
Representations of Information
Systems and Dependences Spaces,

and Some Basic Algorithms

LICENTIATE’S THESIS

Jouni Järvinen

University of Turku
Department of Mathematics

FIN-20014 TURKU

April 1997

Contents

1 Introduction 3

2 Preliminaries 6
2.1 Sets . 6
2.2 Relations and functions . 6
2.3 Ordered sets and lattices . 7
2.4 Closure operators and closure systems 8
2.5 Algebras, homomorphisms, and congruences 10
2.6 Lattices as algebras . 12
2.7 Join-semilattices . 13

3 Knowledge bases 15
3.1 Knowledge bases and indiscernibility 15
3.2 Indispensable elements, independent sets, and reducts 17
3.3 Dependence in knowledge bases and dependence in universal algebra 19

4 Information systems 21
4.1 Information systems and indiscernibility 21
4.2 The complete lattice of indiscernibility relations 23
4.3 Independent subsets of attributes and reducts 27
4.4 Dependency relations in information systems 30

5 Discernibility matrices and functions 32
5.1 Discernibility matrices . 32
5.2 Discernibility functions . 35
5.3 Dependency relations and dependency functions 38
5.4 A data type and basic algorithms for discernibility matrices 40

6 Dependence Spaces 50
6.1 Congruences and closure operators on semilattices 50
6.2 Congruences and dense sets of semilattices 54
6.3 Closure operators and dense sets of dependence spaces 57
6.4 Independent sets and reducts . 59
6.5 Dependency relations in dependence spaces 62
6.6 Dependence spaces and information systems 64

1

CONTENTS 2

7 A representation for dependence spaces 68
7.1 Difference functions in dependence spaces 68
7.2 Dependency functions in dependence spaces 69
7.3 A data type and basic algorithms for dependence spaces 70

Chapter 1

Introduction

According to Z. Pawlak knowledge about a universe of objects may be defined as
classifications based on certain properties of the objects. In this work we concentrate
merely on such classifications which form a partition of the given object set, that is,
each object belongs to exactly one category. Because it is well-known that the relation-
ship between partitions and equivalence relations is bijective, knowledge about objects
may as well be given in terms of equivalence relations. Any equivalence � can now be
interpreted as an indiscernibility relation which satisfies

�������	��
 � if we cannot dis-
cern objects

�
and
�

by the knowledge � . For example, if we classify all human beings
into two disjoint sets consisting of women and men, then this classification determines
an equivalence relation � in the set of people such that

�������	��
 � whenever
�

and
�

are
of the same sex. Note, that equivalence relations are reflexive and symmetric, which
are intuitively quite natural requirements for indiscernibility. Transitivity is not a so
obvious property, and in e.g. [15, 22] similarity relations which are only reflexive and
symmetric are considered.

By a knowledge base we understand a pair �� ��������� , where
�

is a nonempty
set of objects and

�
is a set of equivalences on

�
(see [21], for example). We can de-

rive new knowledge about objects of a knowledge base by applying the set-theoretical
operation intersection to subsets of

�
. Each subset � ������� defines an indiscernibility

relation ����� � � � � �!� on
�

such that
�"�#�$�	�%
 ����� � � � if and only if

�
and
�

are
indiscernible with respect to all �
 � . In the study of the structure of the set of all in-
discernibility relations defined by subsets of

�
the notions of indispensable elements,

independent subsets, cores, reducts, and dependency relations have important roles.
Pawlak introduced the notion of information systems (sometimes called knowledge

representation systems) in [19]. Information concerning properties of objects is the
basic knowledge included in information systems and it is given in terms of attributes
and values of attributes. For example, we may express statements concerning the color
of objects if the information system includes an attribute “color” and a set of values of
this attribute consisting of “yellow”, “green” etc.

In general, an information system is determined by specifying a set of objects
�

, a
set & of attributes meaningful for all objects, and for every attribute '
 & , a fixed set()

of values of that attribute. Here we assume that the basic information of objects is
single-valued and completely defined. Therefore, every attribute ' can be considered
as a total mapping '+* �-, () which assigns to each object

�.
/�
the unique value

3

CHAPTER 1. INTRODUCTION 4

' ��� � of the attribute ' .
It is well-known that the kernel of a total mapping is an equivalence. Hence, in

an information system
� � � ��� & ��� ()��)��	� � for any '
 & the kernel of ' , defined

by
�������	�%
�
��� ' if and only if ' �"� � � ' ���	� , is an equivalence on

�
. We may now

view each equivalence relation

��� ' as an indiscernibility relation because

�������	�

��� ' whenever the objects

�
and
�

are indiscernible with respect to the attribute ' .
Therefore, an information system

�
defines a knowledge base. Namely, if we set

��� ���
��� '�� '
 & � , then the pair � � ��������� �
is obviously a knowledge base. Each set� ��� & � of attributes defines now an indiscernibility relation ��� � � � � � �)����
��� ' .

In the theory of information systems there are two major problems. The first is
usually referred to as the reduction problem and it is stated as follows. Suppose

�
is

a subset of attributes of an information system. We have to find the set of all minimal
subsets � of

�
which satisfy ����� � � � � � � � � � � . The other important problem is

associated with dependency relations. A subset of attributes
�

is dependent on a subset
� of attributes in

�
, denoted by � , � � � �

, if ����� � � � � ����� � � � . This means
simply that the values for the attributes in

�
can be determined from the values for the

attributes in � . The problem is to find for a dependency � , � � � �
the set of all

minimal subsets � of � which satisfy � , � � � �
.

We present a solution to the first problem by applying discernibility matrices and
discernibility functions (see e.g. [26]). In addition to this we introduce dependency
functions, and by means of these functions we solve the latter problem in a way which
differs essentially from the solution presented in [26]. We have found out that these two
problems can be reduced to the general problem of identifying the set of all minimal
true vectors of a isotone Boolean function (see [9], for example).

An another important topic of this work is the theory of dependence spaces.
A depend-ence space (as defined by Novotný and Pawlak) is a pair � � � & ��� �
where & is a finite set and

�
is a congruence on the semilattice

��� � & � ��� � , where� � & � denotes the set of all subsets of & . If we define for an information system� � ����� & � � () �)��	� � , in which the set & is finite, a binary relation
�!�

on
� � & � by

setting
� � � � ��
"� �

if and only if � � � � � � � ��� � � � �
for all

� � � � & , then it can be easily verified that the pair � � � � & ��� � �
is a

dependence space.
It is known that many problems concerning information systems can be formulated

in the the more abstract setting of dependence spaces. It has also been proved that de-
pendence spaces provide a suitable basis for the study of several problems concerning
contexts (in the sense of Wille) (see e.g. [4, 11]).

Because for a dependence space � � � & ��� � the set
� � & � is finite and it contains

the least element # , it is easy to observe that the quotient semilattice
�$� � & �&%�� ��' � is

always a finite lattice and hence complete. Moreover, it is isomorphic to the complete
lattice

�)(+* � � �
where

(+*
is a closure system which corresponds to the closure opera-

tor , * * � � & � ,-� � & � � �/.,10 � %��
. We have found out that any dependence space

� can be characterized by a subset 2 �3� � & � which satisfies 4 �5(6*���� 2 �7(8*
,

where 4 �)(* �
denotes the set of meet-irreducible elements of the lattice

(*
which

differ from & . Such sets 2 are called dense (see e.g. [14]).

CHAPTER 1. INTRODUCTION 5

The notions of indispensable elements, independent subsets, cores, and depen-
dency relations play important roles also in the theory of dependence spaces. Espe-
cially, we are interested in finding a solution to the reduction problem in dependence
spaces, i.e., for an arbitrary subset

� � � & � of a dependence space we want to enumer-
ate all minimal subsets � of

�
which satisfy

� � � � ��
"�
. We have found a convenient

new way to characterize the reducts of an arbitrary subset by means of dense sets. The
dependency relation is defined in dependence space � in terms of closure operator
, * . A subset

�
is dependent on a subset � in � , denoted by � , � � � � , whenever

, * � � � � , * � � � holds. We shall present for a dependency � , � � � � a method
that identifies the set of all minimal subsets � of � which satisfy � , � � � � . In ad-
dition, we shall introduce the notions of difference and dependency functions, which
are somewhat similar to the discernibility and dependency functions in the case of
information systems. Finally, we shall present an algorithm which converts in a poly-
nomial time the representation of an information system

�
to the representation of the

corresponding dependence space � �
.

This work is structured as follows. In the following chapter we recall some notions
and notation of lattice theory and universal algebra. In Chapter 3 we present a general-
ized version of knowledge bases, and study especially the cores and reducts of subsets
in knowledge bases in which the sets

�
and
�

are infinite. Chapter 4 is devoted to the
study of information systems, and especially the structure of the complete lattice of
all indiscernibility relations is considered. In Chapter 5 we investigate discernibility
matrices, discernibility functions, and dependency functions. Moreover, we present
some algorithms. In Chapter 6 we first study closure operators and dense sets in fi-
nite semilattices which have a zero element, and then apply our results to dependence
spaces. The relationship between information systems and dependence spaces is also
considered. Finally, in Chapter 7 we introduce difference and dependency functions,
and present some of their important properties. This chapter contains also a selection
algorithms concerning dependence spaces.

This study was carried out at the Department of Mathematics, University of
Turku, and it has been financially supported by the Turku Centre for Computer Sci-
ence/Graduate School. I am grateful to Professor Magnus Steinby for his expert guid-
ance and valuable suggestions during the course of this work.

Chapter 2

Preliminaries

2.1 Sets

All general lattice theoretical and algebraic notions used in this work can be found in
[2, 3, 4, 7], for example. We assume that the reader is familiar with the following no-
tations: set-builder (

��� � � �
), membership (

), subset (

�
), proper subset (�), union

(
�

), intersection (�), difference (
�

), ordered � -tuples (
����� ������� �$�
	 �

), and products of
sets (& �������� & 		� . The notations &�� , �
 � , and

� &�� � � ��� refer to a family of sets in-
dexed by a set � . Given a family � of sets, the union of � ,

0 � , is defined by '
 0 �
if and only if '
 & for some &
 � . The intersection of � , ��� , is defined dually.
For a set & , let

� � & � denote the power set of & , that is, the set of all subsets of & .
Let us write � � � ��� ��� ������� �

and � ��� � � � � � � � . The cardinal of the set & is
denoted by � & � . A set & is said to be finite if � & � � � for some �
 � �!� ; otherwise &
is infinite. In particular the empty set, # , is finite and its cardinal is

�
.

2.2 Relations and functions

An n-ary relation " on a set & is a subset of &
	

. If � � �
, then " is called a binary

relation. We denote by # ��$ � & � the set of all binary relations in the set & . For all
"
 # ��$ � & � the relation "�%

�
� � � ' �'& � � �(& � ' ��
 " � ��
 # ��$ � & ��� is called the inverse of

" . A relation "
 # ��$ � & � is:

) reflexive, if for all '
 & ,
� ' � ' ��
 " ;

) symmetric, if for all ' �'&
 & ,
� ' �'& ��
 " implies

�*& � ' ��
 " ;

) antisymmetric, if for all ' �+&
 & ,
� ' �+& ��
 " and

�*& � ' ��
 " imply ' � &
;

) transitive, if for all ' �'& �-,
 & ,
� ' �'& ��
 " and

�(& �-, ��
 " imply
� ' �-, ��
 " .

A binary relation is an equivalence relation if it is reflexive, symmetric, and transi-
tive. We denote by .0/ � & � the set of all equivalence relations on & . If �
 .0/ � & � and
'
 & , then the equivalence class of ' modulo � is the set ' % � � �1&
 &/� � ' �'& ��
 � � .
The quotient set of & modulo � is the set & % � � � ' % � � '
 & � .

A partition 2 of a set & is a family of nonempty pairwise disjoint subsets of &
such that & � 0 2 . The sets in 2 are called the blocks of 2 . The set of all partitions of

6

CHAPTER 2. PRELIMINARIES 7

& is denoted by � � & � . If �
 .0/ � & � , then & % � is a partition of & . For any partition
2
 � � & � , there exists a unique equivalence ��� such that & % ��� � 2 ; ��� is defined by� ' �'& ��
 � � if and only if

� ' �'& � � �
for some

�
 2 .
A function (or a mapping) � from a set & to a set

�
, denoted � * & , �

, is
a subset of & � �

such that for each '
 & , there exists exactly one
&
 �

with� ' �'& �%
 � ; in which case we write � � ' � � &
or � *�' ., &

. The set of all functions
from & to

�
is denoted by

� �
. Suppose �
 � �

. Then � is injective (or one-to-one)
if � � ' � � ��� � '�� � implies ' � � '�� . The function � is surjective (or onto) if for every&
 �

, there exists an element '
 & with � � ' � � &
. Further, � is bijective if it is both

injective and surjective.
For � * & , �

and � * � , � , let �
	�� * & , � be the function defined
by
� ��	�� � � ' � �� � � � ' ��� . The function ��	�� is called the product of functions � and

� . A function
� � *�& , & � ' ., ' , is called the identity function of & . A function

� * � , & is the inverse function of � * & , �
if ��	��.� � �

and ��	��+� � �
. It

is known that � * & ., �
has an inverse function if and only if � is a bijection. The

inverse of a bijection � is denoted by � %
�
.

If & is a set and �
 .�/ � & � , then the function ��� * & , & % � � ' ., ' % � is called
the canonical map of � . Obviously, the function ��� is surjective. The kernel of the
function � *#& , �

is a relation

��� � �
 # ��$ � & �$� defined by

� ' �'& ��
7
��� � if and
only if � � ' � ��� �(& � , for all ' �'& �
 & . It is easy to verify that

��� �
 .0/ � & � .

2.3 Ordered sets and lattices

Suppose � is a set. An order (or a partial order) on � is a binary relation
'

such that,
for all ' �+& �+,
 � , (i) ' ' ' , (ii) ' ' &

and
& ' ' imply ' � &

, (iii) ' ' &
and

& ' ,
imply ' ' ,

, that is, the relation
'

is reflexive, antisymmetric, and transitive. A set �
equipped with an order relation

'
is said to be an ordered set (or a partially ordered

set). Some authors use the shorthand poset.
Let
� � ��' � be an ordered set and let ' �'&
 � . We say ' is covered by

&
(or

&
covers '), and write ' ��� &

, if ' � &
and ' ' ,�� &

implies ' � ,
. The latter

condition requires that there is no element
,

of � which would satisfy ' � ,�� &
.

Note, that if � is finite, then ' � &
if and only if there exists a finite sequence of

covering relations ' � ' � ��� ' � ��� ������ ' 	 � &
. Thus, in the finite case, the order

relation is determined by the covering relation.
If � and � are ordered sets, then a mapping �.*�� , � is an order-isomorphism,

if ' ' &
in � if and only if � � ' �6' � �(& � in � and � is bijective. When there exists an

order-isomorphism from � to � , we say that � and � are order-isomorphic and write
� �� � .

Let
� � ��' � be an ordered set. Then � is a chain if, for all ' �'&
 � , either ' ' &

or
& ' ' , that is, any two elements of � are comparable. The ordered set � is an

antichain if ' ' &
in � only if ' � &

. Suppose ! � � . Then '
 ! is a maximal
element of ! , if ' ' �
 ! implies '!� � . The set of all maximal elements in ! is
denoted by "$#&%�! . Further, '
 ! is the greatest element of ! , if

�"' ' for all
�+
 ! .

The set of minimal elements, "('*)�! , and the least element of ! are defined dually, that
is, by reversing the order.

The greatest element of � , if it exists, is called the top element of � and written

CHAPTER 2. PRELIMINARIES 8

�
. Similarly, the least element of � , if such exists, is called the bottom element and it

is denoted by � . If ! � � , then an element
�
 � is an upper bound of ! if ' ' �

for all '
 ! . A lower bound is defined dually. The set of all upper bounds of ! is
denoted by !�� and the set of all lower bounds by ! � .

If ! � has a least element, this is called the least upper bound of ! . Dually, if ! �
has a greatest element, this is called the greatest lower bound of ! . The least upper
bound of ! is also called the supremum of ! and is denoted by ���	��! . Similarly, the
greatest lower bound of ! is also called the infimum of ! and is denoted by '*)	
 ! .

We write '�� &
(read as “ ' join

&
”) in place of ���	� � ' �'& � and '� &

(read as “ ' meet&
”) in place of '*)	
 � ' �+& � . Similarly, we write � ! and � ! instead of ������! and '*)	
 ! ,

respectively. Obviously, # � � � and � # exists if and only if � has a bottom element
� , and in that case � #%��� . Dually, � #%� � whenever � has a top element.

A nonempty ordered set
� � ��' � is a lattice if '�� &

and '� &
exist for all ' �'&
 � . If

� ! and � ! exist for all ! � � , then
� � ��' � is called a complete lattice. To show that

an ordered set is a complete lattice requires only half as much work as the definitions
would have us to believe.

Lemma 2.1 Let � be an ordered set such that � ! exists in � for every nonempty
subset ! of � . Then � ! exists in � for every nonempty subset ! of � which has an
upper bound in � ; indeed, � ! � � ! � . �
Example 2.2 Assume & is a set. It is clear that

�$� � & � � � � is a ordered set in which
� � # and

� � & . Moreover,
�$� � & � � � � is a complete lattice with

� � � � � �
 � � � �� �1�
� � , and

� � � � � �
 � � � �� �1�
� � �

Because # ��$�� & � � � � & � & � , it follows from the above that
� # ��$ � & � � � � is a complete

lattice with join given by set union and meet given by set intersection.

Lemma 2.3 Let
� � ��' � an ordered set, let ! ��� � � , and assume � ! , � � , � ! , and

� � exist in � . If ! ���
, then � ! ' � � and � � ' � ! . �

We say � satisfies the ascending chain condition (ACC), if given any sequence
' � ' '�� ' �� ' ' 	���

of elements of � , there exists a �
 � � such that '	� �
'���� � � ��

. The dual of the ascending chain condition is the descending chain
condition (DCC). It is obvious that every finite ordered set satisfies both the ACC and
the DCC. The following lemma is very useful.

Lemma 2.4 An ordered set � satisfies the ACC if and only if every nonempty subset
! of � has a maximal element. �

2.4 Closure operators and closure systems

A system
(

of subsets of & is said to be a closure system if
(

is closed under intersec-
tions, i.e., for all subsystems � (

, we have �!
�(
. A closure operator on a set

& is an extensive, idempotent, and isotone function , * � � & � , � � & � , that is,

CHAPTER 2. PRELIMINARIES 9

(a)
� � , � � � ,

(b) , � , � � ��� � , � � � , and
(c)

� � � implies , � � ��� , � � �
for all

� � � � & . A subset
�

of & is closed (with respect to ,) if , � � � � �
. A

closure system
(

on & defines a closure operator ,�� on & by the rule

,�� � � � � � ���/
"(� � ��� � �

Conversely, if , is a closure operator on & , then the family
(�� � � � � & ��, � � � � � �

of closed subsets of & is a closure system. The relationship between closure systems
and closure operators is bijective. The closure operator induced by the closure system(�

is , itself, and similarly the closure system induced by the closure operator , � is(
. In symbols,

,	� ��
�� � , and
(� �� � � (

.

Suppose
(

is a closure system on & . Clearly, the ordered set
�5(� � �

has the top
element

� � � # � & and the bottom element � � � , . Further, the ordered set�)(� � �
is a complete lattice. If

� � � � �
 � � is a nonempty subset of
(

, then
� � � � � �
 � � � �� �1�

� ���
� � � � � �
 � � � � � � � � �
 � � �

� � ���
 (� � � ���
for all �
 � �

� � ���
 (� �� ���
� � ��� �

� , � � �� �1�
� � �'�

Example 2.5 Suppose & is a set. Let us consider the set .0/ � & � of all equivalences
on & . If

� � � ���
 � � is a nonempty subset of .0/ � & � , then clearly � � �1� � �
 .�/ � & � .
Moreover, � #%� & � &
 .0/ � & � . Hence, the set .�/ � & � is a closure system on & � & .
The corresponding closure operator is a function ,���� * # ��$ � & � , # ��$ � & � . It returns
for all "
 # ��$ � & � the smallest equivalence relation on & containing " .

The ordered set .0/ � & � of all equivalence relations on & is a complete lattice.
Suppose

� � �+� �
 � � is a nonempty subset of .0/ � & � . Then
� � � � � �
 � � � �� �1�

� � ;

� � � � � �
 � � � , ��� � �� �1�
� � ���

Lemma 2.6 If , is a closure operator on & , then the following facts hold for all� � � � & and '
 & .
(a) , � � � � � � , � , � � � � , � � �$� for all

� � � � & .
(b) '
 , � � � if and only if , � � � � , � � �"� ' � � .
(c) For all

�
�(��
,
� ���

if and only if , � � �����
.

CHAPTER 2. PRELIMINARIES 10

Proof. (a) , � � � � � � , � , � � � � , � � �$��� , � , � � � � �$� � , � � � � � . (b) If
'
 , � � � , then , � � ��� , � � �"� ' � ��� , � , � � �$� � , � � � . If '��
 , � � � , then , � � � �
, � � � �"� ' � � , � � �"� ' � � . (c) Suppose

��
�(�
. If

� � �
, then , � � ��� , � ��� � �

.
On the other hand, , � � �����

trivially implies
� � �

. �

2.5 Algebras, homomorphisms, and congruences

For a nonempty set & and a nonnegative integer � , we define & � � � # � and for ��� �
,

&
	

is the set of � -tuples of elements from & . An n-ary operation (or function) on & is
any function � from &

	
to & ; � is the arity (or rank) of � . A finitary operation is an

� -ary operation for some � . The image of
� ' � ������� � ' 	 � under an � -ary operation � is

denoted by � � ' � ������� � ' 	 � . A function � on & is called a constant if its arity is zero. It
is completely determined by the image � � # � in & . Hence, it is convenient to identify
it with this element of & . An operation � on & is unary, binary or ternary if its arity is
1, 2, or 3, respectively.

A language (or type) of algebras is a set � of function symbols such that a nonneg-
ative integer � is assigned to each member � of � . This integer is called the arity (or
rank) of � , and � is said to be an n-ary function symbol. The subset of � -ary function
symbols in � is denoted by � 	 .

Let & be a set and � a set of function symbols. A � -algebra is an ordered pair � �� & � � � where � is a family of finitary operations of & indexed by the language � such
that corresponding to each � -ary function symbol �
 � there is an � -ary operation
��� on & . The set & is called the universe of � and the ��� ’s are called the fundamental
operations of � . Usually we write

� & � � � instead of
� & � � � . Furthermore, sometimes

we mean by the type of a � -algebra a list of the arities of the function symbols in � .
Also we often drop the upper index from �	� .

Assume � � � & � � � and
 � � � � � � are � -algebras. A function � * & , �
is

a homomorphism from algebra � to algebra
 , denoted by � *�� ,
 , if for every
� -ary �
 � and ' � ������� � ' 	 , we have

� � � � � ' � ������� � ' 	 �$� ���� � � � ' � � ������� � � � ' 	 �$�'�

A homomorphism � *�� ,
 is

) an embedding (or monomorphism), if it is injective;

) an epimorphism, if it is surjective;

) an isomorphism, if it is bijective.

We say that � is isomorphic to
 , denoted by � ��
 , if there is an isomorphism from
� to
 .

Lemma 2.7 The product of homomorphisms is again a homomorphism, and similar
statements apply for embeddings, epimorphisms, and isomorphisms. Furthermore, the
inverse of an isomorphism is an isomorphism. �

CHAPTER 2. PRELIMINARIES 11

Let � � � & � � � and
 � � � � � � be two algebras. Then
 is a subalgebra of �
if

� � & and every fundamental operation of
 is the restriction of the corresponding
operation of � , i.e., for all function symbols �
 � , � � is � � restricted to

�
. A

subuniverse of & is a subset
�

of & , which is closed under the operations of � , that is,
for all �
 � ��� , �
 � 	 and ' � ������� � ' 	!
 �

, ��� � ' � ������� � ' 	 �
 �
. The relationship

between nonempty subuniverses of an algebra and its subalgebras is bijective:
) If
 is a subalgebra of � , then

�
is a subuniverse of � .

) If
�

is a subuniverse of � and
� �� # , then we get a subalgebra
 � � � � � � of

� by restricting the operations of � in
�

.

Lemma 2.8 If � * � ,
 is a homomorphism, then the image of a subuniverse of �
under � is a subuniverse of
 . �

Let � � � & � � � be a � -algebra and let
�
 .�/ � & � . Then

�
is a congruence on

� if
�

satisfies for each � -ary function symbol �
 � and any elements ' � ������� � ' 	 ,

if
� ' � �'& � ��
"�

holds for
� ' � ' � , then

� � � � ' � ������� � ' 	 � � � � �*& � ������� �'& 	 �$��
"�
.

The set of all congruences on an algebra � is denoted by
���) � � � . If

�
is a congruence

on an algebra � , then the quotient algebra of � modulo
�

, denoted by � %��
, is the

algebra whose universe is & %�� and whose fundamental operations satisfy

� ����� � ' � %��+������� � ' 	 %�� � ��� � � ' � ������� � ' 	 �&%��
where ' � ������� � ' 	
 & and � is an � -ary function symbol in � . We note that the
quotient algebras of � are of the same type as � .

Lemma 2.9 If � *�� ,
 is a homomorphism, then following facts hold.
(a) The kernel of � ,

��� � , is a congruence of � .
(b) If

�
is a congruence of � , then the canonical map � � from � to the quotient

algebra � %��
is an epimorphism. �

In the literature the following Homomorphism Theorem is also referred to as “The
First Isomorphism Theorem”.

Theorem 2.10 (Homomorphism Theorem) Suppose � * � ,
 is a homomor-
phism onto

�
. Then there is an isomorphism � from � %
��� � to
 such that � �	� 	 � ,

where � is the canonical map from � to � %
��� � (see Figure 1). �

� � � � � � � � � � � � � ���

�����������

�

�

�

�

Figure 1

CHAPTER 2. PRELIMINARIES 12

2.6 Lattices as algebras

In Section 2.3 we saw that for a lattice
�

we may define the binary operations join and
meet on

�
by

' � & � ���	� � ' �+& � and ' & � '*)�
 � ' �'& �
for all ' �'&
 � . In this section we study the algebraic properties of the operations �
and .

Lemma 2.11 (Connecting Lemma) Let
� � ��' �

be a lattice and let ' �+&
 � . Then the
following are equivalent.

(a) ' ' &
.

(b) ' � & � &
.

(c) ' & � ' . �
Theorem 2.12 Let

� � ��' �
be a lattice. Then � and satisfy for all ' �'& �-,
 � ,

(L1)
� ' � & � � , � ' � �(& � , �

(L1) �
� ' & � , � ' �*& , �

(associative laws)
(L2) ' � & � & � '
(L2) � ' & � & ' (commutative laws)
(L3) ' � ' � '
(L3) � ' ' � ' (idempotency laws)
(L4) ' � � ' & � � '
(L4) �/' � ' � & � � &

(absorption laws)

�
We say that an algebra

� � � � � � is a lattice, if
�

is nonempty set and � and are
binary operations on

�
which satisfy (L1)–(L4) and (L1) � –(L4) � .

If an ordered set
� � ��' �

is a lattice, then by Theorem 2.12 the algebra
� � � � � � is

a lattice. Similarly, if an algebra
� � � � � � is a lattice and we define ' ' &

if and only
if ' � & � &

for all ' �+&
 � , then the ordered set
� � ��' �

is a lattice in which the the
original operations agree with the induced operations, that is, ' � & � ����� � ' �'& � and
' & � '*)	
 � ' �'& � .

Let
� � � � � � be a lattice. We say

�
has a unit (or identity) element if there exists�
 �

such that ' � ��' for all '
 �
. Dually,

�
is said to have a ������� if there

exists
�
 �

such that ' � ' � �
for all '
 � . The lattice

� � � � � � has a unit if and
only if

� � ��' �
has a top element

�
and in that case

� � � . A dual statement holds for�
and � . A lattice

� � � � � � possessing
�

and
�

is called bounded. A finite lattice is
automatically bounded, with

� � � �
and

� � � �
.

Let
(� � � � � � � be a lattice. If # ��! � �

is a subuniverse of
(

, then
� ! � � � �

is called a sublattice of
(

. A homomorphism between lattices is said to be a lattice-
homomorphism. Similarly, an isomorphism between lattices is a lattice-isomorphism.

If
� � � � � � is a lattice, then an element '
 �

is meet-irreducible if '.� & ,
implies '+� &

or '!� ,
for all

& �+,
 �
. A We denote the set of all meet-irreducible

elements ' �� �
(in case

�
has a unit) of

�
by 4 � ��� . A join-irreducible element and

the set
� � ���

are defined dually. The sets 4 � ��� and
� � ���

inherit
�

’s order relation,
and will be regarded as an ordered set.

CHAPTER 2. PRELIMINARIES 13

Lemma 2.13 Let
�

be a lattice satisfying the ACC.
(a) If ' �'&
 � and

& �' ' , then there exists
�
 4 � ��� such that ' ' �

and
& �'�� .

(b) ' � � �1&
 4 � ��� � ' ' & � �

Proof. (a) Suppose
& �' ' and let us denote ! � � �
 � � ' ' �

and
& �' � � .

The set ! is nonempty since it contains ' . Because
�

satisfies the ACC, there exists a
maximal element

�
in ! . We claim that

�
is in 4 � ��� . Suppose that

� � , +� with� � ,
and
� � � . By the maximality of

�
, neither

,
nor � is in ! . We have ' '�� � ,

,
so ' ' ,

, and similarly, ' ' � . Therefore
, � � �
 ! implies

& ' ,
and

& ' � . But
then

& ' , � � � , a contradiction! Thus,
�

is meet-irreducible and obviously
� �� �

whenever
�

has a unit.
(b) Consider any '
 �

. Let
� � � �
 4 � ��� � ' ' � �

. Clearly, ' is a lower
bound for

�
. Let

,
be any lower bound for

�
. We claim that

,"' ' . Suppose that, �' ' . Then ' � ' � ,
and hence ' � , �' ' . By (a) there exists

�+
!�
with ' � , �' � .

But
�
 �

implies by the definition of
�

that ' ' �
, and

, ' �
since

,
is a lower

bound of
�

. Thus,
�

is an upper bound of
� ' �+, � , and consequently ' � , ' �

, a
contradiction! Hence

, ' ' holds, which implies ' � � � . �

2.7 Join-semilattices

We have seen that a lattice can be defined as an algebra as well as an ordered set. Next
we show that there is a similar relationship in the case of join-semilattices. We have
the following two definitions.

) A nonempty ordered set
� ! ��' � is called a join-semilattice, if for all ' �'&
 ! ,

the join ' � &
exists.

) A semilattice is an algebra
� � � 	 � of type

� � �
, where 	 is an associative, commu-

tative and idempotent operation.

These two notions are related as follows. If the algebra
� � � 	 � is a semilattice, then

the condition ' ' &
if and only if '�	 & � &

defines a partial order
'

on � such that� � ��' � is a � -semilattice and ' � & � ' 	 & . Similarly, if
� � ��' � is a meet-semilattice,

then the algebra
� � � � � is a semilattice in the sense of the second definition.

Proposition 2.14 Suppose
� ! ��' � and

� � ��' � are ordered sets and � is a function from
! to � .

(a) If
� ! ��' � and

� � ��' � are meet-semilattices, then the following are equivalent.
(1) � is an order-isomorphism.
(2) � is an isomorphism

� ! � � � , � � � � � .
(b) If

� ! ��' � and
� � ��' � are lattices, then the following are equivalent.

(1) � is an order-isomorphism.
(2) � is a lattice-isomorphism

� ! � � � � , � � � � � � .
Proof. We show that (a) holds. Claim (b) can be proved similarly. It is obvious

that in both cases (1) and (2) the function � is a bijection. Suppose (1) holds, that is,

CHAPTER 2. PRELIMINARIES 14

� is an order-isomorphism. Because ' �'& ' ' � &
, we have � � ' � � � �(& � ' � � ' � & �

.
If � � ' � � � �(& � '�� , then � � ' � '�� and � �*& � '�� , which implies ' ' �0%

� ��� �
and& ' � %

� ��� �
. Hence, ' � & ' � %

� ��� �
from which we get � � ' � & � '��

. If we set� ��� � ' � �(� �*& � , then � � ' � �
� �(& ��� � � ' � & �
. This implies � � ' � �
� �(& � � � � '�� & �

.
Suppose � is an isomorphism from

� ! � � � to
� � � � � . If ' ' &

holds is ! , then
� � ' � � � �(& � �� � ' � & � �� �(& � , i.e., � � ' ��' � �(& � . Conversely, if � � ' � ' � �(& � , then
� �(& � � � � ' � ��� �*& � ��� � ' � & �

. Because � is an injection this implies
& � ' � &

, that
is, ' ' &

. �
By previous proposition it is obvious that if

� ! � � � � and
� � � � � � are lattices and

� * ! , � is a bijection, then � is a lattice-isomorphism whenever � is a homomor-
phism from

� ! � � � to � � � � � .

Chapter 3

Knowledge bases

3.1 Knowledge bases and indiscernibility

We simply assume here that knowledge is an ability to partition objects, and by an
object we mean anything which can be spoken of in the subject position of a natural
language sentence. Objects need not to be atomic or indivisible. For mathematical
reasons we often use equivalence relations instead of partitions, since there is bijective
relationship between equivalences and partitions, and equivalences are easier to deal
with. Hence, knowledge can be understood as a set of equivalence relations on a fixed
universe. We need some formal definitions which are given below.

Let
�

be a nonempty set and
� ��� .�/ �����) be a set of equivalence relations on

�
.

Then the pair � � ��� � � is called a knowledge base and the set
�

is the universe
of . Note that in [21] the set

�
is assumed to be finite, which implies that the set� ��� .�/ � � �$� is also finite. However, we do not make any general assumption about

the cardinalities of
�

and
�

.

Example 3.1 This example is modified from an example appearing in [21].
Suppose we are given the set

� � � � � ��� � �$��� �$��� �$��� �$��� ����� �$��	 � of toy blocks.
Assume these toys have different colors (red, blue, yellow), shapes (square, round,
triangular), and size (small, large). For example, a toy block can be red, round, and
small. Hence, the set of toy blocks

�
can be classified according to color, shape, and

size, for example, as follows:

� � ����� �$���
are red,� � ��� � are blue,��� ����� �$��	
are yellow,

� � �����
are round,� � ����� are square,��� ����� �$��� �$��	
are triangular,

� � ��� � �$� 	 are large, and� � ����� �$��� �$��� �$���
are small.

These classifications can be considered as the equivalence relations � � � � � , and � � such

15

CHAPTER 3. KNOWLEDGE BASES 16

that

� % � � � ��� � � �$��� �$��� � � � � � ����� � � � ��� �$��� ����	 ��� �� % � � � ��� � � �$��� � ��� � � �$��� � ��� ��� ����� �$��� ����	 ��� � and� % � � � ��� � � �$� � �$� 	 � � � � � ��� � �$� � �$� � �$� � ��� �

If we denote
� � � � � � � � � � � � , then the pair -� ��������� is a knowledge base. For all�
 � , each equivalence class of

��% � consists of objects which are indiscernible with
respect to knowledge � .

Because the intersection of equivalences is again an equivalence, we can form new
classifications by applying this operation. For example, the sets

� � � �$��� ����� � � � ��� ����� �$��� ����	 � � � ��� �$��� �
,� � � �$��� � � � � � ����� � � � � � � , and� ��� �$��� ����	 � � � ��� ����� �$��� ����	 � � � ��	 �

.

are equivalence classes of � � � � � representing the combinations of red and triangular,
blue and square, and yellow and triangular, respectively. Note that some combinations
do not appear in this knowledge base. For example,

� � � �$��� � � � � � ����� � � # , and� � � �$��� ����� � � � � � ����� � � # ,

which means that there are no blue and round, or red and square toy blocks.

By the previous example, we may derive new knowledge about objects by applying
the set-theoretical operation of intersection. Assume � � ��� � � is a knowledge base.
If � � � , then then � determines an equivalence � � � � � � � �!� on

�
, called the

indiscernibility relation of � . The equivalence � � � � � � represents the conjunction of
knowledge presented by the individual equivalences in � . More precisely, if

�
and
�

are objects, then
�"�#�$�	��
 ����� � � � if and only if

�
and
�

are indiscernible with respect
to all �
 � . In other words, two objects are discernible with respect to knowledge
� if and only if there exists at least one �
 � such that these objects are discernible
with respect to knowledge � .

Let � � ��� � � be a knowledge base and assume � and � are subsets of
�

.
The sets � and � are equivalent, denoted by ��� � , if ����� � � � � ����� � � � . Thus, if
��� � , then � and � define the same partition of objects. If ��� � � � ��� ����� � � � , then
the knowledge � is said to be dependent on the knowledge � in , denoted by � ,
� � � . Sometimes we write simply � , � if there is no danger of confusion. If � ,
� , then the combined knowledge represented by � is derivable from the combined
knowledge represented by � , that is, if two objects are indiscernible with respect to
the knowledge � and � , � holds, then these two objects are also indiscernible with
respect to the knowledge � .

In the following we present some general facts concerning the concepts defined
above. Statements (a)–(d) follow directly from the definition of the operator ��� � , and
also condition (e) is obvious.

Lemma 3.2 If � � ��������� is a knowledge base and � � � � � , then the following
facts hold.

CHAPTER 3. KNOWLEDGE BASES 17

(a) ����� � # � � � � .
(b) ����� � � � � � � � � � � � � � ��� � � � � .
(c) � � � implies ����� � � ��� � � � � � � .
(d) ����� � � ��� � for all �
 � .
(e) � � � if and only if � , � and � , � . �
Equation (a) of Lemma 3.2 says that if we have no knowledge, that is, our set of

equivalences is empty, we cannot discern any objects. Statement (b) shows how the
indiscernibility relation of the union of sets depends on the indiscernibility relation of
the components of the union. Namely, two objects are indiscernible with respect to
� � � if and only if they are indiscernible with respect to � and � . By (c) any set is
dependent on its supersets. Statement (d) is actually a useful special case of (c). By
(e) subsets are equivalent if and only if they are dependent on each other.

3.2 Indispensable elements, independent sets, and reducts

The fundamental problem of this section is in [21] referred to as that of knowledge
reduction. Here the central role is played by the concepts of indispensable elements,
independent subsets, and the core and reducts of knowledge. Recall that we have
omitted the finiteness of the sets

�
, which will slightly complicate our considerations.

Let � � ��� � � be a knowledge base and � � � . We say that an equivalence �

� is indispensable in � if � � � � � � �� ��� � � � � � � � � (i.e. ��� � � � � � ����� � � � � � � �).
If �
 � is indispensable in � , then the combined knowledge given by � is not
equivalent to the combined knowledge given by � � � � � , that is, there are at least two
objects which are indiscernible with knowledge � � � � � , but discernible with respect
to knowledge � .

A subset � ������� is independent if all �
 � are indispensable in � ; otherwise �
is dependent. It is clear that � is independent if and only if � is not is not equivalent
to any proper subset of � .

Lemma 3.3 Suppose � ��������� is a knowledge base and let � � � � � .
(a) An element �
 � is indispensable in � if and only if � � � � � � � � � � �� � .
(b) If � is indispensable in � , then � is indispensable in � .
(c) If � is independent, then � is an antichain with respect to the inclusion rela-

tion.

Proof. (a) By Lemma 3.2(b), ����� � � � � � � � � � �7� � � � � � for all �
 � , which
implies that for all �
 � , the condition ����� � � ��� � � � � � is equivalent to � � � � � � �
����� � � � � � � � .

(b) Suppose � is indispensable in � and � � � . Then the conditions ����� � � � �� �
and ��� � � � ��� ����� � � � imply ����� � � � �� � , that is, � is indispensable in � .

(c) We verify the contrapositive of the claim, i.e., if � is not an antichain, then � is
dependent. Assume that there are two distinct equivalences � and � in � which satisfy� � � . Then by (a), the relation � is not indispensable in

� � � � � . Because
� � � � � � � ,

� is not indispensable on � by (b), which implies that � is dependent. �

CHAPTER 3. KNOWLEDGE BASES 18

Statement (a) of Lemma 3.3 is useful for deciding whether an element is indis-
pensable in a subset. From (b) it follows that every superset of a dependent set is
dependent, and all subsets of an independent set are independent. By (c) it is clear that
if � � � for some distinct � � �
 � , then � is dependent. Further, if � is a chain, then
all independent subsets of � are of the form

� � � , where �
 � .
Assume � � ��� � � is a knowledge base and � � � . The set of all indispensable

elements of � will be called the core of � , and will be denoted by � ��� ��� � � � . A
subset � of � is said to be a reduct of � if ����� � � � � ����� � � � and � is independent.
The set of all reducts of � is denoted by

� � � � � � � . Obviously, a reduct of � is a
minimal subset of � which represents the same knowledge as � itself.

Suppose � ��������� is a knowledge base. Let� � � ����� � � � ��� is a finite subset of
� � �

We may write the following lemma.

Lemma 3.4 Assume � ��������� is a knowledge base. If
�

satisfies the DCC, then
for all nonempty subsets � of

�
there exists a finite subset � of � which satisfies

����� � � � � � � � � � � .
Proof. Assume

�
satisfies the DCC and let � be a subset of

�
. Let us denote� � � � � � ��� � � � � �1� is a finite subset of � � �

Because #
 � � � � , � � � � is a nonempty subset of
�

. By assumption
�

satisfies
the DCC, which implies by the dual of Lemma 2.4 that

� � � � has a minimal ele-
ment ����� � � � for some finite � � � . For all �
 � , � � � � � � � � � �
 � � � �
and trivially ����� � � ��� � � � � ��� � � � � . Because ����� � � � is minimal, this implies
����� � � � � ����� � � � � � � � � ��� � � � � � � for all �
 � . Hence, � � � � � � � � for all�
 � , and � � � � � � � � � ����� � � � � holds. On the other hand, � � � implies
����� � � ��� � � � � � � . Thus, ��� � � � � � � � � � � � . �
Proposition 3.5 Assume � � ��� � � is a knowledge base and

� � � ����� � � � ��� is a
finite subset of

� �
.

(a) If
�

satisfies the DCC, then every subset of
�

has a finite reduct.
(b) If

�
satisfies the DCC, then � ��� ��� � � � � � � � � � � � � for all � � � .

(c) If
�

has no minimal element with respect to the inclusion relation, then there ex-
ists a subset � � � ��� which has no reducts; moreover � ��� ��� � � � �� � � � � � � � �
holds.

Proof. (a) Suppose � � � and
�

satisfies the DCC. Then by Lemma 3.4 there
exists a finite subset � � � such that � � � � � � � � � � � � � . Suppose � � � � � ������� � � 	 � ,
�
 � ��� and let us define inductively the following sets � � for all � , � ' � ' � .

� � � � and � � � � �
� � � � � � � � � � if ����� � � � � � � � � � � ��� � � � � ,

� � otherwise.

Obviously, � 	 � � 	 %
� � �� � � � � � � � � and ����� � � � � ��� � � � � � �

����� � � ��� � �� � ����� � � 	 � . Assume � 	 is dependent, that is, ����� � � 	 � � � � � � � ���

CHAPTER 3. KNOWLEDGE BASES 19

� � � � for some � , � ' � ' � � �
. Because � 	 � � � we have by Lemma 3.2(c) that

����� � � � � � � � � � � ��� ����� � � 	 � � � � � � � ��� � � � � . This implies by the definition that� � � � �
 � � � � and � � � � �
 � 	 , a contradiction! Hence, � 	 is a reduct of � .
(b) Assume �
 � � � � � � � � and � �
 � for some �
 � � � � � � � . Now

� � � � � � � � � , which implies ��� � � � � � � � � � � � � � � ��� ����� � � � . Because
����� � � � � � � � � � � , we have ��� � � � � � ����� � � � � � � � , that is, � is dispensable in � , a
contradiction! Conversely, suppose �
 � � � � � � � � and � � � � � � � � � � � ����� � � � .
Because

�
satisfies the DCC, there exists a reduct � of � � � � � . The equation

����� � � � � � � � � ����� � � � implies that the set � is a reduct of � . Because � �
 � , this
implies � �
 � � � � � � � � , a contradiction!

(c) Suppose
�

has no minimal element. Then by the dual of Lemma 2.4 there exists
an infinite descending chain � � � � � � ��

in
�

. Let us denote � � � � � ���
 � � �
.

As we have noted, all independent subsets of the chain � are of the form
� � � � , where

�
 � � . Assume
� � � � is a reduct of � for some �
 � � . This implies ��� � � � � �

����� ��� � � � � � � � . But now there exists an element � ��� � in � which satisfies ����� � � ���� ��� � � � � , a contradiction! Hence, � has no reducts. Moreover, � � � � � � � � �� �
 � � � belongs to all reducts of � � � � , and ����� � � ��� � � � � � � � for all �
 � �
which implies � � � � � � � � � # . Hence, � ��� � � � � � �� � � � � � � � � . �

In Pawlak’s original definition of knowledge bases the universe
�

is assumed to
be finite. Because .0/ ����� � � ��� � � �

, the set .0/ � � � is finite whenever
�

is finite,
which implies trivially that every subset

� � � .0/ � � �) is finite. Obviously, if �� ��� � �
is a knowledge base such that

�
is finite, then the set

� � � � � � � � � �
� is a
finite subset of

� �
is finite, and it satisfies the DCC. Hence, for a knowledge base in

which either of the sets
�

of
�

is finite, every subset has at least one finite reduct and
� � � � � � � � � � � � � � � � � for all subset � of the knowledge base
Example 3.6 Suppose

� � � � . For each �
 � � , we define an equivalence � � which
equivalence classes are

��% � � � ����� � ������� ��� � � � � ��� � � ��� � ������� ���
. If we denote

� �� � � � �
 � � �
, then the pair � ��������� is a knowledge base. Obviously, ��� � � �

for any � ���
, and all independent subsets of

�
are the sets

� � � � , where �
 � � . The
set
�

has no minimal elements which fact obviously implies that
�

does not have any
reducts. Moreover, � � � � � � � � � # and � � � � � � � � � � , that is, the equation
� � � � � � � � � � � � � � � � � does not hold.

If � is a finite nonempty subset of
�

, that is, � � � � �	� ������� � � ��
 � , where � � ��� � � 	 for some �
 � � , then � � � � � � � � ��
 . Thus,
� � ��
 � is the only reduct of � .

Moreover, the equation � ��� � � � � � � � � � � � � � � holds.

3.3 Dependence in knowledge bases and dependence in uni-
versal algebra

In this section we study how the dependence defined in knowledge bases relates to the
abstract dependence in universal algebra. The definition of abstract dependence can be
found in [3, 5, 6], for example.

Let � be a set. An abstract dependence on � is a system of subsets of � such
that any subset ! of � belongs to if and only if there is a finite nonempty subset

�
of ! with

�

 . A subset ! � � is called dependent if !
 ; otherwise it is called

CHAPTER 3. KNOWLEDGE BASES 20

independent. By this definition, every subset of an independent set is independent; in
particular, the empty set is independent. Equivalently, every superset of a dependent
set is dependent.

Example 3.7 Let � � ��� �'� ��� �
and let � ����� �

,
��� ��� �

,
��� ��� �

,
��� ��� ��� ���

. Clearly,
 is an abstract dependence on � .

As observed in [21], if � � ��� � � is a knowledge base in which
�

is finite,
then the set of all dependent subsets of is an abstract dependence. However, if the
sets
�

and
�

are infinite, this fact does not necessarily hold. Next we shall present a
condition which guarantees that the set of all dependent subsets of a knowledge base
is an abstract dependence.

Proposition 3.8 Suppose � ��������� is a knowledge base and let
� � � ����� � � � ���

is a finite subset of
� �

. If the set
�

satisfies the DCC, then the set of all dependent
subsets of

�
is an abstract dependence on

�
.

Proof. Assume � � � is dependent and
�

satisfies the DCC. If � is finite, then
trivially there is a finite dependent subset � of � . If � is infinite, then there exists�
 � such that ��� � � � � � � � � � � . Because

�
satisfies the DCC, there exists a

finite subset � of � ��� � � such that ����� � � ��� � � � � � � � � � � . The facts � �
 � and
����� � � ��� � imply that the set � �"� � � is a finite dependent subset of � . �

The implication of Proposition 3.8 does not hold in other direction, as the following
example shows.

Example 3.9 Let us consider the knowledge base � ��������� of Example 3.6. It is
obvious that the set

�
does not satisfy the DCC. Suppose � � � ��� is dependent. Then

� contains at least two elements, that is, there exists a subset
� � � � � � � of � . Now

either � � � � � or � � � � � holds, i.e.,
� � � � � � � is a finite dependent subset of � . Hence,

the set of all dependent subsets of is an abstract dependence on
�

.

Chapter 4

Information systems

4.1 Information systems and indiscernibility

In this chapter we study information systems. The notion of information systems is
introduced by Pawlak in [19] and it is investigated by several authors (see e.g. [15, 16,
17, 22, 23, 24, 25, 26, 27, 28]). An information system is a triple

� � � ��� & ��� () �)��	� � ,
where

�
is a nonempty set of objects, & is a nonempty set of attributes, and

� () �)�� �
is an indexed set of values of attributes. Each attribute '
 & is a function ' * � , () .
Moreover, we denote

(� 0)��	� ()
. Usually the sets

�
, & , and

(
are assumed to be

finite, which is actually a very natural assumption. However, until further notice, we
do not assume anything about the cardinalities of these sets.

For any '
 & the kernel,

��� ' � � �������	�
 � � � � ' ��� � � ' ���	� � , of the

attribute ' is now equivalence on
�

. We may consider that the relation

��� ' represents

knowledge about objects in the sense that two objects
�

and
�

are in the relation

��� '

if they are indiscernible with respect to an attribute ' , that is, they have the same value
for the attribute ' .
Example 4.1 An information system

�
in which the sets

�
, & , and

(
are finite can

be represented by a table. The rows of the table are labeled by the objects, and the
columns by the attributes of the system

�
. In the intersection of the row labeled by an

object
�

and the column labeled by an attribute ' we find the value ' ��� � .
Let us consider a simple example of an information system which is taken from

[24]. In the example
� � ����� & ��� ()��)�� � � , where

� � � � � ������� ��� � �
, & ���� ������� ��� �

,
(� � (� � (� � � � � � �

,
(� � � � � � ��� �

, and the values of the attributes
are defined as in Table 1.

� � � �

� �
0 0 0 0� � 0 1 0 2� �
1 1 0 1� �
0 1 1 2

Table 1

For example, the objects
� �

and
� � are indiscernible with respect to attributes

�
and

�
.

21

CHAPTER 4. INFORMATION SYSTEMS 22

Any information system
� � ����� & � � () �)��	� � defines a knowledge base as fol-

lows. If we set
��� � ��
��� '�� '
 & � , then the system � � � ��� � � � is a knowledge

base. However, we must note that ' � �� ' � does not necessarily imply

��� ' � ��
��� ' � ,

that is, two distinct attributes may define the same equivalence on the set of objects.
Similarly, for every knowledge base there exists an information system

� �
such

that � � ��� � . Next, we shall present this construction. Suppose � � ��� � � is a
knowledge base. Let us set

) & � � � � � � �
 � � , where � � denotes the canonical map
� , � % � , � ., � % � ,

of the equivalence � , and

) (��� � � % � for all �
+� .

Clearly, the system
� � � � ��� & ����� ()��)�� � ��� is an information system such that

 � � ��� � . Note, that
� � � � � � � does not usually hold.

Let
� � � ��� & ��� () �)��	� � be an information system. For all subsets

� � � & � of
attributes we define the following relation

� � � � � � � �)�� �
��� ' �(4.1)

The relation ��� � � � � is called the indiscernibility relation of the subset of attributes�
. If
�"�#�$�	�
 � � � � � � , then objects

�
and
�

are said to be
�

-indiscernible. Hence,
�

and
�

are
�

-indiscernible whenever they are indiscernible with respect to all attributes
in

�
. Because for all '
 & , the relation

��� ' is an equivalence and the intersec-
tion of equivalence relations is again an equivalence, the relation � � � � � � is also an
equivalence. The partition of the objects corresponding to the equivalence relation
����� � � � can be viewed as a classification of objects, in which the equivalence classes
of ����� � � � consist of objects which are

�
-indiscernible. Note that the relation � � � � � �

defined in
�

equals to the relation ����� ����
��� ' � '
 � � �
which is an indiscernibility

relation defined in the knowledge base � .
Next we consider ����� as a function from

� � & � to .�/ � � � , that is, the function � � �
assigns to each subset of attributes the corresponding indiscerniblitity relation. The
following facts are obvious.

� � � � # � � � �+�
(4.2)

and
If

� � � � then ����� � � ��� � � � � � ���(4.3)

Intuitively, we cannot discern objects by means of the empty set, and if two objects
are indiscernible with respect to a set � of attributes, they certainly are indiscernible
with respect to any subset

�
of � . By (4.3), the function � � � is order-reversing.

Lemma 4.2 If
� � � ��� & � � () �)��	� � is an information system and

� � � � �
 � � is a
family of subsets of & , then

(a) �� ��� �����
� � � � � ��� � � �� �1�

� � � , and

(b) �� �1� ��� �
� � � ��� � � � � �� ���

� � � .

CHAPTER 4. INFORMATION SYSTEMS 23

Proof. Suppose
� � � � �
 � � is a family of subsets of & .

(a) If � � # , then � � ��� ����� � � � � � � #!� � �.� � � � � � # � � ��� � � 0 � ��� � � � .
If � �� # , then

�"�#�$� �
 � � �1� ����� � � � ��� �������	��
 � � � � � � � for all �
 � � for all
�
 � , �#�$�

��� ' for all '
 � � � �������	�

��� ' for all '
 0 � �1� � � � �������	�

����� � 0 � �1� � � � .

(b) If � � # , then
0 � ��� ����� � � � � � 0 #�� # � � � � � & � � � � � � � � ��� � � � . If � �� # ,

then obviously � � �1� � � � � � for all �
 � . By (4.3), ����� � � � ��� ����� � � � �1� � � � for all
�
 � . Hence,

0 � �1� � � � � � � ��� ����� � � � �1� � � � . �
Note that the equation

0 � �1� � � � � � � � � ����� � � � �1� � � � does not usually hold.

4.2 The complete lattice of indiscernibility relations

In this section we study the structure of the set of all indiscernibility relations in an in-
formation system. The results given here are novel in a sense that in our considerations
the sets

�
, & , and

(
are allowed to be infinite.

By Lemma 4.2(a) and (4.3), the function ��� � * � � & �%, .0/ ����� is a homomor-
phism from the semilattice

��� � & � ��� � to the semilattice
� .0/ � � � � � � . Hence by Lemma

2.8,
�$� ��� � � � � � � � & � � � � is a subalgebra of

� .�/ � � � � � � . Further, the function �����
is an epimorphism

��� � & � ��� � , ��� ����� � � � � � � & � � � � .
By the Homomorphism Theorem we get the following result.

Proposition 4.3 Let
� � � ��� & ��� ()��)��	� � be an information system. The semilattices�$� � & �&%�� �#� � � and
�$� � � � � � � � � � & � � � � are isomorphic, where

� � �
��� � � � .
The operation � is defined in

� � & � by

� %�� � � � %�� � � � � � � �&%�� � �

The isomorphism is �.* � %�� � ., � � � � � � . �
The situation of the previous proposition is illustrated by Figure 2.

� � � � � � � � � � � � � ��
��� � � ���
	��

��� � � � ��� � �����

��� � 	� � � ��� ��� ��� �����

�

� 	�

�

Figure 2

The join-semilattice corresponding to the quotient semilattice
�$� � & � %�� �#� � � is an

ordered set
�$� � & � %�� ����' �

in which the partial order is given by the condition
� %�� �"' � %�� �

if and only if
� � � � � %�� � � � %�� � �

(4.4)

CHAPTER 4. INFORMATION SYSTEMS 24

�
� 	� ��� � � � � � � � � �

�
� 	� ��� � � � � � � � �

� 	� ��� � � � � � �
� 	� ��� � � � � �

� � 	� ��� � � ��� 	� ��� � � � � � 	� ��� � � �
� � 	� � � �

������ ������
������ ������

�
� � � � �

� � � � � �

� � � � � �
� � � � � �

Figure 3

Note that the join-semilattice corresponding to the semilattice
��� ����� � � � � � � & � � � �

is
�$� � � � � � � � � � & � ��� � .

Example 4.4 Let us consider the information system
�

of Example 4.1. It can be
easily verified that the equivalence classes of the equivalences � � � � � � , � � & , are
the following:

) ��% ����� � # � � ��� �
;

) ��% ����� ����� � � � ��� � � ��� � �$��� � ��� ��� ��� ;

) ��% ����� ����� � � � ��� � � � ��� � � �$��� �$��� ��� ;

) ��% ����� ��� � � � � ��� � � ��� � �$��� � ��� ��� ��� ;

) ��% ����� ��� � � � � ��% ��� � �$��� ��� � � � ��% ����� ����� � � � � � ��% ����� ����� ��� � � ���% ����� ����� �'� � � � �
� ��� � � � ��� � � ����� � � � ��� ��� ;

) ��% ����� ����� ��� � � � ��� � � �$� � � ��� ��� � ��� ��� ��� ;

) ��% ����� ����� ��� � � � ��� � � � � � � � ����� � ��� ��� ��� ;

) ��% ����� ��� � � � � � � ��% ��� � �$��� ��� ��� � � � ��% ����� ����� ��� � � � � � ��% ��� � �$��� ��� ��� � �
� ��% ��� � �$��� ��� ��� � � � � � ��� � � � ��� � � � ��� � � � ��� � � ��� .

The congruence classes of
� �

are
� # � ,

����� ���
,
���1� ���

,
��� � ���

,
��� � �

,
��� �'� �

,��� ��� �
,
��� ��� �

,
��� ��� ��� ���

,
����� ��� ���

,
���1� ��� ���

, and
��� � � � �

,
��� �'� ��� �

,
��� ��� ��� �

,
��� ��� � � �

,��� ��� ��� � � ���
. The join-semilattice

�$� � � � � � � � � � & � ��� � is presented in Figure 3.

Lemma 4.5 Suppose
� � ����� & � � () �)��	� � is an information system and

� � & .
Then

0 � %�� �
 � %�� �
, and

0 � %�� �
is the greatest element in the congruence class� %�� �

.

Proof. Suppose
� � & . Then ����� � 0 � %�� � � � ��� � � ��� � ��� �

� � � � ��� � � � � . It
is obvious that � � 0 � %�� �

for all �
 � %�� �
. �

CHAPTER 4. INFORMATION SYSTEMS 25

Let us now define a function

, � * � � & � , � � & � �� ., � � %�� � �

Proposition 4.6 If
� � � ��� & ��� () �)�� � is an information system, then the following

facts hold.
(a) , � � � � � � '
 & � � � � � � ��� ��� � �$� ' � � � for all

� � & .
(b) , � is a closure operator.
(c)

��� , � � � �
.

Proof. (a) If '
 , � � � � , then there exists a �
 � %�� �
such that '
 � . Hence,

����� � � � � � � � � � � � � � � �$� ' � � . Conversely, if ����� � � � � � � � �$� ' � � , then ��� � � � �
� ' � � � ��� � � � � � � � � �$� ' � � � � � � � � � , that is,

� �"� ' �
 � %�� �
.

(b) We shall show that , � is (i) extensive, (ii) isotone, and (iii) idempotent. Sup-
pose

� � & . (i) Because for all '
 �
, ����� � � ��� � � � �$� ' � � , we get

� � , � � � � . (ii)
If

� � � and '
 , � � � � , then � � � � � � � ��� � � � � � ����� ��� ' � � , that is, '
 , � � � � .
(iii) By (i) and (ii) it is clear that , � � � � � , � � , � � � �$� . Suppose '
 , � � , � � � ��� .
Then ����� � , � � � �$� � ���!� �$� ' � � . Because � � � � , � � � �$� � � � � � � � , this implies
'
 , � � � � .

(c) Let
� � � � & . If

� � � � �

��� , � , then , � � � � � , � � � � . Now ��� � � � � �
����� � , � � � ��� � ��� � � , � � � �$� � � � � � � � , that is,

� � � � �
 � �
. If
� � � � �
 � �

, then
, � � � � � 0 � %�� � � 0 � %�� � � , � � � � . �

For an information system
�

we denote by
(6�

the closure system on & corre-
sponding to the closure operator , � . The ordered set

�)(+�#� � �
is a complete lattice in

which
� � � � � �
 � � � �� �1� � � �� � �0� � �
 � � � , � � �� �1� �0�

�'�

By Lemma 2.6(a), for all
� � �
 � � & � ,

, � � � � � � � , � � , � � � � � , � � � �$� � , � � � � � � � , � � � ���

Thus, the function , � is a homomorphism from
�$� � & � � � � onto

�5(��� � � � � . We can
write the following proposition.

Proposition 4.7 If
� � � ��� & � � ()��)��	� � is an information system, then

(a)
�$� ��� � � � � � � � & � � � � �� ��� � & �&%�� ��� � � �� �5(+��� � � � � , and

(b)
�$� � � � � � � � � � & � ��� � �� ��� � & �&%�� � ��' � �� �)(� � � ���

Proof. (a) As we have seen in Proposition 4.3, the semilattices
� ����� � � � �� � & � � � � and

�$� � & � %�� � � � � and isomorphic. The isomorphism of semilattices�$� � & �&%�� �#� � � and
�)(8��� � � � � is clear by the Homomorphism Theorem and Proposi-

tion 4.6(c). Statement (b) is obvious by Proposition 2.14(a). �

CHAPTER 4. INFORMATION SYSTEMS 26

Theorem 4.8 Let
� � ����� & ��� () �)��	� � be an information system.

(a)
��� ����� � � � � � � & � � � � is a complete lattice in which for all

� � � � �
 � � �� � & � , � � � � � � � � � � �
 � � � �� �1� � � �
� � � � � ����� � �� �1�

� � � �
� � � � � � � � � � �
 � � � ����� � �� �1� ,

� � � � �$�'�

(b)
��� � & �&%�� � ��' �

is a complete lattice in which for all
� � �6� �
 � � � � � & � ,� � � � %�� � � �
 � � � � �� �1� ,

� � � � ���&%�� � �
� � � � %�� � � �
 � � � � �� �1�

� � � %�� � �

Proof. (a) By (4.2) and (4.3), the set
� � � � � � � � � � & � has the top element� � � � � � # � and the bottom element � � ����� � & � . If

� � � � �
 � � is a subset of
� � & � ,

then it quite obvious by Lemma 4.2(a) that � � ����� � � � � � �
 � � � � � ��� � � � � � � � �
����� � 0 � �1� � � ���

For the rest, we show first that

� � � � & � � � � � � � ��� ����� � � � for all �
 � � � �� �1� ,
� � � � �'�

Suppose '
 0 � � � & � � � � � � � � � ����� � � � for all �
 � � . Hence, there exists
� such that '
 � and � � � � � � � � � � � � � � for all �
 � . Because

� ' � � � , this
implies � � � � � � ��� � � � � � ��� ����� ��� ' � � for all �
 � . Then '
 , � � � � � for all �
 � ,
i.e., '
 � � �1� , � � � � � . Conversely, if '
 � � �1� , � � � � � , then ����� � � � � � ����� ��� ' � �
for all �
 � . Hence,

� ' �
 � � � & ������� � � � � � ����� � � � for all �
 � � , that is,
'
 0 � � � & � ��� � � � � ��� � � � � � � for all �
 � � . By Lemma 2.1,� � ����� � � � � � �
 � � � � � � � � � � � � � �
 � � �

� � � � � � � � � � ����� � � � ��� � � � � � � for all �
 � �
� � � � � � � � � & � ��� � � � � ��� � � � � � � for all �
 � � �
� � � � � � , � � � � �����

(b) The ordered set
�$� � & �&%�� ����' �

has by (4.4) the top element
� � & %�� �

and the bottom element � � # %�� �
. If

� � � � �
 � � is a subset of
� � & � , then

� � �1� , � � � � �
/(+�
. This implies , � � � � ��� , � � � � �$� � � � ��� , � � � � � � , � � � � � for

all �
 � . By Proposition 4.7(b) this implies
� � � ��� , � � � � �$� %�� � ' � � %�� �

for all
�
 � . If � %��

is a lower bound for
� � � %�� � ���
 � � , then , � � � � � , � � � � �

for all �
 � . Hence, , � � � �.� � � ��� , � � � � � � , � � � � �1� , � � � � �$� . This implies
� %�� ' � � � �1� , � � � � �$�&%�� �

. Then � � � � %�� � � �
 � � � � � � ��� , � � � � �$� %�� �
.

Obviously,
� � � 0 � �1� � � for all �
 � . By (4.4) this implies

� � %�� � '
� 0 � ��� � � � %�� �

for all �
 � . If � %�� �
is an upper bound for

� � � %�� � � �
 � � ,
i.e.,

� � %�� �7' � %�� �
for all �
 � , then by Proposition 4.7(b), ��� � � � �%� ����� � � � �

for all �
 � . Thus, ����� � � ��� � � ��� � � � � � � � � ����� � 0 � �1� � � � . By Proposition 4.7(b),
this implies

� 0 � ��� � � �&%�� � ' � %�� �
. Hence, � � � � %�� � ���
 � � � � 0 � �1� � � �&%�� �

.
�

CHAPTER 4. INFORMATION SYSTEMS 27

Now we have shown that the ordered sets
�$� � � � � � � � � � & � ��� � , �$� � & � %��!�#��'

�
, and

�5(+�#� � �
are complete lattices. Further, by Proposition 4.7(b) they are order-

isomorphic. By Proposition 2.14 we can write the following corollary.

Corollary 4.9 If
� � ����� & ��� ()��)�� � � is an information system, then

��� ����� � � � � � � & � � � � � �� �$� � & � %�� �#� � � � �� �)(+�#� � � �'�

The isomorphisms are

� � * �$� � & �&%�� �#� � � � , ��� ����� � � � � � � & � � � � � � � %�� � ., ����� � � � �
� � * �$� � & �&%�� �#� � � � , �5(+��� � � � � � %�� � ., , � � � � �
� � * �$� � � � � � � � � � & � � � � � , �)(+�#� � � � � ��� � � � � ., , � � � � �

(see Figure 4).

� � � � � � � � � � � � � ��

�

� � � � � � � � � � � � ���

��� � � ���
	��

��� � � � � � � �
� �����

��� � 	� � � ��� ��� ��� ��� �����

� � � �
� �����

� � �

� 	�

� �

� �

� ��
�

Figure 4

4.3 Independent subsets of attributes and reducts

Here we consider indispensable attributes, independent subsets, cores, and reducts.
These notions were studied already in Chapter 3 in the case of knowledge bases. As
we have noted before, in an information system, two attributes may define the same
classification of objects, and this may cause problems as we see in the following ex-
ample.

Example 4.10 Let us consider an information system
� � � ��� & ��� () �)��	� � in which

& � � ' � � ' � � ' � � , and assume � � � �$� ' � � � � ����� ��� ' � � � . In the knowledge base
 � � � ��� � � � the set

� �
consists of two equivalences � � � ����� ��� ' � � � � � � � �$� '�� � �

and � � � ����� ��� ' � � � . If � � �� � � and � � �� � � , then both of the equivalences � � and� � are indispensable in the set
� �

, but still ����� ��� ' � � '�� � ' � � � � � � � �$� ' � � ' � � � �
����� ��� '�� � ' � � � , that is, in the set & the attributes ' � � '�� are dispensable in the sense
that the deletion of either of them from & does not change the classification of objects.

From the reason that came out in Example 4.10 we redefine some notions in the
case of information systems. Let

� � ����� & � � ()��)��	� � be a information system and

CHAPTER 4. INFORMATION SYSTEMS 28

suppose
� � & . An attribute '
 �

is indispensable in
�

if ��� � � � � �� � � � � � �
� ' � � , that is, the classification of objects with respect to

�
is properly finer than the

classification with respect to
� � � ' � . The set of all indispensable elements of

�
is

called the core of
�

, and is denoted by � � � � � � � � . If '
 � ��� & � , then ����� � � � �
����� � � � � ' � � � � � � �$� ' � � which implies the useful condition

(4.5) ' ��
 � �
is indispensable in

�
if and only if ����� � � � � ' � � �� � � � �$� ' � � .

It is clear that an attribute ' is not indispensable in
�

if the values of the attribute '
can be deduced form the set of values of attributes

� � � ' � .
The notions of indispensable elements in knowledge bases and in information sys-

tems are almost equivalent as we see in the following lemma.

Lemma 4.11 If
� � � ��� & � � () �)�� � � is an information system and '
 � � & , then

' is indispensable in
�

if and only if ����� ��� ' � � is indispensable in
� � � � �$� & � � � &
 � �

(in the sense of knowledge bases) and ����� ��� ' � � �� ����� ���1& � � holds for all
&
 � � � ' � .

Proof. Suppose ' is indispensable in
�

. First, we shall show that ����� ��� ' � � ��
����� ���1& � � for all

&
 � � � ' � . Suppose ����� ��� ' � � � � � � �$� & � � for some
&
 � � � ' � .

Then � � � � � � � ' � � � ����� ���1& � � � ����� ��� ' � � , a contradiction! Secondly, assume
����� ��� ' � � is not dispensable in � � � ��� � �$�1& � � � &
 � �

. Let us fix �
 � such
that � � � � � �$� ' � � . Because � is not indispensable in � , we get ����� � � �7� � � � � � .
Because � � � � � � � � � � �$� & � � � &.
 � � � ' ��� , this implies ����� � � � � ' � � �
� � � � � �$� & � � � &�
 � �7� ' ��� � � � � � � � � � � ��� � � � � � � � � � � � ����� ��� ' � � , a
contradiction!

Conversely, suppose � � � �$� ' � � �� � � � �$� & � � for all
&
 � �!� ' � and � � � � � �$� ' � �

is indispensable in � � � � � � �$� & � � � &
 � �
. Assume ' is not indispensable in

�
,

that is, ����� � � �!� ' � ��� ����� ��� ' � � . Obviously, � �!� � � � � ����� ���1& � � � &
 � �!� ' ��� .
Then, ��� � �$�1& � � � &
 � � � ' ��� � ��� � � � �
� ' � ��� ��� � �$� ' � � � � , a contradiction! �

As in the case of knowledge bases, we say that a subset
�

of attributes & is inde-
pendent if all elements in

�
are indispensable; otherwise

�
is dependent. The set of

all independent subsets of & in
�

is denoted by � �+� � .
By the previous lemma it is clear that a subset of attributes

�
is independent in an

information system
�

if and only if the set
� ����� ���1& � � � &�
 � �

is independent in the
knowledge base � and � � � �$� ' � � �� ����� ���1& � � for all ' �'&
 �

. Also the following
condition is obvious.

(4.6)
�
 � �+� � if and only if

� � � ��� ��� � � �
.

By Proposition 3.3 and 4.11 we can now write the following lemma.

Lemma 4.12 If
� � ����� & ��� () �)�� � � is an information system and '
 � � � ���

& � , then the following holds.
(a) If ' is indispensable in � , then ' is indispensable in

�
.

(b) If
�

is independent, then
� ��� � �$�1& � � � &
 � �

is an antichain, and � � � �$� ' � � ��
����� ���1& � � for all ' �� &

in
�

. �

CHAPTER 4. INFORMATION SYSTEMS 29

Note that Lemma 4.12(a) follows also from (4.3). It is now obvious that every
subset of an independent set is independent, and every superset of a dependent set is
dependent. Further, from Lemma 4.12(b) it follows that if ��� � �$� ' � � � ����� ���1& � � for
some distinct attributes ' �+&
 �

, then
�

is dependent.
Assume

� � ����� & ��� () �)��	� � is an information system and
� � & . Then a subset

� � �
is said to be a reduct of

�
if � is independent and � � � � � � � ����� � � � . The

set of all reducts of
�

in
�

is denoted by
� � � � � � � .

The idea of reducing an attribute set in an information system is of great practical
importance, because it shows that one can get sometimes the same information from
the system with a smaller set of attributes. Now it is obvious that � is a reduct of�

in an information system
�

if and only if
� ��� � �$� , � � � ,
 � �

is a reduct of� ��� � �$�1& � � � &+
 � �
in the knowledge base � and ����� ��� ' � � �� ����� ���1& � � for all

distinct ' �+&
 � .
In section 3.2 we gave a condition under which every subset of a knowledge base

has a finite reduct. For a knowledge base and an information system
�

we define
the following sets.

� � � � ����� � � � � �1� is a finite subset of
� � �

and� � � � ����� � � � � �1� is a finite subset of & � �

where ��� � � � � � (resp. ����� � � � �) refers that the indiscernibility relation in defined in
the knowledge base (resp. information system

�
). The next lemma is trivial.

Lemma 4.13 If
� � � ��� & � � () �)�� � � is an information system and � � ��������� �

,
where

� � � � � � � �$� ' � � � '
 & � , then� �
� � � � �

�
By Lemma 4.13 it is clear that the set

� �
satisfies the DCC if and only if

� �
�

satisfies the DCC. Therefore, if
� �

satisfies the DCC, then by Lemma 3.4, for any� � & , there exists a finite � � �
which satisfies ����� � � � � ����� � � � . Moreover, the

following proposition can be easily verified by Proposition 3.5.

Proposition 4.14 Suppose
� � � ��� & ��� () �)��) � is an information system and let

� �� ��� � � � � �1� is a finite subset of & � .
(a) If

�
satisfies the DCC, then every subset of & has a finite reduct.

(b) If
�

satisfies the DCC, then � ��� � � � � � � � � � � � � � � for all
� � & .

(c) If
� ����� ��� ' � � � '
 & � has no minimal element with respect to the inclusion

relation, then there exists
� ��� & � which has no reducts; moreover � ��� ��� � � � ��

� � � � � � � � holds. �
Next we present a lemma which guarantees that

� �
satisfies the DCC.

Lemma 4.15 Suppose
� � � ��� & � � () �)��	� � is an information system. If at least one

of the sets
�

or & is finite, then
� �

satisfies the DCC.

CHAPTER 4. INFORMATION SYSTEMS 30

Proof. It is obvious that if
�

is finite, then .0/ � � � is finite. Because
� �!� .�/ � � � ,

this implies that
� �

if finite, and hence it satisfies the DCC. Secondly, if & is finite,
then

� � & � is finite. Because the mapping ��� � * � � & ��, � ��� � � � � � � � & � is onto,
obviously � � � � ' � � � & � � holds, which implies that

� �
is finite. �

Note that if we require that for all '
 & , the set
()

— or even that the set
(�0)��	� ()

is finite, this does not imply that
� �

satisfies the DCC. We shall give an
example which illustrates this.

Example 4.16 Suppose
� � ����� & � � () �)��	� � is an information system such that

� �� � ��� �
 � � �
, & � � '�� ���
 � � �

, and
() � �1� � � �

for all '
 & . It is clear that also
the set

(� 0)�� � () � �1� � � �
is finite. For each �
 � � , the attribute ' � is defined by

' � ��� � � �
� �

if
�!' � ,�

otherwise.

The equivalence classes of ����� ��� '�� � � , �
 � � , are
� � � ������� �$� � � and

� � � � � �$� � � � ������� � .
Obviously,

����� ��� ' � � � � � � � �$� ' � � '�� � � � �� � ����� ��� ' � ������� � ' � � � � � � � �$� ' � ������� � '���� � � � � ��

is an infinite descending chain in
� �

.

By Pawlak’s original definition, in an information system all the sets
�

, & , and(� 0)��	� ()
are assumed to be finite. Proposition 4.12 says that if either of the set�

or & is finite, then every subset
�

of & has a finite reduct. By example 4.16, the
finiteness of the sets

()
or even the set

(
does not guarantee this.

If
� �

satisfies the DCC, then we can form a finite reduct of a subset
�

of attributes
by determining a finite reduct � of

� ����� ���1& � � � &
 � �
in the knowledge base �

by applying the method presented in the proof of Proposition 3.5(a), and then for all�
 � , we may choose exactly one '
 �
which satisfies � � � �$� ' � � � � .

In Chapter 5 we shall study discernibility matrices. We shall see how for any
information system such that the sets

�
and
(

are finite we can, for example, compute
the set of all reducts of a subset of attributes.

4.4 Dependency relations in information systems

Dependencies in an information system are basic tools for drawing conclusions from
the basic knowledge. Namely, often the value of some attribute for an object can
derived from the values of some other attributes. For example, if the value of an
attribute “age” is “two years”, then the value of an attribute “education” will be “no
education”.

Let
� � � ��� & � � () �)��	� � be an information system. We say that a set

� � � & �
of attributes depends on a set � � � & � of attributes in

�
, denoted by � , � � � �

,
if ��� � � � � � � � � � � � . The relation

, � � � is called the dependency relation of
�

.
Usually, we write simply � , �

if there is no danger of confusion.
It is clear that if � , �

, then any two objects discernible by
�

are also dis-
cernible by � . Hence, we can use the relation

,
for deducing. If objects

�
and
�

are
indiscernible with respect to � and � , �

, then
�

and
�

are
�

-indiscernible.

CHAPTER 4. INFORMATION SYSTEMS 31

By (4.3),
� � � implies � , �

. Such dependencies are called trivial (see
e.g. [25]). It is clear that ����� � � � � ����� � � � if and only if

� , � and � , �
.

The following obvious lemma says that the notions of dependency in
�

and in the
corresponding knowledge base � are essentially equivalent.

Lemma 4.17 Let
� � ����� & ��� () �)��	� � be an information system and

� � � � & .
Then the following conditions are equivalent.

(a) � , � � � �
.

(b)
� � � � �$� , � � � ,
 � � , � � � � �$� & � � � &
 � � � � � . �

Dependencies have an important role in the special class of information systems
called decision tables. Decision tables [21] are information systems with the set of
attributes divided into two disjoint sets ��� � and � � , , called condition and decision
attributes, respectively. A decision table

�
is called consistent if ��� � , � � , � � �

holds, that is, the values of the decision attributes are really determined by the condi-
tion attributes.

Example 4.18 Let us consider the information system of Example 4.1 and assume
that ��� �+� ��� ��� ��� �

and � � , � � � �
. It is clear that ��� � , � � , , that is, the decision

table
�

is consistent. It can be easily verified that also
��� ��� � ,-� � �

holds. Hence, the
attributes

�
and

�
totally determine the value of the decision attribute

�
. Note that the

set
��� ��� �

is not a reduct of the set
��� ��� ��� �

.

Especially from the point of view of decision tables, the following problem is
important. Suppose

�
and � are subsets of attributes of an information system such

that � , �
holds. Then find all minimal subsets � of � which satisfy � , �

.
In Section 5.3 we shall present a solution to this problem by applying discernibility
matrices which is different from the solution appearing in [26].

Chapter 5

Discernibility matrices and
functions

5.1 Discernibility matrices

The notion of discernibility matrices is introduced in [26]. By applying discernibility
matrices we may write several algorithms for computing e.g. the reducts of a subset
of attributes in an information system. We note that the results of Lemma 5.1 and
Propositions 5.6(b) and 5.7 can be found also from [26] in a slightly different form.

Suppose
� � � ��� & � � () �)�� � � is an information system in which

� �� � � ������� �$�
	 �
. Let us define an � � � -matrix

� , � � � , called the discernibility matrix
of

�
, by , � � � � '
 & � ' ��� � � �� ' ��� � � �

for all
� ' � � � ' � .

Obviously,
, � � � , � � for all

� ' � � � ' � and
, � �#� # for all

� ' � ' � . Therefore,
we can represent

� , � � � 	���	 by the elements in the upper triangle of
�*, � � � only, i.e., by

the elements
, � � with

� ' � � �!' � .
Now it is quite easy to decide for any subset

� ��� & � of attributes whether two
objects

� � and
� � are

�
-indiscernible.

Lemma 5.1 If
� � � ��� & � � () �)��	� � is an information system such that

� �� � � ������� �$�
	 �
,
� , � � � 	���	 is the discernibility matrix of

�
, and

� � & , then for all� ' � � � ' � , ��� � �$� � ��
 ����� � � � if and only if
, � � � � � # .

Proof. If
��� � ��� � �
 ��� � � � � , then ' �"� � � � ' �"� � � for all '
 �

. This implies
' �
 , � � for all '
 �

, i.e.,
, � � � � � # . Conversely, if

, � � � � � # , then ' �
 , � � holds
for all '
 �

. Hence for all '
 �
, ' �"� � � � ' �"� � � , that is,

�"� � �$� � ��
 ����� � � � . �
By our following lemma we can test if the classification of objects with respect to

a subset of attributes is finer than or equal to the classification of objects with respect
to another subset of attributes.

Lemma 5.2 If
� � � ��� & � � () �)��	� � is an information system such that

� �� � � ������� �$� 	 �
,
�*, � � � 	���	 is the discernibility matrix of

�
, and

� � � � & , then the
following conditions are equivalent.

32

CHAPTER 5. DISCERNIBILITY MATRICES AND FUNCTIONS 33

(a) ����� � � ��� � � � � � � .
(b) For all

� ' � � � ' � , , � � � � �� # implies
, � � � � �� # .

Proof. Assume � � � � � ��� � � � � � � . If
, � � � � �� # for some

� ' � � � ' � , then
by Lemma 5.1,

�"� � �$� � � �
 ����� � � � . This implies
�"� � �$� � � �
 ����� � � � and

, � � ��� �� # .
On the other hand, assume

, � � � � �� # implies
, � � � � ��3# for all

�"' � � � '
� . Suppose

�"� � �$� � �
 ����� � � � for some
�7' � � � ' � . If � � �

, then trivially�"� � ��� � �
 � � � � � � . If � � �
, then

, � � � � � # , which implies
, � � � � � # , i.e.,�"� � ��� � �
 ����� � � � . If � � �

, then � � , � � � # from which we get
� � , � � � # .

Therefore,
��� � �$� � �
 ��� � � � � and

��� � �$� � �
 ����� � � � , because � � � � � � is symmetric.
�

Next we present two simple corollaries of the previous lemma. The first is based
on the trivial fact that � � � � � � � ��� � � � � if and only if ����� � � � � ����� � � � and
����� � � � � � � � � � � , and the second on (4.3) by which � � �

implies � � � � � � �
����� � � � .
Corollary 5.3 Suppose

� � � ��� & ��� () �)��	� � is an information system such that
� �� � � ������� �$�
	 �

. If
� , � � � 	���	 is the discernibility matrix of

�
and

� � � � & , then the
following conditions are equivalent.

(a) ����� � � � � ��� � � � � .
(b) For all

� ' � � � ' � , , � � � � � # if and only if
, � � � � � # .

Corollary 5.4 Suppose
� � � ��� & ��� () �)��	� � is an information system such that

� �� � � ������� �$�
	 �
. If
�*, � � � 	���	 is the discernibility matrix of

�
and � � � � � & � , then the

following conditions are equivalent.
(a) ����� � � � � ��� � � � � .
(b) For all

� ' � � � ' � , , � � � � �� # implies
, � � � � �� # .

Example 5.5 Let us consider the information system
�

of Example 4.1. Its discerni-
bility matrix

�*, � � � , � ' � � �!' �
, is presented in Table 2.

2 3 4
1

��� ��� � ��� �'� ��� � ��� ��� � � �
2

��� ��� � � � �
3

��� ��� � � �
Table 2

By applying discernibility matrices it is easy to decide whether an attribute is in-
dispensable in a subset of attributes or not. Our following proposition characterizes
the set ���!� � , and for all

� � & the set � ��� ��� � � �
.

Proposition 5.6 Suppose
� � � ��� & � � () �)�� � � is an information system such that� � � � � ������� �$�
	 �

. If
�*, � � � 	���	 is the discernibility matrix of

�
and

� � & , then the
following equations hold.

(a) ���!� � � � � � & � for all '
 � � , � � � � � � ' � for some
� ' � � �!' � � .

(b) � � � � � � � � � � '
 � � , � � � � � � ' � for some
� ' � � � ' � � .

CHAPTER 5. DISCERNIBILITY MATRICES AND FUNCTIONS 34

Proof. Assume
� � & and '
 �

. By Corollary 5.4,
� �7� ' � � �

implies that
����� � � � ��-����� � � � � ' � � � there exist

� ' � � �"' � , such that
, � � � � �� # and� � � � ' � � � , � � � # � , � � � � � � ' � for some

� ' � � � ' � . This equivalence
implies statements (a) and (b). �

The following proposition characterizes the reducts of a given subset of attributes.

Proposition 5.7 Suppose
� � � ��� & � � () �)�� � � is an information system such that� � � � � ������� ��� 	 �

and
�*, � � � 	���	 is the discernibility matrix of

�
. If

� � & , then
�
 � � � � � � � if and only if � is minimal with respect to inclusion among the subsets
of & such that � � �*, � � � � � �� # for all

� ' � � � ' � which satisfy
, � � � � �� # .

Proof. Suppose �
 � � � � . Then � � �
and � � � � � � � ����� � � � . By Corollary

5.4, � � � , � � � � � � , � � � � � � � � � , � � � � �� # whenever
, � � � � �� # . If � is

not minimal, there is a � � � � such that � � � � , � � � � � �� # whenever
, � � � � �� # .

But � � � � � �
implies � � � � , � � � � � � , � � � � � � � � � � , � � � � �

. So,
����� � � � � � ��� � � � � � � � � � � � , a contradiction!

Conversely, let � be a minimal subset of & which satisfies � � � , � � � � � �� #
whenever

, � � � � �� # . If � �� �
, then � � � � � � � � � � and � � � �*, � � � � � �� � � � � � �*, � � � � � � � � �*, � � � � � �� # whenever

, � � � � �� # , a contradiction! So,
� � �

. Since
, � � �"� � � � � , � � � � �

, we get ����� � � � � � � � � � � . Suppose that �
is not independent. Then there is a � � � � such that � � � � � � � � ����� � � � � ����� � � � .
Because � � � �

, this implies � � � �*, � � � � � � , � � � � � �� # whenever
, � � � � �� # ,

a contradiction! �

CHAPTER 5. DISCERNIBILITY MATRICES AND FUNCTIONS 35

Note that Proposition 5.7 characterizes the reducts of
�

as subsets of & (instead of�
which would be a more natural way). We shall need this particular characterization

later when we are writing an algorithm which computes
� � � � � � � for an arbitrary

set
� ��� & � of attributes.

5.2 Discernibility functions

In this section we study the notion of discernibility functions which helps us to write
algorithms for e.g. the reduction problem. Note that in [26] the discernibility function
is defined only for the set & in the information system

� � ����� & � � () �)��	� � , but here
we define it for any arbitrary subset

�
of & .

First we shall recall some notions concerning Boolean logic (see e.g. [1, 9, 18]).
Let us fix a countable infinite alphabet of Boolean variables

� ��� ��� � ������� � . We can
combine Boolean variables using Boolean connectives such as � (logical or), (logi-
cal or) and � (logical not). A Boolean expression can be any of (a) a Boolean variable,
(b) an expression of the form �

� �
, where

� �
is a Boolean expression, (c) an expression

of the form
� � � � � � � , where

� �
and

� � are Boolean expressions, or (d) an expression
of the form

� � � � � � , where
� �

and
� � are Boolean expressions. In case (b) the ex-

pression is called the negation of
� �

; in case (c) it is the disjunction of
� �

and
� � ; and

in case (d) it is the conjunction of
� �

and
� � . An expression of the form

� � or �
� � is

called a literal. A conjunction of literals is called a -term.
An � -ary Boolean function, or a function for short, is a mapping � * �1� � � ��� ,�1� � � �

. An element �
 � � � � ���
is called a Boolean vector (a vector for short). It is

known that each Boolean expression expresses some Boolean function and any � -ary
Boolean function � can be expressed as a Boolean expression

���
involving variables� � ������� ��� � (see [18], for example).

If � � � � � �
(resp. 0), then � is called a true (resp. false) vector of � . The set of

all true vectors (false vectors) is denoted by
�%� � ��� � � � �$� . We denote by � and

�
the

two special functions for which
�%� � � � # and � � � � � # , respectively. Moreover for

all �

 � � , we write

0 � � �*� ������� �+�� 	�
 �
�

�
and 1 � � � � ������� � �� 	�
 �

�

�
.

Let
� � ��� � ������� � � � � and ��� � � � ������� � � � � be vectors. We set

� ' � if and
only if

� � ' �1� , for
�"' � '

� . A function � is isotone if � '�
always implies

� � � � ' � �� � . In the sequel we shall assume that � is a isotone function. A true vector
� of � is minimal if there is no true vector

such that

� � , and let "('*) �%� � � denote
the set of all minimal true vectors of � . A maximal false vector is defined dually and
"$# % � � � � denotes the set of all maximal false vectors of � . The following facts are
obvious.

� � � � � � � � � ��
for some

 "('*) �%� � � � �
� � � � � � � � � '�

for some

 "$# % � � � � � �

Two vectors
�

and � are incomparable if neither
� ' � nor

� � � holds. A set of
vectors

(� � � � � � ��� �
is called incomparable if every pair of distinct vectors

�#� �
 (
is incomparable. Obviously, the sets "('*) �%� � � and "�#&% � � � � are both incomparable.

CHAPTER 5. DISCERNIBILITY MATRICES AND FUNCTIONS 36

Let � and � be Boolean functions. If � � � � ' � � � � for all �
 � � � � � �
, then we say

that � implies � . An implicant of a Boolean function � is a -term which implies � . A
 -term

� �
is said to subsume

� � if all literals of
� � are literals of

� �
. A prime implicant

of � is defined as an implicant of � such that no -term subsumed by it by it can be an
implicant of � . An irredundant disjunctive normal form of � is a disjunction of prime
implicants of � such that a removal of any of them makes the remaining expression
no longer equivalent to the original � . It is known that if � is isotone, it has a unique
irredundant disjunctive normal form consisting of all prime implicants of � . Moreover,
there is a bijective correspondence between the prime implicants and the minimal true
vectors of a isotone function (see [9], for example).

Suppose that
� � � ��� & ��� () �)�� � � is an information system in which

� �� � � ������� �$�
	 �
and & � � ' � ������� � ' � �

. For any
� � & , let � � � � denote the dis-

junction of all variables
� � , where '��
 �

. We define the discernibility function
�
�� �"��� ������� �$� � � of a subset

� ��� & � as the conjunction�
���������	�
�
� �� � ���� �

� � , � � � � ���

Obviously, the function �
�� is isotone. Because the empty conjunction � #�� �

, �
�� ��

if and only if
, � � � � � # for all

� ' � ���"' � if and only if ����� � � � � � � . A
function �.* � � & � ,-�1� � � � �

is defined by
�/., � � � � � � ������� � � � � � �$� �

where

��� � � � �
� �

if '�� �
 �
�

if '��
 �
for all � ��� ' � '

� . The value � � � � is called the characteristic vector of
�

.
Let us denote

��� � & � �
for any

� � & . Because for all
� � � � & ,

� � � � #
if and only if

� � � �
, by the definition of the function �

�� we can now write the
following conditions for every

� � � � � & � .
(5.1) �

�� � � � � �$� � � � � � �*, � � � � � �� # for all
� ' � � �!' � which satisfy

, � � � � �� # .
(5.2) �

�� � � � � �$� � ��� � � �*, � � � � � �
for some

� ' � � � ' � which satisfy
, � � � � �� # .

Our following proposition follows easily from (5.1), (5.2), and Lemma 5.7.

Proposition 5.8 Suppose
� � � ��� & � � () �)�� � � is an information system such that� � � � � ������� ��� 	 �

, & � � ' � ������� � ' � �
, and

�*, � � � 	���	 is the discernibility matrix of
�

.
(a) "('*) �%� �

�� � � � � � � � ���
 � � � � � � � � .
(b) "$# % � � �

�� � � "$#&% � � �$� , � � � � � � � � � ' � � � ' � ��, � � � � �� # � . �
Note that by Proposition 5.8 we can compute the set of all reducts of

�
by iden-

tifying the set of minimal true vectors of the function �
�� . This observation is used in

Section 5.4 where we shall present a selection of algorithms.

Corollary 5.9 Suppose
� � � ��� & ��� () �)��	� � is an information system such that

� �� � � ������� �$�
	 �
, & � � ' � ������� � ' � �

, and
�*, � � � 	���	 is the discernibility matrix of

�
. If� � & , then the set

� ' � � ������� � ' ��� � is a reduct of
�

if and only if
� � � �� � ��� is a

prime implicant of �
�� .

CHAPTER 5. DISCERNIBILITY MATRICES AND FUNCTIONS 37

Example 5.10 Let us consider the information system
�

of Example 4.1. Its discerni-
bility matrix

�*, � � � is presented in Example 5.5. The discernibility function of the set &
is

�
�� � � � � � � �-� � � � � � � � � � � � � �-� � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �-� � �$�
� � � � � � �-� � � � �

where � stands for
� � . The function �

�� has obviously the prime implicants
� � � �

and�-� � � �
, which implies that

� � � � � & � � ��� � ��� � ����� ��� ��� ���
.

CHAPTER 5. DISCERNIBILITY MATRICES AND FUNCTIONS 38

5.3 Dependency relations and dependency functions

Suppose
� � � ��� & � � () �)��	� � is an information system such that

� � � � � ������� �$�
	 �
.

If
�*, � � � 	���	 is the discernibility matrix of

�
, then by Lemma 5.2 the following condition

holds for all
� � � � & .

(5.3) � , �
if and only if

, � � � � �� # implies
, � � � � �� # for all

� ' � � �!' � .
In Section 4.4 we presented the following problem. Let

�
and � be subsets of &

which satisfy � , �
. Find the minimal subsets � of � such that � , �

. In [26]
this problem is solved by applying the notions of discernibility functions and lower
approximations of subsets of objects which are studied in the theory of rough sets (see
e.g. [20, 27, 21]). Here we present a more natural solution. Our following proposition
characterizes the sets mentioned above.

Proposition 5.11 Suppose
� � � ��� & ��� () �)��	� � is an information system such that� � � � � ������� ��� 	 �

and
�*, � � � 	���	 is the discernibility matrix of

�
. If � , � � � �

holds,
then the following conditions are equivalent.

(a) � is a minimal subset of � such that � , �
.

(b) � is a minimal subset of & such that
, � � � � �� # implies � � � , � � �"� � �� #

for all
� ' � � �!' � .

Proof. Suppose � , �
and assume � is a minimal subset of � such that � , �

.
Because � � � , we get � � �*, � � � � � � , � � � � � � � � � , � � � � . Now the assumption
� , �

implies that � � � , � � � � � �� # holds for all
� ' � � � ' � which satisfy, � � � � �� # . If � is not minimal, there is a � � � � such that � � � � , � � � � � �� #

whenever
, � � � � �� # . But � � � � implies � � � �*, � � � � � � , � � ��� � . So, � ��, �

,
a contradiction!

Conversely, suppose � , �
and � is a minimal subset of & which satisfies

� � � , � � ��� � �� # whenever
, � � � � �� # . If � �� � , then � � � � � � � � � � , and

� � � � , � � � � � � � � � � � � �*, � � � � � � � � �*, � � � � � �� # whenever
, � � � � �� # , a

contradiction! So, � � � . Since � � �*, � � � � � � , � � � � , we get � , �
. Assume

there a � � � � such that � � , �
, i.e.,

, � � � � � �� # whenever
, � � � � �� # . Because

� � � � � � , this implies � � � �*, � � ��� � � , � � � � � �� # whenever
, � � � � �� # , a

contradiction! �

CHAPTER 5. DISCERNIBILITY MATRICES AND FUNCTIONS 39

Let
� � � ��� & ��� () �)�� � � be an information system in which

� � � � � ������� �$�
	 �
and & � � ' � ������� � ' � �

. If
� , � � � 	���	 is the discernibility matrix of

�
and

�
, � are

subsets of & which satisfy � , �
in

�
, then we define the dependency function

�
�
���

� ��� � ������� ��� � � of the dependency � , �
as the conjunction

�
���������	�
�
� �� � ���� �

� � , � � � � �'�

Obviously, the function �
�
���

� is isotone and �
�
���

� � � if and only if ��� � � � � �� � . By the definition of �
�
���

� we can now write the following conditions for all
subsets

�
, � and � of & which satisfy � , �

,

(5.4) �
�
���

� � � � � �$� � � � � � � , � � � � � �� # for all
� ' � � � ' � such that

, � � � � �� # .

(5.5) �
�
���

� � � � � �$� � ��� � � � , � � � � � � for some
� ' � � �!' � such that

, � � � � �� # .

By (5.4), (5.5), and Proposition 5.11 we can now present the following proposition.

Proposition 5.12 Suppose
� � � ��� & ��� () �)��	� � is an information system such that� � � � � ������� �$�
	 �

, & � � ' � ������� � ' � �
, and

�*, � � � 	���	 is the discernibility matrix of
�

.
If the dependency � , � � � �

holds, then the following equations are valid.
(a) "('*) �%� �

�
���

� � � � � � � � � � is a minimal subset of � such that � , � �
.

(b) "$# % � � �
�
���

� � � "�#&% � � �$�*, � � � � � � � � � ' � � � ' � �0, � � � � �� # � .

By Proposition 5.12 we can compute for the dependency � , �
the set of all

minimal subsets � of � such that � , �
by identifying the set of all minimal true

vectors of �
�
���

� .

Corollary 5.13 Assume
� � � ��� & ��� () �)��	� � is an information system such that

� �� � � ������� �$�
	 �
, & � � ' � ������� � ' � �

, and
�*, � � � 	���	 is the discernibility matrix of

�
. If

� , �
holds in

�
, then � � � ' �	� ������� � '���� � is a minimal subset of � which satisfies

� , �
if and only if

� �	�� �� � � � is a prime implicant of �
�
���

� .

Example 5.14 Let us consider the information system
�

of Example 4.1. Its discerni-
bility matrix

�*, � � � is presented in Example 5.5. If we set
� � � � �

, then the trivial
dependency & , �

holds in
�

. The dependency function of the dependency & , �
is

�
��
�
� � � � � � � � � � � � � � �(� � � � � � � � � � � �-� � � � � �
� �-� � � � �(� � � �
� � � �-� ��� �

where � stands for
� � . The function �

��
�
� has obviously the prime implicants

�
and�-� � � , which implies that

� � �
and

��� ��� �
are the minimal subsets � of & which satisfy

� , �
.

CHAPTER 5. DISCERNIBILITY MATRICES AND FUNCTIONS 40

5.4 A data type and basic algorithms for discernibility ma-
trices

In this section we present a simple implementation of discernibility matrices as a data
type, which is sufficient for us to solve problems concerning, cores, dependencies,
independent sets, and reducts in an information system.

The discernibility matrix could be given as an � � � –matrix in which the entry
� � � � �

is the vector � �*, � � � , but as we have seen, only the entries
, � � , where

� ' � � �"' � ,
are needed. Therefore, we introduce the following representation which saves always
over half of the space compared to the matrix representation.

Let
� � ����� & � � () �)��	� � be an information system such that

� � � � � ������� �$�
	 �
and & � � ' � ������� � ' � �

. Then the discernibility matrix
� , � � � 	���	 of

�
can be repre-

sented as an array
,�� ��� � � � � � � � %����

of length � � � � � �&% �
, in which

,�� � � � � �*, � � � ,
where � � � ��� � � �&% �!� ��� �

for all
� ' � � �!' � .

Example 5.15 The discernibility matrix of Example 5.5 can be represented as an array
c[1..6] in which

,�� ��� � � �*, � � � � �*� � � �'� � � � , ,�� ��� � � � , � � � � �-� �'� �+� � � � ,,�� ��� � � � ,1� � � � � � � � �'� � � � ,,�� ��� � � �*, � � � � � � �'� � � � � � , ,��	��� � � � , � � � � �(� �'� � � �+� � ,,��
�� � � � ,1� � � � �*� � � � � � � � .

We define the operations meet (�), join (), difference (-) and complement (
�
) in�1� � � ���

. For all vectors
��� � and integers � , � ' � '

� ,

��� �$� � � � �
if and only if

� �#� �1�#� � �
��� $� � � � �

if and only if
� �#� �1�#� � �

��� � � � � � �
if and only if

� �#� � � �1�#� � �
��� � � � � �

if and only if
� �#� � �

Obviously, the complexity of all these operations is
� �
�
�
.

Let
� � ����� & � � () �)��	� � be an information system such that

� � � � � ������� �$�
	 �
and & � � ' � ������� � ' � �

. Our first algorithm tests for any
� � ��� �
 � and

� � &
whether

�"� � �$� � �
 ����� � � � holds or not. The Algorithm
�

-INDISCERNIBLE is based
on Lemma 5.1.

Algorithm 5.16
�

-INDISCERNIBLE

Input: An array
,�� ��� � � � � � � �&%����

such that for all
� ' � � � ' � , ,�� � � � � � , � � � ,

where � � � ����� � �&% � � � � �
, an � –sized vector

& � � � � � , and two integers� ' � � �!' � .
Output: “yes” if

��� � �$� � ��
 ��� � � � � and “no” otherwise.

1. If � � �
, then output “yes” and halt. Otherwise, go to 2.

CHAPTER 5. DISCERNIBILITY MATRICES AND FUNCTIONS 41

2. If � � �
, then � * � � � � * � ��� � * ��� .

3. If
& ,�� � ��� � � � %��!� � � ��� � 0 � , then output “yes”, otherwise output “no”.

Obviously, Algorithm
�

-INDISCERNIBLE takes
� �
�
�

time. Of course, we have
assumed that the array

,�� ��� � � � � � � �&%����
has been computed in advance. The assumption

is justified when the algorithm is applied for various choices of
�

and
�"� � �$� � � , but a

fixed information system
�

.
The following algorithm computes for any

� �
 � and
� � & the equivalence

class of � � � � � � containing
� � , that is, the set

� � % � � � � � � .
Algorithm 5.17

�
-CLASS

Input: An array
,�� ��� � � � � � � �&%����

such that for all
� ' � � � ' � , ,�� � � � � � , � � � ,

where � � � ��� � � �&% �!� ��� �
, an � –sized vector

& � � � � � , and an integer � .
Output: An � –sized vector � corresponding the set

� � % � � � � � � .
1. Start with � := 0

	
.

2. For all
�

:=
� ������� � , � � ��� * � �

if
�"� � ��� � �
 � � � � � � holds (which can be tested

with Algorithm
�

-INDISCERNIBLE).

3. Output � .
The complexity of Algorithm

�
-CLASS is

� � � � � .
Suppose

�
and � are subsets of attributes. Next we present an algorithm which

checks whether � � � � � � � ����� � � � holds. Our Algorithm EQUIVALENT is based on
Corollary 5.3.

Algorithm 5.18 EQUIVALENT

Input: An array
,�� ��� � � � � � � �&%����

such that for all
� ' � � � ' � , ,�� � � � � � , � � � ,

where � � � ��� � � �&% �!� ��� �
, and two vectors

& � � � � � and � � � � � � .
Output: “yes”, if ��� � � � � � ����� � � � holds and “no” otherwise.

1. If for all � :=
� ������� � � � � � � �&% �

,
,�� � � & � 0 � if and only if

,�� � � +�!� 0 � ,
then output “yes”; otherwise output “no”.

The complexity of Algorithm EQUIVALENT is
� � � � � � , because the size of the array,

is
� � � � � and the tests

,�� � � & � 0 � and
,�� � � , � 0 � take

� �
�
�

time.
Our next algorithm returns an answer to the question whether the condition � ,�

holds in
�

. It is based on (5.3).

Algorithm 5.19 DEPENDENCY

Input: An array
,�� ��� � � � � � � �&%����

such that for all
� ' � � � ' � , ,�� � � � � � , � � � ,

where � � � ��� � � �&% �!� ��� �
, and two vectors

& � � � � � and � � � � � � .
Output: “yes”, if � , �

holds and “no” otherwise.

1. If for all � :=
� ������� � � � � � � �&% �

,
,�� � � & �� 0 � implies

,�� � � � �� 0 � , then
output “yes”; otherwise output “no”.

CHAPTER 5. DISCERNIBILITY MATRICES AND FUNCTIONS 42

The complexity of this algorithm is
� � � � � � .

The following algorithm computes for any subset
� � � & � of attributes the core of�

. The method is based on Proposition 5.6(b). Note that we could compute the core
of

�
also by the condition '
 � � � ��� � � �

if and only if ����� � � � �� ��� � � � ��� ' � � ,
and by applying Algorithm EQUIVALENT. However, this method requires

� � � � � � �
time and our algorithm CORE is a little faster. Its complexity is

� � � � � � .
Algorithm 5.20 CORE

Input: An array
,�� ��� � � � � � � �&%����

such that for all
� ' � � � ' � , ,�� � � � � � , � � � ,

where � � � ��� � � �&% �!� ��� �
, and a vector

& � � � � � .
Output: A vector � � � � � ��� ��� � � �$�

.

1. Start with � � 0 � .

2. For all � :=
� ������� � � � � � � � %��

, if
& ,�� � � contains exactly one 1 and this is in

the � th position, then � � � � � �
.

3. Output � .
By using Algorithm CORE it is easy to decide whether a subset

� � & is independent
or not. Namely,

�
 � �+� � if and only if
� � � ��� � � � � � . Also this test requires� � � � � � time.

It is quite easy to compute one reduct of
�

. We start with the set
�

and cancel
successively its elements in a way that any set � obtained by cancelling some elements
satisfies � � � � � � � ����� � � � . We stop this procedure if � is such that for any � �
obtained from � by cancelling one element, we get ��� � � � � �� ����� � � ���

(cf. the proof
of Proposition 3.5(a)). In the sequel � � � �#� ���

denotes the vector � with � th element ���
fixed to

�
. The denotation � � ����� ���

is defined similarly.

Algorithm 5.21 REDUCT

Input: An array
,�� ��� � � � � � � �&%����

such that for all
� ' � � � ' � , ,�� � � � � � , � � � ,

where � � � ��� � � �&% �!� ��� �
, and a vector

& � � � � � .
Output: � � � � for some �
 � � � � � � � .

1. Start with � � &

2. For all � * � � ������� �
� , let � � � � � �

if for all � � � ������� � � � � � � � %��
,
,�� � � & ��

0 � implies
,�� � � $� � ����� ��� �� 0 � .

3. Output � .
The complexity of this algorithm is

� � � � � � � . Next we shall present a method
which computes the set

� � � � � � � for any
� � & . By Proposition 5.8(a) the set of

all minimal true vectors of the discernibility function �
�� is the set of characteristic

vectors of the reducts of
�

. Similarly, if � , �
holds, then by Proposition 5.12(a)

the set of all minimal true vectors of the dependency function �
�
���

� equals the set of
characteristic vectors of the minimal subsets � of � such that � , �

holds.
Our following algorithm MF-VECTORS1 computes the set "$#&% � � �

�� � for a dis-
cernibility function �

�� . It is based on Proposition 5.8(b).

CHAPTER 5. DISCERNIBILITY MATRICES AND FUNCTIONS 43

Algorithm 5.22 MF-VECTORS1
Input: An array

,�� ��� � � � � � � �&%����
such that for all

� ' � � � ' � , ,�� � � � � � , � � � ,
where � � � ��� � � �&% �!� ��� �

, and a vector
& � � � � � .

Output: The set "�#&% � � �
�� �

1. Start with � � := # .

2. For all � :=
� ������� � � � � � � �&%��

, if
,�� � � & �� 0 � , then � � := � � � � �*,�� � � & � � �

.

3. Delete from � � all vectors which are not maximal.

4. Output � � .

The complexity of Step 2 is
� � � � � � . Because � � contains at most � � � � � � %��

vectors of length � after Step 2, the time need by Step 3 is
� � � � � � which is also the

complexity of Algorithm MF-VECTORS1.
The following algorithm computes the set "$# % � � �

�
���

� � of a dependency func-
tion �

�
���

� . The method is based on Proposition 5.12.(b).

Algorithm 5.23 MF-VECTORS2
Input: An array

,�� ��� � � � � � � �&%����
such that for all

� ' � � � ' � , ,�� � � � � � , � � � ,
where �!� � ��� � � � %�� � � � �

, and two vectors
& � � � � � and �+� � � � � such that

� , �
holds.

Output: The set "�#&% � � �
�
���

� �
1. Start with � � := # .

2. For all � :=
� ������� � � � � � � � %��

, if
,�� � � & �� 0 � , then � � := � � � � � ,�� � � � � � � .

3. Delete from � � all vectors which are not maximal.

4. Output � � .

The complexity of Algorithm MF-VECTORS2 is also
� � � � � � which the time needed

by the dominating Step 3.
In what follows we shall consider the question of how to compute the set

"('*) �%� �
�� � from "$#&% � � �

�� � . These considerations have originally appeared in [1],
but we have slightly altered them.

Let � be a isotone Boolean function, �
� � "
'*) � � � � and � � � "�#&% � � � � .

That is, �
�

and � � , respectively, denote the partial knowledge of "('*) � � � � and
"$# % � � � � currently in hand. In other words, �

� �
� � � contains all sets which at

present time are surely known to be in "('*) �%� � � ("$#&% � � � �). Define
� �

�
� � � � � ��� �

for some

�
� �

and
� � � � � � � � � � '�

for some

� � �
.

It is clear, that
� �

�
� � � � � � � and � � � � � � � � � � , and

� �
�
� � � � � � � � � # .

A vector
�

is called unknown if

�+
 �1� � � � � � � �%�
�
� � � � � � � �$� �

CHAPTER 5. DISCERNIBILITY MATRICES AND FUNCTIONS 44

since it is not known at the current stage whether
�

is a true vector or a false vector of
� . There is no unknown vector if and only if

� �
�
� � � � � � � � � �1� � � � �

holds, i.e.,
�
� � "('*) �%� � � and � � � "$#&% � � � � .
The following general algorithm computes the set "
'*) � � � � assuming that

"$# % � � � � is known. The algorithm is modified from Algorithm IDENTIFY in [1].

Algorithm 5.24 MT-VECTORS

Input: "$# % � � � ���
Output: "('*) �%� � ���

1. Start with �
�

:= # ��� "('*) �%� � �$� and � � := "$#&% � � � � .
2. Test if

� �
�
� � � � � � � � � �1� � � ���

holds. If so, output �
�

and halt. Other-
wise go to 3.

3. Find an unknown vector
�

(which necessarily is in
� � � ��� . Then compute a

minimal vector
�

satisfying
� ' �

and
�
 � � � � . Let �

�
:= �

� � � � �
.

Return to 2.

In [1] is defined the following problem which is equivalent to Step 2.

Problem 5.25 EQ

Instance: Incomparable sets �
� �

� � � � �1� � � � �
) such that

� �
�
� � � � � � � � � # .

Question: Does
�%�

�
� � � � � � � � � � � � � � �

(i.e., no unknown vector) hold?

It is not known whether Problem EQ is solvable in polynomial time or not. The
length of the input to Problem EQ is �

� � �
� � � � � � � � . Let us denote by

�����
the

time required to solve Problem EQ. We shall see that if Problem EQ is solvable in
time polynomial in its input length, then finding an unknown vector in Step 3 of MT-
VECTORS can also be done in polynomial time.

Let ' � � ' � � '�� ������� � '�� ��
 � � � � � � for some
� ' � � � . We define

�
� � ' � � "
'*) � � � ��� � ������� � � � � ���
 �

�
and �1� ' ' � � � � � ��� ������� � � � �

"
'*) � � � � � ' � � "
'*) � � � ��� � ������� � � � � ���
 "('*) �%� � � and �1� ' ' � � � � � ��� ������� � � � �
� � � ' � � "�#&% � � � ��� � ������� � � � � � �
 � � and �1� � '�� � � � � �'� ������� � � � � and

"$# % � � � � � ' � � "�#&% � � � ��� � ������� � � � � � �
 "$# % � � � � and �1� � '�� � � � � ��� ������� � � � �

where �1� refers to the � th element of the vector � � � � � ������� � � � � � ��� � ������� � � 		� . Our
following method computes the set �

� � ' � for any ' � � ' � ������� � ' � � from the set �
�

.
The method for the set � � � ' � is analogous.

Algorithm 5.26 MT
� ' � -VECTOR

Input: A vector ' � � ' � ������� � '�� � and the set �
�

.
Output: The set �

� � ' � .
1. Start with �

�) � # .

2. For all �
 �
�

, if for all �!� � ������� � � , � � ' ' � , then �
�) * � �

�) �
� � � ��� � ������� � � � � � .

CHAPTER 5. DISCERNIBILITY MATRICES AND FUNCTIONS 45

3. Delete from �
�)

all vectors which are not minimal.

4. Output �
�)

.

The complexity of Algorithm MT
� ' � -VECTOR is

� �
� � �

� � � � which is the time
needed by the step 3. Similarly, the complexity of the method MF

� ' � -VECTOR which
computes � � � ' � from � � is

� �
� � � � � � � .

Suppose ' � � ' � � ' � ������� � ' � �
��1� � � � � for some
� ' � � � . Let us denote by

�) the function obtained from � by fixing variables
� � to ' � for � � � ������� � � . Then

obviously "
'*) � � � � � ' � � "('*) �%� �) � and "$#&% � � � � � ' � � "$# % � � �) � . It is clear
that if �

� � "('*) � � � � and � � � "�#&% � � � � , then �
� � ' � � "('*) �%� � � � ' � and

� � � ' ��� "�#&% � � � � � ' � for any ' . Moreover, �
� � ' � � "('*) �%� � � � ' � and � � � ' � �

"$# % � � � � � ' � if and only if

(5.6)
� �

�
� � ' �"� � � � � � � ' �"� � � � � � ��� % �

If the current �
� � ' � and � � � ' � do not satisfy (5.6), then at least one of ' � � � ' �+� �

and '
�
� � ' � � � does not satisfy (5.6) in which ' is replaced by ' � and '

�
, respectively

(see [1]).
This fact implies that the following algorithm, which is a corrected version of

Algorithm UNKNOWN in [1], outputs an unknown vector.

Algorithm 5.27 UNKNOWN

Input: Incomparable sets �
� �

� � � � �1� � � ��� �
such that

�%�
�
� � � � � � � � � #

and
�%�

�
� � � � � � � � �� � � � � ���

, where � � �
.

Output: An unknown vector
�

.

1. Let ' � * � �(��� , '
�
* � � � � and � := 1.

2. If � � �
� �

, go to 3. If �/� �
� �

, then at least one of � � * � � � � � � �
� �%�

�
� � ' � ��� � � � � � � ' � �"��� and �

� * � �1� � � � ��� � �
�
� � '

� �"� � � � � � � '
� ���$�

is nonempty. If � � �� # and
&

� � , let
� * � � ' � �+& � and halt. Otherwise, let� * � � '

� �'& �
, where

&

�

�
, and halt.

3. Test if
� �

�
� � ' � ��� � � � � � � ' � �"� � �1� � � � � % � holds (i.e., solve problem EQ).

If “no”, let ' � :=
� ' � �+� � , '

�
:=
� ' � � � � and � := � �

�
. Return to 2. Otherwise

(i.e., “yes”), ' � :=
� '
� �+� �

, '
�

:=
� '
� � � �

and � := � �
�
. Return to 2.

Since MT
� ' � -VECTOR, MF

� ' � -VECTOR and EQ are called most � times in UN-
KNOWN, the complexity of Algorithm UNKNOWN is� �

�
�
�
� � �

� � � � � � � � � � � � ��� �
�
� � �

� � � � � � � �$���$���
Next shall we consider the second half of Step 3 of MT-VECTORS. We shall

present Algorithm MINIMAL, which computes a minimal true vector
�

from an un-
known vector

�
(which necessary belongs to

� � � �). The algorithm is based on the fact
that for all �
 � � � � ���

and a isotone function � , � � � � � �
if and only if � �'�

for all
 "$#&% � � � � .
Algorithm 5.28 MINIMAL

Input: A vector
�
!� � � ��� �%�

�
� �

and "$#&% � � � � .
Output: A minimal vector

�
such that

�
!� � � � � � �
�
� �

.

CHAPTER 5. DISCERNIBILITY MATRICES AND FUNCTIONS 46

1.
�

:=
�

.

2. For � :=
� �'� ������� �

� , let
� � � � � ���

if
� � � �#� ��� �' � for all �
 "$#&% � � � � .

3. Output
�

.

The running time of MINIMAL is clearly
� �
� � � "�#&% � � � � � � .

Let us consider the complete running time of Algorithm MT-VECTORS. One
iteration of Steps 2 and 3 is done in

� �
�
�
�
� � �

� � � � � � � � � � � "$#&% � � � � � � �� ��� �
�
� � �

� ��� � � � � �$�$��� time and thus the total running time of MT-VECTORS is� �
� � "
'*) �%� � � � � � � � "('*) � � � � � � �!� "$#&% � � � � � � � � � ��� � � � � "('*) �%� � � � �!� "$#&% � � � � � �$�$�����

Now we can present the following algorithm, which finds the reducts of given
subset of an information system.

Algorithm 5.29 REDUCTS

Input: An array
,�� ��� � � � � � � �&%����

such that for all
� ' � � � ' � , ,�� � � � � � , � � � ,

where � � � ��� � � �&% �!� ��� �
, and a vector � � � � .

Output: A set of vectors corresponding to
� � � * � � �

.

1. Compute the set of vectors "$# % � � �
�� � with Algorithm MF-VECTORS1.

2. Compute the set of vectors "('*) �%� �
�� � with Algorithm MT-VECTORS and out-

put it.

We have already seen that � "$#&% � � �
�� � � ' � � and � "('*) �%� �

�� � � � � � � � � � � � � .
Recall that the complexity of Step 1 is

� � � � � � . Hence, the total running time of
Algorithm REDUCTS is� �

� ��� �
�
� � � � � � � � � ��� � � �$���$���

Example 5.30 As we have seen, the information system of Example 4.1 can be repre-
sented as an array

,�� ��� �
��
, where

,�� ��� � � �*, � � � � �*� � � �'� � � � , ,�� ��� � � � , � � � � �-� �'� �+� � � � ,,�� ��� � � � , � � � � � � � � �'� � � � ,,�� ��� � � �*, � � � � � � �'� � � � � � , ,��	��� � � � , � � � � �(� �'� � � �+� � ,,��
�� � � � ,1� � � � �*� � � � � � � � .
We shall illustrate how Algorithm REDUCTS computes the reducts of the set��� ��� ��� � � �

. We first have to compute the set "$#&% � � �
�� � with Algorithm MF-

VECTORS1. Obviously, � � * � � �*,�� � � � � & �$� � � � ' � '
 � � � & � ,�� � � ��
0 �

� � � �-� �+� � � �'���
,
�(� � � � � �'���

,
�*� �'� � � �'� �

,
�*� � � �'� �'� �

,
�-� � � �+� � � �

,
�-� �+� �+� �'��� �

. The
vectors

�-� � � �+� � � �
,
� � �+� � � �'���

, and
�(� � � � � �'���

are maximal in � � , which implies
"$# % � � �

�� � � � � � � � �'� � � �
,
�-� �'� � � �+� �

,
�*� � � � � �'� � �

. Next we shall compute the set
"('*) �%� �

�� � with algorithm MT-VECTORS. It starts with �
� * � # and � � * �

"$# % � � �
�� � .

It is obvious that
�%�

�
� �+� � � � � � �� �1� � � � �

, so we execute Algorithm UN-
KNOWN:

CHAPTER 5. DISCERNIBILITY MATRICES AND FUNCTIONS 47

) � � � * ' � � �(��� � '
�
� � � � ; �

� � ' � � � # � � � � ' � � � � �-� �'� � � � � �-� � � �'� � �
.

) � � � * ' � � �(� �'� � � '
�
� �(� � � � ; �

� � ' � � � # � � � � ' � � � � �(� � � � � � � �+� � �
.

) � � � * ' � � �(� �'� �+� � � '
�
� �*� �+� � � � ; �

� � ' � � � # � � � � ' � � � � �-� � � � ��� �
.

Now � � � � � ' � �"� � �1� � � �
, that is, � � � # . So, we must compute the sets �

� � '
� � �

and � � � '
� � � � �(��� � � � � �

. Hence, �
� � ��� �

, which implies
& � �

and
� ��(� �'� � � � � �

.
Because

�
is a minimal true vector, �

� � � �(� �'� � � � � � �
and � � � � � � � � �'� � � �

,�-� �'� � � �+� �
,
�*� � � � � �'��� �

. Now
�%�

�
� ��� � � � � � �� �1� � � � �

, so we shall execute
UNKNOWN again:

CHAPTER 5. DISCERNIBILITY MATRICES AND FUNCTIONS 48

) � � � * ' � � �(� � � '
�
� � � � ; �

� � ' � � � � �(� � � � � � � � � � � ' � � �� � � �+� � � � � �-� � � �+� � �
.

) � � � * ' � � � � �+� � � '
�
� � � � � � ; �

� � ' � � � � � � � � � � � � � � ' � � �� �*� � � � � �-� �'� � �
.

) � � � * ' � � �-� � � �+� � � '
�
� � � � � � � � ; �

� � ' � � � # � � � � ' � � � � �-� � � � ��� �
.

Because
� �

�
� � ' � �"� � � � � � � ' � �"� � �1� � � �

, we have to compute the sets �
� � '

� � �� � � � � � ��� �
and � � � '

� � �-# . So, �
� � �1� �

which implies
& � �

and
� ��-� � � � � �+� �

.
The true vector

�-� � � � � �+� �
is minimal. Thus, �

� � � �(� �+� � � � � �
,
�-� � � � � �+� � �

and
� � � � �-� � � �+� � � �

,
� � �'� � � �'� �

,
�*� � � � � �'��� �

. Now
� �

�
� �6� � � � � � � �1� � � � �

,
which implies that

�(� �+� � � � � �
and
� � � � � � �'� �

are the vectors corresponding to the
reducts of & .

If the dependency � , �
holds in an information system, then the following

algorithm finds the set of the characteristic vectors of all minimal subsets � of �
which satisfy � , � .

Algorithm 5.31 MIN-DEPENDENCY

Input: An array
,�� ��� � � � � � � �&%����

such that for all
� ' � � � ' � , ,�� � � � � � , � � � ,

where � � � ���!� � �&%�� � � � �
, and two vectors � � � � and � � � � which satisfy � , �

in
�

.
Output:

� � � � � � � is a minimal subset of � which satisfies � , � �
.

1. Compute the set of vectors "$# % � � �
�
���

� � with Algorithm MF-VECTORS2.

2. Compute the set of vectors "('*) � � �
�
���

� � with Algorithm MT-VECTORS and
output it.

Obviously, � "$#&% � � �
�
���

� � � ' � � and if we denote � � � � � � � � � � is a minimal
subset of � which satisfies � , � � � , then the total running time of Algorithm MIN-
DEPENDENCY is � �

� � � � � � � � �
� �

�
� ��� �

�
� � � � � ���$�����

Example 5.32 The information system of Example 4.1 can be represented as an array,�� ��� �
��
, where

,�� ��� � � �*, � � � � �*� � � �'� � � � , ,�� ��� � � � , � � � � �-� �'� �+� � � � ,,�� ��� � � � ,1� � � � � � � � �'� � � � ,,�� ��� � � �*, � � � � � � �'� � � � � � , ,��	��� � � � , � � � � �(� �'� � � �+� � ,,��
�� � � � ,1� � � � �*� � � � � � � � .
If we set

� � � � �
, then the dependency & , �

holds in
�

. Next we shall show
how Algorithm MIN-DEPENDENCY computes the set of all minimal subset � of &
which satisfy � , �

. First we shall compute the set "$# % � � �
��
�
� � with Algorithm

MF-VECTORS2. Obivously, � � * � � �*,�� � � � � & ��� � � ��' � '
 � ,�� � � � � � � ��
0 �

� � � �-� �+� � � �'���
,
�*� � � � � �'���

,
�(� �'� � � �+� �

,
�(� � � �+� �'���

,
� � �+� �'� �'��� �

. The vectors

CHAPTER 5. DISCERNIBILITY MATRICES AND FUNCTIONS 49

�-� �'� � � �+� �
and
�*� � � � � �'� �

are maximal in � � , which implies "$#&% � � �
��
�
� � �� � � �+� � � �'���

,
�(� � � � � �+� � �

. Next we shall compute the set "
'*) � � �
��
�
� � with algorithm

MT-VECTORS. It starts with �
� * � # and � � * � "$# % � � �

��
�
� � .

It is obvious that
� �

�
� � � � � � � � �� �1� � � � �

, so we have to execute Algorithm
UNKNOWN:

) � � � * ' � � �(��� � '
�
� � � � ; �

� � ' � � � # � � � � ' � � � � �-� � � �+� � �
.

) � � � * ' � � �(� �'� � � '
�
� �(� � � � ; �

� � ' � � � # � � � � ' � � � � �-� �'��� �
.

) � � � * ' � � �(� �'� �+� � � '
�
� �*� �+� � � � ; �

� � ' � � � # � � � � ' � � � � �(� � � � �1� �
.

Now � � � � � ' � ��� � �1� �
, that is, � � � ��� �

, which implies
& � �

and
� � �(� �+� �+� � � � .

Because
�

is minimal true vector, �
� � � �(� �+� �+� � � � �

and � � � � � � �+� � � �'���
,�(� � � � � �+� � �

. Clearly,
� �

�
� ��� � � � � � �� �1� � � � �

, so we must run UNKNOWN again:

) � � � * ' � � �(��� � '
�
� � � � ; �

� � ' � � � � �*� �'� � � � � � � � � ' � � � � � � � � �'��� �
.

) � � � * ' � � �-� �'� � � '
�
� �-� � � � ; �

� � ' � � � � �(� � � � � � � � � ' � � � � �-� �'��� �
.

) � � � * ' � � �-� � � �+� � � '
�
� � � � � � � � ; �

� � ' � � � � �-� � � � ��� � � � � � ' � � � # .

Because
�%�

�
� � ' � �"�8� � � � � � ' � �"� � ��� �

, we get � � � � � �
and

& � �
. Hence,� � �-� � � �+� �'��� which is a minimal true vector. Then �

� � � �(� �'� �'� � � �
,
� � � � �+� �'��� �

and � � � � �-� �'� � � �+� �
,
�(� � � � � �+� � �

. Now
�%�

�
� � � � � � � � � �1� � � � �

, which
implies that

�(� �+� �+� � � �
and
�-� � � �+� �'���

are the characteristic vectors of the subsets � of
& which satisfy � , �

.

Chapter 6

Dependence Spaces

6.1 Congruences and closure operators on semilattices

In this section we study congruences on semilattices. Most of the results in this section
appear in the literature (see [4, 14], for example), but in some cases we give new proofs.
Moreover, statement (a) of Lemma 6.3 and Propositions 6.8 and 6.9 cannot be found
in the mentioned sources.

In what follows, we regard a semilattice � � � � � 	 � also as a join-semilattice� � ��' � in which the order relations is defined by

' ' &
if and only if ' 	 & � & �

clearly, ' 	 & is the join of ' and
&

in
� � ��' � . We say that � has a zero if there is

�
 �
such that ' � ' 	 � for all '
 � . Obviously, the algebra � � � � � 	 � has a zero if and
only if the ordered set

� � ��' � has a bottom element � , and in that case
� � � .

Lemma 6.1 If � � � � � 	 � is a finite semilattice with a zero, then the ordered set� � ��' � is a lattice.

Proof. Because � is finite, � � � � # exists in � and it is the greatest element. By
assumption, � has a bottom element 0. Thus, ��� � � #%� �

. If ! � � ' � ������� � ' 	 � is
a nonempty subset of � , then � !/� ' � 	 �� 	 ' 	 . Moreover,

�
 ! � , which implies
! � �� # . By Lemma 2.1 this yields that � ! � � ! � exists for all ! � � . �

Let � � � � � 	 � be a semilattice and let
�

be a congruence on � , that is, for all
' � � ' � �+& � �+& � in � ,

� ' � �'&�� ��
 �
and
� ' � �'& � ��
"�

imply
� ' � 	 '�� �'& � 	 & � ��
"�

. Let us
recall that the congruence class of

�
containing ' is denoted by ' %�� , and the quotient

set of � modulo
�

is denoted by � %�� . By setting

' %�� � & %�� � � ' 	 & � %��(6.1)

for all ' �'&
 � we get a well-defined binary operation on � %�� which is associative,
commutative, and idempotent. Thus

� � %��+� � � is a semilattice, the quotient semilattice
of P modulo K. If

'��
��� is the the corresponding partial order, then

� � %��+��'�� � �
�

is a
join-semilattice in which the join of any elements ' %�� and

&�%��
is ' %�� � &�%��

(which
justifies our use of the symbol �).

50

CHAPTER 6. DEPENDENCE SPACES 51

Lemma 6.2 Let
�

be a congruence on a semilattice � � � � � 	 � .
(a) If � � �

is an integer and ' � ������� � '�� �'&�� ������� �+& � are elements of � such that� ' � �+& � ��
"�
for

� ' � ' � , then
� ' � 	 �� 	 ' � �+& � 	 �� 	 & � �
��

.
(b) If � is finite, then any

�
-class

�
 � %�� contains � �
as its greatest element.

(c) If
� ' �+& ��
"�

and ' ' , ' &
, then

�(& �+, ��
 �

Proof. Claim (a) follows from the definition of congruence relations by a simple
induction. For (b) suppose that

� � � ' � ������� � ' � � is a congruence class of
�

. Then� ' � � ' � ��
"�
for

� ' � ' � . By (a) and idempotency, this implies
� ' � � ' � 	 �� 	 ' � ��
�

, that is, � �
 �
. Obviously, ' � ' ' � 	 �� 	 '�� for all

� ' � ' � . Hence, � �
is

the greatest element in
�

. (c) Because
� ' �'& �
 �

implies
� '�	 , �'& 	 , �
 �

for any,
 � , then ' ' ,
and

, ' &
imply

�*, �'& ��
 �
. �

Congruences on semilattices may be defined by means of closure operators. Simi-
larly, closure operators on finite semilattices can be defined by means of congruences.
In the following we shall describe these constructions.

Let
� � ��' � be an ordered set. Then a function � * � , � is called a closure

operator (see e.g. [4]), if for all ' �+&
 � ,
(a) ' ' � � ' � ,
(b) ' ' &

implies � � ' � ' � �(& � , and
(c) � � � � ' ��� � � � ' � .

An element '
 � is called closed if � � ' � � ' . The set of all closed elements of � is
denoted by � � .

If
� � ��' � has a top element

�
, then

� ' � � � � ' �
which implies that

�
 � �
and it is the top element of � � . Moreover, if � has a bottom element � , then � ' '
for all '
 � , which implies � � � � ' � � ' � for all '
 � . Thus, � � has a bottom
element � � � � . We extent � to subsets of � in the natural way: for ! � � , � � ! � �� � � ' � � '
 ! � .

Lemma 6.3 If
� � ��' � is a complete lattice and � *�� , � is a closure operator, then

the following facts hold.
(a) � � � ! � � � � � � � ! �$� for all ! � � .
(b) � � � � � � ' � � '
 � �

.
(c) � � !
 � � for all ! � � � .
(d) � � ' � � � � �1&
 � � � ' ' & �

.
(e)

� � � ��' � is a complete lattice such that for every subset ! of � � ,

� ��� ! � � � ! �
� ��� ! � � � � � ! �'�

Proof. (a) Suppose ! � � . For all '
 ! , � � ' � ' � � � ! � since ' ' � ! .
Hence, � � � ! � ' � � � ! � and hence � � � � � ! �$� ' � � � � � ! �$� � � � � ! � . On the
other hand, ' ' � � ' � ' � � � � ' � � '
 ! � � � � � ! � for all '
 ! , which implies
� ! ' � � � ! � and � � � ! � ' � � � � � ! �$� .

(b) If '
 � is closed, then � � ' � � ' , that is, '
 � � �(& � � &
 � �
. Conversely, if

'
 � � �(& � � &
 � �
, then ' � � �(& � for some

&
 � . Obviously, � � ' � � � � � �*& �$� �
� �*& � � ' , i.e., ' is closed.

CHAPTER 6. DEPENDENCE SPACES 52

(c) Suppose ! � � � . Then � � ! ' � � � � ! � . It is clear that � � ! ' ' for all
'
 ! , which implies � � � � ! � ' � � ' � ��' for all '
 ! . Hence, � � � � ! � is a
lower bound for ! and thus � � � � ! � ' � � ! .

(d) Obviously, � � ' � ' � � � &
 � � � ' ' & �
. Because � � ' �
 � � , this implies

� � ' ��
 � &
 � � � ' ' & �
. Hence, � � � &
 � � � ' ' & � ' � � ' � .

(e) We have seen that � � has the top element
�

and the bottom element � � � � .
Hence, � ��� # � � � � � # , � � � � � � � � � � � � � � � , � � � # � � � � � �
� � � � # � , and � � � � � � � �3� � � � �3� � � � � � � . If ! is a nonempty subset of
� � , then � � !
 � � by (c) and hence � � � ! � � � ! . By Lemma 2.1,

� � � ! � � � � ! �
� � � � &
 � � � ' ' &

for all '
 ! �
� � � � &
 � � � � � ! ' & �
� � � � � ! ���

�
Note that Lemma 6.3(c) holds for any ordered set

� � ��' � .
If � � � � � 	 � is a finite semilattice and

�
is a congruence on � , then by Lemma

6.2(b) the block ' %�� has the greatest element � ' %�� for all '
 � . We define the
following function.

� � *��
, � � ' ., � ' %�� �

Then the following proposition holds.

Proposition 6.4 If � � � � � 	 � is a finite semilattice and
�

is a congruence on � , then
the mapping � � is a closure operator. Moreover,

��� � � �
�

.

Proof. We show that � � satisfies conditions (a)–(c) in the definition of closure
operators. (a) The fact '
 ' %�� implies ' ' � ' %�� � � �

� ' � . (b) Assume ' '
&
. Then

� ' � � �
� ' �$�
 �

and
�(& � � �

�*& �$�
 �
imply

� '$	 & � � �
� ' � 	 � �

�*& �$� ��(& � � �
� ' � 	 � �

�*& �$�
 �
. Hence, � �

� ' � 	 � �
�*& � ' � �

�(& �
. Since

� 	 � � � for
any
�#�$�
 � , this implies that � �

� ' � 	 � �
�*& � � � �

�(& �
, i.e., � �

� ' � ' � �
�*& �

. (c)
� �
� � �
� ' ��� � � � �

� ' �&%�� � �+' %�� � � �
� ' � .

Suppose
� ' �+& �-
 �

. Then
� ' � � �

� ' ���-
 �
and
�*& � � �

�(& ���-
 �
imply�(& � � �

� ' ����
"�
and
� ' � � �

�*& �$��
"�
. Hence, � �

� ' � ' � �
�*& �

and � �
�*& �6' � �

� ' � ,
i.e., � �

� ' � � � �
�*& �

. On the other hand, assume � �
� ' � � � �

�*& �
. Then the facts� ' � � �

� ' ����
"�
and
� � �
�*& � �+& ��
"�

imply
� ' �'& ��
"�

. �
If

�
is a congruence on a finite semilattice

� � � 	 � , then we denote the set � � ��� �
simply by � � . By the previous proposition, every congruence on a finite semilattice
defines a closure operator. In what follows we shall see how every closure operator
defines a congruence relation.

Proposition 6.5 If � � � � � 	 � is a finite semilattice with a zero and � * � , � is a
closure operator, then the following facts hold.

(a)
� � � ��' � is a lattice.

(b) The mapping � is a homomorphism from
� � � 	 � onto

� � � � � � � � .
(c) The

��� � is a congruence on � .

CHAPTER 6. DEPENDENCE SPACES 53

Proof. Statement (a) follows from Lemmas 6.1 and 6.3(e). (b) By Lemma 6.3,
� � '$	 & � �-� � � � ' � 	 � �(& ��� �-� � ' � � � � � �*& � . Hence, � is a homomorphism.
Moreover, � � � � � � ' � � '
 � �

which implies that � is onto. That (c) follows from
(b) is a well-known fact of general algebra. �
In the sequel we denote

��� � by
�
� .

We have shown that if � � � � � 	 � is a finite semilattice with a zero, then every
congruence

�
on � defines a closure operator � � * �

, � , and every closure
operator � * � , � defines a congruence

�
� on � . Moreover, the following lemma

holds.

Lemma 6.6 Let � � � � � 	 � be a finite semilattice with a zero.
(a) If

�
is a congruence on � , then

� � � � ��� � .
(b) If � *�� , � is a closure operator, then � � � � �

� � .

Proof. (a) If
�

is a congruence on � , then for all ' �'&
 � ,
� ' �'& �
 � �

� �
� ' � � � �

�*& � � � ' �+& ��
"� � ��� � �
(b) If � * � , � is a closure operator, then for all ' �'&
 � , � � ' � � � �*& � �� ' �'& ��
"�

�
� � � �

� � � ' � � � � �
� � �(& � . �

By Lemma 6.6 we can write the following proposition.

Proposition 6.7 If � � � � � 	 � is a finite semilattice with a zero, then the mappings
� ., �

� and
� ., � � form a pair of mutually inverse bijections between the set of

all closure operators � *�� , � and the set of all congruences on � . �
If � � � � � 	 � is a finite semilattice with

�
and

�
is a congruence on � , then the

quotient semilattice has a least element
� %��

, and hence it is a lattice by Lemma 6.1.
Therefore, we can write the following proposition.

Proposition 6.8 Let � � � � � 	 � be a finite semilattice with a zero and let
�

be a
congruence on � . If we set

' %�� � &�%�� � � ' 	 & �&%��+� and

' %�� &�%�� � � � �
� ' � � � �

�(& ���&%�� �

then the algebra
� � %��+� � � � is a lattice.

Proof. We have already seen that the well-defined binary operation � on � %�� is
associative, commutative, and idempotent. The operation is also well-defined on
� %�� , and clearly it is commutative and idempotent. For all ' �+& �+,
 � ,

' %�� �(&�%�� ,�%�� � � ' %�� � � �
�(& � � � �

� , ���&%��
� � � �

� ' � � � �
� � �
�*& � � � � �

�*, �$�$� %�� � � � �
� ' � � � �

�(& � � � � �
�*, �$� %��

� � � �
� ' � � � � �

�(& � � � �
�*, �$� %�� � � � �

� � �
� ' � � � �

�(& �$� � � �
�*, �$� %��

� � � �
� ' � � � �

�(& ���&%�� � %�� � � ' %�� &�%�� � ,�%��
.

Hence, is associative. Next we show that the absorption identities (L4) and (L4) �
hold.

CHAPTER 6. DEPENDENCE SPACES 54

' %�� � � ' %�� &�%�� � � � �
� ' � � � � �

� ' � � � �
�*& �$� %��

� � � �
� ' � 	 � � �

� ' � � � �
�(& ���&%�� � � �

� ' � %�� � ' %�� .

Similarly,

' %�� � ' %�� � � %�� � � ' %�� � ' 	 & � %��
� � � �

� ' � � � �
� ' 	 & �&%�� � � �

� ' �&%�� � ' %�� �

Hence, the algebra
� � %��+� � � � is a lattice. �

If � � � � � 	 � is a finite semilattice with a zero, then for every closure opera-
tor � * � , � , the set

� � � ��' � is a lattice by Proposition 6.5(a). In particular, if�
is a congruence on � , then

� � �
� � � � � � � � , where ' � � � & � � '�	 & � %�� and

' � � & � ' � &
, is a lattice. Next we shall show that the lattices

� � %��+� � � � and� � �
� � � � � � � � are isomorphic.

Proposition 6.9 If � � � � � 	 � is a finite semilattice with a zero and
�

is a congruence
on � , then

� *�� %�� , � �
�

' %�� ., � �
� ' �

defines an isomorphism between the lattices
� � %�� � � � � and

� � �
� � � � � � � � .

Proof. By Proposition 6.5(b), the closure operator � � is a homomorphism from� � � 	 � onto
� � �
� � � � � . Because by Proposition 6.4,

��� � � �
�

, then the func-
tion � *�� %�� , � � , given by � � ' %�� � � � �

� ' � , is an isomorphism between� � %��+� � � and
� � �
� � � � � by Homomorphism Theorem. Because

� � %��+� � � � and� � �
� � � � � � � � are lattices, the claim follows from Proposition 2.14. �

6.2 Congruences and dense sets of semilattices

In the previous section we saw how every congruence on a finite semilattice defines
a closure operator, and vice versa. In this section we show that every subset of a
semilattice defines a congruence on that same semilattice.

The following binary relation is defined in [14]. Suppose �-� � � � 	 � is a semilat-
tice and

� � � . Then we define a binary relation
���

on � by

��� � � �*& �+, ��
 � � � for all '
 � ��& ' ' if and only if
, ' ' � �

Then the following lemma holds.

Lemma 6.10 Let � � � � � 	 � be a semilattice. Then for all
� � � , the relation

���
is

a congruence on � .

Proof. It is obvious that
���

is an equivalence relation. Suppose
�(& � �-,1� ��
 ���

,�(& � �-, � �
 ���
and '
 � . If

& � 	 & � ' ' , then
& � �+& � ' ' , which implies

,�� �+, � ' ' ,
from which we deduce

, � 	 , � ' ' . Similarly,
, � 	 , � ' ' implies

& � 	 & � ' ' . Thus�(&�� 	 & � �-,1� 	 , � ��
"���
. �

CHAPTER 6. DEPENDENCE SPACES 55

The following definition of dense sets can also be found from [14] in different
form. Let � � � � � 	 � be a semilattice and assume

�
is a congruence on � . Then a

subset
�

of � is called dense with respect to
�

if
� � ���

.
If � � � � � 	 � is a finite semilattice and

�
is a congruence on � , then we can

denote as in the previous section the closure operator corresponding
�

by � � , and the
set of closed elements corresponding to � � is by � � . We have the following result.

Proposition 6.11 If � � � � � 	 � is a finite semilattice and
�

is a congruence of � ,
then the following facts hold.

(a)
� � � � � � � .

(b) If
�

is dense with respect to
�

, then
� � � � .

Proof. (a) If
�(& �-, �
 �

, then � �
�(& � � � �

�*, �
. Let '
 � � . If

& ' ' , then, ' � �
�*, � �1� �

�(& � ' � �
� ' � � ' . Similarly,

, ' ' implies
& ' ' . Hence,�(& �+, �
 � � � � � . Conversely, if

�*& �+, �
 � � � � � , then for all '
 � � , the conditions& ' ' and
, ' ' are equivalent. Because � �

�(& �
 � � and
& ' � �

�(& �
, then,!' � �

�(& �
which implies � �

�*, � ' � �
� � �
�(& �$� � � �

�(& �
. Similarly, we can show

that � �
�(& �6' � �

� , �
. Hence, � �

�(& � � � �
� , �

, i.e.,
�*& �+, ��
"�

.
(b) Suppose

�
is a dense with respect to

�
and let ' be an arbitrary element of

�
.

If ' �
 � � , then ' � � �
� ' � . Because

� ' � � �
� ' �$�
 ���

and ' ' ' �
 � � , we get
� �
� ' �6' ' , a contradiction! Hence, '
 � � . �
We have shown that if � � � � � 	 � is a finite semilattice, then every subset of �

defines a congruence on � . Similarly, every congruence
�

on � defines a family of
dense sets 2 such that

� � ���
for all

�
 2 . Moreover, the set � � is the greatest
dense set. Next we try to find the least dense set.

We know that if � � � � � 	 � is a finite semilattice with a zero and
�

is a congruence
on � , then the algebra

� � �
� � � � � � � � , where ' � � � & � � �

� ' 	 & � and ' � � & �
' � &

, is a lattice. If we denote by 4 � � �
�

the set of meet-irreducible elements ' �� �
of � � , then the following proposition holds.

Proposition 6.12 Let � � � � � 	 � be a finite semilattice with a zero and let
�

be a
congruence on � . Then 4 � � �

�
is the least dense set with respect to

�
.

Proof. First, we shall show that 4 � � �
�

is dense. The fact 4 � � �
�.� � � ,

obviously implies
� � � � � � � � ��� � � � � . Suppose

�(& �+, �%
7��� � � � � and
�(& �-, � �
� � � � � for some

& �-,
 � . Then there exists '
 � �
� 4 � � �

�
such that either (i)

& ' '
and

, �' ' or (ii)
& �' ' and

, ' ' holds. Let us denote ! � � �
 4 � � �
� ��' ' � �

.
Because � is finite, the lattice

� � �
��' �

satisfies the ACC. Then by Lemma 2.13 and
Lemma 6.3(e), ' � � � � ! � � � ! . Let us consider the case (i). The condition

& ' '
implies that

& ' �
for all

�
 ! . Because ! � 4 � � �
�
,
, ' �

for all
�
 ! . Hence,,

is a lower bound for ! , which implies
, ' � � ! � ' , a contradiction! Similarly,

the case (ii) leads to contradiction. Thus
�(& �+, �
 � � � � � , which implies that the set

4 � � �
�

is dense.
Secondly, we shall show that 4 � � �

�
is the least dense set. Assume 4 � � �

�0�
� �� # for some dense set

�
. This implies that there exists '
 4 � � �

� � �
. Because

'
 4 � � �
�

and � � is finite, there exists exactly one
&
 � � which satisfies ' � � &

in
� � . Clearly, for all

�+
!�
,
& ' �

implies ' ' �
. Suppose there exists

�
!�
such that

CHAPTER 6. DEPENDENCE SPACES 56

' ' �
and

& �' � . Because
� � � � , ' ' � � � & � &

. The condition ' � � &
(in � �)

implies ' � � � � &
. Because ' is a meet-irreducible element of � � , ' � � or ' � &

.
Obviously both of these equations lead to a contradiction. Hence, for all

�
!�
, ' ' �

implies
& ' �

. Thus
� ' �'& �
 � � � � � � �

, i.e., � �
� ' � � � �

�(& �
. Because ' �'&
 � � ,

we get ' � � �
� ' � � � �

�(& � � &
, a contradiction! Thus, 4 � � �

�0� � � # for all
dense sets

�
. �

By Propositions 6.11 and 6.12 we can now give the following characterization of
dense sets.

Proposition 6.13 If � � � � � 	 � be a finite semilattice with a zero and assume
�

is a
congruence on � , then

�%��� � � is dense with respect to
�

if and only if 4 � � �
���

� � � � . �
Our two following results show how to compute the value � �

� ' � for any '
 � .

Lemma 6.14 If � � � � � 	 � be a finite semilattice with a zero and assume
�

is a
congruence on � , then

� �
� ' � � � � �1&
 4 � � �

� � ' ' & � �

Proof. Because
&
 � � , ' ' &

if and only if � �
� ' � ' &

, and hence the equation
follows directly from � �

� ' � � � � �1&
 4 � � �
� ��� �

� ' � ' & �
. �

Proposition 6.15 Let � � � � � 	 � be a finite semilattice with a zero and assume
�

is
a congruence on � . If

�
is a dense subset of � , then

� �
� ' � � � � �1&
!� � ' ' & � �

Proof. By Lemma 6.3(d) and Proposition 6.4,

� �
� ' � � � � �1&
 � � � ' ' & �

and by Lemma 6.14,

� �
� ' � ��� � �1&
 4 � � �

� � ' ' & �
.

Proposition 6.13 implies that if
�

is a dense subset of � , 4 � � �
� � �-� � � holds.

Hence for all '
 � ,
� &
 4 � � �

� � ' ' & � � � &
 � � ' ' & � � �1&
 � � � ' ' & �
,

which implies by Lemma 2.3,

� �
� ' � � � � � &
 � � � ' ' & � ' � � �1&
!� � ' ' & � ' � � �1&
 4 � � �

� � ' '
& � � � �

� ' � ,
that is, � �

� ' � � � � � &
!� � ' ' & �
. �

CHAPTER 6. DEPENDENCE SPACES 57

6.3 Closure operators and dense sets of dependence spaces

We recall Novotný’s and Pawlak’s definition of dependence spaces (see [12], for exam-
ple). The considerations of this section are mainly special cases of the results presented
in Section 6.1. If & is a nonempty set, then the algebra

��� � & � ��� � is a semilattice which
has # as the zero element. Since

� � � if and only if
� � � � � for all

� � �
 � � & � ,
the corresponding join-semilattice is

�$� � & � � � � . If & is a finite nonempty set and
�

a
congruence on the semilattice

��� � & � ��� � , then the ordered pair � � � & ��� � is said to
be a dependence space.

Let � � � & ��� � be a dependence space. The operation of the corresponding
quotient semilattice

�$� � & �&%�� � � � is defined by
� %�� � � %�� � � � � � �&%�� . Since

for all
� � �
�� � & � , � %��-' � %��

if and only if
� %�� � � %�� � � %��

, the partial
order is given by the condition

� %�� ' � %��
if and only if

� � � � � %�� � � %�� �
(6.2)

For a dependence space �-� � & ��� � a mapping , * * � � & � ,-� � & � is defined by

, * � � � � � � %��

for all
� � & . Recalling the finiteness of the semilattice

�$� � & � � � � , it is obvious by
Lemma 6.2(b) that for every

� ��� & � , the block
� %��

contains , * � � � which is its
greatest element. By Lemma 6.4 it is clear that , * is a closure operator and

� � � � ��
 �
if and only if , * � � � � , * � � �(6.3)

for all
� � �
 � � & � . From conditions (6.2) and (6.3) and Lemma 2.6(b) it follows,

that we can determine , * � � � for every
� � & by the rule

, * � � � � � '
 & � � ' � %�� ' � %�� � �

We have seen how every dependence space � � � & ��� � defines a closure operator , * .
The following Lemma is obvious by Lemma 6.5(c).

Lemma 6.16 Let , be a closure operator on a finite set & . If we define a binary
relation

� �
on

� � & � by setting

� � � � ��
"� �
if and only if , � � � � , � � �

for all
� � �
 � � & � , then � � � � & ��� � �

is a dependence space. �
Thus, every closure operator , * � � & � ,-� � & � defines a dependence space � � �� & ��� � �

. By Lemma 6.6 we can write the following lemma.

Lemma 6.17 Let & be a finite set.
(a) If � � � & ��� � is a dependence space, then

� � � � ��� � .
(b) If , is a closure operator on & , then , � , � *
 � . �
The following proposition is clear by Proposition 6.7.

CHAPTER 6. DEPENDENCE SPACES 58

� � � � � � � � � �

�� � � � � � � � � � � � � � � � � � �

� � � ��� � � � � � �

� �

������ ������
������ ������

�
� � � � �

� � � � � �

� � � � � �
� � � � � �

Figure 5

Proposition 6.18 For any finite set & , the mappings , ., � � and � ., , * form a pair
of mutually inverse bijections between the sets of all closure operators , * � � & ��,� � & � and the set of all dependence spaces � � � & ��� � . �

It is obvious that every dependence space � � � & ��� � defines a closure system(� � � � (denoted shortly by
(*

) on & . Clearly,

(8* � � � � & � � � � � %�� � �

Note that
(*

consists of the greatest elements with respect to inclusion of the�
-classes. The following proposition is obvious by Propositions 6.8 and 6.9.

Proposition 6.19 Let �-� � & ��� � be a dependence space.
(a) If we set

� %�� ��� %�� � � � � � �&%�� and� %�� �� %�� � � , * � � � � , * � � �$�&%��
for all

� � �
 � � & � , then the algebra
��� � & �&%��+� � � � is a lattice.

(b) The mapping � * � � & � %�� , (+*
, � %�� ., , * � � � , defines an isomorphism

between the lattices
�$� � & �&%�� � � � � and

�5(* � � � � � � � � . �
By Theorem 2.14 it is clear that for all

� � � � � & � ,
, * � � ��� , * � � � if and only if

� %�� ' � %�� �
(6.4)

Example 6.20 Let & � ��� ��� ��� � � �
and

�
be the congruence on

�$� � & � � � � whose
congruence classes are

� # � ,
����� ���

,
����� ���

,
��� � ���

,
��� � �

,
��� �'� �

,
��� ��� �

,
�1� � � �

,��� ��� ��� ���
,
����� ��� ���

,
���1� ��� ���

and
��� � � � �

,
��� ��� ��� �

,
��� ��� ��� �

,
��� ��� ��� �

,
��� ��� ��� � � ���

.
The closure lattice

�)(+* � � �
corresponding dependence space �-� � & ��� � is presented

in Figure 5. Moreover, 4 �)(* � � ����� ��� ��� �
,
��� ��� �

,
��� ��� ���

.

CHAPTER 6. DEPENDENCE SPACES 59

6.4 Independent sets and reducts

We shall review some notions and basic results concerning dependence spaces. Lem-
mas 6.21 and 6.23 can be found also in [10, 12, 14]. Earlier versions of other results
in this section are presented in [8] where they are formulated by the means of closure
systems. Here we present similar considerations by applying dense sets. Our main
result in this section gives a new characterization to the reducts of a given subset of a
dependence space.

Let � � � & ��� � be a dependence space. A subset
� � � & � is called independent,

if
�

is minimal with respect to inclusion in its
�

-class; otherwise it is called depen-
dent. We denote the set of all independent subsets of � by ���!� * . The next lemma
characterizes the independent subsets of a dependence space. Moreover, it shows that
every subset of an independent set is independent.

Lemma 6.21 If � � � & ��� � is a dependence space and
� � & , then the following

conditions hold.
(a)

�
 � �+� * if and only if
� � � � � � ' � � �
"�

for all '
 �
.

(b) If
�
 � �+� * and � � �

, then �
 � �+� * .

Proof. If
�
 ���!� * , then obviously

� � � � � � ' � � �
 �
for all '
 �

. Con-
versely, suppose

� � � � � � ' � � �
 �
holds for all '
 �

. If
� �
 ���!� * , then there

exists � � �
which satisfies

� � � � �
 �
. If '
 � � � , then � � � � � ' � � �

,
which implies by Lemma 6.2(c) that

� � � � � � ' � ��
��
, a contradiction!

(b) Suppose
� ��� & � is independent and � � �

. If � �
 � �+� * , then there exists
'
 � such that

� � � � � � ' � ��
��
. This implies

� � � � � � ' � � � � � � � � � � � � � � �
� ' � � � � � � � �$��
"�

, a contradiction! �
Remark 6.22 Let us note that this notion of independence is actually equivalent to a
general notion of independence with respect to a closure operator. Let , be a closure
operator on & . The set

� � & is said to be , -independent if ' �
 , � � � � ' � � for every
'
 �

(cf. [6], for example). If � � � & ��� � is a dependence space and
� � & , then

by (6.3) and Lemma 2.6(b),
� � � � � � ' � � �
 � � , * � � � ��/, * � � � � ' � � � ' �

, * � � � � ' � � for all '
 �
. Hence, for all

� � & ,
�
 � �+� * if and only if

�
is

, * -independent.

As we have already shown, the notion of dependence spaces could equivalently be
defined as a pair � � � & � , � , where , is a closure operator on a finite set & . By our
remark, the set � �+� * can be defined in this structure by the means of a general notion
of independence known in the literature.

For any
� � � & � , a set � ��� & � is a reduct of

�
if � � �

,
� � � � �
 �

, and �

���!� * . The set of all reducts of

�
will be denoted by

� � � * � � ��� In the other words,
a subset � � � � �

is a reduct of
�

, if � is minimal in the block
� %��

with respect to
the inclusion relation. Because & is finite, it is obvious that the ordered set

�$� � & � � � �
is finite. Hence, it satisfies the DCC. Because

� � � � � �
 � %�� �
is a nonempty

subset of
� � & � , by the dual of Lemma 2.4 this implies that

� � � � ���
 � %�� �
has

a minimal element i.e., a reduct of
�

.
An element '
 �

is said to be indispensable for
�

if
� � � � � � ' � � �
"�

. The set
of all indispensable elements forms the core of

�
, which is denoted by � � � � * � � � .

CHAPTER 6. DEPENDENCE SPACES 60

Lemma 6.23 If �-� � & ��� � is a dependence space and
� � & , then for all

� � & ,

� ��� � * � � � ��� � � � * � � ���
Proof. Assume '
 � ��� ��* � � �

and ' �
 � for some �
 � � � * � � � . Hence,
� � � ��� ' � � �

and
� � � � �
 �

, which implies by Theorem 6.2(c) that
� � � � �

� ' � ��
 �
, a contradiction!

Conversely, suppose '
 � � � � * � � � and
� � � � � � ' � ��
"�

. Because
��� � & � � ��

satisfies the DCC, then by the dual of Lemma 2.4, a nonempty subset
� � � � � � ' � �� � � � ��
 � �

of
� � & � has a minimal element � . Trivially, �
 � � � * � � � . Because

' �
 � this implies ' �
 � � � � * � � � , a contradiction! �
Finding all reducts of a given set is known as the reduction problem. In what

follows we shall study this basic problem closely. By definition, a dependence space
is a pair � � � & ��� � in which & is a finite nonempty set and

�
is a congruence on

the semilattice
�$� � & � � � � . Moreover,

� � & � has a zero element # . We say that a subset
2 � � � & � is dense in a dependence space � if 2 is a dense with respect to

�
subset

of
� � & � in the sense of Section 6.2, that is,
� � ��� � � � � � � ��
 � � & � � � for all

�
 2 � � ���
if and only if � ��� � �

It is clear that 2 is dense if and only if 4 �)(*���� 2 �7(8*
.

By Proposition 6.15 we can write the following result.

Proposition 6.24 Let � � � & ��� � be a dependence space. If a subset 2 ��� � � � �$� is
dense, then

, * � � � � � ���
 2 � � ��� �
for all

� � & . �
Lemma 6.25 Let � � � & ��� � be a dependence space. If a subset 2 ��� � � � ��� is
dense, then the following conditions are equivalent for all

� � � � & .
(a) , * � � ��� , * � � � .
(b) For all

�
 2 , � ���
implies

� ���
.

Proof. Suppose , * � � � � , * � � � . Then by Lemma 2.6(c), � � � � , * � � � ���� , * � � ����� � � � �
for all

�
 2 , because 2 �7(*
.

On the other hand, assume � � �
implies

� � �
for all

�
 2 . Then
� �
 2 �

� � � � � ���
 2 � � � � �
, which implies , * � � � � , * � � � by Lemmas 2.3 and

Proposition 6.24. �
Next we present two simple corollaries of the previous lemma. They are based on

the following obvious condition which hold for all
� � � � �/� & ,

� � ���
implies

� ����� � � � � � �� # implies � � � �� # � ,
and the fact that , * is a closure operator.

Corollary 6.26 Let � � � & ��� � be a dependence space. If a subset 2 ��� � � � ��� is
dense, then the following conditions are equivalent for all

� � � � & .
(a) , * � � ��� , * � � � .
(b) For all

�
 2 ,
� � � �� # implies � � � �� # .

CHAPTER 6. DEPENDENCE SPACES 61

Corollary 6.27 Let � � � & ��� � be a dependence space. If a subset 2 ��� � � � ��� is
dense, then the following conditions are equivalent for all � � � � � & � .

(a) , * � � � � , * � � � .
(b) For all

�
 2 ,
� � � �� # implies � � � �� # .

The following proposition characterizes the set ���!� * and for all
� � & the set

� � � � * � � � by means of dense sets.

Proposition 6.28 Let � � � & ��� � be a dependence space. If a subset 2 ��� � � � �$� is
dense, then the following equations hold for all

� � & .
(a) ���!� * � � �
 � � & � � for all '
 � � � � � � � ' � for some

�
 2 �
.

(b) � � � ��* � � � � � '
 � � � � � � � ' � for some
�
 2 �

.

Proof. Assume
� � & and '
 �

. Because
� �7� ' � � �

, we get by Corollary
6.27 that

� � � � ��� ' � �
 � � , * � � � �� , * � � �7� ' � � � there exists
�
 2 such

that
� � � �� # and

� � � � ' � �0� � � # � � � � � � ' � for some
�
 2 . This

equivalence implies both (a) and (b). �
Out next proposition characterizes the reducts a of given set by applying dense

sets.

Proposition 6.29 Suppose �-� � & ��� � is a dependence space and let 2 � � � & � be a
dense subset. If

� � & , then �
 � � � * � � � if and only if � is minimal with respect
to the inclusion relation among the subsets of & such that � � � � � ��� �� # for all�/
 2 which satisy

� � � �� # .

Proof. Suppose that �
 � � � * � � � . Then � � �
and , * � � � � , * � � � . By

Corollary 6.27, ��� � � � ��� � � � � � � � � � � � � �� # whenever
� � � �� # . If �

is not minimal, there is a � � � � such that � � � � � � ��� �� # whenever
� � � ��� �� #

for all
�
 2 . But � � � � � �

implies � � � � � � ��� � � � � � � � � � � � � � �
.

So, , * � � � � � , * � � � � , * � � � , that is, � is not independent, a contradiction!
Conversely, let � be a minimal subset of & which satisfies � � � � � ��� �� #

for all
�
 2 such that

� � � �� # . If � �� �
, then � � � � � � � � � � and

� � � � � � ��� � � � � � � � � � � ��� � � � � � � ��� �� # whenever
� � � �� # ,

a contradiction! So, � � �
. Since � ��� �3� � � � �����

, we get
� � � � �
 �

.
Assume � �
 ���!� * . Then there is a � � � � such that , * � � � � � , * � � � � , * � � � .
Because � � � �

, this implies � � � � � � ��� � � � � � �� # whenever
� � � �� # , a

contradiction! �
Note that Proposition 6.29 characterizes the reducts of

�
as subsets of & (cf.

Proposition 5.7). As in Section 5 we shall need this particular characterization later
when we are writing an algorithm which computes

� � � � � � � for an arbitrary set� ��� & � of attributes.

Example 6.30 Let us consider the dependence space � of Example 6.20. Now

4 �)(* � � ����� �'� ��� � � ��� ��� � ����� ��� ���
is the least dense set, and & � � �� # for all

�/
 4 �5(6*�� �
.

The reducts of & are the minimal subsets � of & , which satisfy � � � & � ��� �
� � � � � � � � �� # for every

�
 4 �)(* �
such that & � � �� # . Clearly,� � � * � & � � ��� � ��� �

,
��� ��� ��� ���

and � ��� ��* � & � � � � �
.

CHAPTER 6. DEPENDENCE SPACES 62

6.5 Dependency relations in dependence spaces

Here we study dependency relations of dependence space. Note that Propositions 6.32
and 6.34 can be found in [14]. Assume that � � � & ��� � is a dependence space. A
subset

� ��� & � is said to be dependent on � ��� & � in � , which will be denoted by
� , � � � � , if , * � � � � , * � � � . The relation

, � � � is called the dependency
relation of � . Usually we write simply � , �

instead of � , � � � � if there is no
danger of confusion.

Because , * is a closure operator, then
� � � implies � , �

. Let 2 be a
dense subset of

� � & � . Then by Corollary 6.26 the following condition holds for all� � � � & ,

(6.5) � , �
if and only if

� � � �� # implies � � � �� # for all
�
 2 .

In Section 5.3 we presented a solution to the following problem. Let
� �� ��� & ��� () �)�� � � be an information system in which the sets

�
,
(

are finite, and� � � � � & � satisfy � , �
in

�
. Then find all minimal subsets � of � which satisfy

� , � � � �
. Here we give a solution to the corresponding problem in the case of

dependence spaces. In [14] is also presented a solution, but our approach essentially
differs from it.

Proposition 6.31 Let � � � & ��� � be a dependence space and assume 2 is a dense
subset of � . If � , �

holds, then the following conditions are equivalent.
(a) � is a minimal subset of � such that � , �

.
(b) � is a minimal subset of & such that for all

�/
 2 , � � � � � ��� �� # whenever� � � �� # .

Proof. Suppose � , �
holds and assume � is a minimal subset of � such that

� , �
. Because � � � , we get � � � � � . The assumption � , �

implies
� � � � � ��� � � ��� � ��� � � � � � �� # for all

�
 2 such that
� � � �� # . Assume

� is not minimal, that is, there exists � � � � which satisfies � � � � � � ��� �� # for
all

�
 2 such that
� � � �� # . But � � � � implies � � � � �� # for all

�
 2
which satisfy

� � � �� # , a contradiction!
Conversely, assume � , �

and that � is a minimal subset of & which satisfies
� � � � � ��� ��/# whenever

� � � ��/# . By this assumption it is clear that � � � .
Hence, � � � � � � �%� � � � � � � � � � ��� �� # for all

�
 2 such that
� � � �� # ,

that is, � , �
. Suppose � is not minimal, that is, there exists � � � � such that

� ��, �
. The condition � � � � � � implies � ��� � � � � � � � � ��� �� # whenever� � � �� # , a contradiction! �

Reducts of a subset of a dependence space can be described by means of depen-
dency relation as follows.

Proposition 6.32 If � � � & ��� � is a dependence space and
� � � � & , then � is a

reduct of
�

if and only if � is a minimal subset of
�

with respect to inclusion relation
which satisfies � , �

.

Proof. If � is a reduct of
�

, then trivially � , �
. Suppose there exists a set

� � � � which satisfies � � , �
, i.e., , * � � � � , * � � � �

. Because , * is a closure

CHAPTER 6. DEPENDENCE SPACES 63

operation, then , * � � � ��� , * � � � � , * � � � . Hence, , * � � � � , * � � � �
which implies� � � � � ��
"�

, a contradiction!
Conversely, assume � is a minimal subset of

�
which satisfies � , �

. Because
, * � � � � , * � � � , � � �

, and , * is a closure operator, , * � � � � , * � � � . Assume �
is not independent, that is, there exists a subset � � � � ��� � �

such that
� � � � � ��
"�

.
This implies , * � � � � , * � � ���

, i.e., � ��, �
, a contradiction! �

If we denote by � the inverse of the relation
,

, then the following result holds.

Lemma 6.33 If �-� � & ��� � is a dependence space, then
� � , ��� .

Proof. For all
� � � � & ,

� � � � �.
 � � , * � � � � , * � � � � , * � � ���
, * � � � and , * � � � � , * � � � � � , � and

�
� � . �

The following proposition characterizes the dependency relations.

Proposition 6.34 Let & be a finite nonempty set and let " be a binary relation on� � & � . Then there exists a dependence space �-� � & ��� � such that " is its dependency
relation if and only if " satisfies the following conditions for all

� � � � � � & ,
(a)

� � � implies
� � � � ��
 "

(b)
� � � � ��
 " and

� � � � ��
 " imply
� � � � ��
 " .

(c)
� � � � ��
 " and

� � � � ��
 " imply
� � � � � � ��
 " .

Proof. Suppose " is a binary relation on
� � & � which satisfies the conditions (a)–(c).

Let us set
� � "�� "�%

�
. By (a),

� � � � ��
 " and
� � � � ��
 "�%

�
for all

� � & . Hence,� � � � �
 �
, i.e.,

�
is reflexive. If

� � � � �
 �
, then

� � � � �
 " and
� � � � �
 " %

�
hold, which implies

� � � � �
 " %
�

and
� � � � �
 " , i.e.,

� � � � �
 �
. Thus,

�
is

symmetric. If
� � � � �
 �

and
� � � � �
 �

, then
� � � � �
 " and

� � � � �
 "
which implies

� � � � �
 " by (b). Similarly,
� � � � �
 "�%

�
and
� � � � �
 "�%

�
imply� � � � �
 " and

� � � � �
 " . By (b),
� � � � �
 " , i.e.,

� � � � �
 " %
�
. Hence,� � � � ��
"�

, that is,
�

is an equivalence.
Suppose

� � � � � � �
 �
and
� � � � � � �
 �

. The fact
� � � � � � � �8� � � implies� � �	� � � � � � ��
 " and

� � �	� � � � � � ��
 " by (a). Then by (b) we get
� � �	� � � � � � ��
 "

and
� � � � � � � � � �
 " . This implies by (c),

� � � � � � � � � � � � �
 " . Similarly,� � � � � � �
 �
and
� � � � � � �!
 �

imply
� � � � � � �!
 " and

� � � � � � �
 " . From
� � � � � � � � � � � we get

� � � � � � � � � �.
 " and
� � � � � � � � � �.
 " . Hence,� � � � � � � � � �
 " and

� � � � � � � � � �
 " , which implies
� � �8� � � � � � � � � �
 " ,

that is,
� � � � � � � � � � � � �
 "�%

�
. Now

� � � � � � � � � � � � �
 �
holds, i.e.,

�
is a

congruence on
�$� � & � � � � .

Next we show that for all
� � � � & ,

� � � � �
 " if and only if
� , � � � � ,

where � � � & ��� � and
� � " � "�%

�
. If

� , � , then , * � � ��� , * � � � . By (a),
this implies

� , * � � � � , * � � �$�
 " . Because
� � � , * � � ���
 � � " and

� , * � � � � � �
� � " , we get
� � � � �
 " by (b). On the other hand, suppose

� � � � �
 " . Since� , * � � � � � ��
 � � " and
� � � , * � � �$��
 � � " , then

� , * � � � � , * � � ����
 " . This
implies by (c) that

� , * � � � � , * � � ��� , * � � ����
 " . Similarly, , * � � ��� , * � � ��� , * � � �
implies

� , * � � � � , * � � � � , * � � �$�
 " , that is,
� , * � � � � , * � � �6� , * � � ���+
 " %

�
.

Thus,
� , * � � � � , * � � � � , * � � �$�
 �

. Because , * � � � is the greatest element in the
congruence class , * � � � %�� , , * � � � � , * � � � � , * � � � � , * � � � . Hence, , * � � � �
, * � � � , that is,

� , � .

CHAPTER 6. DEPENDENCE SPACES 64

Conversely, we show that the relation
,

satisfies conditions (a)–(c). By the fact
that , * is a closure operator, the condition

� � � implies , * � � � � , * � � � , i.e.,
� , �

. If
� , � and � , � , then , * � � � � , * � � ��� , * � � � , which implies� , � . If
� , � and

� , � , then , * � � � � , * � � � and , * � � � � , * � � � ,
which implies , * � � � � � � , * � , * � � � � , * � � �$� � , * � , * � � �$� � , * � � � . Hence,� , � � � . �

6.6 Dependence spaces and information systems

In this section we shall see how every information system defines a dependence space,
and that for each dependence space there exists an information system which corre-
sponds to this dependence space. We also give detailed methods for these construc-
tions. Let us recall from Section 4.2 the definition of the binary relation

� �
for an

information system
� � ����� & � � () �)�� � � :

� � � � � � � � ��
 � � & � � � ����� � � � � � � � � � � � �

By Proposition 4.3 it is obvious that if
�

is an information system, then the pair
� � � � & ��� � �

is a dependence space.

Lemma 6.35 If
�

is an information system, then the following assertions hold.
(a) , � * � � � , � .
(b)

(� * � � � (8�
.

(c) 4 �)(� * � � � � 4 �)(� �
.

Proof. (a) Assume
� � � � & . By Proposition 4.6(c), , � � � � � , � � , � if and only

if
� � � � ��
7� �

, which is equivalent to ,	� * � � � � � � ,	� * � � � � � by (6.3). Statements
(b) and (c) follow easily from (a) by the fact that there exists a bijective relationship
between closure operators and closure systems. �

We have seen that in a dependence space � the function , * can be computed
from any dense subset 2 ��� � � & ��� . In the following we see how every information
system

� � ����� & � � () �)��	� � determines a dense subset of
� � & � in the dependence

space � � � � & ��� � �
. First we shall present this useful lemma. Here

� � denotes the
covering relation of

�)(�#� � �
.

Lemma 6.36 Let
� � � ��� & � � () �)��	� � be an information system in which

� �� � � ������� �$�
	 �
and & � � ' � ������� � ' � �

. If
� , � � � 	���	 is the discernibility matrix of

�
and

� ' � � � ' � , then the following holds.
(a)
��� � ��� � ��
 ��� � � & � , � � � .,

(b) & � , � � is the greatest subset
�

of & which satisfies
�"� � ��� � ��
 � � � � � � .

(c) If �
 4 �)(� �
, then there exists

,/
 & � � such that ��� � � � ��� ' � � �
����� � � �"� , � � � � � � � � � for all '
 & � � .

Proof. (a) Because ' ��� � � � ' ��� � � for all '
 & � , � � , �"� � ��� � �

��� ' for all
'
 & � , � � . Hence,

�"� � �$� � ��
 �)�� � � % � �� �

��� ' � � � � � & � , � � � .

(b) Let
�

be a subset of & such that
��� � ��� � �
 � � � � � � . Then for all '
 �

,�"� � ��� � ��
 � � � � � ��� ����� ��� ' � � . This implies ' �"� � � � ' �"� � � , i.e., '
 & � , � � .

CHAPTER 6. DEPENDENCE SPACES 65

(c) Suppose �
 4 �)(+� �
. Because �
 (+�

, then for all '
 & � � holds
����� � � ��� ' � � � � � � � � � . Because

(+�
is finite, then there exists exactly one �
�(�

such that � � � � in
(+�

. Suppose
,
 � � � . Then ����� � � � � ����� � � � � , � � �

����� � � � holds.
Assume '
 & � � and let us denote �) � , � � � � � ' � � . This implies � � � � �) � �

����� � � ��� ' � � � � � � � � � . If � �� �) , then � � �����) � � . Because � � � � in
(�

,
then either (i) � � � or (ii) � � �) holds. But (i) implies � � � � � � � ����� � � � � , � �

a
contradiction! Similarly, (ii) implies ����� � � � � ����� � � �6� ' � � , a contradiction! Hence,
� � �) which implies ����� � � � � ' � � � ����� � �) ��� � � � � � � � ��� � � � �!� , � �

for all
'
 & � � . �

Proposition 6.37 Let
� � � ��� & ��� ()��)�� � � be an information system in which

� �� � � ������� �$�
	 �
, & � � ' � ������� � ' � �

, and let
�*, � � � 	���	 be the discernibility matrix of

�
. If�)(� � � �

is the closure lattice of
�

, then the following holds.
(a) For all

� ' � � �!' � , � & � , � � ��
�(+�
.

(b) If �
 4 �5(+� �
, then � � & � , � � for some

� ' � � �!' � .
Proof. Now , � � & � , � � � � � '
 & ������� � & � , � � � � � � � �$� ' � � � . It is clear that� & � , � � � � , � � & � , � � � for all

� ' � � �!' � . We have to show that , � � & � , � � ���� & � , � � � holds. Suppose '
 , � � & � , � � � . Then � � � � & � , � � � � � � � �$� ' � � . By
Lemma 6.36(a),

�"� � ��� � �
 ��� � � & � , � � � , which implies
�"� � ��� � �
 ��� � �$� ' � � , i.e.,

' ��� � � � ' ��� � � . Thus, '
 & � , � � .
(b) Assume �
 4 �5(+� �

, Then by Lemma 6.36(c), there exists
,
 & � � such

that ����� � � � � ' � ��� ����� � � � � , � � � � � � � � � for all '
 & � � . Because ����� � � �
� , � � � ��� � � � � , there exists

��� � ��� � � , � ' � � � ' � such that
�"� � �$� � ��
 ����� � � �

and
�"� � �$� � � �
 � � � � � � � , � �

. Because ' �"� � � � ' �"� � � for all '
 � , � � & � , � � .
Next we show that

� & � , � � ��� � . If '
 & � , � � , then
�"� � �$� � ��
 ����� ��� ' � � . Suppose

' �
 � . We know that
��� � ��� � �
 � � � � � � . Hence,

��� � �$� � �
 ����� � � � � ��� � �$� ' � � �
����� � � ��� ' � � . Because for all '
 & � � holds ����� � � ��� ' � ��� ��� � � � ��� , � �

, we
get
�"� � ��� � �
 � � � � � � � , � �

, a contradiction! Hence,
� & � , � � � � � , which implies

� � � & � , � � � . �
Proposition 6.37 has the following corollary.

Corollary 6.38 Suppose
� � � ��� & ��� ()��)��	� � is an information system in which

� �� � � ������� �$� 	 �
, & � � ' � ������� � ' � �

, and
� , � � � 	���	 is the discernibility matrix of

�
. Then

the set
� & � , � � � � ' � � �!' � � is dense in the dependence space � � � � & ��� � �

.

Example 6.39 The discernibility matrix of the information system
�

in Example 4.1
is presented in Example 5.5. It can be easily computed that

� & � , � � � � ' � � � ' � � � ����� ��� � � � � � ����� � ����� ��� � ����� �'� ��� � � ��� ��� �

Moreover,
4 �)(+� ��� � & � , � � � � ' � � �!' � � � (8� �

We have shown how a dense subset of the dependence space � � � � & ��� � �
can

be determined from the discernibility matrix of a given finite information system
�

.

CHAPTER 6. DEPENDENCE SPACES 66

Next we shall show that for every dependence space � there is an information system� *
such that ��� � � �

. Our construction is modified from the one presented in [14]
which is not so precise.

Let � � � & ��� � be a dependence space such that 4 �)(*�� � ��� � ������� � � � � and
let us put

� � � � � ������� �$� ��� � � . We define a function � * � � , � � & � as follows:

1. �
��� � �$� � � � & for

� ' � ' � �
�
.

2. �
��� � ��� � � � � � %

�
for

� ' � ' � �
�
.

3. �
��� � �$� � � � � ��� � �$� � � � � ��� � ��� � � for

� ' � � �!' � �
�
.

4. �
��� � �$� � � � � ��� � �$� � � for

� ' � � � ' � �
�
.

Further, for all '
 & , we define a binary relation ") on
�

by

�"� � ��� � ��
 ") if and only if '
 � �"� � �$� � � �

for all
� ' � � � ' � �

�
. Then the following lemma holds.

Lemma 6.40 Let � � � & ��� � be a dependence space such that 4 �)(* � ���� � ������� � � � � and let us put
� � � � � ������� �$� � � � � . Then for all '
 & , the relation ")

is an equivalence on
�

.

Proof. Because for all
� ' � ' � �

�
and '
 & , '
 � ��� � �$� � � which implies�"� � ��� � �%
 ") . Hence, ") is reflexive. Suppose
�"� � �$� � �%
 ") . Then '
 � �"� � ��� � � �

�
�"� � �$� � � . Thus,

��� � �$� � �
 ") , i.e., ") is symmetric. Suppose
��� � �$� � �
 ") and�"� � ��� � �
 ") . Without any loss of generality we may assume � ' � '��

. Because
'
 � �"� � ��� � � and '
 � ��� � �$� � � imply '
 � �"� � �$� � � � � �"� � ��� � � and '
 � �"� � �$� � � �
�
�"� � ��� � � , we have '
 � ��� � �$� � � � � �"� � ��� � � . This implies '
 � ��� � �$� � � , that is, ") is

transitive. �
Example 6.41 Let us consider the dependence space � of Example 6.20 in which

4 �)(8*�� � ����� �'� ��� � � ��� ��� � ����� ��� ��� �

If we set
� � � � � �$� � ����� �$��� � , then we may define a function � * � � , 4 �)(* �

,
which is presented in Table 3.

� � � � ��� ���
� � & ��� ��� � � � ��� ��� � �1� ��� �
� � ��� ��� � � � & ��� � ��� �
��� ��� ��� � ��� � & � � �
��� ��� ��� � ��� � � � � &

Table 3

The equivalence classes of equivalences ") , where '
 & , are:

) ��% " � � ����� �'� ��� � � � � ��� ��* �1&
�� �'& �� � ,

) ��% " � � ����� �'� � � � � � � ��� ��* �1& � � �'& �� � ,

CHAPTER 6. DEPENDENCE SPACES 67

) ��% " � � ����� ��� � � � � ��� ��� ��* �1&
� � �'& � � � ,

) ��% " � � ����� �'� � ��� � � � � � ��� ��* �1&
� � �'& � � �'&

�
� �

.

As before, let us denote by ��� the canonical map
� , � % � , � ., � % � , of an equiva-

lence � .
Proposition 6.42 Let � � � & ��� � be a dependence space in which 4 �)(6*�� ���� � ������� � � � � and let us put

� � � � � ������� ��� ��� � � . If we set '�� � ����� , ()�� � ��% ") for
all '
 & , and

� � � � ' � � '
 � �
for all

� � & , then
� * � � ��� & � ��� () �)�� ��� � is

an information system such that

� � � � ��
"�
if and only if

� � � � � � ��
"� � � � � �

Proof. Suppose
� � � � �!
 �

holds. Then , * � � � � , * � � � , and for all
�

4 � , *�� the conditions
� � �

and � � �
are equivalent. It is obvious that

��� ' � �
��� � ��� � ") . Hence, for all
� � & , ����� � � � � � �)������	�
��� ' � � �)���� ") . Suppose�"� � ��� � �
 � � � � � � � . Then
�"� � �$� � �
 �)���� ") , that is,

�"� � �$� � �
 ") for all '
 �
.

Hence,
� � � �"� � �$� � � � � �"� � �$� � � � � �"� � ��� � � . Because �

�"� � ��� � �
 4 � , *�� and
�
�"� � ��� � �
 4 � , *�� , this implies � � � �"� � �$� � � � � �"� � �$� � � � � ��� � �$� � � . Then�"� � ��� � �%
 �)�� � ") � ����� � �
� � . Similarly, we can show that ����� � ��� ��� � � � � � � � .

Hence, ��� � � � � � � ����� � � � � , which implies
� � � � � � ��
"� � � � � .

Conversely, if
� � � � � � �
 � � � � � , then � � � � � � � � ����� � � � � . Hence, for all�"� � ��� � � , � ' � ' � �

�
,
�"� � ��� � �
 � � � � � � � � �)�� � ") if and only if

�"� � ��� � �

����� � �
� � � �)�� � ") , that is,

� � � �"� � � � � � if and only if � � � ��� � � � � � for all� ' � ' � �
�
. Because 4 �)(+*�� � �

�
�"� � ��� � � � � ' � ' � �

� �
, we get

� � �
if

and only if � ���
for all

�/
 4 � , *�� , which implies
� � � � ��
"�

. �

Example 6.43 The information system
� *

corresponding to the dependence space �
of Example 6.20 can be represented by Table 4. The values

& � � refer to Example 6.41.
�
�

�
�

�
�

�
�� � & �� & � � & � � & � �

� � & �� & � � & � � & � �
��� & �� & �� & � � & � �� � & �� & � � & � � & � �

Table 4

Chapter 7

A representation for dependence
spaces

7.1 Difference functions in dependence spaces

In this section we study difference functions which help us to write an algorithm for
the reduction problem that is in many cases more efficient than those presented in
[12, 13]. The notion of difference functions is introduced in [8]. However, here we
give an equivalent, but a clearer definition.

Suppose that �-� � & ��� � is a dependence space in which & � � ' � ������� � ' � �
. For

any
� � & , let � � � � denote the disjunction of all variables

� � , where ' �
 �
. We

define the difference function �
*� ��� � ������� ��� � � of

�
as the conjunction

�
�������

 ����
% 	

�� �
� � � � ���'�

It is clear that the function �
*� is isotone. Since � # � �

, �
*� � � � � � �

for all�/
 4 �)(* � � � � � # ��
"�
.

By the definition of �
*� we can now write the following conditions for every� � � � � & � .

(7.1) �
*� � � � � �$� � � � � � � � � ��� �� # for all

�/
 4 �5(+*��
such that

� � � �� # .
(7.2) �

*� � � � � �$� � ��� � � � � � ��� �
for some

�
 4 �)(+*��
such that

� � � �� # .

Our next proposition follows easily from Proposition 6.29 and (7.1) and (7.2).

Proposition 7.1 If �-� � & ��� � is a dependence space and
� � & , then

(a) "('*) �%� �
*� � � � � � � � ���
 � � � * � � � � , and

(b) "$# % � � �
*� � � "$#&% � � ��� � � ��� � � � �
 4 �5(+*�� � � � � �� # � . �

Also the following corollary is obvious.

Corollary 7.2 If � � � & ��� � is a dependence space and
� � & , then

� ' � � ������� � ' � � �
is a reduct of

�
if and only if

� �	�� �� � ��� is a prime implicant of �
*� .

Example 7.3 In Example 6.20,

68

CHAPTER 7. A REPRESENTATION FOR DEPENDENCE SPACES 69

� & � � � & � � �� # � �/
 4 �5(+*�� � � ��� � � � ��� � � � ����� ��� ���
.

Hence,

�
*� � � � � � � � �-� � � � � � � � � � � ����� � � � � � � �-� � ��� �

where � stands for
� � . The function �

*� has obviously the prime implicants
� � � �

and�-� � � �
, which implies

� � � * � & � � ��� � ��� � ����� ��� ��� ���
.

7.2 Dependency functions in dependence spaces

Here we introduce the notion of dependency functions in the context of dependence
space. They enable us to give a method for finding for a dependency � , �

the set
of all minimal subsets � of � which satisfy � , �

.
Suppose that � � � & ��� � is a dependence space in which & � � ' � ������� � ' � �

.
If the dependency � , �

holds in � , then we define the difference function
�
*
���

� ��� � ������� ��� � � of the dependency � , �
as the conjunction�

�������
 ����

% 	
�� �

� � � � �����

Obviously, the function �
*
���

� is isotone, and �
*� � � if and only if

� � � # ��
"�
.

We can now write the following conditions for every
� � � ��� & � .

(7.3) �
*
���

� � � � � �$� � � � � � � � � ��� �� # for all
�
 4 �)(+*��

such that
� � � �� # .

(7.4) �
*
���

� � � � � �$� � ��� � � � � � ��� �
for some

�
 4 �)(+*��
such that

� � � �� # .

The following proposition follows easily from (7.3), (7.4), and Proposition 6.31.

Proposition 7.4 If �-� � & ��� � is a dependence space and
� � & , then

(a) "
'*) � � �
*
���

� � � � � � � � � � is a minimal subset of � such that � , � �
, and

(b) "$# % � � �
*
���

� � � "�#&% � � �$� � � ��� � � � �
 4 �)(+*�� � � � � �� # � . �
Now we can write the following corollary.

Corollary 7.5 If � � � & ��� � is a dependence space and the dependency � , �
holds in � , then � � � ' �	� ������� � ' ��� � is a minimal subset of � such that � , �

holds
if and only if

� �	�� �� � � � is a prime implicant of �
*
���

�
.

Example 7.6 Let us consider the dependence space � of Example 6.20. If we set� � � � �
, then & , �

. Obviously
� & � � � � � � �� # � �/
 4 �)(8*�� � � ����� ��� � ����� ��� ���

.

The dependency function of the dependency & , �
is

�
*�
�
� � � � � � � � � � � � � � � � � ��� �

where � stands for
� � . The function �

*�
�
� has obviously the prime implicants

�
and�-� � � , which implies that

� � �
and

��� ��� �
are the minimal subsets � of & which satisfy

& , �
.

CHAPTER 7. A REPRESENTATION FOR DEPENDENCE SPACES 70

7.3 A data type and basic algorithms for dependence spaces

In this section we present a simple implementation of dependence spaces as a data type,
which is sufficient for us to solve problems concerning cores, dependence relations,
independent sets and reducts.

By Proposition 6.24 we can compute the closure , * � � � from any dense set 2 ���� � & ��� of a dependence space � . As we have seen, 4 �)(*��
is the least dense set.

Hence, the simplest way to represent a dependence space � � � & ��� � , where & �� ' � ������� � ' � �
, is to give a set of vectors �

*
which corresponds to the sets in 4 �5(* �

,
i.e., �
 �

*
if and only if � � � � ��� for some

�-
 4 �)(*��
. The space needed to

represent � in this manner is
� �
� � 4 �5(*�� � ���

Example 7.7 The dependence space � in Example 3.9 can be represented as a set of
vectors

� �-� � � �'� � � �
,
� � �'� � � �'� �

,
�*� � � � � �'��� � �

The following algorithm which finds the vector corresponding to the set , * � � �
for any

� ��� & � is based on Proposition 6.24. The complexity of this algorithm is� �
� � 4 �)(8*�� � � .

Algorithm 7.8 CLOSURE

Input: � � � � � ��� � �/
 4 �5(* � �
and a vector

& � � � � � .
Output:

, � � � , * � � �$� .
1. Start with

,
:= 1 � .

2. For all �
 � , if
& ' � , then

,
:=

, � .
3. Output

,
.

By (6.3),
� � � � �
 �

if and only if , * � � � � , * � � � . Hence, the test whether� � � � �
 �
holds, takes

� �
� � 4 �5(*�� � � steps, for we may form the closures

, * � � � � , * � � � and then check whether they are equal or not. Similarly, the complexity
of the test whether the dependency � , � � � � holds is

� �
� � 4 �)(6* � � � .

The following algorithm computes the set � � � � * � � � for any
� � & . Observe

that we could compute the core of
�

also by the condition '
 � � � ��* � � �
if and

only if , * � � � �� , * � � � � ' � � , and by applying Algorithm CLOSURE. But this
method takes

� �
� � � 4 �)(8*�� � � time, while the complexity of the following algorithm

is
� �
� � 4 �)(8*�� � � . It is based on Proposition 6.28(b).

Algorithm 7.9 CORE

Input: � � � � � ��� � �/
 4 �5(+*�� �
and

& � � � � � .
Output: � � � ��� � * � � � .

1. Start with
, � 0 � .

2. For all �
 � , if
& � � contains exactly one

�
and this is in the � th position, then,�� � � * � �

.

3. Output
,
.

CHAPTER 7. A REPRESENTATION FOR DEPENDENCE SPACES 71

By applying Algorithm CORE it is easy to decide whether a subset
�

is indepen-
dent or not. Namely,

�
 ���!� * if and only if
� � � � � ��* � � �

. Obviously this test
requires

� �
� � 4 �)(+*�� � � time. Next we give Algorithm REDUCTS which computes on

reducts of an arbitrary subset.

Algorithm 7.10 REDUCT

Input: � � � � � ��� � �/
 4 �5(+*�� �
and

& � � � � � .
Output: � � � � for some �
 � � � * � � � .

1. Start with
, * � &

.

2. For all � * � � ������� �
� , let

,�� � � * � �
if for all �
 � ,

& � � �� 0 � implies,�� , ��� ��� � � �� 0 � .

3. Output
,
.

The complexity of Algorithm REDUCT is
� �
� � � 4 �)(+*�� � �

We have seen that the set of all minimal true vector of the difference function �
*� is

the set of characteristic vectors of the reducts of
�

. Similarly, for a dependency � ,�
the set of all minimal true vectors of the function �

*
���

� is the set of characteristic
vectors of the minimal subsets � of � such that � , �

holds.
The following algorithm computes the set "�#&% � � �

*� � . It is based on Proposition
7.1(b).

Algorithm 7.11 MF-VECTORS3
Input: � � � � � ��� � �/
 4 �5(+*�� �

and
& � � � � � .

Output: "$#&% � � �
*� � .

1. Start with � � := # . For all �
 � , if
&�� � �� 0 � , then � � := � � � � �*&�� � � � � .

2. Delete from � � all vectors which are not maximal.

3. Output � � .

The complexity of the previous algorithm is
� �
� � 4 �)(6*�� � � � . Which is the time

needed by the dominating Step 2. It is obvious that � "$# % � � �
*� � ' � 4 �)(* � � . Our

next algorithm computes the set "$#&% � � �
*
���

� � of the dependency function �
*
���

� .
The method is based on Proposition 7.4(b).

Algorithm 7.12 MF-VECTORS4
Input: � � � � � ��� � �
 4 �5(+*�� �

and vectors
& � � � � � and

, � � � � � which
satisfy � , � � � � .
Output: "$#&% � � �

*
���

� � .
1. Start with � � := # . For all �
 � , if

&�� � �� 0 � , then � � := � � � � � , � � � � � .

2. Delete from � � all vectors which are not maximal.

3. Output � � .

CHAPTER 7. A REPRESENTATION FOR DEPENDENCE SPACES 72

The complexity of the previous algorithm is
� �
� � 4 �)(*�� � � � .

Now we can present an algorithm, which finds the reducts of a given subset
�

of a
dependence space � � � & ��� � .
Algorithm 7.13 REDUCTS

Input: � � � � � ��� � �/
 4 �5(* � �
and

& � � � � � .
Output: A set of vectors corresponding to

� � � * � � � .
1. Compute the set "$#&% � � �

*� � with Algorithm MF-VECTORS3.

2. Compute the set "('*) � � �
*� � with Algorithm MT-VECTORS and output it.

We already know that � "$# % � � �
� � � ' � 4 �)(8�� � and � "('*) �%� �

*� � � �
� � � � * � � � � . Because the complexity of Step 1 is

� �
� � 4 �)(* � � � � , the total running

time of Algorithm REDUCTS is� �
� � � � � * � � � � � � � � � � � * � � � � � �!� 4 �)(8*�� � � � � � ��� � � � � � � � * � � � � � � 4 �5(+*�� � �$���$���

Example 7.14 As we have seen, the dependence space of Example 3.9 can be repre-
sented as a set � � � �-� � � �+� � � � � �-� �+� � � �'��� � �(� � � � � �'��� �

of vectors. We show how Al-
gorithm REDUCTS computes the reducts of the vector

� � � � � � � � �
, which corresponds

to the set
��� ��� ��� ��� �

. First we compute the set "$#&% � � �
*� � with Algorithm MF-

VECTORS3. Because � � & ��� � �� 0 � for all �
 � ,

� � * � � � � � � �'� � � �
,
�-� �+� � � �'���

,
�*� � � � � �'��� �

.

Clearly all vectors in � � are maximal which implies

"$#&% � � �
*� � * � � � � � � �'� � � �

,
� � �+� � � �'���

,
�(� � � � � �+� � �

.

Next we compute the set "('*) � � �
*� � with Algorithm MT-SETS. This computation

is already presented in Example 5.28. Hence, "('*) � � �
*� � � � �(� �'� � � � � �

,
� � � � � � �'��� �

,
which implies that

�(� �+� � � � � �
and
� � � � � � �'� �

are the vectors corresponding to the
reducts of & .

If the dependency � , �
holds in � , then the following algorithm finds the set

of characteristic vectors of all minimal subsets � of � which satisfy � , �
.

Algorithm 7.15 MIN-DEPENDENCY

Input: � � � � � ��� � �
 4 �5(+*�� �
and two vectors

& � � � � � and
, � � � � � such

that � , �
in � .

Output:
� � � � � � � is a minimal subset of � which satisfies � , � �

.

1. Compute the set "$#&% � � �
*
���

� � with Algorithm MF-VECTORS4.

2. Compute the set "('*) � � �
*
���

� � with Algorithm MT-VECTORS and output it.

Obviously, � "$#&% � � �
*
���

� � � ' � 4 �)(+*�� � and if we denote � � � � � ��� is a
minimal subset of � which satisfies � , � � � , then the running time of Algorithm
MIN-DEPENDENCY is� �

� � � � � � � � � 4 �5(* � � � � � � ��� �
�
� � � � 4 �5(* � � ���$�����

CHAPTER 7. A REPRESENTATION FOR DEPENDENCE SPACES 73

Example 7.16 The dependence space of Example 6.24 can be represented as a set
� � � � � � � �'� � � � � � � �+� � � �'��� � �*� � � � � �'��� �

of vectors. Let us set
� � � � �

. We
show how Algorithm MIN-DEPENDENCY computes the set of the characteristic vec-
tors of all minimal subsets � of & which satisfy � , �

. First we compute the set
"$# % � � �

*�
�
� � with Algorithm MF-VECTORS4. First,

� � * � � � � � & � � � � � � &�� � �� 0 � for all �
 � � � � �-� �'� � � �+� �
,
�(� � � � � �+� � �

.

Obviously, both vectors in � � are maximal which implies

"$#&% � � �
*�
�
� � * � � � � �+� � � �'���

,
�(� � � � � �'��� �

.

In Example 5.30 it was already presented how we can compute the set
"('*) �%� �

*�
�
� � with Algorithm MT-VECTORS. Obviously, "('*) � � �

*�
�
� � �� �*� �+� �'� � � �

,
�-� � � �+� �+� � �

, which implies that
� � �

and
��� �'� �

are the minimal subsets
� of & which satisfy � , �

.

Suppose
� � � ��� & ��� ()��)��	� � is an information system such that

� �� � � ������� �$�
	 �
, & � � ' � ������� � ' � �

, and
�*, � � � 	���	 is the discernibility matrix of

�
, then

by Corollary 6.38, the set
� & � , � � � � ' � � � ' � � is dense in � � � � & ��� � �

.
Especially,

4 �)(� * � � ��� � & � , � � � � ' � � � ' � � �
By this fact it is now easy to write an algorithm which computes from the representa-
tion of an information system

�
the presentation of the dependence space � �

.
If
(� � � � ������� � � � � is a set of vectors, then � � � � � � � ������� � � � � is an abbreviation

for � � � ��� �� � � � %
� $� � �$� . If

(� # , then � (� 1 � . This operation is used in
Step 2 of the algorithm. The complexity of � (is

� �
� � (� � .

Algorithm 7.17 INFO-TO-DEPE
Input: An array

,�� ��� � � � � � � �&%����
such that for all

� ' � � � ' � , ,�� � � � � � , � � � ,
where � � � ��� � � �&% �!� ��� �

, and a vector
& � � � � � .

Output: � � � � � ��� � �
 4 �)(� * � � � �
1. Start with � � * � � ,�� � � � � � ' � ' � � � � � � %�� �

.

2. For all �
 � � , if � � � �

� � � � �� �

, then � � * � � � ��� � �

3. Output � � .

The complexity of the algorithm is
� � � � � �

Example 7.18 The discernibility matrix of Example 5.5 can be represented as an array,�� ��� �
��
in which

,�� ��� � � �*, � � � � �*� � � �'� � � � , ,�� ��� � � � , � � � � �-� �'� �+� � � � ,,�� ��� � � � ,1� � � � � � � � �'� � � � ,,�� ��� � � �*, � � � � � � �'� � � � � � , ,��	��� � � � , � � � � �(� �'� � � �+� � ,,��
�� � � � ,1� � � � �*� � � � � � � � .

CHAPTER 7. A REPRESENTATION FOR DEPENDENCE SPACES 74

After Step 1, � � � � � � �'� � � �'� �
,
�(� � � � � �+� �

,
�(� �'� � � �+� �

,
�(� � � �+� �'���

,
�-� � � �+� � � �

,�-� �'� �'� �+� � �
. Now

) �-� �'� � � �+� � �� � ��

� � � � � �+� � � �'��� � � � � #�� 1 � .

) �(� � � � � �+� � �� � #%� 1 � .

) �(� �'� � � �+� � � � � �-� �+� � � �'��� � �(� � � � � �'��� �
.

) �(� � � �'� �+� � � � � �(� � � � � �'��� � �-� � � �+� � � � �
.

) �-� � � �'� � � � �� � #%� 1 � .

) �-� �'� �'� �+� � � � � �-� �+� � � �'��� � �-� � � �+� � � � �
.

Hence, � �
can be represented as the set

� �-� �+� � � �'���
,
�(� � � � � �'���

,
�-� � � �'� � � � �

of vec-
tors.

Bibliography

[1] J. C. BIOCH, T. IBARAKI, Complexity of identification and dualization of posi-
tive Boolean functions, Information and Computation 123 (1995), 50–63.

[2] S. BURRIS, H. P. SANKAPPANAVAR, A course in universal algebra, Graduate
texts in mathematics, Springer–Verlag, New York, Heidelberg, Berlin, 1981.

[3] P. M. COHN, Universal algebra, Harper and Row, New York, 1965.

[4] B. A. DAVEY, H. A. PRIESTLEY, Introduction to lattices and order, Cambridge
University Press, Cambridge, 1990.

[5] F. GÉCSEG AND H. JÜRGENSEN, Algebras with dimension, Algebra Universalis
30 (1993), 422–446.

[6] K. GŁAZEK, Some old and new problems in the independence theory, Collo-
quium Mathematicum XLII (1979), 127–189.

[7] G. GRÄTZER, Lattice Theory: first concepts and distributive lattices, W. H. Free-
man and company, San Francisco, 1971.

[8] J. JÄRVINEN, A representation of dependence spaces and some basic algorithms,
Fundamenta Informaticae (1996) (to appear).

[9] S. MUROGA, Threshold logic and its applications, Wiley–Interscience, New
York, 1971.

[10] J. NOVOTNÝ, M. NOVOTNÝ , Notes on the algebraic approach to dependence
in information systems, Fundamenta Informaticae 16 (1992), 263–273.

[11] J. NOVOTNÝ, M. NOVOTNÝ , On dependence in Wille’s contexts, Fundamenta
Informaticae 19 (1993), 343–353.

[12] M. NOVOTNÝ, Z. PAWLAK, Algebraic theory of independence in information
systems, Fundamenta Informaticae 14 (1991), 454–476.

[13] M. NOVOTNÝ, Z. PAWLAK, On a problem concerning dependence spaces, Fun-
damenta Informaticae 16 (1992), 275–287.

[14] M. NOVOTNÝ, Dependence spaces of information systems, 1993 (a manuscript).

[15] E. ORŁOWSKA, Z. PAWLAK, Representation of nondeterministic information,
Theoretical computer science 29 (1984), 27–39.

75

BIBLIOGRAPHY 76

[16] E. ORŁOWSKA, Kripke models with relative accessibility and their applications
to inferences from incomplete information In: G. MIRKOWSKA, H. RASIOWA,
Mathematical Problems in Computation Theory, Banach Center Publications 21
(1988), 329–339.

[17] E. ORŁOWSKA, Information Algebras, 1995 (manuscript).

[18] C. H. PAPADIMITRIOU, Computational Complexity, Addison-Wesley Publishing
Company, Inc., USA, 1994.

[19] Z. PAWLAK, Information systems – theoretical foundations, Informations Sys-
tems, Vol. 6, No. 3 (1981), 205–218.

[20] Z. PAWLAK, Rough sets, International Journal of Computer and Information Sci-
ences, Vol. 11, No. 5 (1982), 341–356.

[21] Z. PAWLAK, Rough sets. Theoretical aspects of reasoning about data, Kluwer
Academic Publishers, Dordrecht, 1991.

[22] J. A. POMYKAŁA, On definability in the nondeterministic information system,
Bulletin of the Polish Academy of Sciences, Mathematics, Vol. 36 (1988), 193–
210.

[23] J.A. POMYKAŁA, Some remarks of approximation, Demonstratio Mathematica,
Vol. XXIV (1991), 95–104.

[24] C. M. RAUSZER, An equivalence between indiscernibility relations in informa-
tion systems and a fragment of intuitionistic logic, Computation Theory, Lecture
Notes in Computer Science, no. 208, (ed. A. SKOWRON), Spinger–Verlag, New
York (1985), 298–317.

[25] C. M. RAUSZER, Reducts in information systems, Fundamenta Informaticae 15
(1991), 1–12.

[26] A. SKOWRON, C. RAUSZER, The discernibility matrices and functions in infor-
mation systems. Intelligent decision support, Handbook of applications and ad-
vances of the rough set theory (ed. R. SLOWINSKI), Kluwer academic publisher,
Dordrecth (1991), 331–362.

[27] M. STEINBY, Karkeat joukot ja epätäydellinen tieto, 1994 (a manuscript in
Finnish, to appear).

[28] D. VAKARELOV, Consequence relations and information systems. Intelligent de-
cision support, Handbook of applications and advances of the rough set theory
(ed. R. SLOWINSKI), Kluwer academic publisher, Dordrecht (1991), 391–399.

