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1 Introduction

Complexity poses major threat to dependability (Avizienis et al., 2004). To cope with
complexity, control systems are often developed in a layered fashion, which provides
the designers with a convenient mechanism for structuring a system behaviour according
to the identified architectural layers. However, the dynamic part of the system behaviour
is frequently defined in terms of operational modes — mutually exclusive sets of the
system behaviour (Leveson et al., 1997). Therefore, it is important to formally study the
principles of designing layered mode-rich systems.

While designing layered mode-rich systems, we should ensure mode consistency and
guarantee that a mode logic, i.e., the system modes together with transitions between
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them (Leveson et al., 1997), also caters to fault tolerance. In this paper, we propose to
conduct failure modes and effects analysis (FMEA) of each operational mode to identify
mode transitions required to implement fault tolerance. In our approach fault tolerance is
achieved by two main means — transitions to degraded modes and system reconfiguration
using redundant components. We investigate a complex interplay between these two
main mechanisms within Event-B framework (Abrial, 2010).

While developing a system by refinement in Event-B, we start from an abstract
specification and gradually introduce implementation details. Our development process
starts from an analysis of each operational mode and defining the fault tolerance part of
the mode logic. Then we create an abstract specification of the upper architectural layer
and gradually unfold lower layers by refinement. Since refinement allows us to develop
a system in a correct-by-construction fashion, stepwise unfolding of the architectural
layers also guarantees preserving mode consistency between lower and upper layers.
Such an approach is inspired by the works of Iliasov et al. (2010a, 2010b).

The paper is structured as follows. In Section 2, we review related works. In
Section 3, we present general guidelines for deriving a mode logic of complex layered
systems. Section 4 describes our formalisation of fault-tolerant mode-rich systems and
their properties. In Section 5, we briefly overview the basic modelling concepts of
the Event-B framework. In Section 6, we illustrate the proposed approach by an
example — attitude and orbit control system (AOCS). Finally, in Section 7, we give
concluding remarks as well as discuss future work.

2 Related work

There are several well-known problems associated with mode-rich systems including
mode confusion and automation surprises (Buth, 2004; Miller and Potts, 1999; Rushby,
2002). These studies conducted retrospective analysis of mode-rich systems to spot the
discrepancies between the actual system mode logic and the user mental picture of
the mode logic. Most of the approaches have relied on model-checking (Buth, 2004;
Heimdahl and Leveson, 1996; Rushby, 2002), while Butler (1996) and Miller and Potts
(1999) are based on theorem proving in PVS. For example, to identify potential
sources of mode confusion, Miller and Potts (1999) propose to proceed trough two
complementary strategies. The first strategy aims at creating a clear, executable model
of the system and simulating it. It uses this combination to review the behaviour of
the system and the man-machine interface with the designers, users, and experts in
human factors. The second strategy is to conduct mathematical analyses of the model
by translating it into a formal specification suitable for analysis with automated tools.

Our approach focuses on designing fully automatic systems and ensuring their mode
consistency. Unlike Heimdahl and Leveson (1996), in our approach we also emphasise
the complex relationships between system fault tolerance and the mode logic. Our
approach allows the developers to systematically design the system and formally check
mode consistency within the same framework.

Kelly and Bartlett (2006) propose a method that adopts directed graphs (digraphs)
to model fault propagation through a system with operating modes. This method allows
for dealing with multiple faults and enabling real-time diagnosis. The approach is
exemplified by a case study with a control loop of the following elements: a sensor,
controller and controlled device. The authors also define a number of the system
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scenarios that reflect a nominal and faulty behaviour of the system. To diagnose faults
using digraphs, system sensor readings should be compared to those which are expected
for a current operating mode of the system. If a deviation is detected, the back-tracing
mechanism is enabled through the system digraph from the location of the detected
deviation. Our work is different from these approaches. We rely on a well-known safety
analysis technique FMEA to investigate the impact of faults on system modes. This
allows us to systematically derive the part of the mode logic that caters to fault tolerance.

In our previous work (Laibinis and Troubitsyna, 2004), we have introduced a general
formal specification approach to the development of dependable systems with layered
architectures. The approach is based on using the exception handling mechanism on
each layer of such systems. The exceptions that cannot be handled at a certain layer
are propagated to the upper layers. As a result, error recovery has a hierarchical
structure. A similar idea is explored in this paper as well. In addition, we considered
a mode-based mechanism for structuring the system behaviour. This paper extends the
work presented in Laibinis and Troubitsyna (2004) by incorporating FMEA into the
process of designing layered mode-rich systems. Moreover, we consider an interplay
between unit reconfiguration and mode consistency.

The work presented by Bozzano et al. (2010) introduces a methodology for
the design of complex safety-critical systems. The approach is based on a formal
specification language that is derived from AADL. It supports verification and validation
activities such as consistency analysis, dynamic fault tree generation, FMEA table
generation, and diagnosability analysis. Since AADL has a support for explicit definition
of component modes, the work presented in this paper can also be undertaken within
such a framework. However, verification by model checking might impose limitations
on complexity of a mode logic to be verified.

Application of a symbolic model checking approach to verifying mode-rich satellite
software was considered in Gan et al. (2011). The proposed approach involves
the following steps: representation of a system behaviour in a form of extended
state machine diagram with prioritised transitions, its translation to a set of linear
temporal logic properties, and execution of the symbolic model checker NuSMV?2. The
authors emphasise that they do not use the refinement methodology to derive correct
implementations. However, to avoid state explosion, they introduce an abstraction to a
model. Moreover, the authors point out that the properties been checked are not strictly
safety properties.

The work conducted by Javed and Troubitsyna (2012) aims at demonstrating how
to ensure consistency of mode transitions logic implemented in SystemC code. In
this work, the authors consider forward and backward mode transitions as well. The
proposed system architecture in SystemC is verified using the SPIN model checker. For
this purpose, the SystemC code is translated to Promela — an input language for SPIN.
The authors highlight the fact that the verification by model checking was successful.
However, they do not provide a reader with quantitative evaluation of the results.

This paper generalises the results presented in Prokhorova et al. (2011a, 2011b),
Laibinis and Troubitsyna (2004) and Javed and Troubitsyna (2012) by defining rigorous
theory of designing layered mode-rich systems by refinement.
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3 Deriving a mode logic

3.1 Layered mode-rich systems

Often a layered architecture is used to facilitate development of complex control systems
(Rubel, 1995). It allows the designers to structure the system behaviour according to
the identified abstraction levels. The lowest layer usually consists of the components
(often called units) that work directly with hardware devices. The layer above contains
the components encapsulating the lowest layer units by providing abstract interfaces to
them. Depending on the system complexity and design decisions, there might be several
intermediate layers. Finally, the top component provides an interface to the overall
system (Figure 1).

Figure 1 Architecture of a layered system (see online version for colours)
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Operational modes structure the dynamic behaviour of components at different layers of
abstraction. Leveson et al. (1997) define an (operational) mode as a mutually exclusive
set of system behaviours. A mode logic includes all the available modes and the
rules for transitioning between them (Leveson et al., 1997). System complexity makes
derivation of the mode logic and verification of its consistency challenging. Therefore,
there is a clear need for the techniques that allow us to design mode-rich systems in a
systematic and disciplined way.

Each software component in layered mode-rich systems can be viewed as a mode
manager (MM). For simplicity, let us consider a two-layer system. It consists of the
lower layer MMs called unit managers (UMs), which are monitored and controlled by
the top layer MM.

We identify system modes according to the system operational constraints. We
assume that the system executes a certain scenario defined in terms of its global modes.
The scenario usually describes a sequence of modes leading to the most advanced state
of the system (e.g., the state where it delivers the richest set of services). However,
occurrence of failures may prevent the system from straightforward implementation of
the scenario. This requires an introduction of the fault tolerance mechanisms into the
system design. They are implemented as backward mode transitions (rollbacks) within
the predefined scenario.

1
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The dynamic behaviour of the overall system is cyclic. At each cycle MM monitors
the current state of the lower layer units. If units are fault free then MM either completes
the ongoing mode transition or maintains the current mode. It might also initiate the
forward transition according to the scenario. If some failure that cannot be locally
handled by UMs occurs, MM starts a backward mode transition.

An execution of the mode scenario by MM corresponds to certain mode transitions
initiated by UMs. Mode consistency conditions are defined as interdependencies
between global and local modes. Specifically, each global mode of MM may correspond
to one or several combinations of the local modes of UMs. While the nominal part of a
mode logic is usually well understood and given, the designers need to derive the fault
tolerance part of the mode logic, i.e., the set of backward transitions to execute error
recovery.

In the next section, we demonstrate how to define the fault tolerance part of the
mode logic in a well-structured way using FMEA as well as to introduce fault tolerance
mechanisms into the mode logic.

3.2 FMEA in a mode logic derivation

Let us assume that the scenario (shown in Figure 2 by solid arrows) defines how to
bring a system from the non-operational mode G M, to the most advanced mode GM,,.
Such a forward mode transition scenario is usually given in the system requirements
document. Moreover, let us assume that the mode transition scenario can be interrupted

Figure 2 Mode transition scenario (see online version for colours)

=

either by transitional errors (i.e., errors that appear during a mode transition step) or unit
usability errors (i.e., errors that occur when a unit performs below its required level).

In this paper, we consider units, i.e., the lowest layer components, to be dynamically
reconfigurable. They consist of a main device (the nominal branch) and a spare device
(the redundant branch). A unit encapsulates the errors and the reconfiguration state of
its branches. In particular, if an error occurs in the nominal branch of the unit, it handles
this error by switching to the redundant branch. The units have a special attribute called
status. The unit status is locked, when it is in an operational state and there is no ongoing
reconfiguration, and unlocked otherwise.

When MM chooses a new target mode, it initiates the corresponding mode
transitions in the lower layer UMs. If an error is detected, the corresponding UM
assesses the error and either initiates error recovery by itself or propagates the error to
MM. MM, in its turn, makes a decision how to handle such an error. This decision
usually involves rolling back to some less advanced (i.e., degraded) mode, as shown by
dashed arrows in Figure 2.

To systematically define the rollback procedures for each mode, we propose to
conduct FMEA (FMEA IC, 2011; Leveson, 1995; Storey, 1996). FMEA is a well-known
inductive safety analysis technique. For each system function or component, it defines
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possible failure modes, local and system effects, as well as detection and recovery
procedures. The information is collected in a table form.
There are several types of FMEA, among them:

e System FMEA (SFMEA) — used to analyse complete systems and/or subsystems.
It focuses on global functions of the system but not just individual failure modes
and their direct impact.

e Design FMEA (DFMEA) — used to examine the functions of a component,
subsystem or main system separately. It focuses on potential failure modes of
products caused by design faults.

e Process FMEA (PFMEA) — used to analyse manufacturing and assembly
processes at the system, subsystem or component levels.

o Software FMEA (SWFMEA) — used to analyse a system with respect to software

faults which may cause failure events.

The traditional DFMEA allows us to discover and structure failure modes of
components. One of possible interpretations of a FMEA worksheet with explanation of
its fields is given in Figure 3. In this paper, we propose to conduct FMEA of each

Figure 3 FMEA worksheet

Global mode Name of a component

Failure mode Potential failure modes

Possible cause The most probable causes associated with the assumed failure mode

Local effects Caused changes in the component behaviour

System effects Caused changes in the system behaviour

Detection A description of the methods by which occurrence of the failure
mode is detected

Remedial action | Actions to tolerate the failure

operational mode. We tailor DFMEA to fit our purposes. In particular, we introduce
an additional structure into the description of remedial actions. Namely, the remedial
action field now contains three new subfields ‘target mode’, ‘precondition’, and ‘action’,
describing respectively a new target mode, the conditions when the rollback to this
mode should be initiated, and the system remedial actions in terms of new local mode
transitions and, if needed, reconfiguration actions. If there are several preconditions
given for the same target mode, the respective conditions should describe mutually
exclusive situations.

For instance, Figure 4 shows two excerpts from a FMEA worksheet of the
operational mode GM;. The excerpts cover the situations when a hardware failure
occurs in the unit U; with and without an available spare, respectively. Here GM;
is some degraded global mode. Uj, stands for a unit which is supposed to be in an
operational mode in the global mode G M;.

FMEA of each system mode allows us to obtain a systematic textual description of
all the procedures required to detect unit errors and perform their recovery. The main
procedure of rolling back is as follows.

If a single unit fails then MM sets the new target mode to a degraded, however
as advanced as possible, mode where the failed unit is not used, i.e., it is in a
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non-operational (Off) local mode. If several units fail then MM puts the system into a
global mode where all failed units are in the Off modes.

Figure 4 Modified FMEA worksheets

Mode

Failure mode

GM;

Unit U; failure with an available spare

Possible cause | Hardware failure

Local effects Reconfiguration between unit branches. Change of unit status
System effects | Remain the current global mode
Detection Comparison of received data with the predicted one
Rer‘nedlal Target Precondition Action
action mode
A state transition error in the For a nominal branch of
nominal branch of U;. unit U;, the status is set to
M; . . lock:
GM; Insufficient usability of a Unlocked, apd
. reconfiguration between
selected nominal branch of U;. L
branches is initiated.
Mode GM;

Failure mode Unit U; failure without an available spare

Hardware failure
Loss of preciseness in unit output data. Change of unit status

Possible cause
Local effects

System effects | Switch to a degraded mode
Detection Comparison of received data with the predicted one
Rel.nedlal Target Precondition Action
action mode
A state transition error in the For unit U.. anv ongoin
redundant branch of U;. No oru » any ongoing
o . unit reconfiguration is
state transition error in the .
aborted. For each branch in
GM,, | redundant branch of U,. . .
- — unit U;, the status is set to
Insufficient usability of a Unlocked. and a state
t<j selected redundant branch of N
o transition to non-
U;. No branch state transition . .
operational state is
error. No problem on the initiated
redundant branch of Uy. )

In this section, we have demonstrated how to derive the fault tolerance part of the
mode logic. Essentially, the process of deriving the mode logic consists of the following
generic steps:

1 Conduct FMEA for each operational (global) mode of a system.
2 Analyse failures of units that are operational in the current global mode.

3 Consider cases when a spare (redundant branch) of the failed unit is available and
when it is not.

4  Define remedial actions (actions to tolerate a failure):
a  if the redundant brunch is available, define the failed unit reconfiguration
procedure

b  if the redundant brunch is not available, define a backward mode transition
(rollback) to a degraded mode. In the chosen degraded mode the failed unit
should be non-operational.
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5 While performing the rollback, take into account failures of other units that are
supposed to be in operational modes in the target global mode.

It is easy to note that, even for a simple system, backward mode transitions significantly
complicate the mode logic. Therefore, there is a clear need for techniques that facilitate
not only derivation of the mode logic but also verification of its correctness. In the next
section, we demonstrate how to formalise the essential notions and properties of the
mode logic.

4 Formalising a mode logic

Our formalisation aims at defining interdependencies between global modes, unit modes
and their status as well as verifying mode consistency between different system layers.

We introduce a set of all possible modes, MODES. A relation on MODES, called
Scenario, formally defines forward mode transitions:

Scenario € MODES <> MODES (1)

where <> stands for a relation between elements of two types. All the possible forward
transitions are represented by the relation Mode_Order:

Mode_Order = Scenario®

where * is the transitive closure operation. Essentially, Mode_Order is a partial order
relation on modes. While Scenario formally represents the nominal part of a mode logic,
the inverse relation Mode_Order™ defines all possible rollbacks.

The mode to which the system should rollback to execute error recovery can be
defined as a function Error_Handling:

Error_Handling : MODES x UNIT_ERRORS — MODES 2)

where the first parameter is the current global mode of the system and the second
parameter stands for all the detected errors of units. For a mode transition to be
completed, certain mode entry conditions should be satisfied. To formally define this,
we introduce a function Mode_entry_cond:

Mode_entry_cond :
MODES — P(UNIT_-MODES11 x --- x UNIT_MODES,,)

where P(T) is a power set on elements of 7" and UNIT_-MODES; ... UNIT_-MODES;,,
are the local modes 1...; of the monitored units 1...m. For each global mode, the
function returns a set of all valid combinations of unit modes.

The global mode transition cannot be started or completed if there is an ongoing
reconfiguration of any unit in the system. To model this, we define an attribute
In_Reconfig:

In_Reconfig = Reconfig(Uy)V ---V Reconfig(U.,)
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where Reconfig(U1) ... Reconfig(U,,) are the corresponding reconfiguration flags
of the units 1...m. If there is no ongoing reconfiguration in the system, the flag
In_Reconfig is FALSE, otherwise it is TRUE.

Reconfiguration is enabled only if an error of the nominal branch of a unit is
detected. To reflect this, for each unit ¢, we introduce a function Unit;_reconf:

Unit;reconf : UNIT;_ ERRORS x BRANCH — BRANCH
defined by its properties

YV - Unit;_reconf(x — Branch_A) = Branch_B
Y - Unit;_reconf(x — Branch_B) = Branch_B

where UNIT; _ERRORS represents the errors of a particular unit i. Here Branch_A is the
nominal branch and Branch_B is the redundant branch. The decision to start dynamic
reconfiguration between branches of a unit i is defined by a function Unit; reconf_need:

Unit;_reconf_need : UNIT;_ ERRORS x BRANCH — BOOL 3)

In the real system, mode transitions may take time and can be interrupted by errors.
To unambiguously describe the actual state of a mode managing component C at any
layer (i.e., the top layered MM and all the lower layered UMs), we define the following
attributes for each of them:

1 prev_targetc is the previous mode that a component was in transition to
2 last_-modec 1is the last successfully reached mode

3 next_targetc is the target mode that a component is currently in transition to.

Based on these attributes, we define the notion of the mode managing component state
that might be either stable, decreasing or increasing as follows:

e  Stablec: a component C is maintaining the last successfully reached mode,
i.e., last_modec = prev_targetc N\ next_targetc = prev_targetc

e Increasingc: a component C is in transition to a next, more advanced mode,
i.e., last_modec = prev_targetc N\ prev_targetc < next_targetc

e  Decreasingc: component C stability or a mode transition to the previous target
was interrupted (e.g., by error handling) by a new mode request to a more
degraded mode, i.e., next_targetc < prev_targetc.

When a mode transition is completed, the component state becomes stable. Furthermore,
when the top layered component MM is in a stable state, all the lower layer components,
i.e., UMs, should be stable as well. This can be formulated as an invariant property of
the system:

Stableyy = StableUM1 A -+ A Stabley

m
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Another main invariant property of the system states that during reconfiguration a
component cannot be stable:

VC - In_Reconf(C) =TRUE = -Stablec

Moreover, each unit in the system has not only its local mode but also the status
(locked or unlocked). The correspondence between these two notions can be formalised
as the following predicate:

(Reconfig(UM;) = TRUE V last_-modeyn, = Off V
next_targetya, = Of f) = Statusyy, = Unlocked 4

or, equivalently,

Statusy, = Locked = (Reconfig(UM;) = FALSE A
last_-modey s, # Of f A next_targetyn, # Off) (%)

Such a property follows from the definition of the unit status: each unit can have the
status Locked only if there is no ongoing reconfiguration in this unit and the unit is
neither in the non-operational mode Off, nor in the transition from or to the mode Off.

The discussion above sets general guidelines for defining different layer MMs and
reconfiguration procedures. In Sections 5 and 6, we will show how these guidelines can
be implemented in a formal specification in Event-B.

5 Modelling in Event-B

5.1 Event-B overview

Event-B (2011) is a state-based formal method for system level modelling and analysis
(Abrial, 2010). It is an extension of the B method (Abrial, 1996), which has been
successfully used in the development of several complex real-life applications (ClearSy,
2011). Event-B aims at facilitating modelling of parallel, distributed and reactive
systems. Automated support for modelling and verification in Event-B (2011) is
provided by the Rodin platform.

In Event-B system models are defined using the notion of an abstract state
machine. An abstract machine encapsulates the state (the variables) of a model and
defines operations (events) on its state. The machine is uniquely identified by its name
MachineName. The state variables of the machine are declared in the Variables clause
and initialised in the INITIALISATION event. The variables are strongly typed by the
constraining predicates of invariants given in the Invariants clause. The invariant is
usually defined as a conjunction of the state defining the properties of the system
that should be preserved during system execution. The data types and constants of the
model are defined in a separate component called CONTEXT, where their properties are
postulated as axioms. The behaviour of the system is determined by a number of atomic
Events. An event can be defined as follows:

evt = any [v where g then R end
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where /v is a list of local variables, the guard g is a conjunction of predicates defined
over model variables, and the action R is a composition of assignments on the variables
executed simultaneously.

The guard defines when an event is enabled. If several events are enabled
simultaneously then any of them can be chosen for execution non-deterministically. If
none of the events is enabled then the system deadlocks. In general, the action of an
event is a composition of assignments executed simultaneously. Variable assignments
can be either deterministic or non-deterministic. The deterministic assignment is denoted
as x:= F(v), where x is a state variable and F(v) is an expression over the
state variables v. The non-deterministic assignment can be denoted as = :€ S or x :|
Q(v,2’), where S is a set of values and Q(v,z’) is a predicate. As a result of the
non-deterministic assignment, x gets any value from .S or it obtains such a value 2’ that
Q(v,2') is satisfied.

The semantics of Event-B events is defined using before-after predicates
(Metayer et al., 2005). A before-after predicate describes a relationship between the
system states before and after execution of an event. The formal semantics provides
us with a foundation for establishing correctness of Event-B specifications. To verify
correctness of a specification, we need to prove that its initialisation and all events
preserve the invariant. To check consistency of an Event-B machine, we should verify
two types of properties: event feasibility and invariant preservation. Formally, for each
event evt; of the model, its feasibility means that, whenever the event is enabled, its
before-after (BA) predicate is well-defined, i.e., there exists some reachable after-state:

A(d,c), I(d,c,v), gi(d,c,v) = ' -BA;(d,c,v,v") (FIS)

where A stands for the conjunction of the axioms, I is the conjunction of the invariants,
g; is the guard of the event evt;, BA; is the before-after predicate of this event, d stands
for the sets, c are the constants, and v, v’ are the variable values before and after event
execution.

Each event evt; of the Event-B model should also preserve the given model
invariant:

A<d7 C)» I(da c, U), gl(dv c, U)a BAZ (da ¢, ’U/) F I(da & U/) (INV)

Since the initialisation event has no initial state and guard, its proof obligation is
simpler:

A(d,c), BArnii(d,c,v') = I(d,c,v") (INIT)

The main development methodology of Event-B is refinement. Refinement formalises
model-driven development and allows us to develop systems correct-by-construction.
Each refinement transforms the abstract specification to gradually introduce
implementation details. Refinement leads to reducing non-determinism in an abstract
model as well as introducing new variables and events. The connection between the
newly introduced variables and the abstract variables is formally defined in the invariant
of the refined model. For a refinement step to be valid, every possible execution of the
refined machine must correspond to some execution of the abstract machine.
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5.2 Refinement in Event-B

Event-B employs a top-down refinement-based approach to formal system development.
Development starts from an abstract system specification that models some of essential
functional requirements. While capturing more detailed requirements, each refinement
step typically introduces new events and variables into an abstract specification. These
new events correspond to stuttering steps that are not visible in the abstract specification.
We call such model refinement as superposition refinement. Moreover, Event-B formal
development supports data refinement, allowing us to replace some abstract variables
with their concrete counterparts. In that case, the invariant of a refined model formally
defines the relationship between the abstract and concrete variables; this type of
invariants is called a gluing invariant.

To verify correctness of a refinement step, we need to prove a number of proof
obligations for a refined model. For brevity, here we show only a few essential ones.
The full list of proof obligations can be found in Abrial (2010).

Let us introduce a shorthand H(d,c¢,v,w) that stands for the hypotheses A(d, c),
I(d,c,v) and I'(d,c,v,w), where I and I’ are respectively the abstract and refined
invariants and v, w are respectively the abstract and concrete variables. Then the
feasibility refinement property for an event evt; of a refined model can be presented as
follows:

H(d,c,v,w), gi(d,c,w) + Fw'. BA;(d,c,w,w") (REF_FIS)

where ¢, is the refined guard, BA] is a before-after predicate of the refined event, w
and w’ are the concrete variable values before and after the refined event execution.
The invariant preservation proof obligation for a refined model is the following:

H(d7 vavw)v g;(d7 C,’LU), BA;(dv C,’LU,'[U/) = Il(dv () vlaw/) (REFJNV)
The event guards in a refined model can be only strengthened in a refinement step:
H(d7 C, U, ’LU), g; (d7 & ’IU) = gl(da c, U) (REF*GRD)

where g;, g, are respectively the abstract and concrete guards of the event evt;.

The simulation proof obligation (REF_SIM) requires to show that the action
(i.e., assignment on the state variables) of a refined event is not contradictory to its
abstract version:

H(d,c,v,w), gi(d,c,w), BA,(d,c,w,w’") & F'.BA;(d,c,v,v") A I'(d,c,v",w")
(REF_SIM)

where BA;, BA, are respectively the abstract and concrete before-after predicates of the
same event evt;.

The consistency (invariant preservation) and well-definedness of Event-B models as
well as correctness of refinement steps are demonstrated by discharging the described
proof obligations. The Rodin platform (Event-B, 2011), a tool supporting Event-B,
automatically generates these proof obligations and attempts to automatically prove
them. Sometimes it requires user assistance by invoking its interactive prover. However,
in general the tool achieves high level of automation (usually over 80%) in proving.
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6 Case study — AOCS

The AOCS is a typical layered control system. The main function of the system is to
control the attitude and the orbit of a satellite. Since the orientation of a satellite may
change due to disturbances of the environment, the attitude needs to be continuously
monitored and adjusted. The optimal attitude is required to support the needs of payload
instruments (PLIs) and to fulfil the mission of the satellite (DEPLOY, 2010).

At the top layer of AOCS is a MM. It controls several UMs, which are responsible
for a number of hardware units. AOCS has seven units — four sensors [star tracker
(STR), sun sensor (SS), earth sensor (ES) and global positioning system (GPS)], two
actuators [reaction wheel (RW) and thruster (THR)], and one PLI producing mission
measurements. The predefined mode scenario determines the sequence of steps needed
to reach the state where PLI is ready to perform its tasks. This sequence includes the
following modes:

e  OFF — the satellite is typically in this mode right after system (re)booting.
e  Standby — this mode is maintained until separation from the launcher.
e  Safe — a stable attitude is acquired, which allows the coarse pointing control.

e  Nominal — the satellite is trying to reach the fine pointing control, which is
needed to use the PLIL

e  Preparation — the PLI is getting ready.

e  Science — the PLI is ready to perform its tasks. The mission goal is to reach this
mode and stay in it as long as needed.

In this paper, we consider a formal derivation of the AOCS mode logic focusing only
on ES and GPS. ES is a typical representative of AOCS units with two simple local
modes: non-operational, Off, and operational, On. GPS represents the units with one
non-operational mode, Off, and two operational modes, Coarse and Fine. When the
global mode is Safe, ES is in the operational mode On, otherwise it is in the mode
Off- Similarly, GPS is required to be in the mode Coarse, when the global mode is
Nominal, and in the operational mode Fine when the global mode is either Preparation
or Science. It should be in the mode Off otherwise (see Table 1).

Table 1 Correspondence between unit modes and global modes of AOCS

Mode OFF Standby Safe Nominal Preparation Science
Unit

ES Off Off On Off Off Off
SS Off Off On Off Off Off
GPS Off Off Off Coarse Fine Fine
STR Off Off Off On On On
RW Off Off On On On On
THR Off Off Off On On On

PLI Off Off Off Off Standby Science
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To identify rollbacks according to the method proposed in Section 3, we have conducted
FMEA for all the global modes where either ES or GPS is in an operational mode. We
take into account other AOCS units that could influence the rollback. For brevity, in
Figure 5 we show an excerpt from FMEA worksheet. It corresponds to the global mode
Nominal with the failure mode GPS failure without an available spare.

Figure 5 FMEA of the AOCS global mode nominal

Mode Nominal
Failure mode GPS failure without an available spare
Possible cause Hardware failure
Local effects Sensor reading is out of expected range.
Change of GPS status
System effects Switch to a degraded mode
Detection Comparison of received data with the predicted one
Rel'nedlal Target Precondition Action
action mode

A state transition error in
some of the redundant
branches in GPS, STR and

THR. No state transition For each unit qther than

. RW, any ongoing unit
error in the redundant reconfiguration is aborted
branch of RW. ccontiguration 15 aborted.

Safe Insufficient usability of a For each branch in each unit
u u y other than RW, the status is

selected redundant branch
of GPS, STR or THR, No | ¢t to Unlocked, and a state
transition to Off is initiated.

branch state transition error.
No problem on the
redundant branch of RW.

A state transition error in

the redundant branch of For each unit, any ongoing

unit reconfiguration is

OFF RW. . _ aborted._ For each br_anch in
Insufficient usability of a each unit the status is set to
selected redundant branch Unlocked, and a state
of RW. No branch state transition to Off is initiated.

transition error.

By relying on the FMEA results, we define rollback rules for the ES and GPS units.
Specifically, if the system is in the mode Nominal and both branches of GPS failed, the
system should perform a rollback to the mode Safe. On the other hand, if the system is
in the mode Safe and both branches of ES failed, the system should perform a rollback
to the mode OFF.

To illustrate how FMEA is performed for other AOCS hardware units, let us
consider the most critical unit of the system — its PLI. The corresponding FMEA
worksheet is shown in Figure 6. Here the system is in the mode Science and the nominal
branch of the PLI unit failed (i.e., the failure mode PLI failure with an available spare).
To tolerate the failure, the system performs a rollback to the mode Preparation. If
during the transition phase an error in the redundant branch of PLI occurred the next
target mode must be set to Nominal. If any error occurred in other units that should be
in operational states in the target mode, the transition either to Safe or OFF must be
initiated.
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Figure 6 FMEA of the AOCS global mode science

Mode Science

Failure mode | PLI failure with an available spare
Possible cause | Hardware failure

Local effects Sensor reading is out of expected range.

Change of PLI status
System effects | Switch to a degraded mode
Detection Comparison of received data with the predicted one
Rer.nedlal Target Precondition Action
action mode
For the nominal branch of
No branch state transition PLI, the state is set to Off,
Preparation | error. No ongoing unit for the redundant branch a
reconfiguration. state transition to Standby

is initiated.

A state transition error in the
redundant branch of PLI. No

state transition error in the Any ongoing unit

redundant branches of GPS, reconfiguration in PLI is

RW, STR and THR. aborted. For each branch
Nominal Insufficient usability of a in PLI the status is set to

selected redundant branch of Unlocked, a state

PLI. No branch state transition to Off is

transition error. No problem initiated.

on the redundant branches of
GPS, RW, STR and THR.

A state transition error in
some of the redundant

branches in GPS, STR and For each unit other than

THR. No state transition error | RW, any ongoing unit

in the redundant branch of reconfiguration is aborted.
Safe RW. . _ F or each branch in each

Insufficient usability of a unit other than RW, the

selected redundant branch of status is set to Unlocked,

GPS, STR or THR. No branch | and a state transition to

state transition error. No Off is initiated.

problem on the redundant

branch of RW.

For each unit, any

A state transition error in the ongoing unit

redundant branch of RW. reconfiguration is aborted.
OFF Foy each branch in each

Insufficient usability of a unit the status is set to

selected redundant branch of Unlocked, and a state

RW. No branch state transition to Off is

transition error. initiated.

Refinement strategy. We use refinement process to incrementally build the system
architecture, i.e., gradually unfold system layers. The refinement process starts from
developing the top level MM that implements the global mode logic. The MM itself can
be developed in a stepwise manner by several refinements. Once the MM is specified
in sufficient details, we start modelling the lower layer managers together with their
mode logics. Each UM and its logic can be introduced at separate refinement steps. At
the last refinement step, we introduce modelling of the redundant branches of each unit
(Figure 7).
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Figure 7 Refinement strategy (see online version for colours)

Generic ES Mode Manager
Mode Manager (MM) T —— Fault Tolc?rance
Mechanisms
Refines * Rcﬁnesf (redundant branches)
Mode Manager (MM) |Refines| [ GPS Mode Manager refinement
refinement refinement
Refines *
Refines *

PLI Mode Manager |Refines
refinement

The abstract specification models a generic MM. The variables representing the state
of an abstract MM (prev_targ, last_ mode and next_targ) and the detected errors (the
variable error) are introduced at this step. The event Run_Mode_Scenario models
autonomous scenario execution of the abstract MM and updates the variable next_targ.
The events Error_Handling and Error_Reset describe different error handling procedures
(with and without rolling back) of the MM, while the event Error_Occurrence abstractly
models the occurrence of failures. The variable error is updated by all these events,
while the variables representing the state of the MM are only changed by the event
Error_Handling. The event Advance_Partial models partial reaching of the target mode,
i.e., after the execution of this event the MM state is still /ncreasing. On the other hand,
the event Mode_Reached implements complete achievement of the target mode, i.e., after
the execution of this event the MM state is Stable. The AOCS abstract specification is
shown in Figure 8.

The first refinement is an implementation of the MM and its mode logic as a
specialisation of the abstract model. According to the formalisation guidelines proposed
in Section 4, we define the allowed AOCS mode transitions (Figure 9). We represent
them formally by instantiating the relation Scenario (1):

Scenario = {OFF +— Standby, Standby — Safe, Safe — Nominal,

Nominal — Preparation, Preparation — Science}

The execution of the scenario is modelled as a sequence of events. A more detailed
description is given in Iliasov et al. (2010b).

To model rollbacks shown in Figure 9, we introduce a function MM_Error_Handling
that is an instantiation of the function Error_Handling (2) given in Section 4.

The second refinement step introduces one of the considered units, ES. The next
target mode for ES can be set only by a higher level manager, in our case, by the MM.
The scenario relation for ES is very simple:

ES_scenario = {ES_Off — ES_On}

The correspondence relation between the MM and ES modes (shown in Table I) is
formalised as follows:

ES_mode = {OFF — ES_Off; Standby — ES_Off, Safe — ES_On,
Nominal — ES_Off, Preparation — ES_Off, Science — ES_Off}
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Figure 8 Abstract specification

machine MM_Abs_M sees MM_Abs_C
variables last_mode prev_targ next_targ error
invariants
last_ mode € MODES
prev_targ € MODES
next_targ € MODES
error € ERRORS
events
event INITIALISATION
then
/finitialisation of variables
end
event Run_Mode_ Scenario
// autonomous scenario of MM
any m
where
m € MODES
next_targ = prev_targ
error = No_Error
prev_targ = m € Mode_Order
then
next_targ = m
end
event Error Handling
// error handling by MM
any m
where
m € MODES
error # No_Error
prev_targ = m € Mode_Order~
then
next_targ :=m
error := No_Error
prev_targ = next_targ
last_mode := next_targ
end
event Normal Operation
// successful execution cycle
where
next_targ = prev_targ
error = No_Error
end

event Failure_Operation
// failed execution cycle
where
next_targ = prev_targ
error = No_Error
then
error :| error' # No_Error
end
event Error_Occurrence
// non-deterministic error occurrence
then
error :| error' # No_Error
end
event Error_Reset
// error reset
then
error := No_Error
end
event Advance Partial
// mode is advanced but target mode is not
reached yet
any m
where
prev_targ # next_targ
m € MODES
m = next_targ € Mode_Order
U Mode_Order~
m #next_targ
error = No_Error
then
last_mode = m
end
event Advance Complete
// target mode is reached
where
next targ # prev_targ
error = No_Error
then
last_mode := next_targ
prev_targ := next_targ
end
end

Figure 9 AOCS mode transitions (see online version for colours)
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Essentially, the ES_mode relation expresses the required consistency conditions between

the modes of MM and ES. It is also a concrete projection of the generic function
Mode_entry_cond introduced in Section 4.

Figure 10 ES mode transition events

event ES Advance Partial // mode is advanced event ES_Mode Reached // mode is reached
but target mode is not reached yet where
any p ES_next_targ # ES prev_targ
where last mode — ES last mode € ES_mode
ES_prev_targ # ES_next_targ last_mode = ES_next_targ € ES_mode
p € ES_ MODES last_mode = ES_prev_targ € ES_mode
p = ES_next_targ € ES_graph flag ES rec = FALSE
p # ES next targ then
last mode = p € ES_mode ES last mode := ES next targ
flag ES rec = FALSE ES prev targ := ES next targ
then ES_Reconfig :== FALSE
ES last mode :=p ES Status := fun_ES_status
ES Status := fun_ES_status (FALSE = ES next targ =
(ES_Reconfig = p = ES next targ) ES next targ)
end end

In our Event-B model, we describe partial and complete reaching of a new target
mode for ES by the respective events ES_Advance_Partial and ES_Mode_Reached
(Figure 10). Here the function fun_ES_status is used to determine the ES status
(Locked or Unlocked). The function result depends on the given values of the variables
ES_Reconfig, ES_last_ mode and ES_next_targ. Essentially, the function fun_ES_status is
defined in such a way that its result (the ES status) always satisfies the following
invariant properties of our model:

ES_Reconfig = TRUE V ES_last_mode = ES_Off \/ ES_next_targ = ES_Off
= ES _Status = Unlocked (6)

ES_Status = Locked
= ES_Reconfig = FALSE N ES_last_mode # ES_Off \ ES_next_targ # ES_Off (7)

The first invariant (6) shows what conditions must be true for the system to have
status Unlocked. The second property (7) follows from the first one and specifies which
conditions are true when the ES status is Locked. Please note that these invariants are
concrete instantiations of the general properties (4) and (5) given in Section 4.

The most challenging proofs were carried to demonstrate invariant preservation and
feasibility — (REF_INV) and (REF_FIS), correspondingly. We had to interactively prove
that the event ES_Advance_Partial preserves the invariant property (6). Moreover, we
interactively proved the feasibility refinement property for the event Failure_Operationl.
The event models failure operation of the system and refines the abstract event
Failure_Operation by replacing the non-deterministic assignment of the variable error
with possible errors of the ES unit (action such that error :| error’ € ES_Any_Error).

The third refinement step implements the GPS unit and its mode logic in a similar
way. At the last refinement step, we introduce the reconfiguration procedures of ES and
GPS units according to the remedial actions described in the FMEA worksheets.
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To decide whether reconfiguration is needed, we introduce a function
fun_ES_rec_need_b for the ES unit and a similar function fun GPS_rec_need_b for
the GPS unit. These functions are concrete instances of the abstract function
Unit; _reconf-need (3). The functions return TRUE, if reconfiguration is needed, and
FALSE otherwise.

We classify unit errors as reconfigurable, i.e., when a unit can recover from an error
by its reconfiguration, and non-reconfigurable, i.e., when an error cannot be handled
by reconfiguration even if the redundant branch is available. The required properties of
the above functions are given as axioms in the accompanying CONTEXT model. The
Axiom 1 given below states that, if any reconfigurable error of ES occurs and the current
branch is the nominal branch Branch_A, then reconfiguration has to be started. Axiom 2
defines the situation when a reconfigurable error occurs but the current branch is already
the redundant branch Branch_B. Therefore, unit reconfiguration is not possible and thus
is not needed. Finally, Axiom 3 specifies the case when reconfiguration is not possible
due to a non-reconfigurable error.

Axiom 1: ¥ x - x € ES_Reconf_errors
= fun_ES_rec_need_b(x — Branch_A) = TRUE

Axiom 2: ¥ x - x € ES_Reconf_errors
= fun_ES_rec_need_b(x — Branch_B) = FALSE

Axiom 3: ¥ x - x € Any_Error\ES_Reconf_errors
= fun_ES_rec_need_b(x — Branch_A) = FALSE

The introduced reconfiguration mechanism affects a number of model events. In
particular, the events modelling unit failures that may trigger reconfiguration are refined
to update the reconfiguration status (modelled as a separate flag variable) of a unit.
The event ES_Timeout_Err presented in Figure 11 is an example of that. Moreover,
separate events starting the reconfiguration process are introduced for each unit as the
special refined versions of the abstract event Error_Reset. The event ES_Reconfig_Start
shown in Figure 11 exemplifies it for the unit ES. Note that it is enabled only when
the reconfiguration has been already triggered by some previous unit failure, i.e., when
flag ES_rec = TRUE.

Figure 11 Reconfiguration between ES branches

event ES Timeout Err refines Error Occurrence  event ES Reconfig Start refines Error Reset
where where
ES_next_targ # ES prev_targ ES_Reconfig = FALSE A\ flag ES rec = TRUE
ES_next_targ # ES_Off then
error = No_Error ES Reconfig := TRUE
then ES Status := Unlocked
error := ES_Timeout_Error flag ES rec :== FALSE
flag ES rec = fun_ES_rec_need_b error := No_Error
(ES_Timeout_Error — ES branch) ES last mode := ES_Off
end ES prev_targ := ES_Off
ES _branch := Branch_B
end
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If the reconfiguration is not possible, i.e., both the nominal and redundant branches
failed, the MM performs a rollback to such a global mode where the failed component
is not used, i.e., it is in the mode Off. The corresponding event is shown in Figure 12.

Figure 12 System rollback

event MM _Error Handling refines MM_Error Handling

any mu gp

where
m € MODES
error # No_Error
prev_targ » m € Mode_Order~
m# next_targ /\ next targ # OFF
m~ u € ES mode Au#ES next targ
m+ gp € GPS_mode /\ gp # GPS_next_targ

then
error :== No_Error
prev_targ := next_targ
last mode = next targ
next_targ :=m
ES Status := fun_ES_status(ES_Reconfig = ES next targ = u)
ES_prev_targ :== ES_next_targ
ES last mode := ES_next_targ
ES next targ:=u
ES Reconfig := FALSE || GPS_Reconfig := FALSE
GPS_Status := fun_GPS_status(GPS_Reconfig = GPS_next targ = gp)
GPS_prev_targ := GPS_next_targ
GPS_last_mode := GPS_next_targ
GPS next targ := gp

end

To perform a rollback transition, all AOCS units have to be moved into appropriate
modes according to the correspondence relations between MM and each unit modes
(e.g., ES_mode, GPS_mode, etc.). All the variables reflecting the current state of AOCS
and all the units (such as prev_targ, last_mode, next_targ, etc.) have to be assigned new
values. The statuses of units are also changed according to the resulting values of the
respective functions (e.g., fun_ES_status, etc.).

In our Event-B development of AOCS, we have applied the general guidelines
proposed in Sections 3 and 4. We have gradually introduced the concrete modes for
different system layers, their interdependencies as well as the dynamic reconfiguration
mechanism. The essential mode consistency conditions have been verified in the
refinement process. The modelling and verification have been carried out in the Rodin
platform (Event-B, 2011). The respective proof obligations (POs) have been discharged
using a collection of the provided automated theorem provers with a small number of
interactive proofs (Table 2).

The statistics presented in Table 2 shows that the number of POs has significantly
increased at the second and third refinement steps. Moreover, the number of interactively
discharged proofs also became high at these stages. This is a natural consequence of
introducing complex properties, establishing correspondence between the modes of units
and the global modes of the MM.
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Table 2 Proof statistics

Model Number Automatically Interactively
of POs Discharged Discharged

Context 29 29 0

Abstract model 2 0 2

1st Refinement 1 1 0

2nd Refinement 63 59 4

3rd Refinement 56 49 7

4th Refinement 21 21 0

Total 172 159 13

7 Conclusions

In this paper, we have made two main technical contributions. Firstly, we have
proposed a systematic FMEA-based approach to complementing the mode logic with
fault tolerance. Secondly, we have formalised the mode consistency properties and
demonstrated how to ensure them while developing a system by refinement in Event-B.
Our development process can be seen as a mode-consistency preserving unfolding
of architectural layers. Verification by theorem proving and stepwise refinement have
allowed us to undertake a formal development of a complex control system without
encountering a state explosion problem. Hence, the proposed approach demonstrates
good scalability and relevance to industrial practice.

In Lopatkin et al. (2011), we have derived a set of generic patterns for eliciting and
structuring safety and fault tolerance requirements from FMEA. We have also developed
an automatic tool support that enables interactive pattern instantiation and automatic
model transformation to capture these requirements in a formal system development.
In our future work, we are planning to contribute to extending the existing library of
domain-specific automated patterns with FMEA mode-transition patterns for layered
control systems.
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