
J Supercomput
DOI 10.1007/s11227-014-1296-5

ERRATUM

Erratum to: Exploiting smart spaces for interactive TV
applications development

M. Mohsin Saleemi · Natalia Díaz Rodríguez ·
Johan Lilius

© Springer Science+Business Media New York 2014

Erratum to: J Supercomput
DOI 10.1007/s11227-014-1183-0

The authors would like to correct authorship credits of the original publication.
Natalia Díaz Rodríguez contributed to the research presented in this article but was

mistakenly excluded from the authorship list. The correct list is given in this erratum.

The online version of the original article can be found under doi:10.1007/s11227-014-1183-0.

M. M. Saleemi (B) · N. Díaz Rodríguez · J. Lilius
Åbo Akademi University, Turku, Finland
e-mail: mohsin.saleemi@gmail.com

N. Díaz Rodríguez
e-mail: ndiaz@abo.fi

J. Lilius
e-mail: johan.lilius@abo.fi

123

http://dx.doi.org/10.1007/s11227-014-1183-0

J Supercomput
DOI 10.1007/s11227-014-1183-0

Exploiting smart spaces for interactive TV applications
development

M. Mohsin Saleemi · Johan Lilius

© Springer Science+Business Media New York 2014

Abstract The integration of semantic technologies and TV services is a substan-
tial innovation to improve the services to users in an environment that is extended
beyond the fixed home environment. But currently, this integration is mainly limited
to provide personalized recommendation services and systems by matching user static
preferences. Designing and development of interactive TV (iTV) applications using
semantic technologies are not realized yet. In this work, we explore the potential of
introduction semantic technologies and smart spaces in design and development of
iTV applications. We use an example scenario to show how future iTV applications
include the mesh-up of information from different sources. We proposed a method-
ology and show how ontology-driven approach can help to design and develop these
iTV applications. We demonstrate the suitability of our ontology-driven application
development tools and rule-based approach for the development of highly dynamic
context-aware iTV applications.

Keywords Interactive TV · Smart Space · Semantic technologies · Ontology ·
Context-aware · Ubiquitous

1 Introduction

With the advent of new standards and technologies for transmission, development
and execution environments, interactive TV (iTV) evolves rapidly as a reality in all
of its forms, such as digital TV, mobile TV and Internet protocol TV (IPTV), etc.
The term interactive TV applications mean different things to different people and no
single definition is presently accepted by all researchers. European Broadcasting Union

M. M. Saleemi (B) · J. Lilius
Åbo Akademi University, Turku, Finland
e-mail: mohsin.saleemi@gmail.com

123

M. M. Saleemi, J. Lilius

defines iTV applications as enhanced or interactive services with digital Television
[1]. BBC defines iTV as follows: iTV is the content and services (in addition to linear
TV channels) which are available for digital viewers to navigate through on their
TV screens. In practice, this means giving viewers control over some video, audio,
graphical and text elements, or allowing them to use simple games and quizzes or
send simple communication back to broadcasters [2]. These definitions are usually
supported by broadcasters providing iTV applications and are generally related to and
bounded to specific TV programs.

Due to the recent technological developments, ICT landscape is evolving into a
highly interactive distributed environment that demands integration of information in
heterogeneous technologies and systems. Information in this environment is accessed
using a range of different devices. These devices include portable devices (such as
mobile phones, PDAs, smart phones, tablets) and fixed or non-portable devices (such
as TV, set-top boxes, desktop computers, Personal video recorders). These devices
provide new possibilities of interaction and all of them have the capacity to execute
applications and share information with each other. With the birth of IPTV, Televi-
sion and Web came closer to each other by sharing a substantial set of methodologies
to provide the users immerse interactive experience. Users now have more control
over data and content creation, consumption and sharing. It is foreseen that the future
interactive TV applications would involve not only a wide range of digital devices
in highly interactive, dynamically changing and context-aware environment but also
data/information from different sources, such as web. Connecting up all kind of infor-
mation and content by being much more dependent on the environment (physical and
social environment) could enable whole universe of converged iTV applications. For
example, assume an iTV banking application that shows users account balance and
other details on TV screen (or mobile TV screen). User can use this application to pay
his bills, etc. The application could detect the presence of other persons in the room
and could automatically hide the balance details when the living room TV is being
used to display application content. The same application while using on smartphone
could detect it as a personal device and show all banking details.

It is clear that creating such interactive applications requires establishing concrete
development infrastructures and methodologies that can provide a sufficient level of
abstraction to hide the complexity. Currently, there is no commonly agreed suitable
method for the development of iTV applications and different organizations have their
own platforms and approaches and APIs (JavaTV API, MHP, OCAP API, etc.). Several
companies such as Aircode, Alticast, ItVBox and Cardinal, etc. use their tools for the
development of iTV applications. Their tools provide graphical environment to easily
create simple iTV applications. These environments and tools are too limited for cre-
ation of complex iTV applications that involve information and resources from many
sources. To make full use of the power of interactivity and content consumption, data
and device interoperability issues must be solved and data must be structured in a way
that could enable multiple devices to consume and share data between them. More-
over, traditional development methods and techniques must be replaced by scalable,
agile and configurable methodologies.

Smart Spaces provide a solution for the interoperability problem by standardiz-
ing how to describe data formats. A Smart Space is an abstraction of space that

123

Exploiting smart spaces for interactive TV applications

encapsulates both the information in a physical space as well as the access to this
information, such that it allows devices to join and leave the space. In this way,
a Smart Space becomes a dynamic environment whose identity changes over time
when the set of entities interacts with it to share information between them. Smart
Spaces could take advantage of digital TV/IPTV technologies to deliver content/-
data to the receiving devices and these data could be shared between heterogeneous
devices present in the Smart Space. Smart Space application development tools could
be used to develop interoperable interactive TV applications that employ mesh-up of
information from different sources and devices rather than a standard remote con-
trol. As a result of this convergence, a whole new universe of applications could be
possible.

In our previous work, we have developed a programming interoperability solution
[3,4] for rapid application development in Smart Spaces and it is based on the open
source Smart-M3 architecture [5]. This paper discusses an approach for ontology-
driven iTV application development and incorporating context-aware Event Control
Action (ECA) rules in iTV applications such that they can be reactive to the user’s
context, while refraining from affecting the Smart-M3 platform standard. We further
provide evaluation of our rule-based implementation by demonstrating the suitability
of this approach for context-aware iTV applications.

2 Background and motivations

Due to the IP-based TV services, TV and web came closer to each other and the
distinction between iTV applications and web services is becoming even harder as
the operators combine and develop different technologies to serve specific situations.
Moreover, iTV could use web as information space, i.e., utilizing web as an ultimate
information source by means of variety of technologies, such as semantic web RDF,
etc.

In view of recent advances, the definition of iTV applications has been changed
and the definitions specified in previous section need to be modified to reflect the
changes. We define iTV applications as services that are context aware and that could
actively engage users to interact using multiple devices to participate in the appli-
cation that may or may not be bounded to TV program and can be delivered and
consumed through any medium, such as broadcast, cable, IP, web, etc. Moreover,
information from heterogeneous sources could be used seamlessly. This definition
covers all important aspects such as content, device and platform independence but
highly context aware to adapt to user preferences. This brings the creation of such iTV
applications closer to the creation of regular software as we know if for PC and mobile
devices.

We believe that future interactive TV application would increasingly involve not
only a wide range of digital devices in highly interactive, dynamically changing envi-
ronment but also data/information from different sources, such as web. Moreover,
they would also take benefits from pervasive computing environment to deliver highly
personalized context-aware TV applications to the users. This is due to the increase
in number of digital appliances embedded in the users surrounding. It gives to rise

123

M. M. Saleemi, J. Lilius

pervasive interactive space that interconnects user, physical resources and computa-
tional entities. For example, iTV banking application given in the previous section.
Hence there is a need to shift to new application development methodologies that can
cope with issues such as dynamicity in terms of adding new devices and services,
context-awareness, inferring new knowledge and sharing it with others.

We propose to use ontology-driven iTV applications development because

– Ontologies are perfect candidates for modeling context information which is highly
desirable in future iTV applications to provide personal services dependent on the
environment. Users at different contexts have different needs and expectations and
ontologies can model the users context in effective way.

– As the concept of iTV has been evolving after the advent of IPTV, users are
expecting highly dynamic systems where they can join and leave anytime to con-
sume services. Smart Space provides this dynamic environment and ontologies
are important concept in Smart Space-based infrastructure.

– Reasoning and inferring new knowledge from available information and searching
and querying for their desired services are becoming essential part of iTV usages
as TV came closer to the web in recent years. Ontology-driven architectures can
provide reasoning capabilities in an effective way.

– Users now have range of devices in addition to the TV in their personal space
to interact and consume iTV applications. It makes it a ubiquitous system where
information from heterogeneous information sources such as sensors, digital appli-
ances, web, smartphones, TV, PVR, etc. is used for realization of truly interactive
applications. Ontologies are immediate solution for handling heterogeneity and
provide information level interoperability to the users.

It is perceived that the use of ontologies will essentially change the way in
which software systems/applications are built and that software designers will have
libraries of ontologies from which they can choose relevant ones. Use of ontologies in
application development provides competitive advantages over traditional approach
enabling greater information sharing and reuse. Ontology-driven development (ODD)
additionally exploits knowledge exploitation using reasoning over the maintained
ontology.

In this work, we explore the potential of introduction of Smart Spaces in the design
and development of interactive TV applications. In the previous work [3,4], we have
developed ontology-driven tools and frameworks for rapid application development
for Smart Spaces. We are now applying our ideas and methodologies of Smart Spaces
to interactive TV domain as we believe this convergence could provide potential ben-
efits in terms of value-added applications to the users. Our tools and methodologies
provide benefits which are not currently realized in iTV domain, such as (i) abstract-
ing underlying platform (ii) porting applications to different devices and platforms
(iii) reducing efforts in learning APIs. Our approach for developing highly interactive
applications deals with the key issues such as flexibility with respect to adding new
devices and services to the Smart Space, high level of abstractions, rule-based rea-
soning, task-based and recommendation-based design and automatic code generation
from application ontology.

123

Exploiting smart spaces for interactive TV applications

3 Literature review

In the recent years, there has been coordinated efforts from multiple organizations
and research groups towards inclusion of semantics in interactive TV services and
platforms. Work presented in [6] describes a semantics-aware platform for interactive
TV services to distribute, process and consume the media content. They proposed
an interactive TV receiver framework capable of collecting, extending and reasoning
semantic data related to broadcast multimedia content. The work presented in [7]
outlines video annotation technique, ontology-based modeling, multimedia meta-data
and user profiling through semantic reasoning. The main goal of this work is to create a
personalized digital TV recommender based on meta-data. Other works in the direction
of personalized TV programs recommendation systems based on semantics include
[8,9]. All these approaches use semantics information for reasoning purpose to deliver
personalized TV content.

Model-based approaches have been widely used for model-based user interface
development [10]. Work presented in [11] and [12] describes approaches for model-
driven development of interactive user interfaces, similar to researches like [13] and
[14] which apply modeling concepts for creating platform independent user interfaces.

To the best of our knowledge, there is no work done on the creation of ontology-
driven application for interactive TV. Our approach for developing highly interactive
applications deals with the key issues, such as flexibility with respect to adding new
devices and services for interaction, high level of abstractions, rule-based reasoning,
task-based and recommendation-based design and automatic code generation from
application ontology to facilitate application programmer. We have developed tools
and frameworks for ontology-driven application development and applied them to
interactive TV domain to realize the scenarios with mixture of technologies, systems,
information and devices.

4 System architecture

In this section, the overall system architecture is outlined and Fig. 1 depicts this
architecture. It consists of four main elements: first, the content provider sources, such
as IPTV, mobile TV, digital TV, portable media providers, etc. Second, application
and advertisement providers who provide application and advertisement content to be
consumed by the users. Third, Modeling component that models the content and its
meta-data. This modules require that the information on TV content and advertisement
must be defined using some standard for representing meta-data, such as MPEG-7.
The meta-data for TV content include title of the TV program, its category, actors,
authors or anchor of the program, etc., and for the advertisement it includes name
of the item, category, model, manufacturer, requirements and features, etc. We build
ontologies based on this information which relate these concepts and their relations.
Fourth, our Smart Space infrastructure including Semantic Information Broker (SIB)
and reasoning engine. This infrastructure is the core component which used to store
the ontologies and provide reasoning. It also facilitates interaction and communication
with the user devices through KPs for sharing and updating information between

123

M. M. Saleemi, J. Lilius

Fig. 1 Overall view of the system

them. Users profiles are also stored in the SIB as user profile ontology. Users receive
personalized advertisement and applications based on their profile ontology. Users
with heterogeneous devices can interact with the Smart Space to share information
between them.

4.1 Enhanced iTV application scenario

We chose AuctionTV example scenario given in [15] because it exploits additional
interaction and participation by iTV users. This application allows one of the partici-
pants to offer some item on sale through auction. This auctioneer get the role master
and other users join afterwards get the role participant. Whenever a participant p bids
on the item, the auctioneer raises the price confirming the bid. When the acceptable
bid has been made and confirmed, the bidding process can be ended and the participant
with highest bid gets the role winner.

We extended this basic scenario in a number of ways to recommend to users only
particular items for bidding which are of their interest. This is done by observing
users’ TV viewing history, content consumption behavior, personal preferences, etc.
and mapping all this knowledge to user’s profile ontology. We assume that various
digital devices in particular user space (e.g., home) can exchange information through
the Smart Space. Assuming that there are different TV stations and programs embed-
ding their schedules on their WebPages using some common semantics for program
description. TV can then recommend TV programs for particular user based on the user
profile ontology. It can further recommend particular interactive applications based
on the preferences and profile ontology. For example, consider a user who has been

123

Exploiting smart spaces for interactive TV applications

watching Shakiras new video song and has liked her page on Facebook. The system
can recommend him an iTV application of bidding for her latest album based on
harvesting and querying his content consumption behavior and personal preferences
given on social networks. It can add an event to the user’s calendar when the auction
will happen. At the time of the auction, the banking application on user’s smartphone
can check the account detail and user can decide based on the information if he has
to join the auction. The system can identify different users and give recommendations
according to particular user’s profile. In this scenario, information between different
sources and devices is communicated through the Smart Space. Smart Space allows
the mesh-up of all this information to enable intelligent ambient iTV applications
which are not limited to only TV.

This interactive application exhibits important properties which enable it to be mod-
eled and developed using our ontology-driven Smart Space approach. Firstly, infer-
encing the user’s preferences by semantically matching user’s profiles with meta-data
of the content provided by the content providers. This activates appropriate services
for the user from the available resources. Secondly, heterogeneous devices could be
used for interaction with the system making it a multi-device environment. Thirdly,
the application is driven by user’s actions and time-based events could also be used.
Fourthly, subscriptions could be used in the situations where one action could be per-
formed before any other action, e.g., after a bid is made, the amount of next bid should
be raised.

All these properties make Smart Space an ideal choice for the development of
such kind of interactive TV applications as Smart Space addresses the issues of rea-
soning, heterogeneous devices, interoperability, subscription based and user-driven
actions. Our approach for application development provides higher level of abstrac-
tion by automatically generating ontology API from application ontology by mapping
OWL ontology concepts into object-oriented programming language concepts. This
enables application developers to create innovative Smart Space applications using
traditional object-oriented programming concepts without worrying about the com-
plexity of OWL ontologies.

4.2 Sequence diagram of the application scenario

Figure 2 depicts a sequence diagram illustrating the interaction between different
modules of the architecture. It explains the operational flow and implementation of
the afore-mentioned application scenario. The first step for any user is to register with
the Smart Space using a unique id and the device profile. Only after registering he
can consume and share information with other users through the Smart Space. Next,
the user sends his profile information to be stored in the SIB in the form of profile
ontology. It is required to consume the personalized contents that are of his interest.
He can then request some content which is fetched from content provider using any
channel, e.g., IPTV or broadcast. The content provider also send the content ontology
which is stored in SIB. After the user gets the content, his profile ontology is updated to
reflect the viewing history. Based on the reasoning of these ontologies, personalized
advertisements and applications such as Auction of an item of user’s interest are

123

M. M. Saleemi, J. Lilius

Fig. 2 Sequence diagram

suggested to the user. User can also start such as application if he wants to sell some
item which is the case in our example scenario. The user registers as a seller to sell an
item which updates application ontology in the SIB by inserting user’s particulars.

5 Ontology-driven development (ODD) methodology

The pervasiveness in iTV applications increases the complexity of application develop-
ment due to the extended context space. This requires development approaches based
on the higher level of abstractions. Model-driven approach is promising as models are
not only used for design, development, maintenance but also for generating executable
code for specific applications and platforms. The main drawback of model driven
approach for pervasive application development is its lack of support for reasoning
tools. On the other hand, ODD follows similar approach as MDA using ontologies in
Model driven engineering process but ODD additionally exploits knowledge exploita-
tion using reasoning over the maintained ontology. There are several factors that make
ODD a suitable choice for building pervasive software applications (Fig. 3).

– Languages for representing ontologies (OWL, etc.) are syntactically and seman-
tically richer than common MDA approach of modeling in UML. UML models
lack the formal semantics while ontologies are more explicit and precise.

123

Exploiting smart spaces for interactive TV applications

Fig. 3 Methodology

– Ontology-driven approach is theoretically found on logic. While ontology allows
automated reasoning or inference, UML model does not.

– UML follows unique name assumption where same name always refer to the same
object and different names refer to different objects. OWL, on the other hand,
provides features to discipline names and two properties or two classes can be
stated to be equivalent (equivalentClass, equivalentProperty).

– There are other developments related to OWL that are in progress, such as expres-
sive rule language (SWRL, etc.) and OWL services.

In this section, we present an ontology-driven methodology for development of
intelligent pervasive iTV applications.

Domain ontology: Domain ontology models a specific domain which represents
part of the world. Particular meanings of the terms/concepts applied to the domain
are provided by the domain ontology. Domain ontologies are computation indepen-
dent and represent concepts of the particular domain in question. For example, in our
example scenario, the domain is TV domain and the concepts in the domain such
as viewers, program, etc. have particular meanings in this domain. In our proposed
methodology, part of the domain ontology could be converted into Smartspace inde-
pendent application model.

Context Ontology: Context ontology defines different users’ context concepts,
such as location, time, audience, etc. and is used for the reasoning purpose in combi-
nation with the standard user profile to improve content consumption and interaction
experience. In the proposed methodology, the context ontology could be derived from
domain ontology. This is because some portion of the domain ontology might be used
for reasoning purpose. Context ontology characterizes the state and situation of a user
and is important for personalized ambient services by taking into account the context
of the user; for example, if the user is in the home or office while listening a partic-
ular song? are there other people in the room ? etc. Users can use manage, link and

123

M. M. Saleemi, J. Lilius

synchronize available functionalities and behaviors of applications and the resources
according to available context information.

Application Ontology: Application ontology describes the concepts and their rela-
tionships in the application; for example, item, participant, winner, calendar, etc. in
our example AuctionTV application scenario.

Task Ontology: Task ontology specifies a library of different tasks that the devices
provide to the users. For example, tasks and services provided by different devices, such
as mobile phone, PVR, etc. in a smart room. The business logic of the application could
also be defined using task ontology. In this case, the total behavior is the combination
of this emerged behaviors defined in the task ontology.

Inference rules: The context inference process requires deterministic inference
rules to infer new context. These rules are either general or domain specific.

SmartSpace Independent App. Model: With particular domain, task and appli-
cation ontologies, a Smartspace independent Application model is created.

SmartSpace Specific App. Model: The SmartSpace independent application
model is then converted to SmartSpace specific application model. The context ontol-
ogy and inference rules are used to make the system into a particular setting of Smart
Space. That is, based on the context of a user at a given situation, a particular setting
of the Smart Space specific to that situation will be applied. For example, if a user
enter to his smart house, the setting of different digital devices will be automatically
set according to his preferences, such as room temperature, light settings, music, etc.
These settings are specific for each user in that smart space, that is for the other person
in the house.

Code and software artifacts: This module contains the corresponding artifacts at
the low level. In our case, it would consists of the SIB which contains task ontology
and context ontology.

The split in the proposed methodology gives more structured design and allow
reusability of task, domain and context ontologies for other applications in that domain.
The methodology has to be mapped to the underlying smart-M3 architecture. Such
methodology provides higher level of abstraction and changes the physical environ-
ment into a programmable space in which users can mange, synchronize, link and
consume accessible functionalities and behaviors of iTV application devices and ser-
vices in the environment according to context information.

Using this methodology and the reasoning rules enables users to program their own
environment to some extent which appears to be possible by having iTV applications
and users sharing the same conceptual world model. Abstract rule language could be
used to do business logic of the applications and enable and synchronize information
flow between devices and iTV applications according to the contextual information.

6 Inference rules using PythonRules module

We have developed a Python Module for easy definition of rules in our approach for
Smart-M3. The interaction with the SIB is made so that the Python developer does not
have to deal with RDF triples or semantic technologies like query languages to access
the central repository of shared information. The Python Rule module makes use of the

123

Exploiting smart spaces for interactive TV applications

Ontology Library Generator (OWL to Python) and its framework as abstraction of the
interface with the SIB. The PythonRules module allows the programmer to write rules
on the fly, i.e., can be executed directly and interpreted as any other Python statement.
Secondly, the module allows rules to be stored in the class RuleSoup which handles
the whole set of rules and runs them when needed. For the first case, operators (//
and �) were overloaded for rule syntax clarification and expressivity. In the second
case, declaring a rule does not implies its execution and delays it until the programmer
desires it by calling the method execute() of PythonRule class or runAll() from the
RuleSoup class.

With Clause Class: The Class With represents the With Clause of the Rule and
the first parameter of the PythonRule Class. It contains a list of Individuals which is
required to be present on the Smart Space.

– __init__(assumptions): Provides to the class With the individuals that appear later
on the When and Then clauses in the same rule. All the individuals to be used on
different clauses in the same rule must be added as input parameter to this class
except the instances of objects which are created in the Then clause.

– evaluate(): Evaluates, without executing the rule, the With clause returning True
if all of the individuals in With clause are different than None and they exist in the
SIB, this is, if they have already been created in the Smart Space.

– getWithIndividuals(): Returns all the instances representing the individuals partic-
ipating on the rule and that have been specified previously when creating the With
clause.

When Clause Class: The Class When represents the When Clause of the Rule
and the second parameter of the PythonRule Class. It contains a condition which is
requirement to be satisfied for the rule to fire.

– __init__(condition): Initializes the class When with one or several boolean condi-
tional statements to be satisfied. If they are more than one condition, they must be
expressed as a single one through Python regular boolean operators.

– evaluate(): Evaluates, without executing the rule, the When condition.
– getWhenConditions(): Returns the rule condition.

Then Clause Class: The Class Then represents the Then Clause of the rule and the
third parameter of the PythonRule Class. It contains a list of Python actions to execute
if the With and When clauses hold.

– __init__(consequent): Initializes the class Then with one or a list of sentences to be
executed if the rule condition holds. Note that they are not executed until execute()
is called (unless the rule is created on the fly with the operators // and �). An
example of statement could be, e.g., creating a new individual.

– execute(): Executes the provided statements.
– getThen(): Returns the rule actions (or consequent of the rule).
– getReturnValues(): Returns the values (if any, in case of need) returned by each of

the statements included in the Then clause.

The execution of the rules is achieved through the subscription capability of the
SSAP protocol to the Smart Space. This generates asynchronous notifications when

123

M. M. Saleemi, J. Lilius

changes occur in the Smart Space. However, this is a concrete implementation of Smart
Space broker (Smart-M3) but PythonRules module aims at being independent of the
information broker or repository used. The class Individual wraps, for this purpose, the
Ontology class corresponding to the Python class whose objects are used within the
classes When, With and Then. Individual also hides, by means of its helper methods,
the use of RDF queries and namespaces to the programmer, who only needs logic
Python expressions, i.e., basically any Python expression plus the added value of the
rule construction.

7 Implementation and evaluation

Our application development tools are used as follows:

1. Smart-M3 Ontology to Python API Generator: First of all, the ontologies to be
used need to be converted automatically to their corresponding Python classes.
For this purpose, our Ontology Library [3] is used, generating classes for each
Ontology class together with their properties and methods.

2. Programming Knowledge Processors: When the Ontology Library has generated
the needed classes with the included middleware, containing getters and setters

Fig. 4 Application ontology

123

Exploiting smart spaces for interactive TV applications

Fig. 5 iTV program ontology

methods, this middleware already abstracts the communication with the SIB allow-
ing programming of KPs. The generated EmptyKP.py file can be used as a start-
ing template; instance declarations automatically translate to RDF insertions into
the SIB (after committing changes). This allows other applications connected to
the same Smart Space to know about the existence of those individuals and to
interact with them.

3. Python Rules for Smart Space programming: Since the previous middleware still
requires a considerable number of calls before achieving interaction with the repos-
itory, as well as working with specific namespaces, PythonRules provides a higher
abstraction layer for fast specification and configuration of the Smart Space’s
behavior. needs to be imported.
The rules can either be executed synchronously (when declared in real time) or
stored together in the class RuleSoup. In the latter case, they can be run all at once
and executed asynchronously (when their conditions are satisfied).

123

M. M. Saleemi, J. Lilius

7.1 Ontology development

As our approach is based on ontology-driven application development, the first step is
to create application and domain ontologies. We developed an application ontology for
the application scenario described in Sect. 4. Figure 4 illustrates the excerpt from the
application ontology. The ontology shows the semantic relationships between different
concepts.

As we are dealing with the interactive TV domain in this particular scenario, the
domain ontology consists of the concepts related to TV content, such as category, title,
actors, schedule, etc. The domain ontology can be automatically generated using the
meta-data available for each TV program. Figure 5 describes the example TV program
ontology.

7.2 Programming knowledge processors: iTV use case

When the application programmer does not deal with RDF Triples directly, but mainly
with logic Python ordinary statements, the translation of problems described with nat-
ural language into programs becomes much easier. This section describes two knowl-
edge processors that are created for the evaluation of example scenario. The TVBroad-
casterKP creates a new Calendar and a new Event. These knowledge processors use
the APIs that are generated from the ontologies by our tool.

1 class TVBroadcaster_KP(KnowledgeProcessor):
2

3 def initialize(self):
4 self.registerOntology(CalendarOntology ())
5 self.createUpdatedProgramEvent ("Spanish people

around the world: Finland")
6 #self.createNewCalendar (" Natalia ’s Calendar ")
7

8 def createNewCalendar (self , title):
9 googleCalendar = Calendar ()

10 googleCalendar.setTitle(XSDString(title))
11

12 def createUpdatedProgramEvent (self ,title):
13 event = Event ()
14 event.setTitle(XSDString(title))
15 event.setDtStart(XSDDateTime(datetime (2012 , 8, 15,

17,0,0)))
16 print "BBC Broadcaster just added a calendar event

with updated programme"
17

18 def main(args):
19 app = QtGui.QApplication(sys.argv)
20 smartSpace = (’x’, (TCPConnector , (’127.0.0.1 ’, 10010)

))
21

22 kp = TVBroadcaster_KP.create(smartSpace)
23 sys.exit(app.exec_())

Listing 1 Knowledge processor for TV Program

123

Exploiting smart spaces for interactive TV applications

The AuctionItemsManagerKP is an example Class that creates new Items for sale
at an Auction.

25 class AuctionItemsManager_KP(KnowledgeProcessor):
26

27 def initialize(self):
28 self.registerOntology(AuctionOntologyOntology ())
29 self.addNewItemForSale ("Cool100in1")
30

31 def addNewItemForSale (self ,name):
32 event = Item()
33 event.setItemName(XSDString(name))
34 event.setDateOfStart(XSDDateTime(datetime (2012, 8,

17, 17,0,0)))
35 #event.setHasStartingPrice (XSDInteger (200))
36 print "e-Auction Items Manager just added a new

item for sale: ",name
37

38

39 def main(args):
40 app = QtGui.QApplication(sys.argv)
41 smartSpace = (’x’, (TCPConnector , (’127.0.0.1 ’, 10010)

))
42

43 kp = AuctionItemsManager_KP.create(smartSpace)
44 sys.exit(app.exec_())

Listing 2 Knowledge Processor for Auction Application

7.3 Inference rules

Straight after the KP is created, the developers could define the Python rules related to
the existing KPs. Then, connect the KPs to the Smart Space and run them is the only
thing left.

If EmptyKP.py (provided by the Ontology-Python Generator) is used, instance
declarations will automatically translate to insertions of Triples into the SIB. This
allows other KP applications connected to the same Smart Space to know about those
individuals’ existence to interact with them. In the Python Rules Module, every KP
application contains a TripleStore instance (produced by Ontology-Python Gen-
erator) representing the Smart Space’ SIB. At last, the With(), When() and Then()
clauses translate its Python statements to one of the implementation options given by
the Ontology-Python Generator. These are SIB calls in RDF or WQL language. Our
approach shows that learning OWL or query languages is not needed for interconnec-
tions with the SIB and interactions with other devices’ KPs.

We created two simple rules for the evaluation purpose.
Rule 1: If in an electronic auction, the new gadget Cool100in1 is offered for sale,

Natalia would like to be notified as soon as this item appears in the Auction. If this
occurs, an event on her calendar should be created immediately to remind her to bid.
The particular implementation of this rule using our PythonRule module is given in
the following listing:

123

M. M. Saleemi, J. Lilius

46 withClause = With([newGadgetItem])
47 whenClause = When(newGadgetItem.getProperty("ItemName") ==

"Cool100in1")
48 thenClause = Then([remindToBidEvent.new(Event),
49 remindToBidEvent.setProperty(Title = XSDString("

Cool100in1 in e-Auction , Remember to Bid!")),
50 remindToBidEvent.setProperty(DtStart = XSDDateTime(

newGadgetItem.getProperty("HasDateOfStart "))),
51 remindToBidEvent.setObject("MemberOf", nataliaCalendar.

get()),
52 GoogleCalendar("smartspacecalendar@gmail .com", "

smartspace").addEvent("Remember to Bid for
Cool100in1!","","e-Auction", dayBefore(XSDDateTime(
newGadgetItem.getProperty("DateOfStart"))),

dayBefore1hourAfter (
XSDDateTime(newGadgetItem.getProperty("DateOfStart")
)), None)])

53

54 rule = PythonRule(withClause , whenClause , thenClause)

Rule 2: If there is a new event in the broadcaster calendar which includes Natalia’s
favorite documentary, Spanish people around the world, happening in Finland, she
would like to be notified on her calendar not to miss it.

56 withClause = With([favouriteDocumentaryEvent])
57 whenClause = When(favouriteDocumentaryEvent .getProperty("

Title") == "Spanish people around the world: Finland")
58 thenClause = Then([remindDocumentaryEvent.new(Event),
59 remindDocumentaryEvent.setProperty(Title = XSDString("

Spanish people around the world in Finland!")),
60 remindDocumentaryEvent.setProperty(DtStart =

XSDDateTime(favouriteDocumentaryEvent .getProperty("
DtStart")-oneDay)),

61 remindDocumentaryEvent.setObject("MemberOf",
nataliaCalendar.get()),

62 GoogleCalendar ("smartspacecalendar@gmail .com", "
smartspace").addEvent("Tomorrow is your favourite
documentary","","BBC Broadcaster", dayBefore(
XSDDateTime(favouriteDocumentaryEvent .getProperty("
DtStart"))), dayBefore1hourAfter (XSDDateTime(
favouriteDocumentaryEvent .getProperty("DtStart"))),
None)])

63

64 rule = PythonRule(withClause , whenClause , thenClause)
65

66 # Running the whole RuleSoup ...
67 ruleSoup = RuleSoup ()
68 ruleSoup.addRule(rule)
69 ruleSoup.runAllRules ()
70 # Waiting for creation of new Events ...
71 sys.exit(app.exec_ ())

The rules are application specific and a set of rules is to be specified for each
domain. Based on the context information from multiple context dimensions, the
system triggers when a change happens and the associated rules are activated to infer
new context information. The underlying implementation of the Python Rules Module
translates Python logic expressions to the SIB API main interface: Query, Subscribe,

123

Exploiting smart spaces for interactive TV applications

Insert, Remove, Update. Thus, the Python Rules Module just needs to be imported to
be used with the KP class where the DIEM application is coded.

8 Discussion

For this use case, we first developed the ontologies in Protege and then these ontolo-
gies are fed as input to our tool to generate ontology libraries. We then implemented
the knowledge processors that reflect the functionality of the application. Knowledge
processors use the generated ontology APIs. We then defined the rules using Python-
Rules Module which describes the rule expressions embedded into Python language.

Our approach for ontology-driven iTV application development worked well for
these simple rules. We aim to extend it to evaluate more complex scenarios and context-
aware iTV applications.

9 Conclusions and future work

In this paper, we have presented how to develop interactive TV application using
ontology-driven Smart Space approach. We have also demonstrated the suitability
of our rule-based approach to support a highly dynamic context-aware service that
includes reasoning for situation detection. We have developed a context-aware ser-
vice in the domain of interactive TV and evaluated it using our developed ontology-
driven tools. Future work includes development of more complex application scenarios
that could benefit from pervasiveness. Moreover, performance and scalability of the
approach will be accessed by increasing the number of entities, number of events gen-
erated and the number of rules. For this purpose, evaluation parameter reaction time
will be defined. The reaction time will consist of the processing time that takes place
between an event occurrence, and the invocation of the action, i.e., the time between
the occurrence of an event, and triggering a rule associated with that.

Acknowledgments The research work presented in this paper is based on DIEM project and the authors
would like to acknowledge all the partners of this project.

References

1. European Broadcasting Union: multimedia homepage of the European Broadcast Union (EBU),
Geneva, Switzerland. http://www.ebu.ch/en/multimedia/index.php

2. British Broadcasting Corporation: enhanced TV formats. http://www.bbc.co.uk/commissioning/
interactive/

3. Smart-M3 software at sourceforge.net, release 0.9.4beta, May 2010. [Online]. http://sourceforge.net/
projects/smart-m3/

4. Kaustell a, saleemi MM, Rosqvist T, Jokiniemi J, Lilius J, Porres I (2011) Framework for smart space
application development. In: Proceedings of the international workshop on semantic interoperability,
IWsI

5. Oliver I, Honkola J (2008) Personal semantic web through a space based computing environment. In:
Proceedings of the 2nd international conference on semantic, computing

123

http://www.ebu.ch/en/multimedia/index.php
http://www.bbc.co.uk/commissioning/interactive/
http://www.bbc.co.uk/commissioning/interactive/
http://sourceforge.net/projects/smart-m3/
http://sourceforge.net/projects/smart-m3/

M. M. Saleemi, J. Lilius

6. Papadimitriou A, Anagnostopoulos C, Tsetsos V, Paskalis S, Hadjiefthymiades S (2007) A semantics-
aware platform for interactive tv services. In: In the Proceedings of the 1st international conference on
new media technology (I-MEDIA 07), Graz, Austria

7. Blanco-Fernandez Y, Pazos-Arias JJ, Gil-Solla A, Ramos-Cabrer M, Barragans-Martinez B, Lopez-
Nores M, Garcia-Duque J (2004) Avatar: an advanced multi-agent recommender system of personalized
tv contents by semantic reasoning. In: Web information systems WISE 2004

8. Bellekens P, van der Sluijs K, Aroyo L, Houben G-J, Kaptein A (2007)Semantics-based framework
for personalized access to TV content: personalized TV guide use case

9. Hopfgartner F, Jose J (2010) Semantic user profiling techniques for personalised multimedia recom-
mendation. Multimed Syst 16(4–5):255–274

10. Pleu A, Van den Bergh J, Humann H, Sauer S (2005) Model driven development of advanced user
interfaces. In: CEUR workshop proceedings, vol 159. http://ceur-ws.org/Vol-159

11. Pleuss A, Gračanin D, Zhang X (2011) Model-driven development of interactive and integrated 2D
and 3D user interfaces using mml. In: Proceedings of the 16th international conference on 3D web
technology, pp 89–92. ACM, New York

12. den Bergh JV (2010) Model-driven development of advanced user interfaces. In: 28th of the interna-
tional conference on human factors in computing systems (CHI). ACM, New York

13. Eisenstein J, Vanderdonckt J, Puerta A (2001) Applying model-based techniques to the development
of uis for mobile computers. In: IN IUI 2001 international conference on intelligent user interfaces.
ACM Press, New York, pp 69–76

14. Coyette A, Kieffer S, Vanderdonckt J (2007) Applying model-based techniques to the development of
uis for mobile computers. In: In human–computer interaction INTERACT 2007, p 150

15. Van Den Bergh J, Bruynooghe B, Moons J, Huypens S, Handekyn K, Coninx K (2007) Model-
driven creation of staged participatory multimedia events on TV. In: Proceedings of the 5th European
conference on interactive TV: a shared experience, EuroITV’07. Springer, Berlin, pp 21–30

123

http://ceur-ws.org/Vol-159

	Erratum to: Exploiting smart spaces for interactive TV applications development
	Erratum to: J Supercomput DOI 10.1007/s11227-014-1183-0

	Exploiting smart spaces for interactive TV applications development
	Abstract
	1 Introduction
	2 Background and motivations
	3 Literature review
	4 System architecture
	4.1 Enhanced iTV application scenario
	4.2 Sequence diagram of the application scenario

	5 Ontology-driven development (ODD) methodology
	6 Inference rules using PythonRules module
	7 Implementation and evaluation
	7.1 Ontology development
	7.2 Programming knowledge processors: iTV use case
	7.3 Inference rules

	8 Discussion
	9 Conclusions and future work
	Acknowledgments
	References

