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Abstract We propose a framework for constructing ker-
nels that take advantage of local correlations in sequen-
tial data. The kernels designed using the proposed frame-
work measure parse similarities locally, within a small win-
dow constructed around each matching feature. Further-
more, we propose to incorporate positional information in-
side the window and consider different ways to do this. We
applied the kernels together with regularized least-squares
(RLS) algorithm to the task of dependency parse ranking us-
ing the dataset containing parses obtained from a manually
annotated biomedical corpus of 1100 sentences. Our exper-
iments show that RLS with kernels incorporating positional
information perform better than RLS with the baseline ker-
nel functions. This performance gain is statistically signifi-
cant.

Keywords Kernel methods · Parse ranking · Regularized
least-squares · Natural language processing

1 Introduction

With availability of structured data applicable for machine
learning techniques, application of kernel methods (see e.g.,
[1–3]) is shown to have an important role in Natural Lan-
guage Processing (NLP). Recently, several papers have pre-
sented and applied new kernels to NLP problems with
promising results. For example, Collins and Duffy [4] de-
scribed convolution kernels for various discrete structures
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encountered in NLP tasks, which allow high dimensional
representations of these structures. Our work has been moti-
vated not only by rapidly developing field of kernel methods
and their successful applications in NLP, but also by the im-
portance of incorporating domain knowledge for improving
the performance of the learning algorithms.

In this study, we address the problem of dependency
parse ranking in the biomedical domain. The parses are
generated by the Link Grammar (LG) parser [5] which is
applied to the BioInfer corpus [6] containing 1100 anno-
tated sentences. The LG parser is a full dependency parser
based on a broad-coverage hand-written grammar. It gen-
erates all parses allowed by its grammar and applies the
built-in heuristics to rank the parses. However, its rank-
ing performance has been found to be poor when applied
to biomedical text [7]. Thus, our task of parse ranking is
to take the output of the LG parser and re-order the rank-
ing.

Recently, we proposed a method for dependency parse
ranking [8] that uses the regularized least-squares (RLS)
algorithm [9] and grammatically motivated features. The
RLS algorithm has performance comparable to the regular
support vector machines (see e.g. [10]). Further, unlike for
SVMs, there is an efficient method for searching the opti-
mal regularization parameter for RLS with cross-validation
[11]. Namely, training RLS with several different values of
the regularization parameter can be performed as efficiently
as training with only one value. Further, performing cross-
validation with any fold partition is as efficient as training a
single RLS.

Our method, called here the RLS ranker, worked notably
better giving 0.42 correlation compared to 0.16 of the LG
heuristics. Furthermore, we evaluated performance of the
RLS ranker on different features separately as well as on
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Fig. 1 Example of parsed
sentence

their combination. We have also introduced the locality-
convolution (LC) kernel [12] that takes into account po-
sitional information within the windows in the parses and
further improves performance when used with RLS algo-
rithm. The results showed statistically significant gain in
parse ranking performance.

In this paper, we extend the results of [12] by consider-
ing a framework for constructing kernels that take advantage
of local correlations in sequential data. As baselines we use
the locality-improved [13] and spectrum [14] kernels which
also are designed for the same kind of purposes. The LC
kernel and the baseline kernels are presented in the frame-
work proposed in this paper. In all experiments, we apply
the F-score based parse goodness function [8], and evaluate
the ranking performance with Kendall’s correlation coeffi-
cient τb described in [15]. To be self contained, these mea-
sures are described also in this paper.

The LC kernel addresses the problem of parse ranking
through the following characteristics. First, it possesses the
convolution property described by Haussler [16], operating
over discrete structures. Second, it calculates similarity be-
tween windows spanning the closely located features. Fur-
thermore, it makes use of the position sensitive function,
which takes into account the positions of the features within
the windows. The LC kernel function can be considered as
a specific instance of the convolution kernels and can be in-
cluded in many methods, such as the RLS algorithm that we
are using in this study.

The paper is organized as follows: in Sect. 2, we present
grammatically motivated features for parse representation;
in Sect. 3, we introduce the parse goodness function; in
Sect. 4, we describe the RLS algorithm; in Sect. 5, we pro-
vide the performance measure applied to parse ranking; in
Sect. 6, we discuss convolution kernels, define notions of
locality windows, position sensitive feature matching, de-
scribe our baseline methods, and finally introduce the LC
kernel; in Sect. 7, we evaluate the applicability of the LC
kernel to the task of dependency parse ranking and bench-
mark it with respect to baseline methods; we conclude this
paper in Sect. 8.

2 Features for parse representation

In the case of the parse ranking problem, where parses are
represented within a dependency structure, particular atten-
tion to the extracted features is required due to the sparse-
ness of the data. In [8], we proposed features that are gram-
matically relevant and applicable even when relatively few

training examples are available. Grammatical features ex-
tracted from a dependency parse contain information about
the linkage consisting of pairwise dependencies between
pairs of words (bigrams), the link types (the grammatical
roles assigned to the links) and the part-of-speech (POS)
tags of the words. An example of a fully parsed sentence
is shown in Fig. 1. As in [8], we define seven feature types
representing important aspects of the parse, consisting of the
following grammatical structures:

Grammatical bigram feature is defined as a pair of words
connected by a link. In the linkage example of Fig. 1, the
extracted grammatical bigrams are absence—of, absence—
leads, of—alpha-syntrophin, etc.

Word & POS tag feature contains the word with the
POS tag assigned to the word by the LG parser. In Fig. 1,
the extracted word & POS features are absence.n, alpha-
syntrophin.n, leads.v, etc.

Link type feature represents the type of the link assigned
by the LG parser. In the example, they are Mp, Ss, Js, etc.

Word & Link type feature combines each word in the sen-
tence with the type of each link connected to the word, for
example, absence—Mp, absence—Ss, of—Mp, etc.

Link length feature represents the number of words that
a link in the sentence spans. In Fig. 1, the extracted features
of this type are 1, 3, 1, etc.

Link length & Link type feature combines the type of the
link in the sentence with the number of words it spans. In
Fig. 1, the extracted features of this type are 1—Mp, 3—Ss,
1—Js, etc.

Link bigram feature extracted from the parse is a combi-
nation of two links connected to the word, ordered leftmost
link first. In the example, the link bigrams are Mp—Ss, Mp—
Js, Ss—MVp, etc. When there are more than two links asso-
ciated with a word, we extract all link pairs. For example,
all link bigrams that have word ‘synapses’ in common are
Jp—A, Jp—A, Jp—Ma, A—A, A—Ma, A—Ma.

To measure the influence of individual features, in our
previous study [8], we conducted an experiment where fea-
tures were introduced to the ranker one by one. We observed
that the word & link type was the best feature followed by
the grammatical bigram and the link bigram features.

As a natural continuation of [8], we propose projecting
parses into feature sequences in order to take into account lo-
cal correlations between parses. To avoid sparsity, for each
parse, we make one sequence consisting of homogeneous
features per each type instead of a single sequence contain-
ing the features of all types. We define these homogeneous
feature sequences as follows. Let r be the number of types,
and let {t1, . . . , tr} be the set of types. In our case, r = 7 and
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the corresponding feature types are described above. For ex-
ample, t1 is the grammatical bigram type consisting of all
the grammatical bigram features of the particular parse. Let
us consider a parse p ∈ P , and let pj ,1 ≤ j ≤ r , be the
sequence of the features of type tj in the parse p in the or-
der of their appearance. For example, in the case of Fig. 1,
p1 = absence—of,absence—leads,of—alpha-syntrophin,
etc. The order of features is also preserved for all other
types: p3 = Mp,Ss, etc. or p4 = absence—Mp, absence—Ss,
of—Mp, of—Js, etc. For the basic types—POS tag, Word,
Link type, and Link length features—as well as for the com-
plex features representing conjunctions of the basic types,
the order of appearance is determined by the indices of the
words they are related to. For example, if there exist two
grammatical bigrams having a common first word, the deci-
sion of the feature positions within the sequence is based on
the index of the second word.

Now we can define a mapping � from the parse space P
to the feature space H , � : P → H , representing parses
through the sequences of the features as follows: �(p) =
(p1, . . . , pr). If we denote pj = (f

tj
1 , . . . , f

tj
|pj |), 1 ≤ j ≤ r ,

then

�(p) = ((f
t1
1 , . . . , f

t1|p1|
︸ ︷︷ ︸

p1

), . . . , (f
tr
1 , . . . , f

tr|pr |
︸ ︷︷ ︸

pr

)). (1)

Here, the length of the sequences pj , denoted as |pj |, as

well as the individual features f
tj
i depend on the parse p.

We call the sequences pj subparses of p ∈P .

3 F-score based goodness function for parses

The BioInfer corpus is a set of manually annotated sen-
tences, that is, for each sentence of BioInfer, we have a man-
ually annotated correct parse. We define a parse goodness
function as

f ∗ : P �→ R+

which measures the similarity of the parse p ∈ P with re-
spect to its correct parse p∗. We propose an F-score based
goodness function that assigns a goodness value to each
parse based on information about the correct linkage struc-
ture. This function becomes the target output value that we
try to predict with the RLS algorithm.

Let L(p) denote the set of links with link types of a
parse p. The links are considered to be equal if and only if
they have the same link type and the indices of the words
connected with the links are the same in the sentence in
question.

The functions calculating numbers of true positives (TP),
false positives (FP) and false negatives (FN) links with link

types are defined as follows:

TP(p) =| L(p) ∩ L(p∗) |, (2)

FP(p) =| L(p) � L(p∗) |, (3)

FN(p) =| L(p∗) � L(p) |. (4)

For example, let us consider beginning of the parse pre-
sented in Fig. 1, namely, starting from the word “Absence”
and ending in the word “to”. Then the L(p∗) = {1 − Mp −
2,1 − Ss − 4,2 − Js − 3,4 − MVp − 5} is the correct set
of links with link types and consider L(p) = {1 − Ss −
3,1 − Ss − 4,2 − E − 3,4 − MVp − 5} to be the predicted
one. Then TP = 2 (correct links: 1 − Ss − 4,4 − MVp − 5),
FP = 2 (link in a wrong place: 1 − Ss − 3, link with a
wrong link type: 2 − E − 3), and FN = 2 (missing links:
1 − Mp − 2,2 − Js − 3).

We adopt one exception in (3) because of the characteris-
tics of the corpus annotation. Namely, the corpus annotation
does not have all links, which the corresponding LG link-
age would have: for example, punctuation is not linked in
the corpus. As a consequence, links in L(p) having one end
connected to a token without links in L(p∗), are not con-
sidered in (3). The parse goodness function is defined as an
F-score

f ∗(p) = 2TP(p)

2TP(p) + FP(p) + FN(p)
. (5)

High values of (5) indicate that a parse contains a small num-
ber of errors, and therefore, the bigger f ∗(p) is, the better is
parse p.

Next we consider the regularized least-squares algorithm
by which the measure f ∗ can be predicted.

4 Regularized least-squares algorithm

Let {(x1, y1), . . . , (xM,yM)}, where xi ∈ P, yi ∈ R, be the
set of training examples. We consider the regularized least-
squares (RLS) algorithm as a special case of the following
regularization problem known as Tikhonov regularization
(for a more comprehensive description, see e.g., [9]):

min
f

M
∑

i=1

l(f (xi), yi) + λ‖f ‖2
K, (6)

where l is the loss function used by the learning machine, f :
P → R is a function, λ ∈ R+ is a regularization parameter,
and ‖ · ‖K is a norm in a Reproducing Kernel Hilbert Space
defined by a positive definite kernel function K . Here P can
be any set, but in our problem, P is a set of parses of the
sentences of the BioInfer corpus. The target output value
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yi is calculated by a parse goodness function, that is, yi =
f ∗(xi), and is predicted with the RLS algorithm. The second
term in (6) is called a regularizer. The loss function used
with RLS for regression problems is called least squares loss
and is defined as

l(f (x), y) = (y − f (x))2.

By the Representer Theorem (see e.g., [17]), the minimizer
of (6) has the following form:

f (x) =
M
∑

i=1

aiK(x, xi),

where ai ∈ R and K is the kernel function associated
with the Reproducing Kernel Hilbert Space mentioned
above.

Kernel functions are similarity measures of data points in
the input space P , and they correspond to the inner product
in a feature space H to which the input space data points are
mapped. Formally, kernel functions are defined as

K(x,x′) = 〈�(x),�(x′)〉,

where � :P → H .

5 Performance measure for ranking

In this section, we present the performance measures used
to evaluate the parse ranking methods. We follow Kendall’s
definition of rank correlation coefficient [15] and measure
the degree of correspondence between the true ranking and
the ranking output by an evaluated ranking method. If two
rankings are equal, then correlation is +1, and on the other
hand, if one ranking is the inverse of the other, correlation
is −1.

The problem of the parse ranking can be formalized
as follows. Let s be a sentence of BioInfer, and let Ps =
{v1, . . . , vn} ⊆ P be the set of all parses of s produced by
the LG parser. We apply the parse goodness function f ∗ to
provide the target output variables for the parses by defining
the following preference function

Rf ∗(vi, vj ) =
⎧

⎨

⎩

1 if f ∗(vi) > f ∗(vj ),

−1 if f ∗(vi) < f ∗(vj ),

0, otherwise

which determines the ranking of the parses vi, vj ∈ Ps . We
also define a preference function Rf (vi, vj ) in a similar way
for the regression function f learned by the RLS algorithm.
In order to measure how well the ranking Rf is correlated
with the target ranking Rf ∗ , we adopt Kendall’s commonly

used rank correlation measure τ . Let us define the score Sij

of a pair vi and vj to be the product

Sij = Rf (vi, vj )Rf ∗(vi, vj ).

If score is +1, then the rankings agree on the ordering of vi

and vj , otherwise score is −1. The total score is defined as

S =
∑

1≤i<j≤n

Sij .

The number of all different pairwise comparisons of the
parses of Ps that can be made is

(
n
2

) = 1
2 · n(n − 1). This

corresponds to the maximum value of the total score, when
agreement between the rankings is perfect. The correlation
coefficient τa defined by Kendall is

τa = S

1
2 · n (n − 1)

.

While τa is well applicable in many cases, there is an impor-
tant issue that is not fully addressed by this coefficient—tied
ranks, that is, f ∗(vi) = f ∗(vj ) or f (vi) = f (vj ) for some
i, j . To take into account possible occurrences of tied ranks,
Kendall proposes an alternative correlation coefficient

τb = S

1
2

√
∑

i,j Rf ∗(vi, vj )2 · ∑i,j Rf (vi, vj )2
, (7)

where 1 ≤ i, j ≤ n. With tied ranks the usage of τb is
more justified than τa . For example, if both rankings are
tied except the last member, then τb = 1 indicating com-
plete agreement between two rankings, while τa = 2

n
. This

can be demonstrated by the following simple example. Let
Ps = {v1, . . . , v4}, f ∗(v1) = · · · = f ∗(v3) = 3, f ∗(v4) = 4
and let the predicted values be f (v1) = · · · = f (v3) = 2,
f (v4) = 3. Then it is easy to see that S = 3, and thus
τa = 1

2 = 2
n

, where n = 4. The denominator of τb is 3, and
thus τb = 1. Then for large values of n this measure is very
close to 0, and therefore inappropriate. Due to many ties in
the data, we use the correlation coefficient τb to evaluate
performance of our ranker.

6 Kernels for sequential data

In this section, we first discuss the convolution kernels.
Next, a framework for constructing kernels that take advan-
tage of local correlations in sequential data is considered and
the locality-convolution (LC) kernel is introduced. The LC
kernel is based on the convolution framework as we demon-
strate in Sect. 6.2. Finally, we present the locality-improved
and spectrum kernels that we use as baselines.
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6.1 Convolution kernels

The convolution kernels are usually built over discrete struc-
tures. They are defined between the input objects by ap-
plying convolution sub-kernels for the parts of the objects.
Following [16], we briefly describe the convolution kernel
framework. Let us consider x ∈ X as a composite structure
such that x1, . . . , xN are its parts, where xn belongs to the
set Xn for each 1 ≤ n ≤ N , and N is a positive integer. We
consider X1, . . . ,Xn as countable sets, however, they can
be more general separable metric spaces [16]. Let us de-
note shortly x̂ = x1, . . . , xN . Then the relation “x1, . . . , xN

are parts of x” can be expressed as a relation R on the set
X1 ×· · ·×XN ×X such that R(̂x, x) is true if x̂ are the parts
of x. Then we define R−1(x) = {̂x : R(̂x, x)}. Now let us
suppose that x, y ∈ X and there exist decompositions such
that x̂ = x1, . . . , xN are the parts of x and ŷ = y1, . . . , yN

are the parts of y. If we have some kind of kernel functions

Kn(xn, yn) = 〈�(xn),�(yn)〉, 1 ≤ n ≤ N,

to measure similarity between elements of Xn, then the ker-
nel K(x,y) measuring the similarity between x and y is de-
fined to be the following generalized convolution:

K(x,y) =
∑

x̂∈R−1(x)

∑

ŷ∈R−1(y)

N
∏

n=1

Kn(xn, yn). (8)

There have been several different convolution kernels re-
ported and applied in NLP, for example, string kernel [18],
word-sequence kernel [19], tree kernels (see e.g., [4, 20])
and graph kernels (see e.g., [21–23]). Furthermore, general
examples of convolution kernels can be found in [16] as
well. The LC kernel function proposed in this paper satis-
fies the properties of the above convolution approach and
it is built over discrete and homogeneous sequences of the
features described in Sect. 2.

6.2 Locality-convolution kernel

The locality-convolution kernel has the following properties
that we believe are of importance for the ranking task: (i)
the use of feature sequences extracted in the order of the ap-
pearance in the parse, (ii) construction of locality window
around matching features, and (iii) position sensitive eval-
uation of the features within the window. Below we define
these properties formally.

Let us consider parses p,q ∈ P and let pj = (f
tj
1 , . . . ,

f
tj
|pj |) and qj = (g

tj
1 , . . . , g

tj
|qj |) be their subparses consisting

of the features of the same type tj as described in Sect. 2.
Next we consider how to define a similarity between the sub-
parses pj and qj . For simplicity, we omit superscript tj in
the features of subparses, because we consider them to be-
long to the type tj . At each position we compare subparses

locally within a small window of length 2w + 1. The simi-
larity of the subparses pj and qj is obtained with the kernel

G(pj , qj ) =
|pj |
∑

i=1

|qj |
∑

k=1

κ(i, k), (9)

where κ is a kernel. To measure the similarity between
whole parses p and q , we measure the correspondence of
their subparses within each feature type and then sum them
up:

K(p,q) =
r

∑

j=1

G(pj , qj ), (10)

where r is the number of the feature types.
By defining κ(i, k) in the general formulation (9), we ob-

tain different similarity functions between parses. If we set
κ(i, k) = δ(fi, gk), where

δ(x, y) =
{

0, if x = y,

1, if x = y

then (9) equals to the number of matching features in the
two subparses. To pay attention also to the nearby features of
the matching features within a certain locality window cen-
tered at the matching features, we use an appropriate real
valued (2w + 1) × (2w + 1) matrix P in the definition of
κ(i, k). The purpose of P is to weight the matches within the
windows with respect to the positions of the matches (see
[24–26] for a similar approach). However, here we do not
weight the individual positions within one window as with
the baseline kernels described in Sect. 6.3. Instead, we de-
fine weights for all position pairs within two windows com-
pared.

A simple realization of this idea would be

κ(i, k) = δ(fi, gk)

w
∑

m,l=−w

[P ]m,lδ(fi+m,gk+l ). (11)

Note that the rows and the columns of the positional weight
matrix P are indexed from −w to w. Furthermore, we con-
sider features as mismatched when the indices i + m and
g + k are not valid, e.g. i + m < 1 or i + m > |pj |.

When we set P = A, where A is a matrix whose all ele-
ments are ones, we get κ that counts the matching features
in the two windows. This corresponds to the case when the
order of the features inside the windows is disregarded. As
another alternative, we can construct a function that requires
the matching feature positions to be exactly the same. We
obtain it by P = I , where I denotes the identity matrix.

Furthermore, when P is a diagonal matrix whose ele-
ments are weights increasing from the boundary to the cen-
ter of the window, we obtain a kernel that is related to the lo-
cality improved kernel proposed in [13]. However, if we do
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not require strict position matching, but rather penalize the
features that match but have a different position within the
windows, one can use a positional similarity matrix whose
off-diagonal elements are nonzero and smaller than the di-
agonal elements. We can obtain such a matrix, for example,
by

[P ]m,l = e
− (m−l)2

2θ2 , (12)

where θ ≥ 0 is a parameter.
Furthermore, we define the following multiplicative ver-

sion of the κ function:

κ(i, k) = δ(fi, gk)

w
∏

m,l=−w

([P ]m,lδ(fi+m,gk+l ) + 1
)

. (13)

The choice of an appropriate κ is a matter closely related
to the domain of the study. In Sect. 7, we show that posi-
tional information captured with (13) is useful and improves
the ranking performance. When using (13) with (12) in (9),
we obtain the kernel which we call the locality-convolution
(LC) kernel. The proposed function is indeed a valid kernel
due to positive semidefiniteness of matrix P and kernel clo-
sure properties. Conceptually, our kernel enumerates all the
substructures representing pairs of windows built around the
matching features in the subparses and calculates their simi-
larity. The LC kernel is able to treat not only exact matching
of the features, but also matching within the locality win-
dows, therefore making the similarity evaluation more suit-
able for the task.

Let us consider the LC kernel from convolution per-
spective by using the notation introduced in Sect. 6.1 and
defining the set X and the relation R. Let X be the set
of all subparses. We define R(̂x, x) to be true iff x̂ is a
window (as defined in Sect. 6.2) of the subparse x. Then
R−1(x) = {̂x : R(̂x, x)} is the set of all the windows of x.
We observe the analogy in calculation of subparse similarity
by the LC kernel and (8) assuming in the latter N = 1.

6.3 Related kernels

A sequence kernel called the locality-improved kernel de-
scribed in [13] concerns recognition of so called transla-
tion initial sites (TIS) in the sequence. Zien et al. [13] pro-
posed incorporating basic biological hypothesis that while
certain local correlations are relevant in recognition, depen-
dencies between distant positions are of the minor impor-
tance or even do not exist. By incorporating this knowledge
into feature space one can expect to obtain better results,
rather than with general kernels. Using the notations defined
in Sect. 6.2, we can formulate the locality-improved kernel
as

G(pj , qj ) =
(

n
∑

i=1

κ(i)

)d2

, (14)

where

κ(i) =
(

w
∑

m=−w

[P ]m,mδ(fi+m,gi+m)

)d1

, (15)

d1, d2, n ∈ N+ and P = D with all except diagonal elements
equal to 0. The locality-improved kernel (14) is not applica-
ble in the situations where sequences of different length
are being compared. We use a straightforward modification
of (14) that allows its application to sequences of different
length:

G(pj , qj ) =
⎛

⎝

|pj |
∑

i=1

|qj |
∑

k=1

κ(i, k)

⎞

⎠

d2

, (16)

where

κ(i, k) =
(

w
∑

m=−w

[P ]m,mδ(fi+m,gk+m)

)d1

. (17)

The difference between (14) and (16) is that in the former the
centers of the two compared windows are always in the same
position, while they can be in arbitrary positions in the lat-
ter. Nonzero elements of D are defined to increase from the
boundaries to the center of the window. Thus, sequences are
compared locally at each position by constructing a small
window of length 2w + 1, and the matching features are
counted and multiplied with weights [D]m,m.

Next we consider the spectrum kernel introduced in [14]
(see also [1]). When comparing two sequences, a natural
way is to count the common contiguous subsequences that
are contained in both of them. Informally, the spectrum ker-
nel of an order h can be considered as a histogram of fre-
quencies of all its contiguous substrings of length h. In other
words, the h-spectrum kernel function is an inner product of
the h-spectra of the two evaluated sequences. The spectrum
kernel is obtained by using

κ(i, k) =
h

∏

l=1

δ(fi+l , gk+l), (18)

in (9). In our parse space the feature space generated by (18)
is very sparse. Therefore, instead of using (9), we sum up all
spectrum kernels up to window length h:

G(pj , qj ) =
h

∑

u=1

|pj |
∑

i=1

|qj |
∑

k=1

κ(i, k)

h
∏

l=1

δ(fi+l , gk+l ). (19)

7 Experiments

Throughout our experiments we have been using the BioIn-
fer corpus which consists of 1100 annotated sentences. It



Locality kernels for sequential data and their applications to parse ranking

Table 1 Results of the parameter estimation and final validation experiments

Kernel Positional matrix Best parameters Performance on Performance on

on training data training data (τb) test data (τb)

(11) P = A λ = 2−2,w = 1 0.396

[P ]m,l = e
− (m−l)2

2θ2 λ = 24,w = 1, θ = 0.5 0.421

P = I λ = 25,w = 1 0.413

LC (13) P = A λ = 21,w = 1 0.384

[P ]m,l = e
− (m−l)2

2θ2 λ = 24,w = 1, θ = 0.3 0.423 0.447

P = I λ = 2−3,w = 1 0.406

Locality-improved (16) P = D λ = 26,w = 1, d1 = 2, d2 = 1 0.387 0.432

Spectrum (19) λ = 24, h = 2 0.378 0.410

is divided into two datasets containing 500 and 600 sen-
tences. The first dataset is used for the parameter estimation
and the second one is reserved for the final validation. For
each sentence, there is a certain number of parses generated
by the LG parser. Due to the computational complexity, we
restricted the number of parses per sentence to 5 in train-
ing and to 20 in testing. When more parses are available
for a sentence, we sampled randomly the necessary amount;
when fewer are available, all parses are used. We used the
Kendall’s correlation coefficient τb defined in (7) as a per-
formance measure in all experiments. The parse goodness
function that determines the true ranks of the parses and the
ranking procedure is described in Sect. 3.

7.1 Parameter estimation

The RLS algorithm has the regularization parameter λ that
controls the trade-off between the minimization of the train-
ing error and the complexity of the regression function. In
addition, the LC kernel uses the θ parameter that determines
the width of the position sensitive function and w, the size
of the locality window, constructed around the matching
features. Finally, the locality-improved and spectrum kernel
have parameters described in Sect. 6.3. The d2 parameter of
the locality-improved kernel is set to 1 as suggested by [13],
and Dm,l = 1 + w − |m| when m = l, and Dm,l = 0 oth-
erwise. The appropriate values of all other parameters are
determined by grid search with 10-fold cross-validation.

The evaluation of the kernel functions (11), (13), (16)
and (19) is conducted on the dataset consisting of 500 sen-
tences. Observed performance of the RLS ranker is reported
in Table 1. The positional weight matrices P are presented
in Sect. 6.2. The results show that when order of the features
is ignored (i.e. P = A), the performance of kernels (11) and
(13) is clearly worse compared to the case when the order is
taken into account. When considering the kernels (11) and

(13), we observe that the best values for θ are small indi-
cating that the positional matching of the features inside the
locality window (i.e. P = A) is an important contributor to
the ranking performance. The results of Table 1 show that
the optimal size of the window is small. To find out whether
some of the feature types would prefer longer windows, we
also tried different window sizes for different features. There
was, however, no notable improvement in performance.

7.2 Final validation

We compare the LC kernel (13) with the locality-improved
kernel (16) and the spectrum kernel (19). In order to test
the statistical significance of the ranking performance differ-
ence between the baseline methods, we conduct Wilcoxon
signed-ranks test. The RLS rankers are trained on the pa-
rameter estimation data using parameter set found during
training. The 600 sentences reserved for the final valida-
tion are considered as independent trials. The performance
of the RLS ranker with the LC kernel on the validation
data is 0.447 and the improvement is statistically significant
(p < 0.05) when compared to 0.410 and 0.432 correlation
obtained using the RLS ranker with the spectrum and the
locality-improved kernel, respectively.

8 Conclusions

In this paper, we propose a framework for constructing lo-
cality kernels that take advantage of the correlations in se-
quential data. The kernels designed using the framework are
applied to the task of dependency parse ranking with reg-
ularized least-squares algorithm. These kernels use feature
sequences extracted in the order of the appearance from the
parse, construct local windows around matching features in
the sequences in order to capture local correlations between
the parses, and perform a position sensitive (or insensitive)
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evaluation of the features within the window. The usage of
the proposed locality kernels is not restricted for the parse
ranking tasks, but can be applied to sequential data where
positional matching, or local correlations play an important
role.

We evaluate the kernels against other kernel functions
applicable to sequential data, namely the locality-improved
and the spectrum. Final validation results demonstrate
that the performance gain is statistically significant. We
have also conducted experiments with gap-weighted sub-
sequences kernel (see e.g., [1]). However, we were not able
to perform a parameter selection due to the computational
complexity of the kernel.

We have already proposed graph kernels and graph rep-
resentations for dependency parses that can be used when
addressing the ranking task [23]. The obtained results are
encouraging and the study provides possible further direc-
tions. In the future, we also plan to investigate the task of
dependency parse ranking by learning the ranks directly in-
stead of regressing the parse goodness function. Moreover,
we plan to use the locality kernels for biomedical problems.
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