′ = mrk)]

S3 := [X = ∅ ]

Theorem 18. The SetMark diagram is strictly correct:

`s Inv {| SetMark |} Inv ∩ ¬grd.SetMark

where

P.mrk := (∀x : (nil, x), (x, nil) 66∈ next) ∧ finite.mrk

Inv.init .mrk := P.mrk ∧mrk = ∅
Inv.loop.X.mrk := P.mrk ∧ finite.X ∧X ⊆ mrk ⊆ rch.root

∧ rch.root ⊆ (mrk ∪ rch-um.X.mrk)

Inv.final .mrk := P.mrk ∧mrk = rch.root

Using the rule (3), the strict correctness of the SetMark diagram is reduced to the following proof obligations:

Inv.init .mrk {|S1,k |} Inv.loop.X.mrk

(Inv.loop.X.mrk ∧ 2 · |mrk |+ |X| = w) {|S2,k |} (Inv.loop.X.mrk ∧ 2 · |mrk |+ |X| < w)

Inv.loop.X.mrk {|S3 |} Inv.final .mrk

for all k ∈ {1, 2}.

5.2. Marking using a stack

Instead of X , we now start with a stack (list) S containing the root element. As long as the stack is non-empty we
repeat the following step: If h is the top element of S and there exists an unmarked node y such that (h, y) ∈ next,
then we mark y and we add it to the top of the stack. Otherwise we pop the top element of the stack. The algorithm
terminates when the stack is empty.

If S is a list with elements from node, then hd.S it the first (top) element of the list and tl.S is the list obtained
from S by removing the first element. We call hd.S and tl.S the head and the tail of S, respectively. If S is empty,
then hd.S is nil and tl.S is the empty list. We denote by [ ] the empty list, [x] the list with one element, and we use
+ for list concatenation. The predicate dist.S is true if all elements of S are distinct of each other. The function set
applied to S gives the set containing the elements of S.

The set variable X from the abstract program is replaced by a variable S which is a list of distinct elements.
The data abstraction invariant states that the set X is equal to set.S. All other variables from the abstract program
are present in the concrete program with the same meaning.

The diagram for this refinement step is presented in Figure 9, where

T1,1 := [ root = nil ] ; S := [ ]

T1,2 := [ root 6= nil ] ; S := [root] ; mrk := {root}
T2,1 := [S, mrk := S′, mrk ′ |S 6= [ ] ∧ (∃y 6∈ mrk : (hd.S, y) ∈ next

∧ mrk ′ = mrk ∪ {y} ∧ S′ = [ y ] + S)]

T2,2 := [S 6= [ ] ∧ (∀y : (hd.S, y) ∈ next⇒ y ∈ mrk)] ; S := tl.S

T3 := [S = [ ] ]

Theorem 19. The set diagram is data refined by the stack diagram:

{ Inv } ; SetMark vD StackMark
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Inv.init .mrk

init

Inv.loop.X.mrk

X = set.S ∧ dist.S

∃X

loop

Inv.final .mrk

final

S1,1 u S1,2 T1,1 u T1,2

S3
T3

S2,1 u S2,2

T2,1 u T2,2

Figure 9. Marking using a stack (StackMark)

where

D.init = { true }
D.loop = {X := X ′ |X ′ = set.S ∧ dist.S }
D.final = { true }

Using Theorem 11, the proof obligations for this data refinement step, after some simplifications, are

Inv.init .mrk ∧mrk = mrk0 {|T1,1 |} root = nil ∧ dist.S ∧ set.S = ∅
Inv.init .mrk ∧mrk = mrk0 {|T1,2 |} root 6= nil ∧ dist.S ∧ set.S = mrk = {root}
dist.S ∧X0 = set.S ∧ Inv.loop.X0.mrk ∧mrk = mrk0 {|T2,1 |} dist.S ∧

(∃x ∈ X0, y 6∈ mrk0 : (x, y) ∈ next ∧ set.S = X0 ∪ {y} ∧mrk = mrk0 ∪ {y})
dist.S ∧X0 = set.S ∧ Inv.loop.X0.mrk ∧mrk = mrk0 {|T2,2 |} dist.S ∧

(∃x ∈ X0 : (∀y : (x, y) ∈ next⇒ y ∈ mrk0) ∧ set.S = X0 − {x} ∧mrk = mrk0)

dist.S ∧X0 = set.S ∧ Inv.loop.X0.mrk ∧mrk = mrk0 {|T3 |}X0 = ∅

Theorem 20. The stack diagram is strictly correct:

`s D.Inv {| StackMark |} (D.Inv ∩ ¬grd.StackMark)

Proof. Using Theorems 17, 18, and 19.

5.3. Data refinement of the stack algorithm

In the third step the stack diagram is refined to a diagram where no extra memory is used. The variable next is
replaced by two new variables lnk and lbl . The variable lnk is a collection of pointer functions lnk .k : node →
node indexed by the set label. In general a function f : node → node is called a pointer function. For x ∈ node,
lnk .k.x is the successor node of x along the function lnk .k. The variable lbl : node → label associates to each
node a label. We call the structure given by the functions lnk and lbl a pointer graph. In a pointer graph a node x
is reachable if there exists a path from the root to x along the links lnk .k such that all nodes in this path are not
nil and they are labeled by a special label none ∈ label. Formally a node is reachable in a pointer graph if it is
reachable from root using the relation nxt.lnk .lbl ⊆ node× node given by

nxt.lnk .lbl := {(x, y) | (∃k : lnk .k.x = y) ∧ x 6= nil ∧ y 6= nil ∧ lbl .x = none}
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The first part of the loop data invariant in this step, denoted by α, is given by:

α := (next = nxt.lnk0.lbl0)

where lnk0 and lbl0 are the initial values of the variables lnk and lbl .
The stack variable S is replaced by two new variables p and t ranging over nodes. Variable p stores the head of

S, t stores the head of the tail of S, and the rest of S is stored by temporarily modifying the variables lnk and lbl .
The predicate stack.lnk .lbl .t.S is true whenever S is a list of nodes, starting with t, such that if x is an element in
S, then the next element in S is lnk .(lbl .x).x. That is, if we start from t and we apply successively the function
(λx : lnk .(lbl .x).x) we obtain all elements of S in the order they occur in S. Formally the predicate stack is
defined by induction on S:

stack.lnk .lbl .x.[ ] := (x = nil)

stack.lnk .lbl .x.([y] + S) := (x 6= nil ∧ x = y ∧ x 6∈ set.S ∧ stack.lnk .lbl .(lnk .(lbl .x).x).S)

While the algorithm is marking the graph nodes, the variables t points to a list T of nodes along the pointer function
(λx : lnk .(lbl .x).x). The last element in T is the root node. The list T corresponds to the stack tl.S from the stack
algorithm. The second part of the data invariant, denoted by β, is formally given by:

β := (p = hd.S ∧ t = hd.(tl.S) ∧ nil 6∈ set.S ∧ stack.lnk .lbl .t.(tl.S))

The third part of the invariant is used to prove that, when the program terminates, the values of the variables lnk
and lbl are restored to their initial values. For this purpose, two new functions are introduced initlnk.lnk .lbl .p.S :
label → node → node and initlbl.lbl .S : node → label. They compute the initial values of the program variables
lnk and lbl based on their current values during marking and the value of the stack variable. These functions are
defined by induction on the stack S:

initlnk.lnk .lbl .p.[ ] := lnk

initlnk.lnk .lbl .p.([x] + S) := initlnk.(lnk [lbl .x, x 7→ p)]).lbl .S

initlbl.lbl .[ ] := lbl

initlbl.lbl .([x] + S) := initlbl.(lbl [x 7→ none]).S

The third component of the invariant, denoted by γ, is

γ := (lnk0 = initlnk.lnk .lbl .p.(tl.S) ∧ lbl0 = initlbl.lbl .(tl.S))

The invariant of this refinement step can be stated now as:

R.S.p.t.lnk .lbl := α ∧ β ∧ γ

The variable p stores the current node, and at each step the algorithm checks if there is a successor x of p that
is not marked (there exists a k such that x = lnk.k.p 6∈ mrk ∪ {nil} and lbl.p = none). Then x is marked, p is put
into the stack (lnk .k.p is changed to t, and lbl .p is set to k), t is set to p, and x becomes the current node (p is set
to x). If there is no such element, then the top element is removed from the stack: lnk .(lbl .t).t is set to p, lbl .t is
set to none, p is set to t, and t is set to lnk .(lbl .t).t. The condition that a successor node of p is not marked is given
by the following predicate:

g.mrk .lbl .lnk .k.p := (lnk .k.p 66∈ mrk ∪ {nil} ∧ lbl .p = none)

The invariant linking the initial states and the final states of the abstract and concrete program is simpler. It
only states that the variables lnk and lbl are equal to their initial values lnk0 and lbl0 respectively, as well as the
graph given by next is equal to the graph defined by the pointer graph lnk , lbl .

The diagram for this second refinement step is now as shown in Figure 10, where
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lnk = lnk0
lbl = lbl0
next = nxt.lnk0.lbl0

init

dist.S

R.S.p.t.lnk .lbl

∃S

loop

lnk = lnk0
lbl = lbl0
next = nxt.lnk0.lbl0

final

T1,1 u T1,2 U1,1 u U1,2

T3 U3

T2,1 u T2,2
U

(2,1)
2,1 u U

(2,1)
2,2 u U

(2,2)
2,3

Figure 10. Marking with pointer functions (PtrMark)

U1,1 := [ root = nil ] ; p, t := nil, nil

U1,2 := [ root 6= nil ] ; p, t, mrk := root, nil, {root}
U2,1 := [lnk , lbl , mrk , p, t := lnk ′, lbl ′, mrk ′, p′, t′ | p 6= nil

∧ (∃k : g.mrk .lbl .lnk .k.p

∧ mrk ′ = mrk ∪ {lnk .k.p}
∧ lnk ′ = lnk [k, p 7→ t]

∧ lbl ′ = lbl [p 7→ k]

∧ p′ = lnk .k.p ∧ t′ = p) ]

U2,2 := [ p 6= nil ∧ (∀k : ¬g.mrk .lbl .lnk .k.p) ∧ t 6= nil ] ;

lnk , lbl , p, t := lnk [(lbl .t), t 7→ p], lbl [t 7→ none], t, lnk .(lbl .t).t

U2,3 := [ p 6= nil ∧ (∀k : ¬g.mrk .lbl .lnk .k.p) ∧ t = nil ] ; p := nil

U3 := [ p = nil ]

In Figure 10, the notation U (2,1)
2,1 , U (2,1)

2,2 , and U (2,2)
2,3 is used to specify that U2,1 refines T2,1, U2,2 refines T2,1 and

U2,3 refines T2,2. The data refinement of the diagram from Figure 10 holds if we prove that the transitions T are
refined by the transitions U .

Let Q denote the following predicate:

Q.lnk .lbl := (lnk = lnk0 ∧ lbl = lbl0 ∧ next = nxt.lnk0.lbl0)

and

D′.init = {Q.lnk .lbl }
D′.loop = {S := S′ |R.S′.p.t.lnk .lbl }
D′.final = {Q.lnk .lbl }

Theorem 21. The stack diagrams is data refined by the pointer diagram:

{D.Inv } ; StackMark vD′ PtrMark

Using Theorem 11, the proof obligations for this data refinement step, after some simplifications, are
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Q.lnk .lbl ∧mrk = mrk0 {|U1,1 |}R.[ ].p.t.lnk .lbl

Q.lnk .lbl ∧mrk = mrk0 {|U1,2 |}R.[root].p.t.lnk .lbl ∧mrk = {root}
R.S0.p.t.lnk .lbl ∧ dist.S0 ∧mrk = mrk0 {|U2,1 |} (∃y 6∈ mrk0 : S0 6= [ ]

∧ (hd.S0, y) ∈ next ∧mrk = mrk0 ∪ {y} ∧R.([y] + S0).p.t.lnk .lbl)

R.S0.p.t.lnk .lbl ∧ dist.S0 ∧mrk = mrk0 {|U2,2 |}
R.(tl.S0).p.t.lnk .lbl ∧ S0 6= [ ] ∧ (∀y : (hd.S0, y) ∈ next⇒ y ∈ mrk0)

R.S0.p.t.lnk .lbl ∧ dist.S0 ∧mrk = mrk0 {|U2,3 |}
R.(tl.S0).p.t.lnk .lbl ∧ S0 6= [ ] ∧ (∀y : (hd.S0, y) ∈ next⇒ y ∈ mrk0)

R.S0.p.t.lnk .lbl ∧ dist.S0 ∧mrk = mrk0 {|U3 |}Q.lnk .lbl ∧ S0 = [ ]

In the above proof obligations the assumptions given by the Inv were omitted because they are not relevant in
proving this refinement step. They could be omitted based on the following lemma

Lemma 22. If p ∈ pred and R : Σ→ pred, then

(∀s′ :|= (λs.R.s.s′) {|S |} q) ⇒ |= ({R }.p) {|S |} q.

Theorem 23. The pointer diagram is strictly correct:

`s D′.(D.Inv) {|PtrMark |}D′.(D.Inv) ∩ ¬grd.PtrMark

Proof. Using Theorems 17, 18, 19, and 9.

5.4. Classical DSW marking algorithm

Finally, we construct the DSW marking algorithm by assuming that there are only two pointers (lft , rgt) from
every node. The data invariant of this refinement step requires that label has exactly two distinct elements none
and some, lft = lnk .none, rgt = lnk .some, and at .x is true if and only if lbl .x = some. Formally we have:

lnk.lft .rgt .k :=

{
lft if k = none

rgt if k = some

lbl.at .x :=

{
some if at .x

none if ¬at .x

R′.lnk .lbl .lft .rgt .at := (label = {none, some} ∧ lnk = lnk.lft .rgt ∧ lbl = lbl.at)

In this last data refinement step we need to introduce separate transitions for the left and right pointers. In the
diagram below, the transition U2,1 is refined by V2,1 and V2,2, the transition U2,2 is refined by V2,3 and V2,4, and
the transition U2,3 is refined by V2,5. If we would work with a left right pointer structure from the beginning we
would need to introduce separate transitions for the left and right pointers already in the initial algorithm. Also
many lemmas about lnk .k pointers would need to have two versions for left and right.

The final data refinement step is described by the diagram from Figure 11, where
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R′.lnk .lbl .lft .rgt .at

∃lnk , lbl

init

R′.lnk .lbl .lft .rgt .at

∃lnk , lbl

loop

R′.lnk .lbl .lft .rgt .at

∃lnk , lbl

final

U1,1 u U1,2 V1,1 u V1,2

U3 V3

U2,1 u U2,2 u U2,3 V
(2,1)
2,1 u V

(2,1)
2,2 u V

(2,2)
2,3 u V

(2,2)
2,4 u V

(2,3)
2,5

Figure 11. Classical marking algorithm (Mark)

V1,1 := [ root = nil ] ; p, t := nil, nil

V1,2 := [ root 6= nil ] ; p, t, mrk := root, nil,mrk [root 7→ true]

V2,1 := [ p 6= nil ∧ h.mrk .(at .p).(lft .p) ] ; p, t, mrk , lft :=

lft .p, p, mrk ∪ {lft .p}, lft [p 7→ t]

V2,2 := [ p 6= nil ∧ h.mrk .(at .p).(rgt .p) ] ; p, t, mrk , rgt , at :=

rgt .p, p, mrk ∪ {rgt .p}, rgt [p 7→ t], at [p 7→ true]

V2,3 := [ p 6= nil ∧ ¬h.mrk .(at .p).(lft .p) ∧ ¬h.mrk .(at .p).(rgt .p) ∧ t 6= nil ∧ ¬at .p ] ;

p, t, lft := t, lft .t, lft [t 7→ p]

V2,4 := [ p 6= nil ∧ ¬h.mrk .(at .p).(lft .p) ∧ ¬h.mrk .(at .p).(rgt .p) ∧ t 6= nil ∧ at .p ] ;

p, t, rgt , at := t, rgt .t, rgt [t 7→ p], at [t 7→ false]

V2,5 := [ p 6= nil ∧ ¬h.mrk .(at .p).(lft .p) ∧ ¬h.mrk .(at .p).(rgt .p) ∧ t = nil ] ;

p := nil

V3 := [ p = nil ]

and

h.mrk .atom.x := x 6∈ mrk ∪ {nil} ∧ ¬atom

Let D′′ be the diagram data refinement statement given by

D′′.i = { lnk , lbl = lnk ′, lbl ′ |R′.lnk ′.lbl ′.lft .rgt .at }
for all i ∈ I .

Theorem 24. The pointer diagram is data refined by the DSW diagram:

{D′.(D.Inv) } ; PtrMark vD′′ Mark

The proof obligations for this refinement step are tedious, but the refinement step is mainly a renaming of some
variables, and these proof obligations were discharged almost automatically in the Isabelle theorem prover.

Theorem 25. The DSW diagram is strictly correct:

`s D′′.(D′.(D.Inv)) {|Mark |}D′′.(D′.(D.Inv)) ∩ ¬grd.Mark

Proof. Using Theorems 17, 18, 19, and 9.
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mrk = ∅

next = nxt.lnk0.lbl0
lnk = lnk0
lbl = lbl0

R′.lnk .lbl .lft .rgt .at

∃lnk , lbl

init

finite.X
X ⊆ mrk ⊆ rch.root
rch.root ⊆ (mrk ∪ rch-um.X.mrk)

X = set.S ∧ dist.S

R.S.p.t.lnk .lbl

R′.lnk .lbl .lft .rgt .at

∃lnk , lbl

∃S

∃X

loop 2 · |mrk |+ |X| ∈ nat

mrk = rch.root

next = nxt.lnk0.lbl0
lnk = lnk0
lbl = lbl0

R′.lnk .lbl .lft .rgt .at

∃lnk , lbl

final

(∀x • (nil, x), (x, nil) 6∈ next)
finite.mrk

S1 T1 U1 V1

S3 T3 U3 V3

V3 U3 T3 S3

Figure 12. Complete diagram

5.5. Complete derivation

The diagram from Figure 12 collects all the refinement steps into a single diagram. The diagram shows explicitly
all situations, and how they are built up as successive layers of abstraction. The transitions describe all successive
versions of the marking algorithm. The diagram contains all the information that we need in order to verify that
each version of the algorithm is correct.

5.6. Final algorithm

The main variables used in the final concrete program are lft , rgt , at , and mrk . The variables lft and rgt store
the left and right successors of a graph node. The variable at defines what nodes are marked and is used during
marking. The variable mrk contains at the end of the algorithm the set of all reachable nodes. The variables lft , rgt ,
and at are altered during marking, but they are restored to their initial values when the program terminates. The
program uses also two auxiliary variables p, t : node. Variable p stores the head of the stack S, and t stores the
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head of the tail of S. The rest of S is stored by temporarily modifying the variables lft , rgt and at . Three auxiliary
variables, lft0, rgt0, and at0are also used to record the initial values of lft , rgt , and at , respectively.

In this final program we are interested only in the initial and the final situations. These predicates should specify
the marking problem as well as the fact that the initial values of the variables lft , rgt , and at are restored to their
initial values when the program terminates. If the pre-condition and the post-condition of the diagram are given by

Pre.init := (at = at0 ∧ lft = lft0 ∧ rgt = rgt0 ∧ finite.mrk ∧mrk = ∅)
Pre.loop := false

Pre.final := false

and

Post.init := false

Post.loop := false

Post.final := (at = at0 ∧ lft = lft0 ∧ rgt = rgt0 ∧mrk = rch.root)

then the final correctness statement for the marking diagram is stated in the next theorem.

Theorem 26. The diagram Mark is correct with respect to Pre and Post predicates:

` Pre {|Mark |}Post

Proof. The result of Theorem 25 was obtained for arbitrary functions lnk0, lbl0, and next. Here we assume that
these functions are given by the following definitions:

lnk0 := lnk.lft0.rgt0

lbl0 := lbl.at0

next := nxt.lnk0.lbl0

Under these assumptions we can prove

Pre ⊆ D′′.(D′.(D.Inv)) and D′′.(D′.(D.Inv)) ∩ ¬grd.Mark ⊆ Post

Using Theorem 25 and the definition of correctness for diagrams it follows:

` Pre {|Mark |}Post

All results presented in this paper have been mechanically verified in the Isabelle/HOL theorem prover. We
have used a number of features of the Isabelle theorem prover and we have benefited from a well developed library
of reusable theories including the theory of complete lattices and well founded relations which are the bases of our
development. We have used type variables for all types in our development. Using this mechanism we were able to
replace the collection lnk of pointer functions by the lft and rgt functions by instantiating the type variable label
with a type containing two elements. Further developments of our final algorithm are possible by instantiating the
graph nodes with a concrete type of addresses. Another important feature used in the Isabelle implementation is
the parametrization (locale) mechanism. In Isabelle a locale is a mathematical theory which can be parametrized
by constants and type variables and it may contain axioms. A locale can be instantiated for concrete types and
constants and the axioms must be proved for the concrete instantiations. We used this mechanism for defining
the graph structure. Initially we have a locale introducing the nil element and the next relation as constants and
satisfying the axiom that no element is related to nil by next or next−1. This locale is instantiated by a more concrete
structure where next is defined in terms of lnk0 and lbl0. The axiom was proved to hold for the instantiation. In
the final refinement step we defined the lnk0, lbl0 functions in terms of lft0, rgt0, and at0. This formalization is
available online in the Archive of Formal Proofs [PB10a, PB10b].

6. Conclusions

In this paper we have shown how to carry out data refinement of invariant based programs, and have applied
the technique to the construction of the classical Deutsch-Schorr-Waite graph marking algorithm. We have used
predicate transformer semantics for the transitions in the invariant diagrams, and we have shown that termination
is preserved by data refinement.

We have shown how the overall proof effort of the marking algorithm, is simplified by first proving a gener-
alized version of it, and then data refining it to the classical version. All results presented in this paper have been
proved mechanically using the Isabelle/HOL interactive theorem prover. This gives a very solid foundation of our
results. Currently we are working on including data refinement into the Socos environment [BEM06, BEM07],
which is specifically designed to support the construction of invariant based programs and to prove their correct-
ness.
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