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We study elementary gene assembly in ciliates. During sexual reproduction, broken and
shuffled gene segments in micronuclei get assembled into contiguous macronuclear genes.
We consider here a restricted version of the intramolecular model (called elementary),
where at most one gene segment is involved at a time (either inverted, or translocated).
Not all gene patterns may be assembled by elementary operations, and not all assembly
strategies are successful. For a given gene pattern, we characterize in this paper all
successful translocation-only elementary assemblies. We also estimate the number of
such assemblies. We solve the problem in terms of graphs and permutations.

Keywords: ciliates; gene assembly; intramolecular model; elementary operations; success-
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1. Introduction

Ciliates are eukaryotes which exist for over two billion of years. They count thou-
sands of species. One of the unique features for all ciliate organisms is the possession
of complexes of ‘cilia’. These are hair-like organelles on the surface of a cell used to
move the organism in the aqueous space and to capture food from the environment.

The nucleic dualism is another unique feature which unites all ciliate species.
Each ciliate organism possess nuclei of two different types called micronuclei and
macronuclei. Almost all RNA-transcriptions happen in macronuclei while micronu-
clei are transcriptionally silent. However, during matting micronuclei become ac-
tive and exchange the genetical information in between two matting organisms.
Macronuclei from old organisms are destroyed during sexual reproduction, some
copies of new micronuclei get transformed into new macronuclei. During this pro-
cess DNA molecules from the transforming micronuclei are being heavily edited
so that macronuclear molecules are formed. This process of DNA transformation
(called gene assembly) is particularly intricate due to the immense difference in
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molecular structures of micronuclear and macronuclear versions of genes. A gene is
stored in a contiguous form on a macronuclear molecule. On the other hand, the
same gene is fragmented when stored on a micronuclear molecule. The gene frag-
ments (called MDSs) are separated by non-codding nucleotide sequences (called
IESs). MDSs may be shuffled and some of them may be inverted on the micronu-
clear molecule. During gene assembly a ciliate has to detect and unscramble all
MDSs and to excise all IESs from molecules.

The process of gene assembly is driven by splicing on short nucleotide se-
quences (called pointers). Each pointer occurs on the edges of exactly two dif-
ferent MDSs, where one follows immediately after another one in an assembled
gene. One occurrence of the pointer is placed at the end of the preceding MDS
and another occurrence is placed at the beginning of the succeeding MDS. Detailed
description of the biology of ciliates and of gene assembly process can be found
in[7, 8, 15, 24, 25, 28, 29].

There are two molecular models which represent gene assembly in ciliates. Both
the intermolecular model [17, 18] and the intramolecular model [11, 27] define splic-
ing of gene fragments via pointers. In the intermolecular model several molecules
participate in the recombination, while the intramolecular model considers folding
and recombination within a single molecule. Recent results [3, 23] suggest that there
are template molecules aiding the correct alignment of the recombining molecules.

The intramolecular model of [11, 27] has three operations (ld, hi, and dlad) that
always apply on a single molecule. In their general form, these operations may ma-
nipulate arbitrarily long gene fragments. A restricted version of the intramolecular
operations [9, 10, 14] rearranges (translocates or inverts) at most one gene fragment
at a time. There are two subclasses of this restricted version of the intramolecu-
lar operations called simple and elementary. We refer to [5, 10, 14, 19, 20] for the
definitions and results obtained for simple intramolecular operations. We are con-
centrating on the elementary operations in this paper.

In contrast to the general type of the intramolecular operations, not all gene
patterns may be assembled by simple and elementary intramolecular operations.
This fact eventually raises a question: what gene patterns can simple and elementary
operations assemble? Since simple gene assembly is deterministic [19] (i.e., either
all assembly strategies for a gene pattern are successful, or all of the strategies
are unsuccessful) the answer to this question can be obtained when applying a
simple assembly strategy for a gene pattern. In other words, a gene pattern can be
assembled by simple operations if and only if an arbitrarily chosen simple assembly
strategy for the gene pattern is successful. We refer to [21, 22] for the survey on
simple and elementary operations.

Unlike simple operations, there may be successful and unsuccessful assembly
strategies of elementary operations for a gene pattern [13]. We characterize in the
paper all successful elementary assembly strategies for any gene pattern. We esti-
mate the upper bound for the total number of all successful elementary assemblies
for any gene pattern. In [13] and in [26] there were characterized those gene pat-
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terns which may be assembled by elementary operations. In [26] it was presented
an algorithm which decides effectively in less than cubic time whether a given gene
pattern may be assembled or not by elementary translocation-only operations. That
algorithm was based on the notion of forbidden MDSs which are never translocated
by elementary operations. It was proved that a gene pattern has an elementary
assembly strategy if and only if the forbidden MDSs are sorted in the gene pattern.
The main result of this paper gives another way to decide effectively whether a
gene pattern may be assembled by elementary operations. One needs to apply an
elementary assembly strategy of a special form which is described in this paper. We
prove that strategies of this form are applicable if and only if the gene pattern can
be assembled by elementary operations.

We study the gene assembly process in terms of graphs and permutations. We
represent micronuclear molecules as permutations representing the order of gene
fragments. Elementary intramolecular operations are represented as transformations
over permutations, assembly strategies as compositions of operations over permu-
tations, and gene assembly process as sorting of permutations. In our solutions we
use the notion of graphs to determine the order of intramolecular elementary oper-
ations in assembly strategies, and to detect those operations which never may be
used in any of assembly strategies applicable to a given gene pattern. To charac-
terize successful elementary assembly strategies we introduced notions of so-called
fixed integers and of blocks for permutations.

In [4], [12], [6], [16] it was presented a different topic on sorting of permutations
related to gene transformations. It was studied the problem of sorting signed and
unsigned permutations by reversals.

2. Preliminaries

By A∗ we denote the set of all finite strings over finite alphabet A. By dom(u) we de-
fine the set of letters occurring in string u. By λ we denote the empty string. We say
that string v is a substring of u and denote this by v ≤ u, if u = xvy, where x, y are
some strings. We say that string v = α1α2 . . . αk, where α1, α2, . . . , αk ∈ A is a sub-
sequence of string u and denote this fact by v ≤s u, if u = u0α1u1α2u2 . . . uk−1αkuk,
where u0, u1, u2, . . . , uk−1, uk ∈ A∗. For a subset B ⊆ A we define the morphism
ΦB : A∗ → B∗ such as ΦB(α) = α, if α ∈ B, and ΦB(α) = λ, otherwise. For a
string u we denote u|B = ΦB(u).

Consider a finite alphabet A = {a1, a2, . . . , an} with order relation a1 < a2 <

. . . < an. We define an automorphism π : A → A and say that it is a permuta-
tion over A. We identify permutations as strings: π = π(a1)π(a2) . . . π(an). The
domain of permutation π is dom(π) = A. We say that π is cyclically sorted, if
π = ak+1ak+2 . . . ana1a2 . . . ak, for some 1 ≤ k ≤ n.

For B ⊆ A, we denote by π|B the subsequence of π consisting only of letters
from B. Note that π|B is a permutation over B.

We agree about the following notations concerning sets of integers:
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• Σn = {1, 2, . . . , n};
• Np,q = {p, p + 1, . . . , q − 1, q};
• Ne

p,q = {i ∈ Np+1,q−1|i− p
...2};

• No
p,q = {i ∈ Np+1,q−1|i− p 6 ...2};

Note that Np,q = (Ne
p,q ⊕No

p,q) ∪ {p, q}.
By bfc for some rational f we denote the biggest integer lower than f . By dfe

we denote the smallest integer greater than f .
By Γ = (V, E) we define directed graph with the set of vertices V and set of

edges E ∈ V × V .
We make the following conventions about graph Γ = (V, E):

• For p, q ∈ V , we write q →+
Γ p, if there is a non-empty path from q to p in

Γ. We say that q is a predecessor of p, and p is a successor of q. If (q, p) ∈ E,
then we denote q →Γ p;

• For p ∈ V we let Γp = (Tp, Ep), where Tp = {r ∈ V |r →+
Γ p}∪{p} and Ep =

{(i, j) ∈ E|i, j ∈ Tp}. For p, q ∈ V , where p < q we let Γp,q = (Np,q, Ep,q),
where Ep,q = {(i, j) ∈ E|i, j ∈ Np,q}. For p ∈ V we let also ΓS

p = (Sp, E
S
p ),

where Sp = {r ∈ V |p →+
Γ r} ∪ {p} and ES

p = {(i, j) ∈ E|i, j ∈ Sp};
For basic notions and results on graph theory we refer to [30].

3. Elementary Gene Assembly

Three intramolecular operations ld, hi and dlad explain the gene assembly process
by means of pointers. After application of one of ld, hi and dlad several MDSs get
spliced together into one composite MDS. For more details see [11, 27, 9]. In this
paper we consider only the ld operations and a restricted version of dlad operations
called elementary, see [10]. We do not consider here the hi operation.

The ld operation excises a part of the molecule flanked by a repeating pointer
either containing just one IES (simple case, Figure 1(i)), or containing all MDSs of
the gene (boundary case, Figure 1(iv)). As the result, we obtain one circular and one
linear molecule. In simple case the circular molecule contains just the IES excised
and the linear molecule contains the rest of the nucleotide sequence of the initial
molecule (Figure 1(iii)). In boundary case the linear molecule contains the first and
the last IESs spliced together and no MDSs. The circular molecule contains all
codding sequences from the initial molecule (Figure 1(vi)). For more explanations
on simple and boundary ld we refer to Figures 1(i)-(vi).

The dlad operation is applicable on a pair of pointers (let us denote them
as p, q) in an alternating repeat. I.e., p and q are placed on the molecule as
. . . p . . . q . . . p . . . q . . .. The elementary dlad operation is applicable to p, q, if one
occurrence of p and q flanks an IES, and another occurrence flanks a micronuclear
(non-composite) MDS. As the result, the micronuclear MDS flanked by occurrences
of p, q and the IES flanked by another occurrences of p and q switch each others
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Fig. 1. Simple ld, an IES is flanked by p: (i) loop-folding, alignment of occurrences of pointer p; (ii)
recombination by pointer p; (iii) result: the IES is excised in the form of circular molecule, MDS
A and MDS B are spliced on common pointer p in the linear molecule. Boundary ld, PART A
contains all MDSs of the gene pattern except of MDS A and MDS B: (iv) loop-folding, alignment of
occurrences of pointer p; (v) recombination by pointer p; (vi) result: MDS A and MDS B are spliced
on common pointer p and are excised together with PART A in the form of circular molecule. IES
A and IES B are spliced together and remain in the linear molecule. In both linear and boundary
cases one occurrence of p is present in the linear resulting molecule and one occurrence of p is
present in the circular resulting molecule, but none of them acts as a pointer.

places. Then a composite MDS is obtained by splicing the MDS ending by p pointer,
the MDS starting by p and ending by q pointer, and the MDS starting by q pointer.
See Figure 2(i)-(iv) for more clarifications about folding and recombination of the
molecule caused by dlad.

As in [13, 26] we formalize gene patterns as permutations by denoting each mi-
cronuclear MDS as a letter (an integer number establishing the place for an MDS
in the assembled gene). We ignore IESs and place the numbers in the order corre-
sponded MDSs occur in the gene pattern. An assembled gene corresponds then to
a sorted permutation.

We formalize the elementary dlad as an operation on permutations. We denote
it as ed. For each p, 2 ≤ p ≤ n− 1, we define edp as follows:

edp(x p y (p− 1) (p + 1) z) = x y (p− 1) p (p + 1) z,

edp(x (p− 1) (p + 1) y p z) = x (p− 1) p (p + 1) y z,

where x, y, z are strings over Σn. We denote Ed = {edi | 1 ≤ i ≤ n}.
We skip formalization of the ld and IESs. As soon as an ld operation is applicable

to the molecule, it can be applied at any latter step during the assembly process.
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Fig. 2. dlad operation: (i) Initial molecule, poinetrs p and q overlap; (ii) Double-loop folding,
alignment of occurrences of p and q; (iii) Recombination by pointers p and q; (iv) Resulting
molecule, PART B and PART D changed places of each other. Copies of p and q remain in the
molecule, but do not act as pointers.

We may assume that all ld’s are applied after all dlad’s.
We consider that cyclically sorted permutations correspond to assembled genes.

In this way, we formalize the gene assembly process as sorting of a permutation.
We call a strategy a composition of ed-operations. Let π be a permutation. We

say that a strategy Φ is a strategy for π if Φ is applicable to π, and there are no ed

operations applicable to Φ(π). We call Φ a sorting strategy for π if Φ(π) is a sorted
permutation.

Let Φ = edim ◦ edim−1 ◦ . . . ◦ edi1 be a strategy. For any two operations edik
and

edil
with k < l we say that edik

is used earlier than edil
in Φ.

Example 1. (i) Permutation π1 = 52413 has several strategies, but none of them
is sorting. Indeed, ed2(π1) = 54123 and ed3(π1) = 52341.

(ii) Permutation π2 = 13 5 2 4 has both sorting and non-sorting strategies. Indeed,
ed3(π2) = 1 5 2 3 4, which is unsortable. However, ed2( ed4( π2)) = 1 2 3 4 5
is sorted.

The following example demonstrates that the number of sorting strategies and
the ratio of sorting/non-sorting strategies may vary for different sortable permuta-
tions.

Example 2. (i) Permutation π1 = 1325476 . . . (2n − 1)(2n − 2)(2n + 1)2n has
only one applicable strategy ed2n ◦ ed2n−2 ◦ . . . ◦ ed6 ◦ ed4 ◦ ed2. It is also a
sorting strategy for π1;

(ii) Permutation π2 = 13 . . . (2n + 1)2n(2n − 2) . . . 2 has exactly n! applicable
strategies. All of them sort π2. Indeed, ed2n ◦ ed2n−2 ◦ . . . ◦ ed2(π2) =
12 . . . (2n+1). Any composition of the operations ed2i, 2 ≤ 2i+1 ≤ 2n also
sorts π2. There are no other operations applicable to π2;

(iii) Permutation π3 = 13245768 . . . (4n − 3)(4n − 1)(4n − 2)4n has exactly 2nn!
applicable strategies. All of these strategies sort π3. Indeed, we can sort each
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substring (4k+1)(4k+3)(4k+2)(4k+4), where 0 ≤ 4k ≤ 4n−4, by applying
either ed4k+2 or ed4k+3. The order in which each of the n 4−letter blocks
is sorted is arbitrary.

(iv) Permutation π4 = 1357246 has 3! = 6 sorting strategies and 6 unsuccessful
strategies. Indeed, one can sort π4 by applying ed2, ed4, ed6 in any order.
If one applies in any order either ed3 and ed5, or ed2 and ed5, or ed3 and
ed6, then π4 is not sorted;

(v) Permutation π5 = 135792468 has 4! = 24 sorting strategies and 36 unsuccessful
strategies. Indeed, by applying operations ed2, ed4, ed6, ed8 in any order one
sorts π5. By applying any other subset of operations {ed1, ed2, . . . , ed8} in
any order we do not get a sorted permutation from π5.

4. Dependency Graph

We recall now the notion of a dependency graph introduced in [13, 26]. Based on it
we characterized in [13, 26] the ed-sortable permutations. We presented a method
to decide effectively the ed-sortability.

A dependency graph suggests the order of ed operations to be used in a sorting
strategy. Intuitively, if there is a path from vertex p to vertex q, then in any strategy
where edq is used, operation edp is used earlier than edq.

Definition 3 ([13, 26]) We define the dependency graph for a permutation π over
Σn as a directed graph Γπ = (Σn, Eπ), where for 1 ≤ i ≤ n and 2 ≤ j ≤ n − 1 we
have the following edges:

• (i, j) ∈ Eπ, if (j − 1)i(j + 1) ≤s π,
• (j, j) ∈ Eπ, if (j + 1) (j − 1) ≤s π, and
• (1, 1), (n, n) ∈ Eπ;

We also denote Γπ = (Vπ, Eπ) for permutation π, where Vπ = Σπ.
For p, q ∈ dom(π) we define by Γπ,p, Γπ,p,q and ΓS

π,p subgraphs of Γπ as stated
in Section 2. I.e., Γπ,p = (Tπ,p, Eπ,p), where Tπ,p = {r ∈ Vπ|r →+

Γπ
p} ∪ {p} and

Eπ,p = {(i, j) ∈ Eπ|i, j ∈ Tπ,p}. For p, q ∈ Vπ, where p < q we let Γπ,p,q =
(Np,q, Eπ,p,q), where Eπ,p,q = {(i, j) ∈ Eπ|i, j ∈ Np,q}. ΓS

π,p = (Sπ,p, E
S
π,p), where

Sπ,p = {r ∈ Vπ|p →+
Γπ

r} ∪ {p} and ES
π,p = {(i, j) ∈ Eπ|i, j ∈ Sπ,p}.

Example 4. Let π be a permutation π = 13 9 5 2 4 7 6 8 10. We construct its depen-
dency graph Γπ = (Vπ, Eπ) as follows (see Figure 3). Vπ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
Integers 1 and 10 are in self-loops, i.e., (1, 1), (10, 10) ∈ Eπ. Substrings 1 3, 2 4, 6 8,
8 10 are present in permutation π. In this way, integers 2, 3, 7, 9 have no incoming
edges in Γπ. Subsequence 9 7 is present in π. In this way, integer 8 is in self-
loop in Γπ. We have substrings 3 9 5, 4 7 6, 5 2 4 7 in π. In this way, we have edges
(9, 4), (7, 5), (2, 6), (4, 6) ∈ Eπ.
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Fig. 3. The dependency graph associated to permutation π = 13 9 5 2 4 7 6 8 10.

Lemma 5. [13] Let π be a permutation over Σn and Γπ = (Σn, E) be its dependency
graph. If there is a path from p to q in Γπ, then in any strategy for π where edq is
used, edp is used before edq.

Example 6. Consider permutation π and its dependency graph Γπ from Example 4.
By Lemma 5 in any strategy applicable to π if ed6 is used, then operations ed2, ed4

and ed9 are used earlier. Moreover, ed9 is used earlier than ed4. In any strategy for
π where operation ed5 is used, operation ed7 is used earlier.

The following lemma shows how the dependency graph changes along the trans-
formation of the corresponded permutation by an ed-operation.

Lemma 7. [26] Let π be a permutation and p an integer such that edp is applicable
to π. If Γ = (V,E) is the dependency graph of π and Γ′ = (V,E′) is the dependency
graph of edp(π), then

(i) for any (i, j) ∈ (E \E′)∪ (E′ \E), i = p, or j = p− 1, or j = p +1. Moreover,
(p, j) ∈ E′ \ E if and only if (p− 1, j) ∈ E and (p + 1, j) ∈ E;

(ii) (p− 1, p− 1), (p, p), (p + 1, p + 1) ∈ E′.

Example 8. Consider permutations π = 6 2 4 1 8 3 10 5 7 9 and π′ = ed3(π), i.e.,
π′ = 62 3 4 1 8 10 5 7 9. The corresponding graphs are presented on Figure 4. One
can see, that after application of ed3 in the corresponded dependency graph edges
(3, 9) and (8, 2) disappear and edges (2, 2), (3, 3), (4, 4), (1, 4), (3, 7), (8, 4) appear.

5. Fixed integers and blocks

For a permutation π over Σn we denote set of integers Fix(π) = {p|(p−1)p(p+1) ≤s

π or (p + 1)(p − 1) ≤s π} ∪ {1, n} and call them fixed integers of π. Note that the
set of fixed integers Fix(π) is equivalent to the set of nodes having self-loops in the
dependency graph Γπ.

We agree about the following notations related to the set of fixed integers.

• Bπ = {Np,q ∈ 2dom(π)|Np,q ∩ Fix(π) = {p, q}};
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Fig. 4. (a) Dependency graph associated to π = 6 2 4 1 8 3 10 5 7 9; (b) Dependency graph associated
to π′ = ed3(π) = 6 2 3 4 1 8 10 5 7 9.

• Be
π = {Np,q ∈ Bπ|q − p

...2};
• Bo

π = {Np,q ∈ Bπ|q − p 6 ...2};
• Be

π =
⋃

Np,q∈Be
π

Np,q;
• Bo

π =
⋃

Np,q∈Bo
π

Np,q;
• Ne

π =
⋃

Np,q∈Bπ
Ne

p,q;
• No

π =
⋃

Np,q∈Bπ
No

p,q.

Note that Bπ = Be
π ⊕ Bo

π, Be
π ∪Bo

π = dom(π), dom(π) \ (Ne
π ∪No

π) = Fix(π).

Example 9. Let π = 13 5 11 7 9 6 2 4 8 10 12. Then

• Bπ = [{1, 2, 3, 4, 5}, {5, 6, 7, 8, 9, 10}, {10, 11, 12}];
• Be

π = [{1, 2, 3, 4, 5}, {10, 11, 12}];
• Bo

π = [{5, 6, 7, 8, 9, 10}];
• Be

π = {1, 2, 3, 4, 5, 10, 11, 12};
• Bo

π = {5, 6, 7, 8, 9, 10};
• Ne

π = {3, 7, 9};
• No

π = {2, 4, 6, 8, 11}.

The notion of a block plays the key role in the main results of the paper. We
say that an element Np,q ∈ Bπ is a block. The role of blocks and fixed integers we
discuss later.

The following lemma presents the form of subsequences corresponding to blocks.
Its proof is straightforward.

Lemma 10. In any permutation π for any block Np,q ∈ Be
π we have subsequences

p(p + 2)(p + 4) . . . (q − 2)q ≤s π, (p + 1)(p + 3) . . . (q − 1) ≤s π, and for any
block Np,q ∈ Bo

π we have subsequences p(p + 2)(p + 4) . . . (q − 3)(q − 1) ≤s π,
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(p + 1)(p + 3) . . . (q − 2)q ≤s π.

We need later the following technical lemma.

Lemma 11. Let π be a permutation and Np,q ∈ Bπ.

(a) There are no such integers i ∈ Ne
p,q and j ∈ No

p,q where either (i, j) ∈ Eπ or
(j, i) ∈ Eπ.

(b) Either for all i ∈ Ne
p,q we have subsequences (i − 1)(i + 1)i ≤s π and for all

j ∈ No
p,q we have subsequences j(j − 1)(j + 1) ≤s π or for all i ∈ Ne

p,q

we have subsequences i(i − 1)(i + 1) ≤s π and for all j ∈ No
p,q we have

subsequences (j − 1)(j + 1)j ≤s π.
(c) Let t, i ∈ Np+1,q−1 and (t, i) ∈ Eπ. If i < t, then for any j ∈ Np+1,q−1 where

t →+
Γπ,p,q

j we have j < t. If i > t, then for any j ∈ Np+1,q−1 where
t →+

Γπ,p,q
j we have j > t.

(d) Graph Γπ,p,q does not contain non-loop cycles.

Proof.

(a) Consider an integer i ∈ Ne
p,q. Note, that i−1, i+1 ∈ No

p,q∪{p, q}. By Lemma 10
we have subsequence (i − 1)(i + 1) ≤s π and we do not have subsequence
(i − 1)j(i + 1) ≤s π for any j ∈ No

p,q. Similarly, for any integer i ∈ No
p,q

there is no j ∈ Ne
p,q where (i− 1)j(i + 1) ≤s π.

(b) Let t ∈ No
p,q where t(t− 1)(t + 1) ≤s π. If t− 1 > p, then (t− 2)t(t− 1) ≤s π,

and (t− 2)(t− 3)(t− 1) ≤s π. By continuing to reason in the same manner
we conclude that for all i ∈ No

p,t+1 we have subsequence i(i−1)(i+1) ≤s π

and for all j ∈ Ne
p,t we have subsequence (j − 1)(j + 1)j ≤s π. Similarly, if

t+1 < q, then t(t+2)(t+1) ≤s π. If t+2 < q, then (t+2)(t+1)(t+3) ≤s π.
We continue to reason in the same way. Then for all i ∈ No

p,t+1 we have
subsequence i(i − 1)(i + 1) ≤s π and for all j ∈ Ne

p,t we have subsequence
(j−1)(j+1)j ≤s π. I.e., for all i ∈ No

p,q we have subsequence i(i−1)(i+1) ≤s

π and for all j ∈ Ne
p,q we have subsequence (j − 1)(j + 1)j ≤s π. The

symmetrical case where for all i ∈ No
p,q we have subsequence (i−1)(i+1)i ≤s

π and for all j ∈ Ne
p,q we have subsequence j(j − 1)(j + 1) ≤s π is proved

in the analogous way.
(c) Consider integers t, t′ ∈ Np+1,q−1 where (t, t′) ∈ Eπ. Assume t ∈ No

p,q (case
Ne

p,q is symmetric). Assume that t′ > t. If there is t′′ ∈ Np+1,q−1 \ {t′}
such that (t′, t′′) ∈ Eπ, then we show that t′′ > t. Indeed, (t′ − 1)t(t′ +
1) ≤s π, and (t′′ − 1)t′(t′′ + 1) ≤s π. Since t ∈ No

p,q, then by Property (a)
t′ ∈ No

p,q as well. Since t′ > t, then according to Lemma 10 tt′ ≤s π.
Then (t′ − 1)(t′ + 1)t′ ≤s π. Then by Property (b) for any i ∈ No

p,q we
have subsequence (i − 1)(i + 1)i ≤s π. By Property (a) integer t′′ ∈ No

p,q.
Then (t′′ − 1)t′(t′′ + 1)t′′ ≤s π. Then according to Lemma 10 t′′ > t′ > t.
By continuing to reason in the same manner we proof that for any s ∈
Np+1,q−1 such that t′ →+ s we have that s > t′. If there is an integer
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t′′′ ∈ Np+1,q−1 such that (t, t′′′) ∈ Eπ, then t′′′ > t. Indeed, by Property (a)
t′′′ ∈ No

p,q. Then (t′′′ − 1)(t′′′ + 1)t′′′ ≤s π. Since (t, t′′′) ∈ Eπ, we have
(t′′′−1)t(t′′′+1)t′′′ ≤s π. By Lemma 10 t′′′ > t. We repeat reasoning as for
the case t →+ t′ →+ t′′. Then we show that for any integer s ∈ Np+1,q−1

such that t′′′ →+ s we have that s > t′′′ > t. I.e., for any s ∈ Np+1,q−1,
t →+ s we have s > t. Case t′ < t where (t, t′) ∈ Eπ is symmetric;

(d) Assume that there is a non-loop cycle containing integers only from one block.
Consider an integer i from the cycle. Then we have i →+ i. According to
Property (c) either i > i or i < i. This is a contradiction.

¤

6. Forbidden Integers

Consider the set of integers F (π) = {p ∈ dom(π)| there is no strategy applicable to
π where edp is used}. We say that the set F (π) is the set of forbidden integers in
π.

The set F (π) was characterized in [26].

Theorem 12. [26] For a permutation π over Σn and p ∈ Σn, p ∈ F (π) if and only
if the subgraph Γπ,p = (Tπ,p, Eπ,p) is cyclic or q − 1, q ∈ Tπ,p for some q.

Note that Fix(π) ⊆ F (π). Contrary to the rest of forbidden integers, fixed
integers can be “detected” without constructing and analyzing the dependency
graph. For each integer p one needs to check whether either subsequence (p −
1)p(p + 1) or subsequence (p + 1)(p− 1) is present in π. Also, integers 1 and n are
always fixed. We remind that in the dependency graph Γπ integers from Fix(π) are
represented by vertices with self-loops.

Example 13. Consider permutation π = 81 10 3 12 5 2 7 4 6 9 11 13. Its dependency
graph is presented in Figure 5. Integers 1, 7, 13 are fixed. Integers 3 and 11 are
forbidden, since there is a path to them in Γπ from fixed integer 7. Integer 9 is
forbidden since there is edge (1, 9) in Γπ and integer 1 is fixed. In this way, F (π) =
1, 3, 7, 9, 11, 13.

7. Sortable permutations

We recall the following theorem from [26] describing an effective procedure to check
the ed-sortability of a permutation.

Theorem 14. Permutation π is sortable if and only if π|F (π) is sorted.

Example 15. Let us consider permutation π from Example 13. Set of forbidden
integers is sorted in π: π|F (π) = 1 3 7 9 11 13. In this way, permutation π is ed-
sortable. Indeed, (ed8 ◦ ed4 ◦ ed12 ◦ ed6 ◦ ed2 ◦ ed10)(π) = 1 2 3 4 5 6 7 8 9 10 11 12 13.
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Fig. 5. Dependency graph associated to π = 8 1 10 3 12 5 2 7 4 6 9 11 13.

By using Lemma 10 we obtain the following lemma and corollary which rep-
resents the form of subsequences of integers of a block Np,q ∈ Bo

π, where π is a
sortable permutation.

Lemma 16. Let π be a permutation. If for a block Np,q ∈ Bo
π and k ∈ Np+1,q−1 we

have either kpq ≤s π, or pqk ≤s π, then π cannot be sorted.

Proof.

Consider an unsigned permutation π and a block Np,q ∈ Bπ such that kpq ≤s π

where k ∈ Np+1,q−1. Then k ∈ No
p,q. It follows by Lemma 10 that there is such

integer k′ ∈ No
p,q that k′p(k′+2) ≤s π. Then by Theorem 12 k′+1 ∈ F (π). It follows

by Lemma 10 that k′(k′+2)(k′+1) ≤s π. Then either (k′+1)q ≤s π or q(k′+1) ≤s π.
In case q(k′+1) ≤s π permutation π cannot be sorted. If (k′+1)q ≤s π, then exists
integer k′′ ∈ No

p,q, k′′ > k′ such that k′′(k′+ 1)(k′′+ 2) ≤s π. Then (k′′+ 1) ∈ F (π)
as well. Moreover, either (k′′ + 1)q ≤s π or q(k′′ + 1) ≤s π. In this way, we can find
integer t ∈ Ne

p,q, where k′+1 ∈ Tπ,t such that qt ≤s π. Since t ∈ F (π), permutation
π cannot be sorted.

In the similar way we show that if pqk′ ≤s π for some k′ ∈ Np+1,q−1, then π

cannot be sorted.

¤

Corollary 17. Let π be a sortable permutation and Np,q ∈ Bo
π, then

(i) for any integer t ∈ No
p,q, if pq ≤s π, then (t − 1)(t + 1)t ≤s π. Otherwise,

t(t− 1)(t + 1) ≤s π;
(ii) for any integer t ∈ Ne

p,q, if pq ≤s π, then t(t − 1)(t + 1) ≤s π. Otherwise,
(t− 1)(t + 1)t ≤s π;

Example 18. Consider the following permutations:

• Consider permutation π1 = 24 1 3 5 7 9 6 8 10. We have Bo
π1

= {N5,10} and
Be

π1
= {N1,5}. For block N1,5 we have subsequences 135 ≤s π1 and 24 ≤s π.

For block N5,10 we have subsequences 579 ≤s π1 and 6 8 10 ≤s π1. Per-
mutation π1 is sortable. For integers 6, 8 from No

5,10 we have subsequences
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576 ≤s π1 and 798 ≤s π1. For integers 7 and 9 from Ne
5,10 we have subse-

quences 768 ≤s π1 and 9 8 10 ≤s π1;
• Let π2 = 241365. Then Bπ = Bo

π = {N1,6}. We have subsequence 216 ≤s π2.
We observe that π2 cannot be sorted by ed.

8. Applicable strategies

The following lemma characterizes strategies applicable to π.

Lemma 19. Let π be a permutation. A strategy Φ can be applied to π if and only
if

(i) a subgraph induced by dom(Φ) from the dependency graph Γπ is acyclic, and
(ii) for any i ∈ dom(Φ) we have Tπ,i ⊆ dom(Φ), and
(iii) for any i ∈ dom(Φ) if j ∈ Tπ,i, then edj is used before edi in Φ, and
(iv) there is no integer t ∈ dom(Φ) such that t + 1 ∈ dom(Φ).

Proof.

The direct implication follows by Lemma 5, Theorem 12 and the following ob-
servation [13]: for any integer t ed-operations edt and edt+1 can never be used in
the same strategy for any permutation.

To prove the inverse implication we show that if conditions (i)–(iv) are satisfied
for a permutation π and a composition Φ = Φ′ ◦ edi, then edi is applicable to π.
Indeed, assume edi is not applicable to π. Then, either i ∈ F (π) or i /∈ F (π), but
|Tπ,i| > 1. If i ∈ F (π), then by Theorem 12 either Γπ,i = (Tπ,i, Eπ,i) contain cycle
or there is j ∈ Tπ,i such that j + 1 ∈ Tπ,i. Then by condition (ii) we have either
cycle in the graph induced by dom(Φ) or j, j + 1 ∈ dom(Φ). But this contradicts to
conditions (i) and (iv). If i /∈ F (π) and |Tπ,i| > 1, then by condition (iii) for any j ∈
Tπ,i operation edj is used in Φ before edi, what contradicts to our assumption about
the structure of Φ. In this way, if conditions (i)–(iv) are satisfied for a permutation
π and a composition Φ = Φ′ ◦ edi, then Tπ,i = {i} and edi is applicable to π.

The inverse implication we prove by induction. Let Φ = edim ◦ edim−1 ◦ . . . ◦
edi2 ◦ edi1 . The graph induced by dom(Φ) from the dependency graph Γπ we denote
as Γπ,Φ = (dom(Φ), Eπ,Φ), where Eπ,Φ = {(i, j)|i, j ∈ dom(Φ)}. We denote πs and
Φs+1 for all s, 0 ≤ s ≤ m as follows:

πs =

{
π, if s = 0

edis(πs−1), if s > 0
Φs+1 =

{
edim ◦ edim−1 ◦ . . . ◦ edis+1 , if s < m

id, if s = m

We show that for any 0 ≤ s ≤ m properties (i)–(iv) hold for πs and Φs+1.
Properties (i)–(iv) hold for π0 by the condition of the inverse implication.
Assume that for some k, 1 ≤ k < m properties (i)–(iv) hold for all πj , where

0 ≤ j ≤ k. Then, as it was shown, Tπk,ik+1 = {ik+1} and edik+1 can be applied to
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πk. By Lemma 7 it follows that Eπk+1,Φ ⊆ Eπk,Φ. Indeed,

Eπk+1 \ Eπk
= {(ik+1, j)|{(ik+1 − 1, j), (ik+1 + 1, j)} ∩ Eπk

6= ∅} ∪
∪{(ik+1 − 1, ik+1 − 1), (ik+1, ik+1), (ik+1 + 1, ik+1 + 1)}.

By property (iv) ik+1 − 1, ik+1 + 1 /∈ dom(Φk) since ik+1 ∈ dom(Φ). Then there
is no j ∈ dom(Φ) such that (ik+1, j) ∈ Eπk+1 \ Eπk

. Since for any (ik+1, j) ∈ Eπk

where j ∈ dom(Φ) we have (ik+1, j) /∈ Eπk+1 , then (Eπk+1 \ {(ik+1 − 1, ik+1 −
1), (ik+1, ik+1), (ik+1 + 1, ik+1 + 1)}) ⊆ Eπk

. I.e., Eπk+1,Φ ⊆ Eπk,Φ. Moreover, for
any integer i ∈ dom(Φk) such that ik+1 ∈ Tπk,i we have Tπk,i \ Tπk+1,i = {ik+1}.
For all i ∈ dom(Φk) such that ik+1 /∈ Tπk,i we have Tπk,i = Tπk+1,i. We have
dom(Φk)\dom(Φk+1) = {ik}. In this way, for any i ∈ dom(Φk+1) we have Tpik+1 ,i ⊆
Tpik

,i. Properties (i), (ii), (iii) and (iv) hold for πk+1.

¤

The following corollary follows immediately.

Corollary 20. Let π be a permutation and Γπ be its dependency graph. Let Tπ,i =
{i}. Then edi is applicable to π.

9. Sorting Strategies

Let π be a permutation and let Bo
π = {Np1,q1 , Np2,q2 , . . . , Npk,qk

}. We define a
set of subsets of dom(π) Sπ = {S ∈ 2dom(π)|S = (Be

π ∩ No
π) ∪ (

⋃
1≤i≤k(No

pi,ti
∪

Ne
ti,qi

)), where ti ∈ Ne
pi−2,qi

for all i, 1 ≤ i ≤ k}.
Example 21. Let us consider permutation π = 1 3 5 11 7 9 6 2 4 8 10 12 from Exam-
ple 9. Here Be

π∩No
π = {2, 4, 11}, Bo

π = [{5, 6, 7, 8, 9, 10}]. Then Sπ = [{2, 4, 7, 9, 11},
{2, 4, 6, 9, 11}, {2, 4, 6, 8}].

We prove in this section that any set from Sπ is the domain of a sorting strategy
for permutation π, and viceversa, any strategy with the domain from Sπ is a sorting
strategy for π.

In the following two lemmas we analyze pathes in the dependency graph between
integers from different blocks. We show that integers from set Be

π ∩ No
π may have

as predecessors only integers from the same set Be
π ∩ No

π . Integers from a block
Np,q ∈ Bo

π may have as predecessors only integers from the same block Np,q and
integers from set Be

π ∩No
π .

Lemma 22. Let π be a sortable permutation. Then for any integer i ∈ (Be
π ∩No

π)
we have Tπ,i ⊆ (Be

π ∩No
π), and Γπ,i is an acyclic graph.

Proof.

Let i ∈ dom(Φ) ∩ (Be
π ∩ No

π) and (j, i) ∈ Eπ. I.e., (i − 1)j(i + 1) ≤s π, where
p(i− 1)q ≤s π, if i− 1 > p and p(i + 1)q ≤s π, if i + 1 < q. In this way, pjq ≤s π.
If j ∈ Np+1,q−1, then it follows by Lemma 11 that j ∈ No

p,q. Graph Γπ,p,q does not
have cycles by Lemma 11.
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If j /∈ Np+1,q−1, then by Theorem 14 j /∈ F (π), and so, j /∈ Fix(π). Moreover,
since j /∈ F (π), then by Theorem 12 graph Γπ,j does not have a cycle.

If j ∈ Np′,q′ such that Np′,q′ ∈ Be
π and p′ 6= p, q′ 6= q, then j ∈ No

π . Indeed,
if j ∈ Ne

π, by Lemma 10 we would have either p′pq′q ≤s π, or p′pqq′ ≤s π, or
pp′qq′ ≤s π, or pp′q′q ≤s π. Since p, p′, q, q′ ∈ Fix(π) and p < q, p′ < q′, and either
q′ < p or q < p′, then by Theorem 14 permutation π cannot be sorted, contradiction.

Assume that j ∈ Np′,q′ where Np′,q′ ∈ Bo
π and p′ 6= p, q′ 6= q. Then by Lemma 16

since π is sortable we have either p′jq′ ≤s π, or q′p′j ≤s π, or jq′p′ ≤s π. But, then
either

p′pq′q ≤s π, or p′pqq′ ≤s π, or pp′qq′ ≤s π, or
pp′q′q ≤s π, or q′p′q ≤s π, or pq′p′ ≤s π.

Then π is non-sortable, contradiction.
In this way, for any j where (j, i) ∈ Eπ we have j ∈ (Be

π ∩ No
π). Then Tπ,i ⊆

(Be
π ∩ No

π). Moreover, j /∈ F (π), then by Theorem 12 Γπ,j does not have cycles.
Then graph Γπ,i does not have cycles either.

¤

Lemma 23. Let π be a sortable permutation. Then for any integer i ∈ Bo
π we have

that

(i) Tπ,i ⊆ (Be
π ∩No

π) ∪Np+1,q−1;
(ii) If i ∈ Ne

p,q, then Tπ,i ∩Np+1,q−1 ⊆ Ne
p,q. Otherwise, Tπ,i ∩Np+1,q−1 ⊆ No

p,q;
(iii) Set Γπ,i is an acyclic graph.

Proof.

Assume that i ∈ Np+1,q−1 and Np,q ∈ Bo
π. By Lemma 11 it follows that there

are no cycles in Γπ,p,q. Moreover, if i ∈ No
p,q (i ∈ Ne

p,q), then Tπ,i ∩Np+1,q−1 ⊆ No
p,q

(Tπ,i ∩Np+1,q−1 ⊆ Ne
p,q).

Assume that (j, i) ∈ Eπ. I.e., (i− 1)j(i + 1) ≤s π.
Let j ∈ Np+1,q−1. If i ∈ Ne

p,q, then by Lemma 11 j ∈ Ne
p,q as well. Otherwise,

j ∈ No
p,q.

Let us consider the case where j /∈ Np+1,q−1. Since π is sortable, by Lemma 16
we have either pjq ≤s π, or qpj(i + 1) ≤s π, or (i − 1)jqp ≤s π. It follows by
Theorem 14 that j /∈ F (π). In particular we have j /∈ Fix(π). Moreover, since
j /∈ F (π), then by Theorem 12 set Γπ,j does not contain cycles.

Let j ∈ Np′,q′ where p′ 6= p and q′ 6= q. Let either Np′,q′ ∈ Be
π or Np′,q′ ∈ Bo

π.

• If Np′,q′ ∈ Be
π, then j ∈ No

p′,q′ . Indeed, if we would have j ∈ Ne
p′,q′ , then

pp′qq′ ≤s π, or p′pqq′ ≤s π, or pp′q′q ≤s π, or
p′pq′q ≤s π, or p′q′qp ≤s π, or p′qq′p ≤s π, or
p′qpq′ ≤s π.
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In all these cases π|Fix(π) is not sorted. Then π is non-sortable, contra-
diction.

• Let j ∈ Np′,q′ where p′ 6= p, q′ 6= q, and Np′,q′ ∈ Bo
π. Since π is sortable, we

have either p′jq′ ≤s π, or q′p′j ≤s π, or jq′p′ ≤s π.

– If pq ≤s π, then we have either

p′pq′q ≤s π, or p′pqq′ ≤s π, or pp′q′q ≤s π, or
pp′qq′ ≤s π, or q′p′pq ≤s π, or q′pp′q ≤s π, or
pq′p′q ≤s π, or pq′qp′ ≤s π, or pqq′p′ ≤s π.

In all these cases π|Fix(π) is not sorted. Then, π is non-sortable, con-
tradiction;

– If qp ≤s π, then we have either

p′q′qp ≤s π, or p′qq′p ≤s π, or p′qpq′ ≤s π, or
qp′pq′ ≤s π, or qpp′q′ ≤s π, or q′p′qp ≤s π, or
q′qp′p ≤s π, or q′qpp′ ≤s π, or qq′p′p ≤s π, or
qq′pp′ ≤s π, or qpq′p′ ≤s π.

In all these cases π|Fix(π) is not sorted. Then, π is non-sortable, con-
tradiction.

In this way, if (j, i) ∈ Eπ where i ∈ Np,q and Np+1,q−1 ∈ Bo
p,q, then either

j ∈ Np,q as well, or j ∈ No
p′,q′ where p′ 6= p, q′ 6= q and Np′,q′ ∈ Be

π. If j ∈ Be
π, then

by Lemma 22 Tπ,i ∩ (Be
π ∩ No

π) 6= ∅. If j ∈ Np+1,q−1 and i ∈ Ne
π, then j ∈ Ne

π as
well. If j ∈ Np+1,q−1 and i ∈ No

π , then j ∈ No
π as well. In this way, there are no

integers j ∈ Np′+1,q′−1 where (j, i) ∈ Eπ, p′ 6= p, q′ 6= q, and Np′,q′ ∈ Bo
π. Then we

have that Tπ,i∩ (Be
π∩No

π) 6= ∅ and Tπ,i∩Np+1,q−1 6= ∅. For any j where (j, i) ∈ Eπ,
since Γπ,j does not have a cycle, then Γπ,j does not have a cycle either.

¤

The following two theorems state the main results of the paper.

Theorem 24. Let π be a ed-sortable permutation. Let Φ be a strategy with
dom(Φ) ∈ Sπ and where for any i ∈ dom(Φ) any operation edj with j ∈ Tπ,i∩dom(Φ)
is used earlier than edi in Φ. Then strategy Φ is applicable to π.

Proof.

Let π be a ed-sortable permutation.
Consider a strategy Φ = φm ◦φm−1 ◦ . . .◦φ2 ◦φ1 = edim ◦ edim−1 ◦ . . .◦edi2 ◦ edi1

with the domain from Sπ, and where for any i ∈ dom(Φ) any operation edj with
j ∈ Tπ,i∩dom(Φ) is used earlier than edi. We show that Φ can be applied to π. I.e.,
according to Lemma 19 we have to show that

(a) a subgraph ΓΦ,π induced by dom(Φ) from the dependency graph Γπ is acyclic;
(b) for any i ∈ dom(Φ) we have Tπ,i ⊆ dom(Φ);
(c) there is no integer t ∈ dom(Φ) such that t + 1 ∈ dom(Φ).
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By definition of Sπ for any 1 ≤ s ≤ m either is ∈ (Be
π ∩ No

π) or is ∈ Bo
π. If

is ∈ (Be
π ∩ No

π), then by Lemma 22 graph Γπ,is has no cycles. Moreover, there is
no integer t ∈ Tπ,is such that t + 1 ∈ Tπ,is . If is ∈ Bo

π, then by Lemma 23 graph
Γπ,is

has no cycles, and there is no integer t ∈ Tπ,is
such that t + 1 ∈ Tπ,is

. I.e.,
conditions (a) and (c) are satisfied.

We show that for any i ∈ dom(Φ) we have Tπ,i ⊆ dom(Φ).

• Let i ∈ dom(Φ) and i ∈ (Be
π∩No

π). Then by Lemma 22 Tπ,i ⊆ (Be
π∩No

π). By
definition of Sπ set dom(Φ) contains (Be

π ∩No
π). I.e., for any i ∈ (Be

π ∩No
π)

we have Tπ,i ⊆ dom(Φ);
• Let i ∈ dom(Φ) and i ∈ (Bo

π ∩ No
π). I.e., let i ∈ No

p,q for some Np,q ∈ Bo
π.

Then, by Lemma 23 set Tπ,i contains some subset of (Be
π∩No

π) and a subset
from No

p,q. By Corollary 17 it follows that if there is an integer j ∈ No
p,q such

that (j, i) ∈ Eπ, then j < i. Then by Lemma 11 for any j ∈ Tπ,i ∩Np+1,q−1

we have j ≤ i. By the definition of the set Sπ all j ∈ No
p,i are in dom(Φ).

I.e., Tπ,i ∩ Np+1,q−1 ⊆ dom(Φ). Set Tπ,i \ Np,q ⊆ (Be
π ∩ No

π). As it was
mentioned above, (Be

π ∩No
π) ⊆ dom(Φ). I.e., Tπ,i \Np,q ⊆ dom(Φ). In this

way, for any i ∈ dom(Φ) such that i ∈ (Bo
π ∩No

π) we have Tπ,i ⊆ dom(Φ);
• Equivalently as above, we show that for any i ∈ dom(Φ) such that i ∈

(Bo
π ∩Ne

π) we have Tπ,i ⊆ dom(Φ).

In this way, condition (b) is satisfied. Then Φ is applicable to π.

¤

Theorem 25. Let π be a ed-sortable permutation. Then a strategy Φ sorts π if and
only if dom(Φ) ⊆ Sπ and for any i ∈ dom(Φ) for any j ∈ Tπ,i ∩ dom(Φ) operation
edj is used earlier than edi in Φ.

Proof.

Direct implication: Let Φ be a strategy that sorts permutation π. Then for
any i ∈ dom(Φ) for any j ∈ Tπ,i ∩ dom(Φ) operation edj is used before edi in Φ.
Assume that dom(Φ) /∈ Sπ. That means that one or both of the conditions below
are satisfied:

(i) (Be
π ∩No

π) * dom(Φ);
(ii) There is a block Np,q ∈ Bo

π and integers t1, t2 ∈ Np+1,q−1 from that block,
where t2 ≥ t1, such that t1, t1 − 1, t2, t2 + 1 /∈ dom(Φ);

Assume that property (i) holds for Φ. Let Np,q ∈ Be
π. By Lemma 11 for any

integer i ∈ No
p,q we have either i(i − 1)(i + 1) ≤s π, or for any integer i ∈ No

p,q we
have (i− 1)(i + 1)i ≤s π. Without loose from generality we consider for the former
case the smallest t ∈ No

p,q such that t /∈ dom(Φ). And for the latter case we consider
the biggest integer t ∈ No

p,q such that t /∈ dom(Φ). In the former case, if t− 1 = p,
then we have tp ≤s π. Since p ∈ Fix(π), then p /∈ dom(Φ). Then Φ does not sort π.
Then, t− 1 > p, and t− 1 ∈ dom(Φ). Then t− 2 /∈ dom(Φ), what contradicts to our



18 Vladimir Rogojin

choice of t. In the latter case, if t + 1 = q, then we have qt ≤s π. Since q ∈ Fix(π),
then q /∈ dom(Φ). In this way, Φ does not sort π. Then we assume that t + 1 < q.
Then t + 1 ∈ dom(Φ). Then t + 2 /∈ dom(Φ), what contradicts to our choice of t. In
this way, if Φ satisfies (i), it does not sort π.

Assume that Φ satisfies property (ii). Let Np,q ∈ Bo
π. Then without loose from

generality we may take the smallest t1 from Np+1,q−1 such that t1, t1− 1 /∈ dom(Φ)
and the greatest t2 ∈ Np+1,q−1 such that t2, t2+1 /∈ dom(Φ). We show that t1 ∈ No

p,q

and t2 ∈ Ne
p,q. Indeed, if t1 is the smallest from Np+1,q−1 such that t1 − 1, t1 /∈

dom(Φ), then t1 − 1 ≥ p. If t1 − 1 = p, then t1 = p + 1. I.e., t1 ∈ No
p,q. If t1 − 1 > p,

then p + 1, p + 3, . . . , t1 − 2 ∈ dom(Φ). I.e., t1 = p + 2k1 + 1 for some k1 > 1. This
means that t1 ∈ No

p,q. We show in the analogous way that t2 = q− 2k2− 1 for some
k2 ≥ 0, i.e., t2 ∈ Ne

p,q, since Np,q ∈ Bπ.
Since both t1, t2 /∈ dom(Φ), t1 < t2 and Φ sorts π, we have pt1t2q ≤s π. Since

t1 ∈ No
p,q, pq ≤s π, and π is sortable, by Corollary 17 we have (t1−1)(t1+1)t1 ≤s π.

Since t2 ∈ Ne
p,q and (t1 − 1)t1t2 ≤s π, there is such t′1 ∈ No

p,q, t2 > t′1 > t1 that
(t′1−1)t1(t′1+1) ≤s π. Consider set Sπ,t1∩Np+1,q−1. Since (t′1−1)t1(t′1+1) ≤s π, we
have |Sπ,t1 ∩Np+1,q−1| > 1. Since t′1 > t1, by Lemma 11 for any t ∈ Sπ,t1 ∩Np+1,q−1

we have t ≥ t1. Assume that for all integers t ∈ Sπ,t1 ∩ Np+1,q−1 we have t ≤ t2.
The biggest integer from Sπ,t1 ∩Np+1,q−1 we denote by t′. By Lemma 11 t′ ∈ No

p,q,
since t1 ∈ No

p,q. Then t′ 6= t2, i.e., t′ < t2. Since Φ is applicable to π we have
t′ /∈ dom(Φ) because t1 /∈ dom(Φ). Since Φ sorts π, we have t1t

′t2 ≤s π. Moreover,
(t1 +1)t′t2 ≤s π because (t1−1)(t1 +1)t1 ≤s π. Since t1 +1, t2 ∈ Ne

p,q, then there is
t′′ ∈ No

p,q, where t1+1 < t′′ < t2 such that (t′′−1)t′(t′′+1) ≤s π. By our assumption
t′′ < t′, and so, t′′t′ ≤s π. By Corollary 17 we have (t′′ − 1)(t′′ + 1)t′′ ≤s π, i.e., we
have t′t′′ ≤s π, contradiction. In this way, there are integers from Sπ,t1 ∩Np+1,q−1

greater than t2. In particular, t′′ > t2. Then t′′ − 1 ≥ t2. Since (t′′ − 1)t′ ≤s π and
t′t2 ≤s π, we have t′′ 6= t2, i.e., t′′ − 1 > t2. Since t′′ − 1, t2 ∈ Ne

p,q, we have that
t2(t′′ − 1) ≤s π, contradiction. In this way, there are no such t1, t2 from Np+1,q−1

with the property (ii) such that Φ sorts π.
Inverse implication: Let dom(Φ) ∈ Sπ and for any i ∈ dom(Φ) for any j ∈

Tπ,i ∩ dom(Φ) operation edj is used before edi in Φ. According to Theorem 24
strategy Φ is applicable to π. Consider a block Np,q ∈ Be

π. Let π′ = Φ(π). Then
p(p+1)(p+2) . . . (q−2)(q−1)q ≤ π′. Consider a block Np′,q′ ∈ Bo

π. By the definition
of Sπ we have t ∈ Ne

p′−2,q′ such that t, t + 1 /∈ dom(Φ). Then we have substrings
p′(p′ + 1)(p′ + 2) . . . (t− 2)(t− 1)t ≤ π′ and (t + 1)(t + 2) . . . (q′ − 2)(q′ − 1)q′ ≤ π′.
Since π is sortable, by Theorem 14 π|F (π) is sorted. Clearly π|F (π) = π′|F (π). I.e.,
F (π) is sorted in π′ as well. Since Fix(π) ⊆ F (π), then Fix(π) is sorted in π′. Then
one can observe that π′ is sorted.

¤

Example 26. Consider the following permutations:

• π1 = 2 4 1 3 5 7 9 6 8 10 has Sπ1 = [{2, 4, 6, 8}, {2, 4, 6, 9}, {2, 4, 7, 9}]. All
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strategies with these domains sort π1. There are no other strategies sorting
π1;

• Permutation π2 = 241365 has three sets in Sπ2 : {2, 4}, {2, 5} and {3, 5}.
As one can see, none of these strategies is applicable to π2, and π2 cannot
be sorted.
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CC
C
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.2.
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GFED@ABC
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=={{{{{{
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(a)

GFED@ABC
.1.

		

!!
CC

CC
CC

GFED@ABC
.2.

GFED@ABC
.3.
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.5.

GFED@ABC
.6.

		

(b)

Fig. 6. Dependency graphs associated to (a) π1 = 24 1 3 5 7 9 6 8 10, and (b) π2 = 24 1 3 6 5.

10. Elementary assemblies

In this section we count the total number of different domains of ed sorting strategies
for a permutation. We estimate the upper bound for total number of all sorting
strategies for a permutation.

The following theorem characterizes permutations in terms of the number of
ed-sorting strategies (modulo domain).

Theorem 27. Consider a sortable permutation π having subset of blocks Bo =
[Np1,q1 , Np2,q2 , . . . , Npl,ql

]. Then all sorting strategies for π have exactly (q1−p1 +
1)(q2 − p2 + 1) . . . (ql − pl + 1)2−l different domains.

Proof.

Indeed, by Theorem 25 a permutation can be sorted by only strategies with
their domains from Sπ. By definition of Sπ all sets from Sπ contain set Be

π ∩ No
π .

For any block Np′,q′ ∈ Bo
π there exist exactly q′−p′+1

2 different sets Np′,q′ ∩S for all
S ∈ Sπ. In this way, if set Bo = [Np1,q1 , Np2,q2 , . . . , Npl,ql

], then |Sπ| = (q1 − p1 +
1)(q2 − p2 + 1) . . . (ql − pl + 1)2−l.

¤

The following corollary follows by Theorems 24, 25 and 27.

Corollary 28. A permutation π is ed-sortable if and only if there is a strategy Φ
with dom(Φ) ∈ Sπ applicable to it. Moreover, if π is sortable, then there are exactly
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(q1 − p1 + 1)(q2 − p2 + 1) . . . (ql − pl + 1)2−l different domains of sorting strategies
for π.

Example 29. We characterize permutation π = 9 11 5 7 1 3 2 4 6 8 10 in terms of
the number of domains of its sorting strategies. We have Fix(π) = 1, 4, 8, 11, Bo

π =
{N1,4, N8,11}, and Be = {N4,8}. A strategy ed9 ◦ ed7 ◦ ed5 ◦ ed2(π) = 11 1 2 3 4 5 6 7
8 9 10 sorts π. Then there are sorting strategies with 4∗4

4 = 4 different domains.
Indeed, strategies

ed9 ◦ ed7 ◦ ed5 ◦ ed2(π) = 11 1 2 3 4 5 6 7 8 9 10

ed9 ◦ ed7 ◦ ed5 ◦ ed3(π) = 11 1 2 3 4 5 6 7 8 9 10

ed10 ◦ ed7 ◦ ed5 ◦ ed2(π) = 9 10 11 1 2 3 4 5 6 7 8

ed10 ◦ ed7 ◦ ed5 ◦ ed3(π) = 9 10 11 1 2 3 4 5 6 7 8

sort π. There are no sorting strategies for π with other domains.

In the following lemma we estimate the maximal number of different sorting
strategies with the same domain.

Lemma 30. Let D ⊆ Σn. Let ΠD be a set of all permutations over Σn on which
we can apply a strategy with the domain D. Let π ∈ ΠD be a permutation where set
D induces an isolated subgraph in the dependency graph Γπ. Then

(i) π has exactly |D|! different strategies with the domain D;
(ii) π has the maximal number of strategies with the domain D among all permu-

tations from ΠD.

Proof.

(i) Since there are no edges in Γπ between integers from D, then by Lemma 19 any
strategy ΦD with dom(ΦD) = D is applicable to π. I.e., operations from
D may be applied in any order to π. In this way, there are |D|! different
strategies with the domain D which are applicable to π.

(ii) Let π′ be a permutation from Π. If D induces a cyclic subgraph in the de-
pendency graph Γπ′ , then by Lemma 19 there is no strategy ΦD with
dom(ΦD) = D which is applicable to π′. Then we assume that D induces
some non-trivial forest F (an acyclic subgraph with at least one edge) in
Γπ′ . We denote by NF some number of orderings ρ of integers from D (i.e.,
ρ is a permutation over D) which we count as follows. For all pairs p, q ∈ D

where there is a path from q to p in the forest F we count the total number
NF of orderings ρ with a subsequence pq ≤s ρ. In other words, NF is the
number of all those strategies for π′, where condition (i) of Lemma 5 does
not hold. Clearly, NF is the number of all strategies with the domain D

which cannot be applied to π′. Since F contains at least one edge, then
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NF ≥ 1. Then |D|! − NF is the number of all applicable strategies to π′,
and |D|!−NF < |D|!. In this way, there are no permutations from Π having
the number of strategies with the domain D greater than |D|!.

¤

The following theorem estimates the upper bound for the number of ed-sorting
strategies.

Theorem 31. Let π be a permutation over Σn with |Bo
π| = k ≥ 0 blocks Npi,qi ∈ Bo

π

for all 0 ≤ i ≤ k, and with |Be
π| = l ≥ 0 blocks Nri,si

∈ Be
π for all 0 ≤ i ≤ l. Then

π may have at most
 ∑

0≤i≤l

si − ri

2
+

∑

0≤i≤k

qi − pi − 1
2


!

∏

0≤i≤k

qi − pi

2

different sorting strategies.

Proof.

Consider a permutation π over Σn with |Bo
π| = k ≥ 0 blocks Npi,qi ∈ Bo

π,
0 ≤ i ≤ k, and with |Be

π| = l ≥ 0 blocks Nri,si ∈ Be
π, 0 ≤ i ≤ l. Assume that the

dependency graph Γπ has no edges (p, q), where either q ∈ (Be
π ∩ No

π) or q ∈ Bo
π.

From the definition of Sπ it follows that any strategy with the domain from Sπ

has exactly N =
∑

0≤i≤l
si−ri

2 +
∑

0≤i≤k
qi−pi−1

2 operations ed. As we assumed,
all ed operations from a strategy with the domain from Sπ can be applied in any
order. Then by Lemma 30 it follows that there are N ! strategies with the same
domain S ∈ Sπ which are applicable to π. Also, by Lemma 30 there are no other
permutations over Σn having more than N ! different sorting strategies with the
same domain.

All sorting strategies are with domains from Sπ, and all strategies with their
domains from Sπ are sorting strategies by Theorem 25. By Theorem 27 there are
exactly

∏
0≤i≤k

qi−pi

2 different domains of sorting strategies.

Then permutation π has (N !)
(∏

0≤i≤k
qi−pi

2

)
different sorting strategies.

¤

Note, that in order to compute the exact number of domains and strategies for
a permutation π over Σn, it is necessary to analyze the dependency graph Γπ and
to detect what sets of operations can be applied to π. Also, one have to compute
the total number of all strategies for π with the domain S for each applicable set S

to π. This should be done by using the induced graph by S in Γπ. The problem of
computation of the number of all strategies for π and their domains remains open.

11. Summary

In this paper we gave a general form for successful assembly strategies by elementary
intramolecular operations. We used a formalization based on permutations. We
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introduced the notions of fixed integers and blocks. Knowing the general form of
elementary assembly strategies one can decide whether a given gene pattern may be
assembled by elementary operations by applying any of these strategies. We refer
to [26] for another decision method. We also estimated the maximal number of all
successful strategies for a gene pattern.

The result from this paper may be useful for solving the following open problems:

• counting the exact number of all strategies for a permutation π;
• counting the number of ed-sortable permutations of fixed length n;
• searching in polynomial time optimal parallel ed-sorting strategies for a

permutation (note, that for the moment the analogous problem for gen-
eral intramolecular operations may be solved in time roughly estimated
as O(nn), see [1, 2]);

• effective detection of gene patterns with inverted MDS’s which can be as-
sembled to the genes by elementary operations.
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