
International Journal of Medical Informatics (2005) xxx, xxx—xxx

Evaluation of two dependency parsers on
biomedical corpus targeted at protein—protein
interactions

Sampo Pyysalo ∗, Filip Ginter, Tapio Pahikkala, Jorma Boberg,
Jouni Järvinen, Tapio Salakoski

Turku Centre for Computer Science (TUCS), Department of Computer Science, University of Turku,
Lemminkäisenkatu 14A, 20520 Turku, Finland

R

1

T
b
a

fi
(
j
t

1
d

eceived 15 April 2005; accepted 30 June 2005

KEYWORDS
Natural language
processing;
Evaluation;
Parser comparison;
Dependency syntax;
Protein—protein
interactions

Summary We present an evaluation of Link Grammar and Connexor Machinese Syn-
tax, two major broad-coverage dependency parsers, on a custom hand-annotated
corpus consisting of sentences regarding protein—protein interactions. In the eval-
uation, we apply the notion of an interaction subgraph, which is the subgraph of a
dependency graph expressing a protein—protein interaction. Wemeasure the perfor-
mance of the parsers for recovery of individual dependencies, fully correct parses,
and interaction subgraphs. For Link Grammar, an open system that can be inspected
in detail, we further perform a comprehensive failure analysis, report specific causes
of error, and suggest potential modifications to the grammar. We find that both
parsers perform worse on biomedical English than previously reported on general
English. While Connexor Machinese Syntax significantly outperforms Link Grammar,
the failure analysis suggests specific ways in which the latter could be modified for
better performance in the domain.
© 2005 Elsevier Ireland Ltd. All rights reserved.

. Introduction

he challenges of processing the vast amounts of
iomedical publications available in databases such
s PubMed1 have recently attracted a consider-

∗ Corresponding author. Tel.: +358 2 333 8648
E-mail addresses: sampo.pyysalo@it.utu.fi (S. Pyysalo),

lip.ginter@it.utu.fi (F. Ginter), tapio.pahikkala@it.utu.fi
T. Pahikkala), jorma.boberg@it.utu.fi (J. Boberg),
ouni.jarvinen@it.utu.fi (J. Järvinen),
apio.salakoski@it.utu.fi (T. Salakoski).
1 http://www.pubmed.com.

able interest in the natural language processing
(NLP) research community. A wide variety of NLP
methods have been applied to the domain, rang-
ing from purely statistical methods (e.g. [1,2]) to
full syntactic analysis as employed, for example,
by Craven and Kumlien [3], Yakushiji et al. [4],
Temkin and Gilder [5], and Daraselia et al. [6]. A
task of particular interest is information extraction
(IE). IE systems are applied to free text, extracting
from it factual information such as, for example,
all protein—protein interactions stated in a given
research article. A typical IE system performs the

386-5056/$ — see front matter © 2005 Elsevier Ireland Ltd. All rights reserved.
oi:10.1016/j.ijmedinf.2005.06.009

IJB-2121; No. of Pages 13



2 S. Pyysalo et al.

extraction in the following steps. Named entity
recognition (NER) identifies relevant named entities
in the text, e.g. proteins, genes, mRNAs, and organ-
isms. Then syntactic analysis, also termed parsing,
is performed to obtain a structure that specifies
how words and phrases are related in the sentence.
Finally, a domain analysis is performed which, given
the named entities and the syntactic structure of
the sentence, identifies the related entities and
the nature of their relationship. In addition, other
steps, such as coreference resolution are also often
applied.

In this paper, we focus on the syntactic anal-
ysis component of IE systems. There are sev-
eral approaches to parsing, which can be roughly
categorized into partial parsing and full parsing,
depending on how complete an analysis they pro-
duce. Parsers can also be divided with respect to
their underlying grammatical formalism into two
broad categories: constituency and dependency.
Constituency parsers produce syntactic analysis in
the form of a tree that specifies the phrases that
constitute the sentence (e.g. noun phrase and verb
phrase) and the hierarchy in which these phrases
are nested. In contrast, dependency parsers anal-

received significant attention in the Bio-NLP
research literature [8—10]. The work of Szolovits
[8] proposes a fully automated method to extend
the dictionary of the LG parser with terms from the
UMLS Specialist4 lexicon, and Ding et al. [9] perform
a basic evaluation of LG performance on biomed-
ical text. Szolovits does not attempt to evaluate
parser performance at all, and Ding et al. provide
only an informal evaluation on manually simplified
sentences. CMS has been applied to the biomedical
domain as well, for example, in the named entity
recognition system YAPEX of Franzén [11]. However,
we are not aware of any study regarding the per-
formance of CMS in the biomedical domain.

Here, we perform a more formal evaluation of
the performance of the parsers. We use the hand-
annotated corpus to evaluate the two parsers with
respect to the domain language and we also employ
certain IE-specific criteria. We further assess the
effect of protein name recognition as a preprocess-
ing step. Moreover, as LG is an open source system
that can be investigated in detail, we perform a
thorough failure analysis of LG and propose mod-
ifications in order to improve its applicability to
biomedical IE. We also measure the effect of the
L

o
s
p
d
e

d
c
r
r
e
t

2

A
s
t
a
w
c
t
d
w
c

yse the sentence as a set of pairwise word-to-word
dependencies, each dependency having a type that
specifies its grammatical function (e.g. subject and
object).

While both constituency and dependency
approaches have been applied to mining biomed-
ical literature, our purpose here is to assess the
applicability of dependency parsers to the IE task
in the biomedical domain. Due to the specific
nature of the language used in scientific articles,
the evaluation needs to be performed using a
corpus that captures the domain language, rather
than general language. For this purpose, we have
developed a corpus that consists of sentences
from scientific article abstracts. The sentences
were selected using a procedure that results in
a corpus with a distinct focus on protein—protein
interactions. The corpus was hand-annotated,
giving each sentence a full dependency analysis.
Bioentities and their interactions stated in the
sentences were identified as well. The manual
annotation provides gold-standard data for the
evaluation of the parsers.

We study the performance of two major
broad-coverage full dependency parsers, the Link
Grammar2 (LG) of Sleator and Temperley [7] and
the Connexor Machinese Syntax (CMS) parser3. The
Link Grammar parser, in particular, has recently

2 http://www.link.cs.cmu.edu/link.
3 http://www.connexor.com.
G dictionary extension proposed by Szolovits.
This work is a continuation of our previous work

n the analysis of Link Grammar [12]. We now con-
ider CMS in the evaluation and compare the two
arsers. The corpus used here represents a vali-
ated version of the previously used corpus, further
xtended for CMS evaluation.
In the following sections, we describe the two

ependency parsers and discuss issues in parser
omparison. The corpus and the evaluation crite-
ia are then introduced, followed by the evaluation
esults. We also present an analysis of LG failures,
valuate the effect of two potential improvements
o the parsers, and conclude the results.

. Dependency parsers

dependency parse of a sentence consists of a
et of pairwise word-to-word relationships referred
o as dependencies. A dependency specifies an
symmetric relationship between words, where one
ord is a dependent of the other word, which is
alled its governor. Each dependency is given a type
hat describes its grammatical function. A depen-
ency parse is usually presented using a diagram
here the dependencies are drawn as labeled arcs
onnecting the words of the sentence to each other.

4 http://www.nlm.nih.gov/research/umls.



Evaluation of two dependency parsers on biomedical corpus 3

Due to the ubiquitous ambiguity present in nat-
ural language, essentially all non-trivial sentences
can be assigned several syntactically plausible
parses. Consider, for instance, the phrase stain-
ing with antibodies to desmin. Both antibodies-
to-desmin and staining-to-desmin are syntactically
correct parses. The former is, however, the seman-
tically correct interpretation of this phrase.

A number of grammatical phenomena can be
given different, yet equally plausible, dependency
structures according to convention. In the follow-
ing, we refer to the set of design decisions that
specify the structures to produce for each of these
phenomena as the dependency scheme.

2.1. Link grammar parser

The Link Grammar and its parser represent an
implementation of a dependency-based computa-
tional grammar. In LG terminology, a dependency is
termed link and a parse is termed linkage. In the
following, we use these terms interchangeably. The
links in the linkage may not cross when drawn above
the words of the sentence, and the types of the
links must satisfy the linking constraints specified
f
w
c
t
d

a
t
b
e
s
t
o
s
l
k
p
t
l
o
c

t
t
t
f
r
l
I
i
m

erably restricted parse, resulting in reduced per-
formance. The parameters kmax and tmax set the
trade-off between the qualitative performance and
the resource efficiency of the parser.

2.2. Connexor Machinese Syntax parser

Connexor Machinese Syntax (CMS) is a commer-
cial parser based on the Functional Dependency
Grammar [13] dependency formalism, which in turn
builds on the English Constraint Grammar (EngCG)
tagger [14]. In contrast to LG, the parser builds
on the detailed morphological analysis provided
by EngCG. The CMS dependency scheme is more
traditional than the LG scheme in using explicitly
directional dependencies and being head- and verb-
driven.

CMS also adopts a different approach than LG
to ambiguous sentences. Instead of enumerating
the set of all possible parses allowed by the
grammar, the parser returns only a single, pre-
ferred, parse. Heuristics are applied to resolve
some phenomena, such as prepositional phrase
attachment ambiguity (e.g. antibodies-to-desmin
versus staining-to-desmin). This strategy avoids the
p
t
n
I
v
t
o
g
p
g

p
n

3

O
t
a
t
s
d

F
p

or each word in the grammar. A linkage where all
ords, including punctuation, are linked is called
omplete. The links are not directional, that is,
hey do not explicitly specify which word is the
ependent and which word is the governor.
In cases where, due to ambiguity, several link-

ges can be constructed for an input sentence,
he LG parser enumerates all linkages allowed
y the grammar. A post-processing step is then
mployed to enforce a number of additional con-
traints. Rarely, the number of linkages for a sen-
ence can be very high, in the order of hundreds
f millions, which would make post-processing and
torage prohibitively resource-intensive. This prob-
em is addressed in the LG parser by defining
max, the maximal number of linkages to be post-
rocessed. If the parsing algorithm produces more
han kmax linkages, the output is reduced to kmax
inkages by random sampling. The linkages are then
rdered from best to worst using heuristic goodness
riteria.
In order to be usable in practice, a parser is

ypically required to provide a partial parse of sen-
ences for which it cannot construct a full parse. If
he LG parser cannot construct a complete linkage
or a sentence, the connectedness requirement is
elaxed so that some words do not belong to the
inkage at all. The LG parser is also time-limited.
f the full set of linkages cannot be constructed
n a given time tmax, the parser enters the panic
ode, in which it performs an efficient but consid-
erformance implications of generating a poten-
ially large amount of alternative parses and does
ot involve the costly post-processing phase of LG.
n our experiments, the CMS parser produced parses
ery efficiently for even the most complex sen-
ences, and while we are not aware of the detailed
peration of the parser, there was nothing to sug-
est that the parser applies time-limits or different
arsing modes for parses that take longer than a
iven time.
Similarly to LG, CMS is capable of constructing

artial parses for sentences for which a fully con-
ected parse is not found.

. Challenges in parser comparison

ne of the issues complicating parser comparison is
hat different parsers implement different schemes
nd thus have different notions of what consti-
utes a correct parse. In the following, we describe
ome systematic differences between the parsers,
iscuss ways of performing a balanced evaluation

ig. 1 Serial (left) and parallel (right) attachment of
re-modifiers to a noun.



4 S. Pyysalo et al.

Fig. 2 Dependency structures for subordination. LG structure on the left, CMS structure on the right.

despite such differences, and present the solutions
adopted in this paper.

There is no single generally accepted depen-
dency scheme, and many grammatical phenomena
can be given several different, yet equally plausi-
ble dependency structures. Two examples of such
differences between the schemes followed by LG
and CMS are illustrated in Figs. 1 and 2. The most
frequently occurring difference is in the attach-
ment of pre-modifiers to nouns, where LG attaches
pre-modifiers in parallel, while CMS attaches pre-
modifiers serially (Fig. 1). The parsers do not
attempt to resolve the semantics of the attach-
ment, but instead follow their respective schemes
systematically.

Another example of a frequently occurring sys-
tematic difference is the dependency structure
given to subordinate clauses. Fig. 2 illustrates the
structures assigned by the two parsers to the sen-
tence results suggest that profilin binds actin.
Several other grammatical phenomena, including
infinitival and preposed complements as well as
coordination, are also analysed differently by the
parsers.

Different dependency schemes can differ in their

Fig. 3 LG dependency structure for the coordination
[[Acanthamoeba actin] and [profilin]] (top) and [Acan-
thamoeba [actin and profilin]] (center). The CMS struc-
ture (bottom) is not capable of expressing the distinction
and the annotation is thus the same for both cases.

differ. Indeed, the LG and CMS parsers use very dif-
ferent sets of dependency types, as illustrated in
Fig. 4.

There are several alternative solutions available
for comparing parsers despite differences such as
those discussed above. One possibility is to only
compare those structures that are analysed in the
same way by the different parsers. However, in our
case, even if dependency types are disregarded,
the two parsers share only about 74% of the depen-
dencies in the corpus. Restricting the comparison to
these dependencies would mean giving up the abil-
ity to evaluate the performance of the parsers with
respect to several key phenomena such as coordi-
nation.

The opposite alternative would be to produce
full dependency annotation separately for both
parsers. While this approach is straightforward, it
has the significant drawback of demanding essen-
tially twice the effort required to produce annota-
tion for a single parser.

Here, we adopt an approach that allows us to
have full dependency annotation for both parsers

F
t

expressive capacity. For example, in the depen-
dency structure used by LG for coordination5 the
coordinated elements are linked to the coordina-
tor, which in turn represents the functional role
of each of the coordinates. In contrast, the CMS
parser chains the coordinated elements, and the
head of the chain shows the functional role of the
coordinated units, while the coordinator is a mere
dependent of one of the elements in the chain.

Here, the LG approach is more expressive than
the CMS chaining approach, allowing, for example,
a single pre-modifier to apply to all of the coor-
dinated elements (Fig. 3). Thus, the LG scheme is
capable of expressing more detail in the resolution
of modifier attachment than can be expressed in
the CMS scheme. Note also that the more expres-
sive LG structure can be transformed to the less
expressive chaining structure, but not vice versa.

Even when dependency schemes agree on the
dependency structure, the dependency types may

5 When producing output, LG splits sentences containing coor-
dination into several sub-sentences. Instead of the split output,
we consider the internal representation used by LG.
ig. 4 Different dependency types for the same struc-
ure. Above, LG; below, CMS.



Evaluation of two dependency parsers on biomedical corpus 5

without doing twice the work. We use an annotation
formalism that allows automatic transformations
between the dependency schemes for the main
differences between dependency structures, only
requiring manual modifications to the annotation
for less common phenomena. Due to the significant
differences in dependency types used by the two
parsers, we do not assign or compare the types of
the dependencies.

4. Corpus annotation and interaction
subgraphs

To compile a corpus of sentences describing
protein—protein interactions, we first selected
pairs of proteins that are known to interact from
the Database of Interacting Proteins6 [15]. We
entered these pairs as search terms into the PubMed
retrieval system. We then split the publication
abstracts returned by the searches into sentences
and included titles. These were again searched for
the protein pairs. Domain experts annotated these
sentences for protein names and for words stat-
ing their interactions. Thereafter, we performed a
s
d

p
i
i
n
p
p
e
t
t
L
t
t
t
t

t
t
c
t
t
a
a
t

b

word-to-word dependencies. This set of sentences
is the corpus we refer to in the following sections.

An information extraction system targeted at
protein—protein interactions and their types needs
to identify the constituents that express an inter-
action in a sentence: the proteins involved and the
word or phrase that states their interaction and
suggests the type of this interaction. To extract
this information from a full dependency parse,
the dependencies connecting these items must be
recovered correctly by the parser. The following
definition formalizes this notion considering the
dependency parse as a graph with the words as its
nodes and the dependencies as its edges.

Definition (Interaction subgraph). The interaction
subgraph for an interaction between two proteins
A and B in a dependency parse P is the minimal
connected subgraph of P that contains A, B, and
the word or phrase that states their interaction.

For each interaction stated in a sentence, the
corpus annotation specifies the proteins involved
and the interaction word. The interaction sub-
graph for each interaction can thus be extracted
a
d
a
a
o
s
s
i
a

5

W
a
t

•
•
•

e
b
i
n
w
m
w
n
f
t

yntactic analysis and produced an annotation of
ependencies.
The dependency structure annotation of the cor-

us was produced in a way that allows generat-
ng separate versions of the corpus correspond-
ng either to the LG or to the CMS schemes. Most
otably, automatic processing was applied to noun
re-modifier attachment and coordination. Noun
hrases were marked with annotation that can be
xpanded to correspond either to the parallel or
o the serial modifier attachment scheme. Annota-
ion of coordinations was produced according to the
G scheme, which can be automatically translated
o the corresponding CMS annotation using a set of
ranslation rules. This annotation system allows us
o avoid producing separate parser-specific annota-
ion manually for all but 6% of the dependencies.
To minimize the amount of mistakes, each sen-

ence was independently annotated by two anno-
ators and differences were then resolved by dis-
ussion. Dependency types were not included in
he annotation, and no cycles were introduced in
he dependency graphs. All ambiguities the parsers
ttempt to resolve, such as prepositional phrase
ttachment, were resolved in the corpus annota-
ion as well.
A random sample consisting of 300 sentences has

een annotated for both parsers, giving over 7500

6 http://dip.doe-mbi.ucla.edu.
utomatically from the corpus. Because the corpus
oes not contain cyclic dependencies, the inter-
ction subgraphs are unique. In total, 401 inter-
ction subgraphs were identified from the corpus,
ne for each stated interaction. The interaction
ubgraphs can be partially overlapping, because a
ingle dependency can be part of more than one
nteraction subgraph. Fig. 5 shows an example of an
nnotated sentence with an interaction subgraph.

. Evaluation criteria

e evaluated the performance of the parsers
ccording to the following three quantitative cri-
eria:

Number of dependencies recovered,
Number of fully correct parses,
Number of interaction subgraphs recovered.

The number of recovered dependencies gives an
stimate of the probability that a dependency will
e correctly identified by the parser (this criterion
s also employed by e.g. Collins et al. [16]). The
umber of fully correct parses, that is, the parses
here all annotated dependencies are recovered,
easures the fraction of sentences that are parsed
ithout error. However, a fully correct parse is not
ecessary to extract protein—protein interactions
rom a sentence; to estimate how many interac-
ions can potentially be recovered, we measure



6 S. Pyysalo et al.

Fig. 5 Annotation example. The interaction of two proteins, profilin and actin, is stated by the word reorganizing.
The dependencies joining these words form the interaction subgraph (drawn with solid lines). The annotation follows
the LG scheme.

the number of interaction subgraphs for which all
dependencies were recovered.

CMS produces exactly one parse for each sen-
tence and we measure the performance of the
parser with respect to this analysis. The LG parser,
however, enumerates many alternative linkages,
heuristically ordered from most likely to least
likely. Apart from measuring the performance for
the first linkage, we also measure the performance
for the best linkage. The best linkage is the link-
age that maximizes the criterion among all the
alternative linkages produced by the parser, disre-
garding the heuristics that the parser uses to order
the linkages. The best linkage performance is thus
the maximal performance achievable by the parser,
providing ideal heuristics for parse ordering. Com-
parison of the first linkage and the best linkage
performance then reveals the effect of the order-
ing heuristics on the overall performance of the LG
parser.

To study the effect of the resource constraints
in the LG parser, we divide the parsed sen-
tences into three categories: (1) sentences for
which the time tmax for producing a normal parse
was exhausted and the parser entered the panic

occurred. We report LG performance for each of
the three categories separately, as well as the
overall performance. For CMS, where such a divi-
sion is not applicable, we only give the overall
performance.

To assess the statistical significance of differ-
ences in parsing performance, we apply the two-
tailed paired t-test on the fraction of recovered
dependencies in each sentence.

6. Evaluation results

In the following, we present the evaluation results
for the two parsers. We present and compare the
results for LG and CMS. We also consider parser effi-
ciency and resource exhaustion.

6.1. Link grammar results

To evaluate the ability of the LG parser to pro-
duce correct linkages, we increased the number of
stable sentences by setting the tmax parameter to
10min and the kmax parameter to 10000 instead of
using the defaults tmax = 30 s and kmax = 1000. When
p
t
p

S

) 1
) 1

2

)
)

)
)

ria a
n gi
mode, (2) sentences where linkages were sampled
because more than kmax linkages were produced,
and (3) stable sentences for which neither of these

Table 1 LG performance

Criterion Linkage Category

Stable

Dependency First linkage 3399 (77.3%
Best linkage 3771 (85.8%

Total 4397

Fully correct First linkage 20 (9.4%
Best linkage 73 (34.3%

Total 213

Interaction subgraph First linkage 86 (32.1%
Best linkage 172 (64.2%

Total 268

The fraction of fulfilled criteria is shown by category (the crite
the number of criteria for each category, and the overall colum
arsing the corpus using these parameters, 21 sen-
ences fell into the panic category, 66 into the sam-
led category, and 213 were stable. The measured

Overall

ampled Panic

574 (73.1%) 522 (52.7%) 5495 (72.9%)
790 (83.1%) 571 (57.6%) 6132 (81.3%)

157 991 7541

1 (1.5%) 0 (0.0%) 21 (7.0%)
8 (12.1%) 0 (0.0%) 81 (27.0%)

66 21 300

22 (25.0%) 0 (0.0%) 108 (26.9%)
57 (64.8%) 4 (8.9%) 233 (58.1%)

88 45 401

nd categories are explained in Section 5). The total rows give
ves combined results for all categories.



Evaluation of two dependency parsers on biomedical corpus 7

parser performance for the corpus is presented in
Table 1.

The overall fraction of individual dependen-
cies recovered in the first linkage is 73%. Divid-
ing this overall result into the three categories
of sentences, we find remarkable differences. For
example, for the panic category sentences, the
parser recovered 25% units fewer dependencies
than for the stable category sentences. The differ-
ence between the stable and sampled categories
is a more modest 4% units. Coupled with the fact
that the sentences in the sampled category also
tend to be more ambiguous, the result indicates
that sampling does not degrade the performance of
the parser significantly.

The fraction of sentences that have a fully cor-
rect parse as the first linkage is very low (7%). For
27% of sentences the parser is capable of produc-
ing a fully correct parse, yet the parse ordering
heuristics fail to identify it in the majority of cases.
Performance was especially poor for the publication
titles in the corpus. Titles are typically fragments
not containing a verb and LG is designed to model
full clauses. The parser failed to produce a fully
correct linkage for any of the 27 fragments in the
c

g
g
m
t
s
p
f
T
L
e

a
e
t
l
i
m
l
t
t
a
b

6
a

T
T

Table 2 CMS performance

Criterion Overall

Dependency 6031/7540 (80.0%)
Fully correct 21/300 (7.0%)
Int. subgraph 145/401 (36.2%)

and panic categories as well as the output of sev-
eral parses are specific to LG, we only give overall
performance for CMS.

Even with 80% of dependencies recovered, the
CMS parser correctly identifies only 36% of the inter-
action subgraphs. This figure suggests an upper limit
on the fraction of protein—protein interactions that
can be recovered from full dependency parses pro-
duced by CMS. The fraction of fully correct sen-
tences is 7%.

When comparing the results of CMS with LG, the
difference in the expressive power of their respec-
tive dependency schemes should be taken into con-
sideration. As illustrated in Fig. 3, LG is capable of
expressing more detail for some coordinations than
CMS. Consequently, in these cases LG is required
to resolve more ambiguity than CMS and is thus
expected to perform slightly worse. However, an
analysis of the corpus reveals that such attachments
account for only 0.7% of individual dependencies,
thus rendering the effect on the parser comparison
negligible.

With 80% of individual dependencies recovered
in the single parse generated, CMS performs signif-
icantly better (p < 0.001) than LG (73% in the first
l
e
L
L

o
e
c
r
f
s
s

n
G
r
a
o
[
d
p
c
t

orpus.
The performance for recovered interaction sub-

raphs is more encouraging, as 27% of the sub-
raphs were recovered in the first linkage. Yet
any interaction subgraphs remain unrecovered by
he parser even in the best linkage. The results
uggest an upper limit of 58% to the fraction of
rotein—protein interactions that can be recovered
rom any linkage produced by the unmodified LG.
he results indicate that two important factors for
G failures to recover all dependencies are resource
xhaustion and ordering heuristics.
The heuristics that LG applies to order linkages

re based on examination and intuitions on gen-
ral English, and may not be optimal for biomedical
ext. Note in Table 1 that both for recovered full
inkages and interaction subgraphs, the number of
tems that were recovered in the best linkage is
ore than twice the number recovered in the first

inkage, suggesting that a better ordering heuris-
ic could dramatically improve the performance of
he parser. Such improvements could perhaps be
chieved by tuning the heuristics to the domain or
y adopting a probabilistic ordering model.

.2. Connexor Machinese Syntax results
nd comparison

he evaluation results for CMS are presented in
able 2. As the division into the stable, sampled
inkage). The performance of CMS is competitive
ven with the overall best linkage performance of
G (81%) that ignores the errors introduced by the
G parse ordering heuristics.
CMS also notably outperforms LG (first linkage)

n the recovery of interaction subgraphs. Inter-
stingly, in contrast to the individual dependen-
ies, the CMS performance on interaction subgraph
ecovery does not compare to LG best linkage per-
ormance. Further, for the fully correctly parsed
entences measure, both parsers perform at the
ame, low, level of 7%.
To relate these numbers to performance on

on-biomedical text, the Functional Dependency
rammar parser, on which CMS builds, has been
eported to achieve performance between 87.9%
nd 88.6% for recovery of individual dependencies
n three different genres on Bank of English data
13]. Another study of a broad-coverage depen-
ency parser, MINIPAR [17], on the SUSANNE Cor-
us reported 79% recovery of individual dependen-
ies. The performance of the parsers on biomedical
ext is thus lower than what has been reported



8 S. Pyysalo et al.

for broad-coverage dependency parsers on general
English.

6.3. Efficiency and resource exhaustion

The CMS parser is particularly efficient—–the com-
ponents that form the core of the parser have
been estimated to have average running times of
O(n lg n), where n is the length of the sentence
[18]. In practice, CMS averaged roughly 0.5 s per
sentence in our experiments. In general, it appears
that resource exhaustion is not an issue for the CMS
parser.

In contrast to CMS, resource exhaustion is a sig-
nificant issue for the LG parser. Our experiments
indicate than on a 1GHz personal computer sen-
tences that can be fully parsed in under one second
constitute 40% of the corpus. Similarly, 80% require
less than 10 s and 90% less than 10min each. Yet
approximately 5% of sentences would require more
than an hour each to fully parse. With tmax set to
10min, the total parsing time was 165min, averag-
ing approximately 30 s per sentence.

No fully correct linkages and very few interac-
tion subgraphs were found in the panic mode, which

Table 3 Results of failure analysis

Reason for failure Cases

Unknown grammatical structure 72 (34.4%)
Dictionary issue 54 (25.8%)
Unknown word handling 35 (16.7%)
Sentence fragment 27 (12.9%)
Ungrammatical sentence 17 (8.1%)
Other 4 (1.9%)

LG cannot produce a fully correct linkage, that is,
for sentences in the stable category. For sentences
in the other two categories, random effects may
affect the results: sentences for which more than
kmax linkages are produced are subject to random-
ness in sampling, and in our experiments sentences
where the parser enters panic mode were always
subject to subsequent sampling.

Due to the closed, proprietary nature of the CMS
parser, it would be difficult to identify the core rea-
sons for parser errors, and hence we do not perform
failure analysis for CMS. Further, as it is not possi-
ble for CMS users to alter the syntactic rules of the
parser, a detailed failure analysis would be of lim-
ited utility.

For LG, we attempt to identify the reason for
the failure of the parser separately for each sen-
tence. For each identified reason, we manually edit
the sentence to remove the source of failure. We
repeat this procedure until the parser is capable
of producing a correct parse for the sentence. Note
that this implies that also the interaction subgraphs
in the sentence are correctly recovered, and there-
fore the reasons for failures to recover interaction
subgraphs are a subset of the identified issues. The
r
m
p
i

f

7
s

A
p
T
m
e
t

u
i
p

the parser enters when resources are exhausted,
that is, when the current parsing time reaches tmax.
The effect of panics on performance can be directly
estimated by forcing the parser to bypass standard
parsing and to directly enter the panic mode. We
found that the fraction of recovered dependencies
then falls by approximately 10% units, and the num-
ber of interaction subgraphs recovered in the first
linkage decreases by approximately 30% units. The
panic mode parsing is thus a significant source of
errors.

For LG, long parsing times and subsequent
resource exhaustion are mainly caused by ambigu-
ous sentences for which the parser may create
thousands or even millions of alternative linkages.
In addition to simply increasing the time limit,
the panic mode can thus be avoided by reducing
the ambiguity of the sentences, for example, by
extending the dictionary of the parser (see Section
8.2).

7. Failure analysis of Link Grammar

A significant fraction of dependencies were not
recovered in any linkage by LG, even in sentences
where resources were not exhausted. In order to
identify reasons for the parser failing to recover the
correct dependencies, we perform a manual fail-
ure analysis of sentences where it is certain that
esults of the analysis are summarized in Table 3. In
any of the sentences, more than one reason for
arser failure was found; in total 209 issues were
dentified in the 132 analyzed sentences7.
The results are described in more detail in the

ollowing sections.

.1. Fragments and ungrammatical
entences

s some of the analysed sentences were taken from
ublication titles, not all of them were full clauses.
o identify further problems when parsing frag-
ents not containing a verb, the phrase ‘‘is/are
xplained’’ and required determiners were added
o these fragments, a technique used also by Ding et

7 The failure analysis was performed based on our earlier eval-
ation results. The number of sentences for which the analysis
s performed thus slightly differs from the most recent results
resented here.



Evaluation of two dependency parsers on biomedical corpus 9

al. [9]. The completed fragments were then anal-
ysed for potential further problems.

A number of other ungrammatical sentences
were also encountered. The most common prob-
lem was the omission of determiners, but some
other issues, such as missing possessive markers and
errors in agreement (e.g. expressions. . .has) were
also encountered.

Ungrammatical sentences pose interesting chal-
lenges for parsing. Because many authors are not
native English speakers, a greater tolerance for
grammatical mistakes should allow LG to identify
the intended parse for more sentences. Similarly,
the ability to parse publication titles would extend
the applicability of the parser; in some cases it may
be possible to extract information concerning the
key findings of a publication from the title. How-
ever, while relaxing completeness and correctness
requirements, such as mandatory determiners and
subject-predicate agreement, would allow LG to
create a complete linkage for more sentences, it
would also be expected to lead to increased ambi-
guity for all sentences, and subsequent difficulties
in identifying the correct linkage. If the ability to
parse titles is considered important, a potential
s
a
I
C

7

T
i
o
w
t
t
w
t
p
F
a
g
a
t
t
F

i
m
a
b
t

k

Fig. 6 Multiple modifier coordination problem. Above:
correct linkage disallowed by the LG parser. Below: solu-
tion by chaining modifiers.

to nouns (e.g., serine 38), some instances of speci-
fiers in parentheses (e.g.myosin heavy chain (MHC)
expression), coordination with the phrase but not,
and various unknown uses of punctuation. Single
instances of several distinct unknown grammatical
structures were also noted (e.g. 5—10, as expected
from, most concentrated in). Most of these issues
can be addressed by local modifications to the
grammar.

7.3. Unknown word handling

The LG parser assigns unknown words to categories
based on morphological or other surface clues when
possible. For remaining unknown words, parses are
attempted by assigning the words to the generic
noun, verb, and adjective types in all possible com-
binations.

Some problems with the unknown word process-
ing method were encountered during the analy-
sis. For example, the assumption that unknown
capitalized words are proper nouns often caused
failures, especially in sentences beginning with
an unknown word. Similarly, the assumption that
words containing a hyphen behave as adjectives
w
(

l
p
l
a
c
w
t

7

C
b
t
t
b
t

olution not incurring this cost would be to develop
separate version of the grammar for parsing titles.
n contrast to LG, fragments pose no issues for the
MS parser.

.2. Unknown grammatical structures

he method of the LG implementation for pars-
ng coordinations was found to be a frequent cause
f failures. A specific coordination problem occurs
ith multiple noun-modifiers: the parser assumes
hat coordinated constituents can be connected
o the rest of the sentence through exactly one
ord, and the grammar attaches all noun-modifiers
o the head. Biomedical texts frequently contain
hrases that cause these requirements to conflict.
or example, in the phrase capping protein and
ctin genes (where [[[capping protein] and [actin]]
enes] is the intended interpretation), the parser
llows only one of the words capping and protein
o connect to the word genes, and is thus unable
o produce the correct linkage (for illustration, see
ig. 6).
This particular multiple modifier coordination

ssue could be addressed by modifying the gram-
ar to chain modifiers. This alternative model is
dopted by CMS. The problem could also potentially
e addressed by altering the coordination system in
he parser.
Other identified grammatical structures not

nown to the parser were numeric postmodifiers
as violated by a number of unknown verbs
e.g., cross-links).
Another problem that was noted occurred with

owercase unknown words that should be treated as
roper nouns: because LG does not allow unknown
owercase words to act as proper nouns, the parser
ssigns incorrect structure to a number of phrases
ontaining words such as actin. Improving unknown
ord handling requires some minor modifications to
he LG parser.

.4. Dictionary issues

ases where the LG dictionary contains a word,
ut not in the sense in which it appears in a sen-
ence, almost always lead to errors. For example,
he LG dictionary does not contain the word assem-
ly in the sense construction, causing the parser
o erroneously require a determiner for protein



10 S. Pyysalo et al.

Table 4 Overall performance with identified biomedical entities

Criterion LG first linkage � CMS �

Dependency 5569/7251 (76.8%) 3.9% 5870/7250 (81.0%) 1.0%
Fully correct 26/300) (8.7% 1.7% 24/300 (8.0%) 1.0%
Interaction subgraph 139/401 (34.7%) 7.8% 167/401 (41.6%) 5.4%

The � columns give the difference to parser performance without prerecognition of entity names. Note that the total number of
dependencies in the corpus has changed, since multi-word entity names have been replaced with single tokens.

assembly8. A related frequent problem occurred
with proper names headed by a common noun,
where the parser expects a determiner for such
names (e.g. myosin heavy chain), and fails when
one is not present. Such dictionary issues are mostly
straightforward to address in the grammar, but dif-
ficult to identify automatically.

8. Evaluation of potential improvements

In this section, we consider and evaluate two
approaches for improving parser performance:
applying the recognition of bioentity names as a
preprocessing step and extending the LG dictionary.

8.1. Biomedical entity names

We have noted that many of the causes for parser
failure are related to the presence of biomedi-
cal entity names. For LG, perhaps the most com-
mon class of such failure stems from the com-
mon assumption that proper names are consistently
recognizable by capitalization, which often does
not hold for entity names such as profilin. While

shows a substantial increase for both parsers. While
the positive effect was greater for LG than for
CMS in all criteria, CMS performance remains sig-
nificantly better (p < 0.001). Thus, as expected,
NER preprocessing results in a systematic improve-
ment in all criteria for both parsers. However,
the performance of current automatic NER sys-
tems is not perfect. In a recent competitive eval-
uation of NER methods, the best-performing sys-
tem achieved 70% precision and 76% recall [19].
State-of-the-art NER systems would thus not be
expected to achieve the full benefits observed
here.

8.2. Dictionary extension for link grammar

Szolovits describes an automatic method for map-
ping lexical information from one lexicon to
another, and applies this method to augment the LG
dictionary with terms from the extensive UMLS Spe-
cialist lexicon [8]. The extension introduces more
than 125,000 new words into the LG dictionary,
more than tripling its size. We repeated the per-
formance evaluation for LG with the extended dic-
tionary. The dictionary extension is only available
f
a

n
t
t
r
p

a
m
v
i
t
n
f
L
a
f
t
d

the causes for failures related to names can be
addressed in the grammar, the existence of biomed-
ical named entity recognition (NER) systems sug-
gests an alternative solution: named entities could
be identified in preprocessing and treated as single
(proper noun) tokens during the parse. To test the
effect of such a preprocessing step on parser perfor-
mance, we replaced annotated bio-entity names,
such as proteins, including multi-word names, with
single words that can be recognized by both parsers
as proper names. The sentences were then parsed
and we re-evaluated parser performance. The over-
all results for the two parsers are given in Table 4.

For the number of recovered dependencies, an
increase of 3.9% units is observed for LG (p < 0.001).
The respective increase for CMS is 1.0% units
(p < 0.01). Interaction subgraph performance also

8 Thirty distinct problematic word definitions were identi-
fied, including breakdown, composed, factor, half, indepen-
dent, localized, parallel, promoter, segment and upstream.
or LG and thus we do not perform a similar evalu-
tion for CMS.
The proportion of distinct corpus words recog-

ized by LG increased from 52% to 72% with the dic-
ionary extension, representing a significant reduc-
ion in uncertainty due to unknown words. This
eduction was coupled with a 32% decrease in total
arsing time.
The effect of the dictionary extension was neg-

tive for publication titles, which are often frag-
ents not containing a verb. Since LG requires a
erb to be present, it can only parse a fragment
f it can incorrectly analyse some unknown word in
he fragment as a verb. Since extending the dictio-
ary reduces the number of unknown words, the
raction of individual dependencies recovered by
G in fragments decreased. The results in Table 5
re thus given separately for fragments and non-
ragments. None of the differences resulting from
he dictionary extension in the number of recovered
ependencies were statistically significant.



Evaluation of two dependency parsers on biomedical corpus 11

Table 5 LG performance with the dictionary extension

Criterion LG first linkage � Fragment � Non-fragment � Overall

Dependency 5489/7541 (72.8%) −8.8% +0.4% −0.1%
Fully correct 22/300 (7.3%) 0.0% +0.4% +0.3%
Interaction subgraph 110/401 (27.4%) +4.6% +0.3% +0.5%

The � columns give the difference to parser performance without the extension.

For non-fragments, the benefits of the dictionary
extension were most notable for sentences that
were in the panic category when using the unex-
tended LG dictionary; seven of these 21 sentences
could be parsed without panic with the dictionary
extension. In the first linkage of these 21 sentences,
the fraction of recovered dependencies increased
by 4% units, however, the difference was not statis-
tically significant. In our previous experiments with
stricter resource limits we observed greater gains
from adopting the dictionary extension. However,
the new results confirm that the greatest effect
of the extension is in reducing ambiguity, which
in turn is especially beneficial when computational
resources are limited.

The overall effect of the dictionary extension
was negligible, despite the three-fold increase in
dictionary size. This result agrees with the fail-
ure analysis: most problems cannot be removed
by extending the dictionary and must instead be
addressed by modifications of the grammar or
parser.

9. Conclusion

I
o
t
p
h
d
t
L
p
r
v
f
w
s
t
a
a

t
t
t

nevertheless remains below what has previously
been reported for broad-coverage parsers on gen-
eral English.

For the recovery of interaction subgraphs, the
performance figures were 27% and 36% for LG
and CMS, respectively. The low fraction of recov-
ered interaction subgraphs indicates that neither
of the parsers in its current form is well applicable
to biomedical information extraction tasks. How-
ever, analysis of best linkage performance suggests
that LG has remarkable potential for improvement
in interaction subgraph recovery through better
heuristics.

We also evaluated the effect of using named
entity recognition as a preprocessing step and found
a systematic improvement for both parsers and all
the criteria. The improvement was particularly pro-
nounced for the recovery of interaction subgraphs,
which increased to 35% and 42% for LG and CMS,
respectively.

In contrast to CMS, LG is an open system that can
be investigated in great detail and freely adapted,
and therefore we undertook a more detailed anal-
ysis of the common causes of LG failures. In addi-
tion to errors caused by resource exhaustion and
o
f
c
t
fi
a

n
t
a
i
fi
a
i

a
t
p
a
t
d
c

n this paper, we have studied the applicability
f full dependency parsers to information extrac-
ion in the biomedical domain, with a focus on
rotein—protein interactions. For this purpose, we
ave developed a custom hand-annotated depen-
ency corpus. Here, we present an evaluation of
wo major broad-coverage dependency parsers,
ink Grammar and Connexor Machinese Syntax. The
erformance of the parsers was evaluated with
espect to the standard criteria of recovered indi-
idual dependencies and fully correct parses. To
urther focus the evaluation on the IE task at hand,
e have introduced the concept of the interaction
ubgraph, which captures the structures in the sen-
ence that are relevant to protein—protein inter-
ctions. The interaction subgraphs were used as an
dditional criterion in the parser evaluation.
LG was able to recover 73% of dependencies in

he first linkage, compared to 80% for CMS. CMS
hus significantly outperforms LG on biomedical
ext (p < 0.001). The performance of both parsers
rdering heuristics, several distinct causes of parser
ailure were determined by manual analysis. We
arefully examined the sentences and were able
o identify five problem types. For each identi-
ed type, we discussed potential modifications for
ddressing the problems.
We also evaluated the effect of the LG dictio-

ary extension proposed by Szolovits [8] and found
hat while it significantly reduced ambiguity, over-
ll performance improvement was negligible. This
ndicates that extending the dictionary is not suf-
cient to address the performance problems of LG
nd that modifications to the grammar and parser
tself are necessary.
Since both parsers perform below their gener-

lly expected performance and fail to capture more
han half of the interaction subgraphs in the cor-
us, domain adaptation is necessary to increase the
pplicability of these full dependency parsers to
he information extraction tasks in the biomedical
omain. In the failure analysis, we proposed con-
rete adaptations for LG, and one would expect



12 S. Pyysalo et al.

Contribution of the study
Previous knowledge:

• Informal evaluation for Link Grammar parser,
no evaluation of Connexor machinese

• No formal evaluation for any dependency
parser in the domain

• Lexicon extension for Link Grammar pro-
posed but not evaluated with respect to
parser performance

Knowledge added by this study:

• Both Link Grammar and Connexor machinese
formally evaluated and compared, using
standard criteria and hand-annotated corpus

• Detailed Link Grammar evaluation, dis-
cussing issues such as sampling and panic
mode

• Primary sources of parser failure in Link
Grammar identified and improvements pro-
posed

• Previously proposed extension to Link Gram-
mar lexicon evaluated with respect to parser
performance

that similar adaptations could be identified and
implemented for CMS as well. The adaptation of
LG according to the results of the failure analysis is
a natural follow-up of this study. Indeed, our initial
experiments suggest that it is possible to implement
many of these, increasing the applicability of the
parser.

Acknowledgments

We are grateful to Meelis Kolmer for consultation
and wish to thank the annotators Jari Björne, Juho
Heimonen, Jeppe Koivula, Lilli Nurmi, and Suvi
Laukkanen for their efforts in producing the cor-
pus. This work has been supported by Tekes, the
Finnish National Technology Agency.

References

[1] E.M. Marcotte, I. Xenarios, D. Eisenberg, Mining literature
for protein-protein interactions, Bioinformatics 17 (2001)
359—363.

[2] F. Ginter, T. Pahikkala, S. Pyysalo, J. Boberg, J. Järvinen,

[3] M. Craven, J. Kumlien, Constructing biological knowledge
bases by extracting information from text sources, in: T.
Lengauer, R. Schneider, P. Bork, D. Brutlag, J. Glasgow,
H-W. Mewes, R. Z (Eds.), Proceedings of the Seventh Inter-
national Conference on Intelligent Systems in Molecular
Biology, AAAI Press, Menlo Park, CA, 1999, pp. 77—86.

[4] A. Yakushiji, Y. Tateisi, Y. Miyao, J. Tsujii, Event extraction
from biomedical papers using a full parser, in: R.B. Alt-
man, A.K. Dunker, L. Hunter, K. Lauderdale, T. Klein (Eds.),
Proceedings of the Sixth Pacific Symposium on Biocomput-
ing (PSB 2001), World Scientific Press, Singapore, 2001, pp.
408—419.

[5] J.M. Temkin, M.R. Gilder, Extraction of protein interaction
information from unstructured text using a context-free
grammar, Bioinformatics 19 (2003) 2046—2053.

[6] N. Daraselia, A. Yuryev, S. Egorov, S. Novichkova, A. Nikitin,
I. Mazo, Extracting human protein interactions from MED-
LINE using a full-sentence parser, Bioinformatics 20 (2004)
604—611.

[7] D. Sleator, D. Temperley, Parsing English with a Link Gram-
mar, Tech. Rep. CMU-CS-91-196, Department of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, 1991.

[8] P. Szolovits, Adding a medical lexicon to an English parser,
in: M. Musen (Ed.), Proceedings of the 2003 AMIA Annual
Symposium, American Medical Informatics Association,
Bethesda, MD, 2003, pp. 639—643.

[9] J. Ding, D. Berleant, J. Xu, A.W. Fulmer, Extracting bio-
chemical interactions from Medline using a Link Grammar
parser, in: B. Werner (Ed.), Proceedings of the 15th IEEE
International Conference on Tools with Artificial Intelli-

[

[

[

[

[

[

[
T. Salakoski, Extracting protein—protein interaction sen-
tences by applying rough set data analysis, in: S. Tsumoto,
R. Slowinski, J. Komorowski, J. Grzymala-Busse (Eds.), Lec-
ture Notes in Artificial Intelligence 3066, Springer, Heidel-
berg, 2004.
gence, IEEE Computer Society, Los Alamitos, CA, 2003, pp.
467—471.

10] E. Alphonse, S. Aubin, P. Bessiéres, G. Bisson, T. Hamon, S.
Lagarrigue, A. Nazarenko, A.-P. Manine, C. Nédellec, M.O.A.
Vetah, T. Poibeau, D. Weissenbacher, Event-based informa-
tion extraction for the biomedical domain: the Caderige
project, in: N. Collier, P. Ruch, A. Nazarenko (Eds.), Pro-
ceedings of the International Joint Workshop on Natural
Language Processing in Biomedicine and its Applications
(JNLPBA), Geneva, Switzerland, 2004, pp. 43—49.

11] K. Franzén, G. Eriksson, F. Olsson, L. Asker, P. Lidén, J.
Cöster, Protein names and how to find them, Int. J. Med.
Inform. 67 (2002) 49—61.

12] S. Pyysalo, F. Ginter, T. Pahikkala, J. Boberg, J. Järvinen, T.
Salakoski, J. Koivula, Analysis of Link Grammar on biomed-
ical dependency corpus targeted at protein—protein inter-
actions, in: N. Collier, P. Ruch, A. Nazarenko (Eds.), Pro-
ceedings of the International Joint workshop on Natural
Language Processing in Biomedicine and its Applications
(JNLPBA), Geneva, Switzerland, 2004, pp. 15—21.

13] P. Tapanainen, T. Järvinen, A non-projective dependency
parser, in: P. Jacobs (Ed.), Proceedings of the Fifth Con-
ference on Applied Natural Language Processing, Associa-
tion for Computational Linguistics, Somerset, NJ, 1997, pp.
64—71.

14] P. Tapanainen, The Constraint Grammar Parser CG-2. Num-
ber 27 in Publications of the Department of General Lin-
guistics, University of Helsinki, 1996.

15] I. Xenarios, L. Salwinski, X.J. Duan, P. Higney, S-M. Kim,
D. Eisenberg, DIP, the database of interacting proteins: a
research tool for studying cellular networks of protein inter-
actions, Nucl. Acids Res. 30 (2002) 303—305.

16] M. Collins, J. Hajič, L. Ramshaw, C. Tillmann, A statistical
parser for Czech, in: Robert Dale, Ken Church (Eds.), Pro-
ceedings of the 37th Annual Meeting of the Association for
Computational Linguistics, Association for Computational
Linguistics, Somerset, NJ, 1999, pp. 505—512.



Evaluation of two dependency parsers on biomedical corpus 13

[17] D. Lin, Dependency-based evaluation of MINIPAR, in: J. Car-
roll (Ed.), Workshop on the Evaluation of Parsing Systems,
European Language Resources Association, Paris, France,
1998.

[18] P. Tapanainen, Parsing in two frameworks: finite-state and
functional dependency grammar, Ph.D. Thesis, University of
Helsinki, 1999.

[19] J.-D. Kim, T. Ohta, Y. Tsuruoka, Y. Tateisi, N. Collier, Intro-
duction to the bio-entity recognition task at JNLPBA, in:
N. Collier, P. Ruch, A. Nazarenko (Eds.), Proceedings of the
International Joint Workshop on Natural Language Process-
ing in Biomedicine and its Applications (JNLPBA), Geneva,
Switzerland, 2004, pp. 70—75.


	Evaluation of two dependency parsers on biomedical corpus targeted at protein-protein interactions
	Introduction
	Dependency parsers
	Link grammar parser
	Connexor Machinese Syntax parser

	Challenges in parser comparison
	Corpus annotation and interaction subgraphs
	Evaluation criteria
	Evaluation results
	Link grammar results
	Connexor Machinese Syntax results and comparison
	Efficiency and resource exhaustion

	Failure analysis of Link Grammar
	Fragments and ungrammatical sentences
	Unknown grammatical structures
	Unknown word handling
	Dictionary issues

	Evaluation of potential improvements
	Biomedical entity names
	Dictionary extension for link grammar

	Conclusion
	Acknowledgments
	References


