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Chapter 1

| ntroduction

According to Z. Pawlak knowledge about a universe of objects may be defined as
classifications based on certain properties of the objects. In this work we concentrate
merely on such classifications which form a partition of the given object set, that is,
each object belongs to exactly one category. Because it is well-known that the relation-
ship between partitions and equivalence relations is bijective, knowledge about objects
may as well be given in terms of equivalence relations. Any equivalence e can now be
interpreted as an indiscernibility relation which satisfies (z,y) € e if we cannot dis-
cern objects z and y by the knowledge e. For example, if we classify all human beings
into two disjoint sets consisting of women and men, then this classification determines
an equivalence relation e in the set of people such that (z,y) € e whenever z and y are
of the same sex. Note, that equivalence relations are reflexive and symmetric, which
are intuitively quite natural requirements for indiscernibility. Transitivity is not a so
obvious property, and in e.g. [15, 22] similarity relations which are only reflexive and
symmetric are considered.

By a knowledge base we understand a pair £ = (U, E), where U is a nonempty
set of objects and E is a set of equivalences on U (see [21], for example). We can de-
rive new knowledge about objects of a knowledge base by applying the set-theoretical
operation intersection to subsets of E. Each subset D(C E) defines an indiscernibility
relation Ind(D) = (D on U such that (z,y) € Ind(D) if and only if z and y are
indiscernible with respect to all e € D. In the study of the structure of the set of all in-
discernibility relations defined by subsets of E' the notions of indispensable elements,
independent subsets, cores, reducts, and dependency relations have important roles.

Pawlak introduced the notion of information systems (sometimes called knowledge
representation systems) in [19]. Information concerning properties of objects is the
basic knowledge included in information systems and it is given in terms of attributes
and values of attributes. For example, we may express statements concerning the color
of objects if the information system includes an attribute “color” and a set of values of
this attribute consisting of “yellow”, “green” etc.

In general, an information system is determined by specifying a set of objects U, a
set A of attributes meaningful for all objects, and for every attribute a € A, a fixed set
V. of values of that attribute. Here we assume that the basic information of objects is
single-valued and completely defined. Therefore, every attribute a can be considered
as a total mapping a : U — V, which assigns to each object € U the unique value
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a(z) of the attribute a.

It is well-known that the kernel of a total mapping is an equivalence. Hence, in
an information system S = (U, A,{V,}aca) for any a € A the kernel of a, defined
by (z,y) € kera if and only if a(z) = a(y), is an equivalence on U. We may now
view each equivalence relation ker a as an indiscernibility relation because (z,y) €
ker a whenever the objects x and y are indiscernible with respect to the attribute a.
Therefore, an information system S defines a knowledge base. Namely, if we set Eg =
{kera | a € A}, then the pair s = (U, Es) is obviously a knowledge base. Each set
B(C A) of attributes defines now an indiscernibility relation Ind(B) = N,epg ker a.

In the theory of information systems there are two major problems. The first is
usually referred to as the reduction problem and it is stated as follows. Suppose B is
a subset of attributes of an information system. We have to find the set of all minimal
subsets C' of B which satisfy Ind(B) = Ind(C). The other important problem is
associated with dependency relations. A subset of attributes B is dependent on a subset
C of attributes in S, denoted by C — B (S), if Ind(C) C Ind(B). This means
simply that the values for the attributes in B can be determined from the values for the
attributes in C. The problem is to find for a dependency C — B (S) the set of all
minimal subsets D of C which satisfy D — B (S).

We present a solution to the first problem by applying discernibility matrices and
discernibility functions (see e.g. [26]). In addition to this we introduce dependency
functions, and by means of these functions we solve the latter problem in a way which
differs essentially from the solution presented in [26]. We have found out that these two
problems can be reduced to the general problem of identifying the set of all minimal
true vectors of a isotone Boolean function (see [9], for example).

An another important topic of this work is the theory of dependence spaces.
A depend-ence space (as defined by Novotny and Pawlak) is a pair D = (A4, K)
where A is a finite set and K is a congruence on the semilattice (p(A),U), where
p(A) denotes the set of all subsets of A. If we define for an information system
S = (U, A,{Va}aca), in which the set A is finite, a binary relation Ks on p(A) by
setting

(B,C) € Ks ifand only if Ind(B) = Ind(C)

for all B,C C A, then it can be easily verified that the pair Ds = (A4, Ks) is a
dependence space.

It is known that many problems concerning information systems can be formulated
in the the more abstract setting of dependence spaces. It has also been proved that de-
pendence spaces provide a suitable basis for the study of several problems concerning
contexts (in the sense of Wille) (see e.g. [4, 11]).

Because for a dependence space D = (A, K) the set p(A) is finite and it contains
the least element ), it is easy to observe that the quotient semilattice (p(A)/K, <) is
always a finite lattice and hence complete. Moreover, it is isomorphic to the complete
lattice (Lp, C) where Lo is a closure system which corresponds to the closure opera-
tor Cp : p(A) — p(A), B — |JB/K. We have found out that any dependence space
D can be characterized by a subset 7 C p(A) which satisfies M(Lp) C T C Lp,
where M(Lp) denotes the set of meet-irreducible elements of the lattice £ which
differ from A. Such sets 7" are called dense (see e.g. [14]).
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The notions of indispensable elements, independent subsets, cores, and depen-
dency relations play important roles also in the theory of dependence spaces. Espe-
cially, we are interested in finding a solution to the reduction problem in dependence
spaces, i.e., for an arbitrary subset B(C A) of a dependence space we want to enumer-
ate all minimal subsets C' of B which satisfy (B, C)) € K. We have found a convenient
new way to characterize the reducts of an arbitrary subset by means of dense sets. The
dependency relation is defined in dependence space D in terms of closure operator
Cp. Asubset B is dependent on a subset C' in D, denoted by C — B (D), whenever
Cp(B) C Cp(C) holds. We shall present for a dependency C — B (D) a method
that identifies the set of all minimal subsets D of C which satisfy D — B (D). In ad-
dition, we shall introduce the notions of difference and dependency functions, which
are somewhat similar to the discernibility and dependency functions in the case of
information systems. Finally, we shall present an algorithm which converts in a poly-
nomial time the representation of an information system S to the representation of the
corresponding dependence space Dg.

This work is structured as follows. In the following chapter we recall some notions
and notation of lattice theory and universal algebra. In Chapter 3 we present a general-
ized version of knowledge bases, and study especially the cores and reducts of subsets
in knowledge bases in which the sets U and E are infinite. Chapter 4 is devoted to the
study of information systems, and especially the structure of the complete lattice of
all indiscernibility relations is considered. In Chapter 5 we investigate discernibility
matrices, discernibility functions, and dependency functions. Moreover, we present
some algorithms. In Chapter 6 we first study closure operators and dense sets in fi-
nite semilattices which have a zero element, and then apply our results to dependence
spaces. The relationship between information systems and dependence spaces is also
considered. Finally, in Chapter 7 we introduce difference and dependency functions,
and present some of their important properties. This chapter contains also a selection
algorithms concerning dependence spaces.

This study was carried out at the Department of Mathematics, University of
Turku, and it has been financially supported by the Turku Centre for Computer Sci-
ence/Graduate School. | am grateful to Professor Magnus Steinby for his expert guid-
ance and valuable suggestions during the course of this work.



Chapter 2

Preliminaries

2.1 Sets

All general lattice theoretical and algebraic notions used in this work can be found in
[2, 3, 4, 7], for example. We assume that the reader is familiar with the following no-
tations: set-builder ({— | —}), membership (&), subset (C), proper subset (C), union
(L), intersection (N), difference (—), ordered n-tuples ((z1, ..., zy)), and products of
sets (A1 X --- x Ap,). The notations A;, ¢ € I, and { A; };c refer to a family of sets in-
dexed by a set I. Given a family F' of sets, the union of F', |J F, isdefinedby a € | F
if and only if a € A for some A € F. The intersection of F', N F, is defined dually.
For a set A, let p(A) denote the power set of A, that is, the set of all subsets of A.

Let us write N = {1,2,...} and INyg = {0} U IN. The cardinal of the set A is
denoted by |A|. A set A is said to be finite if |A| = n for some n € INy; otherwise A
is infinite. In particular the empty set, @, is finite and its cardinal is 0.

2.2 Redationsand functions

An n-ary relation r on a set A is a subset of A™. If n = 2, then r is called a binary
relation. We denote by Rel(A) the set of all binary relations in the set A. For all
r € Rel(A) the relation r—! = {(a,b) | (b,a) € 7}(€ Rel(A)) is called the inverse of
r. Arelation r € Rel(A4) is:

o reflexive, ifforall a € A, (a,a) € 7;

e symmetric, if forall a,b € A, (a,b) € r implies (b,a) € 7;

o antisymmetric, if forall a,b € A, (a,b) € rand (b,a) € rimply a = b;
o transitive, if forall a,b,c € A, (a,b) € rand (b,c) € r imply (a,c) € r.

A binary relation is an equivalence relation if it is reflexive, symmetric, and transi-
tive. We denote by Eq(A) the set of all equivalence relations on A. If e € Eq(A) and
a € A, then the equivalence class of a modulo e isthe seta/e = {b € A | (a,b) € e}.
The quotient set of A modulo e isthe set A/e = {a/e | a € A}.

A partition 7 of a set A is a family of nonempty pairwise disjoint subsets of A
such that A = |J=. The sets in 7 are called the blocks of . The set of all partitions of
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A is denoted by II(A). If e € Eq(A), then A/e is a partition of A. For any partition
m € II(A), there exists a unique equivalence e, such that A/e, = =; e, is defined by
(a,b) € e, ifand only if {a,b} C B for some B € .

A function (or a mapping) f from a set A to a set B, denoted f : A — B, is
a subset of A x B such that for each a € A, there exists exactly one b € B with
(a,b) € f; in which case we write f(a) = bor f : a — b. The set of all functions
from A to B is denoted by B4. Suppose f € B4. Then f is injective (or one-to-one)
if f(a1) = f(a2) implies a; = aa. The function f is surjective (or onto) if for every
b € B, there exists an element a € A with f(a) = b. Further, f is bijective if it is both
injective and surjective.

Forf: A— Bandg: B — C,letgo f : A — C be the function defined
by (g o f)(a) = g(f(a)). The function g o f is called the product of functions g and
f- Afunction14 : A — A,a +— q, is called the identity function of A. A function
g : B — Aistheinverse functionof f : A - Bifgof=14and fog=1p. It
is known that f : A — B has an inverse function if and only if f is a bijection. The
inverse of a bijection f is denoted by f~1.

If Aisasetande € Eq(A), then the function ve : A — A/e,a — a/e is called
the canonical map of e. Obviously, the function v, is surjective. The kernel of the
function f : A — B is a relation ker f(€ Rel(A)) defined by (a,b) € ker f if and
only if f(a) = f(b), forall a,b, € A. It is easy to verify that ker f € Eq(A).

2.3 Ordered setsand lattices

Suppose P is a set. An order (or a partial order) on P is a binary relation < such that,
forall a,b,c € P,(i)a < a,(ila<bandb < aimplya =b, (iiiya <bandb < ¢
imply a < ¢, that is, the relation < is reflexive, antisymmetric, and transitive. A set P
equipped with an order relation < is said to be an ordered set (or a partially ordered
set). Some authors use the shorthand poset.

Let (P, <) be an ordered set and let a,b € P. We say a is covered by b (or b
covers a), and write a—< b, if a < band a < ¢ < b implies a = ¢. The latter
condition requires that there is no element ¢ of P which would satisfy a < ¢ < b.
Note, that if P is finite, then a < b if and only if there exists a finite sequence of
covering relations ¢ = ag—< a1-< --- < a, = b. Thus, in the finite case, the order
relation is determined by the covering relation.

If P and @ are ordered sets, then a mapping ¢ : P — @ is an order-isomorphism,
ifa <bin P ifandonly if p(a) < ¢(b) in Q and ¢ is bijective. When there exists an
order-isomorphism from P to (), we say that P and Q) are order-isomorphic and write
P~(Q.

Let (P, <) be an ordered set. Then P is a chain if, for all a,b € P, eithera < b
orb < a, that is, any two elements of P are comparable. The ordered set P is an
antichain if a < bin P only if a = b. Suppose S C P. Thena € S is a maximal
element of S, if a < z € S implies a = z. The set of all maximal elements in S is
denoted by max .S. Further, a € S is the greatest element of S, if x < aforallz € S.
The set of minimal elements, min S, and the least element of S are defined dually, that
is, by reversing the order.

The greatest element of P, if it exists, is called the top element of P and written
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T. Similarly, the least element of P, if such exists, is called the bottom element and it
is denoted by 1. If S C P, then an element € P is an upper bound of S'ifa < z
for all a € S. A lower bound is defined dually. The set of all upper bounds of S is
denoted by S* and the set of all lower bounds by S.

If S* has a least element, this is called the least upper bound of S. Dually, if S*
has a greatest element, this is called the greatest lower bound of S. The least upper
bound of S is also called the supremum of .S and is denoted by sup S. Similarly, the
greatest lower bound of S is also called the infimum of S and is denoted by inf S.

We write a VV b (read as “a join b”) in place of sup{a, b} and a A b (read as “a meet
b”) in place of inf{a, b}. Similarly, we write \/ S and A S instead of sup S and inf S,
respectively. Obviously, §* = P and \/ () exists if and only if P has a bottom element
1, and in that case \/ @ = L. Dually, A ® = T whenever P has a top element.

A nonempty ordered set (P, <) is a lattice ifa Vb and a Ab exist forall a, b € P. If
V Sand A S existforall S C P, then (P, <) is called a complete lattice. To show that
an ordered set is a complete lattice requires only half as much work as the definitions
would have us to believe.

Lemma 2.1 Let P be an ordered set such that A S exists in P for every nonempty
subset S of P. Then \/ S exists in P for every nonempty subset .S of P which has an
upper bound in P; indeed, \/ S = A S“. O

Example 2.2 Assume A is a set. It is clear that (p(A), C) is a ordered set in which
1 =0and T = A. Moreover, (p(A), C) is a complete lattice with

\V{Biliel} = |JBi and
iel
NBiliel} = (B
icl
Because Rel(A) = p(A x A), it follows from the above that (Rel(A), C) is a complete
lattice with join given by set union and meet given by set intersection.

Lemma 2.3 Let (P, <) an ordered set, let 5,7 C P,and assume \/ S,V T, A S, and
AT existin P.If SCT,then\VS<VTand AT <AS. a

We say P satisfies the ascending chain condition (ACC), if given any sequence
a1 <ag < --- < ay--- of elements of P, there exists a k € IN such that a;, =
ag+1 = --- . The dual of the ascending chain condition is the descending chain
condition (DCC). It is obvious that every finite ordered set satisfies both the ACC and
the DCC. The following lemma is very useful.

Lemma 2.4 An ordered set P satisfies the ACC if and only if every nonempty subset
S of P has a maximal element. O

2.4 Closureoperatorsand closure systems

A system L of subsets of A is said to be a closure system if £ is closed under intersec-
tions, i.e., for all subsystems H C L, we have H € L. A closure operator on a set
A is an extensive, idempotent, and isotone function C : p(A) — p(A), that is,
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@ Bcc(B),

(b) C(C(B))=C(B),and

() B CCimpliesC(B) CC(C)
for all B,C C A. A subset B of A is closed (with respect to C) if C(B) = B. A
closure system £ on A defines a closure operator C on A by the rule

Ce(B) = ﬂ{L € L|BCL}.
Conversely, if C is a closure operator on A, then the family
Le={BCA|C(B) =B}

of closed subsets of A is a closure system. The relationship between closure systems
and closure operators is bijective. The closure operator induced by the closure system
Lc is C itself, and similarly the closure system induced by the closure operator C is
L. In symbols,

C(Ec) =C and »C(CC) =L.

Suppose L is a closure system on A. Clearly, the ordered set (£, C) has the top
element T = N ® = A and the bottom element | = N C. Further, the ordered set
(L, C) is a complete lattice. If {B; | ¢ € I'} is a nonempty subset of £, then

NBiliel} = (Bj;
i€l
ViBilie} = NiBilieny
= ({LeL|B;CLforallieI}

= ({Lec||UBiCL}

i€l

= C[;(U B;).

i€l

Example 2.5 Suppose A is a set. Let us consider the set Eq(A) of all equivalences
on A. If {e; | i € I} is a nonempty subset of Eq(A), then clearly ;. e; € Eq(A).
Moreover, (0 = Ax A € Eq(A). Hence, the set Eq(A) is a closure system on A x A.
The corresponding closure operator is a function Cgq : Rel(A) — Rel(A). It returns
for all » € Rel(A) the smallest equivalence relation on A containing r.

The ordered set Eq(A) of all equivalence relations on A is a complete lattice.
Suppose {e; | © € I} is a nonempty subset of Eq(A4). Then

/\{eiliEI} = ﬂei;

icl
\/{ei | 1€ I} = CEq(U ei).
el

Lemma 2.6 If C is a closure operator on A, then the following facts hold for all
B,C CAanda € A.

@c(BuUC)=c((B)uUc(C))forall B,C C A.

() a € C(B) ifand only if C(B) = C(B U {a}).

(c)Forall L € L¢, B C Lifand only if C(B) C L.



CHAPTER 2. PRELIMINARIES 10

Proof. (8) C(BUC) C C(C(B)UC(C)) CCc(Cc(BUC)) =C(BUCQC). (b)If
a € C(B),then C(B) C C(BU{a}) C C(C(B)) =C(B). Ifa ¢ C(B), then C(B) C
C(B)U{a} CC(BU{a}). (c) Suppose L € L¢. If BC L,thenC(B) C C(L) = L.
On the other hand, C(B) C L trivially implies B C L. O

2.5 Algebras, homomorphisms, and congruences

For a nonempty set A and a nonnegative integer n, we define A° = {0} and for n > 0,
A™ is the set of n-tuples of elements from A. An n-ary operation (or function) on A is
any function f from A™ to A; n is the arity (or rank) of f. A finitary operation is an
n-ary operation for some n. The image of (a1, ...,ay) under an n-ary operation f is
denoted by f(a1,...,ay). Afunction f on A is called a constant if its arity is zero. It
is completely determined by the image f(0) in A. Hence, it is convenient to identify
it with this element of A. An operation f on A is unary, binary or ternary if its arity is
1, 2, or 3, respectively.

A language (or type) of algebras is a set X of function symbols such that a nonneg-
ative integer n is assigned to each member f of X. This integer is called the arity (or
rank) of f, and f is said to be an n-ary function symbol. The subset of n-ary function
symbols in X is denoted by X,,.

Let A be asetand X a set of function symbols. A Y-algebra is an ordered pair A =
(A, F) where F is a family of finitary operations of A indexed by the language ¥ such
that corresponding to each n-ary function symbol f € X there is an n-ary operation
f# on A. The set A is called the universe of A and the f’s are called the fundamental
operations of A. Usually we write (A, X) instead of (A, F'). Furthermore, sometimes
we mean by the type of a X-algebra a list of the arities of the function symbols in .
Also we often drop the upper index from f4.

Assume A = (A,X) and B = (B, X) are X-algebras. A functionp : A — B'is
a homomorphism from algebra A to algebra B, denoted by ¢ : A — B, if for every
n-ary f € ¥ and aq,...,a,, We have

o(fAar, s an)) = fE(p(@r), .-, o(an)).
A homomorphism ¢ : A — Bis
e an embedding (or monomorphism), if it is injective;
e an epimorphism, if it is surjective;
e an isomorphism, if it is bijective.

We say that A is isomorphic to B, denoted by A = B, if there is an isomorphism from
Ato B.

Lemma 2.7 The product of homomorphisms is again a homomorphism, and similar
statements apply for embeddings, epimorphisms, and isomorphisms. Furthermore, the
inverse of an isomorphism is an isomorphism. i
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Let A = (A,%) and B = (B, X) be two algebras. Then B is a subalgebra of A
if B C A and every fundamental operation of B is the restriction of the corresponding
operation of A, i.e., for all function symbols f € %, fB is f4 restricted to B. A
subuniverse of A is a subset B of A, which is closed under the operations of A, that is,
foralln € Ny, f € ¥, and ay,...,an € B, f*(a1,...,a,) € B. The relationship
between nonempty subuniverses of an algebra and its subalgebras is bijective:

e If B is a subalgebra of A4, then B is a subuniverse of A.

e If B is a subuniverse of A and B # 0, then we get a subalgebra B = (B, ) of
A by restricting the operations of A in B.

Lemma 2.8 If ¢ : A — B isahomomorphism, then the image of a subuniverse of A
under ¢ is a subuniverse of B. O

Let A = (4,%) be a X-algebra and let K € Eq(A). Then K is a congruence on
A if K satisfies for each n-ary function symbol f € ¥ and any elements aq, . . ., an,

if (a;,b;) € K holds for 1 <4 < n, then (fA(a1,...,a,), fA(b1,...,by)) € K.

The set of all congruences on an algebra A is denoted by Con(.A). If K is a congruence
on an algebra .4, then the quotient algebra of .4 modulo K, denoted by A/ K, is the
algebra whose universe is A/ K and whose fundamental operations satisfy

fAE (a1 /K, ... an/K) = fAa1,...,an)/ K

where a1,...,a, € A and f is an n-ary function symbol in . We note that the
quotient algebras of A are of the same type as .A.

Lemma 2.9 If ¢ : A — B is a homomorphism, then following facts hold.

(a) The kernel of ¢, ker ¢, is a congruence of A.

(b) If K is a congruence of A, then the canonical map v from A to the quotient
algebra A/ K is an epimorphism. O

In the literature the following Homomorphism Theorem is also referred to as “The
First Isomorphism Theorem”.

Theorem 2.10 (Homomor phism Theorem) Suppose ¢ : A — B is a homomor-
phism onto B. Then there is an isomorphism ) from A/ ker ¢ to B such that ¢ = 9o,

where v is the canonical map from A to A/ ker ¢ (see Figure 1). O
(]
A B
v
(
A/ kerp

Figurel
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2.6 Latticesasalgebras

In Section 2.3 we saw that for a lattice L we may define the binary operations join and
meet on L by

aVb=sup{a,b} and aAb=inf{a,b}

for all a,b € L. In this section we study the algebraic properties of the operations Vv
and A.

Lemma 2.11 (Connecting Lemma) Let (L, <) be a lattice and let a, b € L. Then the
following are equivalent.

@a<b.
(b)aVvb=nh.
(©)aAb=a. O

Theorem 2.12 Let (L, <) be a lattice. Then Vv and A satisfy for all a,b,c € L,
(L) (avd)Ve=aV(bVec)

(L1)? (aAb)Ac=aA (bAc) (associative laws)
(L2) avb=bVa
(L2 aAb=bAa (commutative laws)
(L3) avVa=a
(L3Y aAa=a (idempotency laws)
(L4) aV(aAb)=a
(L4 aA(aVb)=b (absorption laws)

|

We say that an algebra (L, v, A) is a lattice, if L is nonempty set and \V and A are
binary operations on L which satisfy (L1)-(L4) and (L1)?—(L4)?.

If an ordered set (L, <) is a lattice, then by Theorem 2.12 the algebra (L, v, A) is
a lattice. Similarly, if an algebra (L, v, A) is a lattice and we define @ < b if and only
ifaVb=>bforall a,b € L, then the ordered set (L, <) is a lattice in which the the
original operations agree with the induced operations, that is, a V b = sup{a, b} and
a Ab=inf{a,b}.

Let (L, V, A) be a lattice. We say L has a unit (or identity) element if there exists
1 € Lsuchthata A1l = a forall a € L. Dually, L is said to have a zero if there
exists 0 € L suchthata = a Vv 0 forall a € L. The lattice (L, v, A) has a unit if and
only if (L, <) has a top element T and in that case 1 = T. A dual statement holds for
0and L. A lattice (L, V, A) possessing 0 and 1 is called bounded. A finite lattice is
automatically bounded, with1 =\/ Land 0 = A L.

Let £ = (L,V, A) be a lattice. If @ #£ S C L is a subuniverse of £, then (S, V, A)
is called a sublattice of £. A homomorphism between lattices is said to be a lattice-
homomorphism. Similarly, an isomorphism between lattices is a lattice-isomorphism.

If (L,V,A) is a lattice, then an element @ € L is meet-irreducible if a = b A ¢
impliesa = bora = cforall b,c € L. A We denote the set of all meet-irreducible
elements a # 1 (in case L has a unit) of L by M(L). A join-irreducible element and
the set 7 (L) are defined dually. The sets M(L) and J (L) inherit L’s order relation,
and will be regarded as an ordered set.
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Lemma 2.13 Let L be a lattice satisfying the ACC.
(@) Ifa,b e Landb £ a, then there exists z € M(L) suchthata < z and b £ z.
O a=A{be M(L)|a<b}.

Proof. (a) Suppose b £ a and letusdenote S = {z € L |a < zandb £ z}.
The set S is nonempty since it contains a. Because L satisfies the ACC, there exists a
maximal element z in S. We claim that z is in M(L). Suppose that x = ¢ A d with
x < cand z < d. By the maximality of z, neithercnordisin S. We havea < z < ¢,
S0 a < ¢, and similarly, a < d. Therefore ¢,d ¢ S impliesb < cand b < d. But
then b < ¢ A d = x, a contradiction! Thus, z is meet-irreducible and obviously = # 1
whenever L has a unit.

(b) Considerany a € L. LetT = {z € M(L) | a < z}. Clearly, a is a lower
bound for T'. Let ¢ be any lower bound for 7. We claim that ¢ < a. Suppose that
c%a.Thena < aVcandhenceaVc £ a. By (a) there exists z € T'witha V ¢ £ z.
But x € T implies by the definition of T that a < z, and ¢ < z since c is a lower
bound of T'. Thus, z is an upper bound of {a, c}, and consequently a V ¢ < z, a
contradiction! Hence ¢ < a holds, which impliesa = A T. |

2.7 Join-semilattices

We have seen that a lattice can be defined as an algebra as well as an ordered set. Next
we show that there is a similar relationship in the case of join-semilattices. We have
the following two definitions.

e A nonempty ordered set (S, <) is called a join-semilattice, if for all a,b € S,
the join a V b exists.

o A semilattice is an algebra (P, o) of type (2), where o is an associative, commu-
tative and idempotent operation.

These two notions are related as follows. If the algebra (P, o) is a semilattice, then
the condition a < b if and only if a o b = b defines a partial order < on P such that
(P,<)isaV-semilattice and @ VV b = a o b. Similarly, if (P, <) is a meet-semilattice,
then the algebra (P, V) is a semilattice in the sense of the second definition.

Proposition 2.14 Suppose (.S, <) and (P, <) are ordered sets and ¢ is a function from
StoP.

(@) If (S, <) and (P, <) are meet-semilattices, then the following are equivalent.
(1) @ is an order-isomorphism.
(2)  is an isomorphism (S, V) — (P, V).

(b) If (S, <) and (P, <) are lattices, then the following are equivalent.
(1) o is an order-isomorphism.
(2) ¢ is a lattice-isomorphism (S, V,A) = (P, V, A).

Proof. We show that (a) holds. Claim (b) can be proved similarly. It is obvious
that in both cases (1) and (2) the function ¢ is a bijection. Suppose (1) holds, that is,
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 is an order-isomorphism. Because a,b < a V b, we have ¢(a) V ¢(b) < ¢(a V b).
If p(a) V p(b) < u, then p(a) < u and p(b) < u, which implies a < ¢~!(u) and
b < ¢~ 1(u). Hence, a Vb < ¢~1(u) from which we get p(a V b) < u. If we set
u = p(a)V p(b), then p(a) vV ¢(b) > p(aVb). Thisimplies ¢(a) V ¢(b) = ¢(a V b).

Suppose ¢ is an isomorphism from (S, V) to (P,V). If a < b holds is S, then
w(a) V o(b) = p(aVb) = ¢(b),ie., ¢g(a) < ¢(b). Conversely, if p(a) < ¢(b), then
o(b) = p(a) V ¢(b) = ¢(aV b). Because ¢ is an injection this implies b = a V b, that
is,a <b. O

By previous proposition it is obvious that if (S, V, A) and (P, V, A) are lattices and
@ : S — P s abijection, then ¢ is a lattice-isomorphism whenever ¢ is a homomor-
phism from (S, V) to (P, V).



Chapter 3

Knowledge bases

3.1 Knowledge bases and indiscernibility

We simply assume here that knowledge is an ability to partition objects, and by an
object we mean anything which can be spoken of in the subject position of a natural
language sentence. Objects need not to be atomic or indivisible. For mathematical
reasons we often use equivalence relations instead of partitions, since there is bijective
relationship between equivalences and partitions, and equivalences are easier to deal
with. Hence, knowledge can be understood as a set of equivalence relations on a fixed
universe. We need some formal definitions which are given below.

Let U be a nonempty set and E(C Eq(U)) be a set of equivalence relations on U.
Then the pair £ = (U, E) is called a knowledge base and the set U is the universe
of IC. Note that in [21] the set U is assumed to be finite, which implies that the set
E(C Eq(U)) is also finite. However, we do not make any general assumption about
the cardinalities of U and E.

Example 3.1 This example is modified from an example appearing in [21].

Suppose we are given the set U = {z1, z2, x3, x4, x5, T6, T7, xg } Of toy blocks.
Assume these toys have different colors (red, blue, yellow), shapes (square, round,
triangular), and size (small, large). For example, a toy block can be red, round, and
small. Hence, the set of toy blocks U can be classified according to color, shape, and
size, for example, as follows:

T1,%3,T7 are red,

T2, T4 are blue,

T5,T6, T8 are yellow,
T1,Ts5 are round,

To, Tg are square,
r3,%4, 27,28 are triangular,
To,X7,%8 are large, and

T1,T3,T4,T5,%Lg are small.

These classifications can be considered as the equivalence relations e1, e2, and eg such

15
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that

Ulen = {{z1,23,27},{w2, 24}, {25, 76,78} },
Ulea = {{z1,x5},{w2, w6}, {x3, 24,27, 28}}, and
Ules = {{z2,z7,28}, {1, 23,24, 25, 26}}.

If we denote E = {e1, ea, e3}, then the pair £ = (U, E) is a knowledge base. For all
e € E, each equivalence class of U/e consists of objects which are indiscernible with
respect to knowledge e.

Because the intersection of equivalences is again an equivalence, we can form new
classifications by applying this operation. For example, the sets

{z1, 3, 27} N {3, 24, 7, 28} = {23, 27},
{x2,$4} N {$2,$6} = {xg}, and
{z5, z6, x8} N {x3, x4, 7,28} = {xs}.

are equivalence classes of e; N eg representing the combinations of red and triangular,
blue and square, and yellow and triangular, respectively. Note that some combinations
do not appear in this knowledge base. For example,

{:E2,CE4} N {1171,.’135} =@, and
{z1, 23,27} N {2, 26} = 0,

which means that there are no blue and round, or red and square toy blocks.

By the previous example, we may derive new knowledge about objects by applying
the set-theoretical operation of intersection. Assume K = (U, E) is a knowledge base.
If D C E, then then D determines an equivalence Ind(D) = (D on U, called the
indiscernibility relation of D. The equivalence Ind(D) represents the conjunction of
knowledge presented by the individual equivalences in D. More precisely, if  and y
are objects, then (z,y) € Ind(D) if and only if z and y are indiscernible with respect
to all e € D. In other words, two objects are discernible with respect to knowledge
D if and only if there exists at least one e € D such that these objects are discernible
with respect to knowledge e.

Let £ = (U, E) be a knowledge base and assume D and F' are subsets of E.
The sets D and F are equivalent, denoted by D = F, if Ind(D) = Ind(F). Thus, if
D = F, then D and F define the same partition of objects. If Ind(F') C Ind(D), then
the knowledge D is said to be dependent on the knowledge F' in K, denoted by F' —
D (K). Sometimes we write simply F' — D if there is no danger of confusion. If F¥ —
D, then the combined knowledge represented by D is derivable from the combined
knowledge represented by F', that is, if two objects are indiscernible with respect to
the knowledge F'and F' — D holds, then these two objects are also indiscernible with
respect to the knowledge D.

In the following we present some general facts concerning the concepts defined
above. Statements (a)—(d) follow directly from the definition of the operator Ind, and
also condition (e) is obvious.

Lemma3.2 If D = (U, E) is a knowledge base and D, F' C E, then the following
facts hold.
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(@) Ind(0) = U2

(b) Ind(D U F) = Ind(D) N Ind(F).

(c) D C F implies Ind(F) C Ind(D).

(d) Ind(D) Ceforalle € D.

(e D=Fifandonlyif D - Fand F — D. O

Equation (a) of Lemma 3.2 says that if we have no knowledge, that is, our set of
equivalences is empty, we cannot discern any objects. Statement (b) shows how the
indiscernibility relation of the union of sets depends on the indiscernibility relation of
the components of the union. Namely, two objects are indiscernible with respect to
D U F if and only if they are indiscernible with respect to D and F'. By (c) any set is
dependent on its supersets. Statement (d) is actually a useful special case of (c). By
(e) subsets are equivalent if and only if they are dependent on each other.

3.2 Indispensable elements, independent sets, and reducts

The fundamental problem of this section is in [21] referred to as that of knowledge
reduction. Here the central role is played by the concepts of indispensable elements,
independent subsets, and the core and reducts of knowledge. Recall that we have
omitted the finiteness of the sets U, which will slightly complicate our considerations.

Let L = (U, E) be a knowledge base and D C E. We say that an equivalence e €
D is indispensable in D if Ind(D) # Ind(D — {e}) (i.e. Ind(D) C Ind(D — {e})).
If e € D is indispensable in D, then the combined knowledge given by D is not
equivalent to the combined knowledge given by D — {e}, that is, there are at least two
objects which are indiscernible with knowledge D — {e}, but discernible with respect
to knowledge D.

A subset D(C E) is independent if all e € D are indispensable in D; otherwise D
is dependent. It is clear that D is independent if and only if D is not is not equivalent
to any proper subset of D.

Lemma 3.3 Suppose K = (U, E) is a knowledge base and let D C F C E.

(@) An element e € D is indispensable in D if and only if Ind(D — {e}) Z e.

(b) If e is indispensable in F', then e is indispensable in D.

(c) If D is independent, then D is an antichain with respect to the inclusion rela-
tion.

Proof. (a) By Lemma 3.2(b), Ind(D) = Ind(D — {e}) Ne forall e € D, which
implies that for all e € D, the condition Ind(D — {e}) C e is equivalent to Ind(D) =
Ind(D — {e}).

(b) Suppose e is indispensable in F'and D C F'. Then the conditions Ind(F') € e
and Ind(F) C Ind(D) imply Ind(D) Z e, thatis, e is indispensable in D.

(c) We verify the contrapositive of the claim, i.e., if D is not an antichain, then D is
dependent. Assume that there are two distinct equivalences e and f in D which satisfy
e C f. Then by (a), the relation f is not indispensable in {e, f}. Because {e, f} C D,
f is not indispensable on D by (b), which implies that D is dependent. |
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Statement (a) of Lemma 3.3 is useful for deciding whether an element is indis-
pensable in a subset. From (b) it follows that every superset of a dependent set is
dependent, and all subsets of an independent set are independent. By (c) it is clear that
if e C f for some distincte, f € D, then D is dependent. Further, if D is a chain, then
all independent subsets of D are of the form {e}, where e € D.

Assume K = (U, E) is a knowledge base and D C E. The set of all indispensable
elements of D will be called the core of D, and will be denoted by COREx (D). A
subset F of D is said to be a reduct of D if Ind(D) = Ind(F') and F'is independent.
The set of all reducts of D is denoted by RE Dy (D). Obviously, a reduct of D is a
minimal subset of D which represents the same knowledge as D itself.

Suppose K = (U, E) is a knowledge base. Let

F = {Ind(F) | F is afinite subset of E}.
We may write the following lemma.

Lemma3.4 Assume K = (U, E) is a knowledge base. If F satisfies the DCC, then
for all nonempty subsets D of E there exists a finite subset F' of D which satisfies
Ind(D) = Ind(F).

Proof. Assume F satisfies the DCC and let D be a subset of E. Let us denote
F(D) = {Ind(F) | F is afinite subset of D}.

Because ) € F(D), F(D) is a nonempty subset of . By assumption F satisfies
the DCC, which implies by the dual of Lemma 2.4 that (D) has a minimal ele-
ment Ind(F) for some finite ¥ C D. Forall e € D, Ind(F U {e}) € F(D)
and trivially Ind(F U {e}) C Ind(F'). Because Ind(F') is minimal, this implies
Ind(F) = Ind(F U {e}) = Ind(F) neforall e € D. Hence, Ind(F) C e for all
e € D, and Ind(F) C D = Ind(D) holds. On the other hand, FF C D implies
Ind(D) C Ind(F). Thus, Ind(D) = Ind(F). O

Proposition 3.5 Assume K = (U, E) is a knowledge base and F = {Ind(F) | Fisa
finite subset of E'}.

(a) If F satisfies the DCC, then every subset of E has a finite reduct.

(b) If F satisfies the DCC, then COREx (D) = REDx(D) forall D C E.

(c) If E has no minimal element with respect to the inclusion relation, then there ex-
ists a subset D(C E) which has no reducts; moreover COREx (D) # (N REDx (D)
holds.

Proof. (a) Suppose D C E and F satisfies the DCC. Then by Lemma 3.4 there
exists afinite subset ' C D suchthat Ind(D) = Ind(F). Suppose F' = {e1,...,en},
n € INg and let us define inductively the following sets F; forall , 0 < i < n.

Fi —{eiy1} ifInd(F; — {ei+1}) C eit1,

Fob=F and  Fjy;= { F, otherwise.

Obviously, ¥, C F,,_1 C --- C F; C Fy C D and Ind(D) = Ind(Fy) =
Ind(Fy) = --- = Ind(F,,). Assume F, is dependent, that is, Ind(F;,, — {e;+1}) C
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e;+1 forsome i, 0 < 4 < n — 1. Because F;, C F; we have by Lemma 3.2(c) that
Ind(F; — {ei+1}) C Ind(F, — {ei+1}) C ei+1. This implies by the definition that
e;+1 € F;1q ande; 1 € F,,, a contradiction! Hence, F,, is a reduct of D.

(b) Assume e € COREk(D) and e ¢ F for some F' € REDk(D). Now
F C D — {e} C D, which implies Ind(D) C Ind(D — {e}) C Ind(F). Because
Ind(D) = Ind(F'), we have Ind(D) = Ind(D—{e}), thatis, e is dispensable in D, a
contradiction! Conversely, suppose e € (YREDx (D) and Ind(D — {e}) = Ind(D).
Because F satisfies the DCC, there exists a reduct F' of D — {e}. The equation
Ind(D — {e}) = Ind(D) implies that the set F" is a reduct of D. Because e ¢ F', this
implies e ¢ (\ RE Dy (D), a contradiction!

(c) Suppose E has no minimal element. Then by the dual of Lemma 2.4 there exists
an infinite descending chaine; D ea D --- in E. Letus denote D = {e; | ¢ € IN}.
As we have noted, all independent subsets of the chain D are of the form {e;}, where
¢ € IN. Assume {eg} is a reduct of D for some k£ € IN. This implies Ind(D) =
Ind({er}) = ex. But now there exists an element ey in D which satisfies Ind(D) C
ex+1 C eg , a contradiction! Hence, D has no reducts. Moreover, YREDx (D) =
{e € E | e belongs to all reducts of D} = E, and Ind(D — {e;}) Ce; forall i € IN
which implies COREx (D) = (0. Hence, COREx.(D) # (N REDx (D). 0

In Pawlak’s original definition of knowledge bases the universe U is assumed to
be finite. Because Eq(U) C p(U x U), the set Eq(U) is finite whenever U is finite,
which implies trivially that every subset E(C Eq(U)) is finite. Obviously, if X =
(U, E) is a knowledge base such that E is finite, then the set 7 = {Ind(F) | F'is a
finite subset of E'} is finite, and it satisfies the DCC. Hence, for a knowledge base in
which either of the sets U of E is finite, every subset has at least one finite reduct and
COREx (D) = N REDg(D) for all subset D of the knowledge base

Example 3.6 Suppose U = IN. For each ¢ € IN, we define an equivalence e; which
equivalence classes are U/e; = {{1},...,{i},{¢ + 1, +2,...}}. If we denote E =
{e; | i € IN}, then the pair £ = (U, E) is a knowledge base. Obviously, e; C e;
for any ¢« < j, and all independent subsets of E are the sets {e;}, where ¢ € IN. The
set E has no minimal elements which fact obviously implies that E does not have any
reducts. Moreover, COREx(E) = () and REDx(E) = E, that is, the equation
COREk(E) =N REDy(E) does not hold.

If F is a finite nonempty subset of E, that is, FF = {e;,,...,e;, }, where i; <
-+ < iy for some n € IN, then Ind(E) = e;,. Thus, {e;, } is the only reduct of F'.
Moreover, the equation COREx (F) = (N REDx (F) holds.

3.3 Dependencein knowledge bases and dependencein uni-
versal algebra

In this section we study how the dependence defined in knowledge bases relates to the
abstract dependence in universal algebra. The definition of abstract dependence can be
found in [3, 5, 6], for example.

Let P be a set. An abstract dependence on P is a system D of subsets of P such
that any subset S of P belongs to D if and only if there is a finite nonempty subset T'
of SwithT € D. Asubset S C P is called dependent if S € D; otherwise it is called
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independent. By this definition, every subset of an independent set is independent; in
particular, the empty set is independent. Equivalently, every superset of a dependent
set is dependent.

Example3.7 Let P = {1,2,3} and let D = {{2}, {1, 2}, {2, 3}, {1,2,3}}. Clearly,
D is an abstract dependence on P.

As observed in [21], if £ = (U, E) is a knowledge base in which U is finite,
then the set of all dependent subsets of C is an abstract dependence. However, if the
sets U and E are infinite, this fact does not necessarily hold. Next we shall present a
condition which guarantees that the set of all dependent subsets of a knowledge base
is an abstract dependence.

Proposition 3.8 Suppose K = (U, E) is a knowledge base and let 7 = {Ind(F) | F
is a finite subset of E'}. If the set F satisfies the DCC, then the set of all dependent
subsets of E is an abstract dependence on E.

Proof. Assume D C FE is dependent and F satisfies the DCC. If D is finite, then
trivially there is a finite dependent subset D of D. If D is infinite, then there exists
e € D such that Ind(D — {e}) C e. Because F satisfies the DCC, there exists a
finite subset F' of D — {e} such that Ind(D — {e}) = Ind(F'). The facts e ¢ F' and
Ind(F) C e imply that the set F' U {e} is a finite dependent subset of D. O

The implication of Proposition 3.8 does not hold in other direction, as the following
example shows.

Example 3.9 Let us consider the knowledge base X = (U, E) of Example 3.6. It is
obvious that the set F does not satisfy the DCC. Suppose D(C E) is dependent. Then
D contains at least two elements, that is, there exists a subset {ex, e;} of D. Now
either e, C e; 0or ¢; C ey holds, i.e., {eg, e;} is a finite dependent subset of D. Hence,
the set of all dependent subsets of K is an abstract dependence on E.



Chapter 4

| nfor mation systems

4.1 Information systemsand indiscernibility

In this chapter we study information systems. The notion of information systems is
introduced by Pawlak in [19] and it is investigated by several authors (see e.g. [15, 16,
17,22, 23, 24, 25, 26, 27, 28]). An information systemisatriple S = (U, A, {V,}aca),
where U is a nonempty set of objects, A is a nonempty set of attributes, and {V,}.ca
is an indexed set of values of attributes. Each attribute a € A isafunctiona : U — V.
Moreover, we denote V' = (J,c4 Va. Usually the sets U, A, and V' are assumed to be
finite, which is actually a very natural assumption. However, until further notice, we
do not assume anything about the cardinalities of these sets.

For any a € A the kernel, kera = {(z,y) € U x U | a(z) = a(y)}, of the
attribute a is now equivalence on U. We may consider that the relation ker a represents
knowledge about objects in the sense that two objects z and y are in the relation ker a
if they are indiscernible with respect to an attribute a, that is, they have the same value
for the attribute a.

Example 4.1 An information system S in which the sets U, A, and V are finite can
be represented by a table. The rows of the table are labeled by the objects, and the
columns by the attributes of the system S. In the intersection of the row labeled by an
object  and the column labeled by an attribute a we find the value a(z).

Let us consider a simple example of an information system which is taken from
[24]. In the example S = (U, A,{Va}aca), Where U = {z1,...,z4}, A =
{1,...,4}, 1 = Vo = V3 = {0,1}, V4 = {0, 1,2}, and the values of the attributes
are defined as in Table 1.

|1]2]3]4

z1 110|000

20|11 ]0]2

z3 11101

T4 |02 |12
Tablel

For example, the objects x; and zo are indiscernible with respect to attributes 1 and 3.

21



CHAPTER 4. INFORMATION SYSTEMS 22

Any information system S = (U, A, {V,}aca) defines a knowledge base as fol-
lows. If we set Es = {kera | a € A}, then the system Ks = (U, Es) is a knowledge
base. However, we must note that a; # ag does not necessarily imply ker a; # ker ao,
that is, two distinct attributes may define the same equivalence on the set of objects.
Similarly, for every knowledge base K there exists an information system Si. such
that £ = Ks,.). Next, we shall present this construction. Suppose K = (U, E) is a
knowledge base. Let us set

e Ax = {v. | e € E}, where v, denotes the canonical map U — Ul/e, x — /e,
of the equivalence e, and

o V,, =U/eforalle € E.

Clearly, the system Sx = (U, Ak, {Va}aca,) is an information system such that
K = K(sy)- Note, that S = S does not usually hold.

Let S = (U, A, {Va}aca) be an information system. For all subsets B(C A) of
attributes we define the following relation

(4.1) Ind(B) = () kera.
a€B

The relation Ind(B) is called the indiscernibility relation of the subset of attributes
B. If (z,y) € Ind(B), then objects x and y are said to be B-indiscernible. Hence, =
and y are B-indiscernible whenever they are indiscernible with respect to all attributes
in B. Because for all a € A, the relation ker a is an equivalence and the intersec-
tion of equivalence relations is again an equivalence, the relation Ind(B) is also an
equivalence. The partition of the objects corresponding to the equivalence relation
Ind(B) can be viewed as a classification of objects, in which the equivalence classes
of Ind(B) consist of objects which are B-indiscernible. Note that the relation Ind(B)
defined in S equals to the relation Ind({kera | a € B}) which is an indiscernibility
relation defined in the knowledge base Ks.

Next we consider Ind as a function from p(A) to Eq(U), that is, the function Ind
assigns to each subset of attributes the corresponding indiscerniblitity relation. The
following facts are obvious.

4.2) Ind(0) =U xU
and
(4.3) If B C C, then Ind(C) C Ind(B).

Intuitively, we cannot discern objects by means of the empty set, and if two objects
are indiscernible with respect to a set C of attributes, they certainly are indiscernible
with respect to any subset B of C. By (4.3), the function Ind is order-reversing.

Lemmad.2 If S = (U, A, {Va}aca) is an information systemand {B; | ¢ € I} isa
family of subsets of A, then
@ [ Ind(B;) = Ind(| ] B;), and
i€l i€l
(b) | JInd(B;) C Ind([) B;).

el iel
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Proof. Suppose {B; | i € I'} is a family of subsets of A.

@) If T = 0, then ;g Ind(B;) = N0 = U x U = Ind(0) = Ind(U;ep Bi)-
If T # 0, then (z,y) € Nijcr Ind(B;) < (z,y) € Ind(B;) forall i € I < for all
i€l xz,yckeraforalla e B; & (z,y) € keraforalla € U;e; Bi & (z,y) €
Ind(Usc; By).

(b) If I = 0, then U, Ind(B;) = UD = 0 C Ind(A) = Ind(;cp Bi)- 1f I # 0,
then obviously N;c; B; € B; forall ¢ € I. By (4.3), Ind(B;) C Ind(;c; B;) for all
i € I. Hence, U;cr Ind(B;) C Ind(N;er Bi)- O

Note that the equation U;c; Ind(B;) = Ind((;c; B;) does not usually hold.

4.2 Thecompletelattice of indiscernibility relations

In this section we study the structure of the set of all indiscernibility relations in an in-
formation system. The results given here are novel in a sense that in our considerations
the sets U, A, and V are allowed to be infinite.

By Lemma 4.2(a) and (4.3), the function Ind : p(A) — Eq(U) is a homomor-
phism from the semilattice (p(A), U) to the semilattice (Eq(U'),N). Hence by Lemma
2.8, ({Ind(B) | B C A},N) is asubalgebra of (Eq(U),N). Further, the function Ind
is an epimorphism (p(A4),U) — ({Ind(B) | B C A},N).

By the Homomorphism Theorem we get the following result.

Proposition 4.3 LetS = (U, A, {V4 }aca) be an information system. The semilattices
(p(A)/Ks,V) and ({Ind(B) | B C A},N) are isomorphic, where Ks = ker Ind.
The operation V is defined in p(A) by

B/Ks V C/KS = (BU C)/Ks.
The isomorphismis ¢ : B/Ks — Ind(B). O

The situation of the previous proposition is illustrated by Figure 2.

Ind
(p(A),V) > ({Ind(B) | B C A},n)
()
(p(A)/Ks, V)
Figure2

The join-semilattice corresponding to the quotient semilattice (p(A)/Ks, V) is an
ordered set (p(A)/Ks, <) in which the partial order is given by the condition

(4.4) B/Ks < C/Kgifandonly if (BUC)/Ks = C/Ks.
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o Ind({1,2,3,4})

Ind({1,2,4}) O/ \

Ind({1,3}) ™, Ind({2,3})

o

Ind({1}) °\Ifnd<{2}) ° Ind({3})

Ind(0)
Figure3

Note that the join-semilattice corresponding to the semilattice ({Ind(B) | B C A},N)
is ({Ind(B) | B C A}, D).

Example 4.4 Let us consider the information system S of Example 4.1. It can be
easily verified that the equivalence classes of the equivalences Ind(B), B C A, are
the following:

e U/Ind(0) ={U};
o U/Ind({1}) = {{z1, 22, x4}, {23} };
o U/Ind({2}) = {{z1}, {22, 73, w4} };
{3}
(

o U/Ind({3}) = {{z1,x2,23},{z4a}};

o U/Ind({4}) = U/Ind({1,2}) = U/Ind({1,4}) = U/Ind({2,4}) =
U/Ind({1,2,4})
= {{$1}7 {$27$4}7 {$3}},

e U/Ind({1,3}) = {{z1, z2}, {z3}, {za}};
e U/Ind({2,3}) = {{z1},{z2, z3}, {z4} };

o U/Ind({3,4}) = U/Ind({1,2,3}) = U/Ind({1,3,4}) = U/Ind({2,3,4})
= U/Ind({17 2,3, 4}) = {{%1}, {372}7 {.’E3}, {174}}

The congruence classes of Kgs are {0}, {{1}}, {{2}}, {{3}}, {{4}, {1,2},

{1,4},{2,4},{1,2,4}}, {{1,3}},{{2,3}},and {{3,4}, {1, 2,3}, {1, 3,4}, {2, 3,4},
{1,2,3,4}}. The join-semilattice ({Ind(B) | B C A}, D) is presented in Figure 3.

Lemma4.5 Suppose S = (U, A,{Va}aca) is an information system and B C A.
ThenUB/Ks € B/Kg, and|J B/Kg is the greatest element in the congruence class
B/Ks.

Proof. Suppose B C A. Then Ind(U B/Ks) = cep/ks Ind(C) = Ind(B). It
is obvious that C C |JB/Kgs forall C € B/Kg. O
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Let us now define a function

Cs:p(4) — p(4),
B +~ |JB/Ks.

Proposition 4.6 If S = (U, A, {Va}aeca is an information system, then the following
facts hold.

(@) Cs(B) ={a€ A|Ind(B) C Ind({a})} forall B C A.

(b) Cs is a closure operator.

(c) kerCs = Ks.

Proof. (a) If a € Cs(B), then there existsa C € B/Kgs such that a € C. Hence,
Ind(B) = Ind(C) C Ind({a}). Conversely, if Ind(B) C Ind({a}), then Ind(B U
{a}) = Ind(B) N Ind({a}) = Ind(B), thatis, BU {a} € B/Ks.

(b) We shall show that Cg is (i) extensive, (ii) isotone, and (iii) idempotent. Sup-
pose B C A. (i) Because forall a € B, Ind(B) C Ind({a}), we get B C Cs(B). (ii)
If BC Canda € Cs(B), then Ind(C) C Ind(B) C Ind({a}), thatis, a € Cs(C).
(iii) By (i) and (ii) it is clear that Cs(B) C Cs(Cs(B)). Suppose a € Cs(Cs(B)).
Then Ind(Cs(B)) € IND({a}). Because Ind(Cs(B)) = Ind(B), this implies
a € Cs(B).

(c) Let B,C C A. If (B,C) € kerCg, then Cs(B) = Cs(C). Now Ind(B) =
Ind(Cs(B)) = Ind(Cs(B)) = Ind(C), that is, (B,C) € Kg. If (B,C) € Kg, then
Cs(B)=UB/Ks=UC/Ks =Cs(C). O

For an information system S we denote by Lgs the closure system on A corre-

sponding to the closure operator Cs. The ordered set (Ls, C) is a complete lattice in
which

NCiliel} = (]Ici;
\{Ciliel} = Zces(iEUIci).
By Lemma 2.6(a), for all B, C € p(A),
Cs(BUC) = Cs(Cs(B) UCs(C)) = Cs(B) Vs Cs(B).

Thus, the function Cs is a homomorphism from (p(A),U) onto (Ls, Veg). We can
write the following proposition.

Proposition 4.7 If S = (U, A,{Va}ac4) is an information system, then
@ ({Ind(B) | B C A},n) = (p(4)/Ks,V) = (Ls,Ves), and
(b) ({Ind(B)| B C 4},2) = (p(A)/Ks, <) = (L5, C).

Proof. (a) As we have seen in Proposition 4.3, the semilattices (Ind(B) |
B C A},N) and (p(A)/Ks, V) and isomorphic. The isomorphism of semilattices
(p(A)/Ks,V) and (Ls, V) is clear by the Homomorphism Theorem and Proposi-
tion 4.6(c). Statement (b) is obvious by Proposition 2.14(a). |
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Theorem 4.8 Let S = (U, A, {Va}aca) be an information system.
(@) ({Ind(B) | B C A}, C) is a complete lattice in which for all {B; | i € I} C
p(A),

N{Ind(By) |ie I} = () Ind(B;) = Ind(| B:);

i€l i€l
\VA{Ind(B;) |ieI} = Ind([)Cs(B
iel
(b) (p(A)/Ks, <) is a complete lattice in which for all {B; | i € I} C p(A),

N{Bi/Ks|ieI} = ([)Cs(Bi))/Ks;

el
V{Bi/Ks|ieI} = (|JBi)/Ks.
iel
Proof. (a) By (4.2) and (4.3), the set {Ind(B) | B C A} has the top element
T = Ind(0) and the bottom element L = Ind(A). If {B; | i € I} isasubsetof p(A),
then it quite obvious by Lemma 4.2(a) that A{Ind(B;) | i € I} = ;er Ind(B;) =
Ind(U;es Bi)-
For the rest, we show first that

H{C C A| Ind(B;) C Ind(C) foralli € I} = (| Cs(By)
iel
Suppose a € U{C C A | Ind(B;) C Ind(C)foralli € I}. Hence, there exists
C such that a € C and Ind(B;) C Ind(C) forall ¢ € I. Because {a} C C, this
implies Ind(B;) C Ind(C) C Ind({a}) forall i € I. Then a € Cs(B;) forall i € I,
i.e., a € ;e Cs(B;). Conversely, if a € ;7 Cs(B;), then Ind(B;) C Ind({a})
forall ¢ € I. Hence, {a} € {C C A | Ind(B;) C Ind(C) foralli € I}, that is,
a€U{C C A|Ind(B;) CInd(C)forall i € I}. By Lemma 2.1,

\/{Ind Y|iel} = /\{Ind )|ie I}
= [({Ind(C) | Ind(B;) C Ind(C) forall i € I’}
= Ind( {Ccc4 | Ind(B;) C Ind(C) forall i € I})
= Ind(()Cs(B;)

(b) The ordered set (p(A)/Ks,<) has by (4.4) the top element T = A/Kg
and the bottom element L = 0/Ks. If {B; | i € I} is a subset of p(A), then
NierCs(Bi) € Ls. This implies Cs(M;erCs(Bi)) = NierCs(Bi) S Cs(By) for
all i € I. By Proposition 4.7(b) this implies (";c;Cs(Bs))/Ks < B;/Kgs for all
i € 4. If C/K is a lower bound for {B;/Ks | i € I}, then Cs(C) C Cs(B;)
forall # € I. Hence, Cs(C) C NierCs(Bi) = Cs(NierCs(Bi)). This implies
C/K < (Nies Cs(Bi))/Ks. Then A{B/Ks | i € I} = (N;e; Cs(B;))/ Ks.

Obviously, B; C ;e B; for all i € I. By (4.4) this implies B;/Ks <
(Uier Bi)/Ks forall ¢ € I. If C/Ks is an upper bound for {B;/Ks | i € I},
i.e., Bi/Ks < C/Kgs forall i € I, then by Proposition 4.7(b), Ind(C) C Ind(B;)
forall i € I. Thus, Ind(C) C ;cr Ind(B;) = Ind(U;cr B;). By Proposition 4.7(b),
this implies (U;c; Bi)/Ks < C/Ks. Hence, V{B;/Ks | i € I} = (U;e; Bi)/Ks.

m]
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Now we have shown that the ordered sets ({Ind(B) | B C A}, D), (p(A)/Ks, <
), and (Ls, C) are complete lattices. Further, by Proposition 4.7(b) they are order-
isomorphic. By Proposition 2.14 we can write the following corollary.

Corollary 49 If S = (U, A, {V.}aea) is an information system, then
({Ind(B) | B C A}, A, V) = (p(A)/Ks, V, N) = (Ls, V, A).
The isomorphisms are

v1: (p(A)/Ks,V,N) = ({Ind(B) | BC A},A\,V), B/Ksw Ind(B);
Y2 : (p(A)/KS7V7/\) - ([’Sav7/\); B/KS — CS(B)7
w3: ({Ind(B)| B C A},A,V) = (Ls,V,A); Ind(B)— Cs(B);

(see Figure 4).

Ind
((4), ) > ({Ind(B) | BC A},A,V)
UKs ®3
P1 Cs
(p(A)/K37V7/\) (£57V7 /\)
P2
Figure4

4.3 Independent subsets of attributesand reducts

Here we consider indispensable attributes, independent subsets, cores, and reducts.
These notions were studied already in Chapter 3 in the case of knowledge bases. As
we have noted before, in an information system, two attributes may define the same
classification of objects, and this may cause problems as we see in the following ex-
ample.

Example4.10 Let us consider an information system S = (U, A, {V4 }aca) in which
A = {ai1,a2,a3}, and assume Ind({a1}) = Ind({az2}). In the knowledge base
Ks = (U, Es) the set Es consists of two equivalences e; = Ind({a1}) = Ind({az2})
and ea = Ind({as}). If e1 € ea and ex Z ey, then both of the equivalences e; and
e are indispensable in the set Eg, but still Ind({a1,a2,a3}) = Ind({a1,a3}) =
Ind({a2,a3}), that is, in the set A the attributes a;, as are dispensable in the sense
that the deletion of either of them from A does not change the classification of objects.

From the reason that came out in Example 4.10 we redefine some notions in the
case of information systems. Let S = (U, A, {V,}4ca) be a information system and
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suppose B C A. An attribute @ € B is indispensable in B if Ind(B) # Ind(B —
{a}), that is, the classification of objects with respect to B is properly finer than the
classification with respect to B — {a}. The set of all indispensable elements of B is
called the core of B, and is denoted by COREs(B). If a € B(C A), then Ind(B) =
Ind(B — {a}) N Ind({a}) which implies the useful condition

(4.5) a(€ B) is indispensable in B if and only if Ind(B — {a}) Z Ind({a}).

It is clear that an attribute a is not indispensable in B if the values of the attribute a
can be deduced form the set of values of attributes B — {a}.

The notions of indispensable elements in knowledge bases and in information sys-
tems are almost equivalent as we see in the following lemma.

Lemmad4.1l If S = (U, A, {V.}aeca) is an information system and a € B C A, then
a isindispensable in B if and only if Ind({a}) is indispensable in {Ind({b}) | b € B}
(in the sense of knowledge bases) and Ind({a}) # Ind({b}) holdsforallb € B—{a}.

Proof. Suppose a is indispensable in B. First, we shall show that Ind({a}) #
Ind({b}) forallb € B —{a}. Suppose Ind({a}) = Ind({b}) for someb € B — {a}.
Then Ind(B — {a}) C Ind({b}) = Ind({a}), a contradiction! Secondly, assume
Ind({a}) is not dispensable in D = {Ind({b}) | b € B}. Letusfixe € D such
that e = Ind({a}). Because e is not indispensable in D, we get Ind(D — {e}) C e.
Because D — {e} C {Ind({b}) | b € B — {a}}, this implies Ind(B — {a}) =
N{Ind({b}) | b € B —{a}} € N(D — {e}) = Ind(D — {e}) C e = Ind({a}), a
contradiction!

Conversely, suppose Ind({a}) # Ind({b}) forallb € B—{a}and e = Ind({a})
is indispensable in D = {Ind({b}) | b € B}. Assume a is not indispensable in B,
thatis, Ind(B—{a}) C Ind({a}). Obviously, D—{e} = {Ind({b}) | b € B—{a}}.
Then, Ind(D — {e}) = N(D — {e}) = N{Ind({b}) | b € B — {a}} = Ind(B —
{a}) C Ind({a}) = e, a contradiction! O

As in the case of knowledge bases, we say that a subset B of attributes A is inde-
pendent if all elements in B are indispensable; otherwise B is dependent. The set of
all independent subsets of A in S is denoted by INDg.

By the previous lemma it is clear that a subset of attributes B is independent in an
information system S if and only if the set {Ind({b}) | b € B} is independent in the
knowledge base Ks and Ind({a}) # Ind({b}) for all a,b € B. Also the following
condition is obvious.

(4.6) B € INDg ifand only if B= COREgs(B).
By Proposition 3.3 and 4.11 we can now write the following lemma.

Lemmad4.12 If S = (U, A, {Va}aca) is an information systemand a € B C C(C
A), then the following holds.

(@) If a is indispensable in C, then a is indispensable in B.

(b) If B is independent, then {Ind({b}) | b € B} isan antichain, and Ind({a}) #
Ind({b}) foralla # bin B. O
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Note that Lemma 4.12(a) follows also from (4.3). It is now obvious that every
subset of an independent set is independent, and every superset of a dependent set is
dependent. Further, from Lemma 4.12(b) it follows that if Ind({a}) C Ind({b}) for
some distinct attributes a, b € B, then B is dependent.

Assume S = (U, A, {V,}aeca) is an information systemand B C A. Then a subset
C C Bis said to be a reduct of B if C is independent and Ind(B) = Ind(C). The
set of all reducts of B in S is denoted by REDgs(B).

The idea of reducing an attribute set in an information system is of great practical
importance, because it shows that one can get sometimes the same information from
the system with a smaller set of attributes. Now it is obvious that C' is a reduct of
B in an information system S if and only if {Ind({c}) | ¢ € C} is a reduct of
{Ind({b}) | b € B} in the knowledge base Ks and Ind({a}) # Ind({b}) for all
distincta,b € C.

In section 3.2 we gave a condition under which every subset of a knowledge base
has a finite reduct. For a knowledge base K and an information system S we define
the following sets.

Fx = {Indg(F)| F isafinite subset of E'}, and
Fs = {Inds(F) | Fisafinite subset of A},

where Indy(F') (resp. Inds(F)) refers that the indiscernibility relation in defined in
the knowledge base /C (resp. information system S). The next lemma is trivial.

Lemma4.13 If S = (U, A,{V,}aca) is an information system and Ks = (U, Es),
where Es = {Ind({a}) | a € A}, then

Fxs = Fs.
O

By Lemma 4.13 it is clear that the set Fs satisfies the DCC if and only if Fi¢
satisfies the DCC. Therefore, if Fg satisfies the DCC, then by Lemma 3.4, for any
B C A, there exists a finite C C B which satisfies Ind(B) = Ind(C). Moreover, the
following proposition can be easily verified by Proposition 3.5.

Proposition 4.14 Suppose S = (U, A, {Va}aca) is an information system and let F =
{Ind(F) | F is afinite subset of A}.

(a) If F satisfies the DCC, then every subset of A has a finite reduct.

(b) If F satisfies the DCC, then COREs(B) = (YREDs(B) forall B C A.

() If {Ind({a}) | a € A} has no minimal element with respect to the inclusion
relation, then there exists B(C A) which has no reducts; moreover COREs(B) #
N REDs(B) holds. O

Next we present a lemma which guarantees that Fg satisfies the DCC.

Lemma 4.15 Suppose S = (U, A, {Va}aca) is an information system. If at least one
of the sets U or A is finite, then Fs satisfies the DCC.
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Proof. It is obvious that if U is finite, then Eq(U) is finite. Because Fs C Eq(U),
this implies that Fg if finite, and hence it satisfies the DCC. Secondly, if A is finite,
then p(A) is finite. Because the mapping Ind : p(A) — {Ind(B) | B C A} is onto,
obviously |Fs| < |p(A)| holds, which implies that Fgs is finite. O

Note that if we require that for all a € A, the set V, — or even that the set V' =
Uaca Va is finite, this does not imply that Fs satisfies the DCC. We shall give an
example which illustrates this.

Example 4.16 Suppose S = (U, A, {Va}ac4) isan information system such that U =
{z; | i€ N}, A={a; | i € N}, and V, = {0,1} forall @ € A. Itis clear that also
the set V. = Uyeca Vo = {0, 1} is finite. For each ¢ € IN, the attribute a; is defined by

_fo ifj<i
ai(2;) _{ 1 otherwise.

The equivalence classes of Ind({a;}), i € IN, are {z1,...,z;} and {zi+1, Zit2,...}.
Obviously,

Ind({a1}) D Ind({a1,a2}) D --- D Ind({a1,...,ar}) D Ind({a1,...,ak41}) D -
is an infinite descending chain in Fgs.

By Pawlak’s original definition, in an information system all the sets U, A, and
V' = Uaea Va are assumed to be finite. Proposition 4.12 says that if either of the set
U or A is finite, then every subset B of A has a finite reduct. By example 4.16, the
finiteness of the sets V, or even the set V' does not guarantee this.

If Fs satisfies the DCC, then we can form a finite reduct of a subset B of attributes
by determining a finite reduct D of {Ind({b}) | b € B} in the knowledge base Ks
by applying the method presented in the proof of Proposition 3.5(a), and then for all
e € D, we may choose exactly one a € B which satisfies Ind({a}) = e.

In Chapter 5 we shall study discernibility matrices. We shall see how for any
information system such that the sets U and V" are finite we can, for example, compute
the set of all reducts of a subset of attributes.

4.4 Dependency relationsin information systems

Dependencies in an information system are basic tools for drawing conclusions from
the basic knowledge. Namely, often the value of some attribute for an object can
derived from the values of some other attributes. For example, if the value of an
attribute “age” is “two years”, then the value of an attribute “education” will be “no
education”.

Let S = (U, A, {Va}aca) be an information system. We say that a set B(C A)
of attributes depends on a set C(C A) of attributes in S, denoted by C — B (S),
if Ind(C) C Ind(B). The relation — (D) is called the dependency relation of S.
Usually, we write simply C — B if there is no danger of confusion.

It is clear that if C — B, then any two objects discernible by B are also dis-
cernible by C. Hence, we can use the relation — for deducing. If objects x and y are
indiscernible with respect to C and C — B, then z and y are B-indiscernible.
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By (4.3), B C C implies C — B. Such dependencies are called trivial (see
e.g. [25]). Itis clear that Ind(B) = Ind(C) if and only if B — C and C — B.
The following obvious lemma says that the notions of dependency in & and in the
corresponding knowledge base s are essentially equivalent.

Lemmad4.17 Let S = (U, A,{V,}aca) be an information system and B,C C A.
Then the following conditions are equivalent.

@ C — B(S).

(0) {Ind({c}) | c€ C} — {Ind({b}) | b € B} (Ks). |

Dependencies have an important role in the special class of information systems
called decision tables. Decision tables [21] are information systems with the set of
attributes divided into two disjoint sets Con and Dec, called condition and decision
attributes, respectively. A decision table S is called consistent if Con — Dec (S)
holds, that is, the values of the decision attributes are really determined by the condi-
tion attributes.

Example 4.18 Let us consider the information system of Example 4.1 and assume
that Con = {1, 2,3} and Dec = {4}. Itis clear that Con — Dec, that is, the decision
table S is consistent. It can be easily verified that also {1,2} — {4} holds. Hence, the
attributes 1 and 2 totally determine the value of the decision attribute 4. Note that the
set {1, 2} is not a reduct of the set {1, 2, 3}.

Especially from the point of view of decision tables, the following problem is
important. Suppose B and C are subsets of attributes of an information system such
that C — B holds. Then find all minimal subsets D of C which satisfy D — B.
In Section 5.3 we shall present a solution to this problem by applying discernibility
matrices which is different from the solution appearing in [26].



Chapter 5

Discernibility matrices and
functions

5.1 Discernibility matrices

The notion of discernibility matrices is introduced in [26]. By applying discernibility
matrices we may write several algorithms for computing e.g. the reducts of a subset
of attributes in an information system. We note that the results of Lemma 5.1 and
Propositions 5.6(b) and 5.7 can be found also from [26] in a slightly different form.

Suppose § = (U, A,{Va}taca) is an information system in which U =
{z1,...,z,}. Letus define an n x n-matrix (c;;), called the discernibility matrix
of S, by

cij = {a € Al a(z:) # a(z;)}

forall 1 <4,5 <n.

Obviously, ¢;; = ¢j; forall 1 < 4,5 < nandc; = 0 forall 1 < < n. Therefore,
we can represent (c;;)nxn Dy the elements in the upper triangle of (c;;) only, i.e., by
the elements ¢;; with1 < < j < n.

Now it is quite easy to decide for any subset B(C A) of attributes whether two
objects z; and z; are B-indiscernible.

Lemma51l If S = (U, A,{Va}aca) is an information system such that U =
{z1,...,zn}, (cij)nxn is the discernibility matrix of S, and B C A, then for all
1<i<j<mn,(z;,z;) € Ind(B)ifandonlyifc;; N B = 0.

Proof. If (z;,z;) € Ind(B), then a(z;) = a(z;) for all a € B. This implies
a ¢ cjforalla € B,ie., c;; N B = 0. Conversely, if ¢;; N B =0, then a ¢ ¢;; holds
forall a € B. Hence for all a € B, a(z;) = a(z;), that is, (z;, z;) € Ind(B). O

By our following lemma we can test if the classification of objects with respect to
a subset of attributes is finer than or equal to the classification of objects with respect
to another subset of attributes.

Lemma52 If § = (U, A,{Va}laca) is an information system such that U =

{z1,...,2n}, (cij)nxn is the discernibility matrix of S, and B,C C A, then the
following conditions are equivalent.

32
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@) Ind(C) C Ind(B).
(b) Forall1 <i < j <m,¢;; N B # 0 implies ¢;; N C # 0.

Proof. Assume Ind(C) C Ind(B). If ¢;; N B # () forsome 1 < i < j < n, then

by Lemma 5.1, (z;, z;) ¢ Ind(B). This implies (z;,z;) ¢ Ind(C) and ¢;; N C # 0.
On the other hand, assume ¢;; N B # 0 implies¢;; NC # B forall1 < i < j <
n. Suppose (z;,z;) € Ind(C) for some 1 < ¢, < n. Ifi = j, then trivially
(zi,zj) € Ind(B). If i < j, then ¢;; N C = 0, which implies ¢;; N B = 0, i.e,
(zi,zj) € Ind(B). Ifi > j, then C N ¢j = O from which we get B N ¢j; = 0.
Therefore, (z;,z;) € Ind(B) and (z;,z;) € Ind(B), because Ind(B) is symmetric.
0

Next we present two simple corollaries of the previous lemma. The first is based
on the trivial fact that Ind(B) = Ind(C) if and only if Ind(B) C Ind(C) and
Ind(C) C Ind(B), and the second on (4.3) by which C C B implies Ind(B) C
Ind(C).

Corollary 5.3 Suppose S = (U, A, {V,}ac4) is an information system such that U =
{z1,...,zn}. If (cij)nxn is the discernibility matrix of S and B,C C A, then the
following conditions are equivalent.

(@) Ind(B) = Ind(C).

(b)Forall1 <i< j<m,c¢;NB=0ifandonlyifc;; N C = 0.

Corollary 5.4 Suppose S = (U, A, {V,}ac4) is an information system such that U =
{z1,...,2n}. If (¢ij)nxn is the discernibility matrix of S and C C B(C A), then the
following conditions are equivalent.

(@) Ind(B) = Ind(C).

(b) Forall1 <i < j <m,¢;NB#0impliesc;; N C # 0.

Example5.5 Let us consider the information system S of Example 4.1. Its discerni-
bility matrix (c;;), 1 < i < j < 4, is presented in Table 2.

| 2 3 4
1({2,4} {1,2,4} {2,3,4}
2 {1, 4} {3}

3 {1,3,4}
Table2

By applying discernibility matrices it is easy to decide whether an attribute is in-
dispensable in a subset of attributes or not. Our following proposition characterizes
the set INDg, and for all B C A the set COREs(B).

Proposition 5.6 Suppose S = (U, A,{Va}aca) is an information system such that
U = {z1,...,zp}. If (¢ij)nxn is the discernibility matrix of S and B C A, then the
following equations hold.
(@ INDs={B C A|foralla € B, ¢;;j N B = {a} forsome 1 <i < j <n}.
(b) COREs(B) ={a€ B|c;; N B ={a}forsomel <i<j<n}
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Proof. Assume B C A and a € B. By Corollary 5.4, B — {a} C B implies that
Ind(B) # Ind(B — {a}) < thereexist1 < i < j < n, such that ¢;; N B # ( and
(B—{a})Necij =0 < ¢;;j N B = {a} forsome 1 <4 < j < n. This equivalence
implies statements (a) and (b). O

The following proposition characterizes the reducts of a given subset of attributes.

Proposition 5.7 Suppose S = (U, A,{Va}aca) is an information system such that
U = {z1,...,2n} and (c;j)nxn is the discernibility matrix of S. If B C A, then
C € REDg(B) ifandonly if C is minimal with respect to inclusion among the subsets
of A such that C' N (¢;; N B) # P forall 1 < ¢ < j < n which satisfy ¢;; N B # 0.

Proof. Suppose C € REDg. Then C C B and Ind(B) = Ind(C). By Corollary
54,CN(c;j NB) =c¢;;N(BNC) =ci;; NC # 0 wheneverc;; N B #0. IfCis
not minimal, there is a C; C C such that C; N (c;; N B) # 0 whenever ¢;; N B # 0.
But Cy ¢ C C B implies C1 N (c,'j N B) = ¢ N (B N Cl) = ¢5 N Ci. So,
Ind(C1) = Ind(B) = Ind(C), a contradiction!

Conversely, let C' be a minimal subset of A which satisfies C N (¢;; N B) # 0
whenever ¢;; N B # 0. IfC € B, thenC; = (BNC) Cc Cand Ci N (¢ N B) =
(BNC)N(cijNnB) = CnN(cijNB) # O whenever ¢;; N B # 0, a contradiction! So,
C C B. Since ¢;; NC = C N (c;; N B), we get Ind(B) = Ind(C). Suppose that C
is not independent. Then there isa Cy C C such that Ind(C1) = Ind(C) = Ind(B).
Because C1 C B, this implies C1 N (¢;; N B) = ¢;; N C1 # O whenever ¢;; N B # 0,
a contradiction! O
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Note that Proposition 5.7 characterizes the reducts of B as subsets of A (instead of
B which would be a more natural way). We shall need this particular characterization
later when we are writing an algorithm which computes REDg(B) for an arbitrary
set B(C A) of attributes.

5.2 Discernibility functions

In this section we study the notion of discernibility functions which helps us to write
algorithms for e.g. the reduction problem. Note that in [26] the discernibility function
is defined only for the set A in the information system & = (U, A, {Va}aca), but here
we define it for any arbitrary subset B of A.

First we shall recall some notions concerning Boolean logic (see e.g. [1, 9, 18]).
Let us fix a countable infinite alphabet of Boolean variables {z1,x2,...}. We can
combine Boolean variables using Boolean connectives such as Vv (logical or), A (logi-
cal or) and — (logical not). A Boolean expression can be any of (a) a Boolean variable,
(b) an expression of the form —¢1, where ¢; is a Boolean expression, () an expression
of the form (¢1 V ¢2), where ¢ and ¢ are Boolean expressions, or (d) an expression
of the form (¢1 A ¢2), where ¢1 and ¢, are Boolean expressions. In case (b) the ex-
pression is called the negation of ¢;; in case (c) it is the disjunction of ¢; and ¢,; and
in case (d) it is the conjunction of ¢; and ¢2. An expression of the form z; or —z; is
called a literal. A conjunction of literals is called a A-term.

An m-ary Boolean function, or a function for short, is a mapping f : {0,1}"* —
{0,1}. Anelementv € {0,1}™ is called a Boolean vector (a vector for short). It is
known that each Boolean expression expresses some Boolean function and any m-ary
Boolean function f can be expressed as a Boolean expression ¢ involving variables
z1,- .., Tm (See [18], for example).

If f(v) =1 (resp. 0), then v is called a true (resp. false) vector of f. The set of
all true vectors (false vectors) is denoted by T'(f) (F(f)). We denote by L and T the
two special functions for which T'(L) = @ and F(T) = 0, respectively. Moreover for
all m € IN, we write

0 = (0,...,0) and 1, =(1,...,1).
S—— N——
Let w = (u1,...,um) and v = (v1,...,vn,) be vectors. We set u < v if and

only if u; < v;, for 1 < ¢ < m. A function f is isotone if v < w always implies
f(v) < f(w). Inthe sequel we shall assume that f is a isotone function. A true vector
v of f is minimal if there is no true vector w such that w < v, and let min 7'(f) denote
the set of all minimal true vectors of f. A maximal false vector is defined dually and
max F'(f) denotes the set of all maximal false vectors of f. The following facts are
obvious.

T(f) ={v|v>wforsomew € minT(f)}.
F(f)={v|v < wforsomew € max F(f)}.

Two vectors » and v are incomparable if neither v < v nor u > v holds. A set of
vectors V(C {0, 1}™) is called incomparable if every pair of distinct vectors u,v € V'
is incomparable. Obviously, the sets min 7'(f) and max F'(f) are both incomparable.



CHAPTER 5. DISCERNIBILITY MATRICESAND FUNCTIONS 36

Let f and g be Boolean functions. If g(v) < f(v) forall v € {0, 1}™, then we say
that g implies f. An implicant of a Boolean function f is a A-term which implies f. A
A-term ¢ is said to subsume ¢ if all literals of ¢4 are literals of ¢;. A prime implicant
of f is defined as an implicant of f such that no A-term subsumed by it by it can be an
implicant of f. An irredundant disjunctive normal form of f is a disjunction of prime
implicants of f such that a removal of any of them makes the remaining expression
no longer equivalent to the original f. It is known that if f is isotone, it has a unique
irredundant disjunctive normal form consisting of all prime implicants of f. Moreover,
there is a bijective correspondence between the prime implicants and the minimal true
vectors of a isotone function (see [9], for example).

Suppose that S = (U, A,{Va}aca) is an information system in which U =
{z1,...,zn} and A = {a1,...,an}. Forany B C A, let §(B) denote the dis-
junction of all variables y,, where a, € B. We define the discernibility function
f5(y1, ..., ym) of asubset B(C A) as the conjunction

/\ 5(Cij N B).
1<i<j<n,
cijNB#D
Obviously, the function f§ is isotone. Because the empty conjunction A = 1, f§ =
Tifandonlyifc;; N B =0forall 1 <i < j <nifandonly if Ind(B) = U2 A
function x : p(A) — {0,1}™ is defined by

B = (x1(B),- -, xm(B)),
where
) 0 ifar ¢gB
Xk(B) = { 1 ifay € B

forall k&, 1 < k < m. The value x(B) is called the characteristic vector of B.

Let us denote B’ = A — B forany B C A. Because forall B,C C A, BNC =0
if and only if B C C’, by the definition of the function fg we can now write the
following conditions for every B, C(C A).

(5.1)  fe(x(C)=1eCn(c;;NB)#Bforalll<i< j<nwhichsatisfy c;j N B # 0.
(52)  f5(x(C)) =0« C C (c;jn B) forsome 1 < i < j < n which satisfy ¢;; N B # 0.

Our following proposition follows easily from (5.1), (5.2), and Lemma 5.7.

Proposition 5.8 Suppose S = (U, A, {Va}aca) is an information system such that
U={z1,...,zn}, A={a1,...,am}, and (c;j)nxn is the discernibility matrix of S.
(&) minT(f§) = {x(C) | C € REDs(B)}.
(b) max F(fg) = max{x((c;j N B)) |1 <i < j<mn, ¢;jNB# 0} ]

Note that by Proposition 5.8 we can compute the set of all reducts of B by iden-
tifying the set of minimal true vectors of the function f5. This observation is used in
Section 5.4 where we shall present a selection of algorithms.

Corollary 5.9 Suppose S = (U, A, {Va}ae4) is an information system such that U =
{z1,...,zn}, A = {a1,...,am}, and (cij)nxn is the discernibility matrix of S. If
B C A, then the set {a;,,...,a;,} is a reduct of B if and only if y;, A--- Ay;, isa
prime implicant of f5.
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Example5.10 Let us consider the information system S of Example 4.1. Its discerni-
bility matrix (c;;) is presented in Example 5.5. The discernibility function of the set A
is

f3 = @QVAHAAV2VAAQRVIVAA(LVAASA(LVIVA
= 3A(IVAA(2RVL) =3A(4V(1A2)
(BA4)V(1A2A3),

where i stands for y;. The function f$ has obviously the prime implicants (3 A 4) and
(1 A2 A 3), which implies that REDs(A) = {{3,4},{1,2,3}}.
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5.3 Dependency relations and dependency functions

Suppose S = (U, A, {Va}aca) is an information system such that U = {z1, ...,z }.
If (¢ij)nxn is the discernibility matrix of S, then by Lemma 5.2 the following condition
holds for all B, C C A.

(5.3) C — Bifandonly if ¢;; N B # @ impliesc;; NC # (@ forall1 <i < j <n.

In Section 4.4 we presented the following problem. Let B and C be subsets of A
which satisfy C — B. Find the minimal subsets D of C such that D — B. In [26]
this problem is solved by applying the notions of discernibility functions and lower
approximations of subsets of objects which are studied in the theory of rough sets (see
e.g. [20, 27, 21]). Here we present a more natural solution. Our following proposition
characterizes the sets mentioned above.

Proposition 5.11 Suppose S = (U, A, {V,}aca) is an information system such that
U = {z1,...,zn} and (cij)nxn is the discernibility matrix of S. If C — B (S) holds,
then the following conditions are equivalent.

(a) D is a minimal subset of C such that D — B.

(b) D is a minimal subset of A such that ¢;; N B # @ implies DN (¢;; N C) # 0
foralll1 <i<j<n.

Proof. Suppose C' — B and assume D is a minimal subset of C such that D — B.
Because D C C, we get DN (¢;;NC) = ¢;;N(CND) = ¢;;N.D. Now the assumption
D — B implies that D N (¢;; N C) # 0 holds for all 1 < 4 < j < n which satisfy
¢ij N B # 0. If D is not minimal, there is a Dy C D such that D1 N (¢;; NC) # 0
whenever ¢;; N B # (. But D1 C C implies D1 N (¢;; NC) = ¢;;N Dy. So, D1 — B,
a contradiction!

Conversely, suppose C — B and D is a minimal subset of A which satisfies
D N (cij N C) # O whenever ¢;; N B # 0. If D ¢ C, then Dy = (C N D) C C, and
DiN(e;;NC)=(CND)N(c;;NC)=DnN(e;; NC) # O whenevere;; N B # 0, a
contradiction! So, D C C. Since D N (¢;; N C) = ¢;; N D, we get D — B. Assume
therea Dy C D suchthat D — B, i.e., ¢;j N D1 # 0 whenever ¢;; N B # (). Because
Dy C D C C, thisimplies Dy N (¢;; N C) = ¢;; N Dy # 0 whenever ¢;; N B # 0, a
contradiction! O
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Let S = (U, A, {Va}aca) be an information system in which U = {z1,...,z,}
and A = {a1,...,am}. If (¢ij)nxn is the discernibility matrix of S and B, C are
subsets of A which satisfy C — B in &, then we define the dependency function
fés_>3(y1, ..., Ym) Of the dependency C' — B as the conjunction

/\ d(ci; N CO).
1<i<j<n,
C.,;jﬁB#w

Obviously, the function f£, 5 is isotone and f$, 5 = T if and only if Ind(B) =
U2. By the definition of £, we can now write the following conditions for all
subsets B, C' and D of A which satisfy C — B,

(54) fS,5(x(D))=1&DN(c;;NC)#Dforalll <i< j<nsuchthate; NB # 0.
(65) f&.5(x(D)) =0« D C (c;jNC) forsome 1 <4 < j < nsuchthatc; N B # 0.
By (5.4), (5.5), and Proposition 5.11 we can now present the following proposition.

Proposition 5.12 Suppose S = (U, A, {V.}aca) is an information system such that
U={z1,...,zo}, A= {a1,...,am}, and (c;j)nxn is the discernibility matrix of S.
If the dependency C' — B (S) holds, then the following equations are valid.

(@ minT(f5. 5) = {x(D) | D is a minimal subset of C such that D — B}.

(b) max F(f&, p) = max{x((c;; NC)') | 1 < i <j <mn, c;j N B #0}.

By Proposition 5.12 we can compute for the dependency C' — B the set of all
minimal subsets D of C such that D — B by identifying the set of all minimal true
vectors of £5_, .

Corollary 5.13 Assume S = (U, A, {V,}4c4) is an information system such that U =
{z1,...,zn}, A = {a1,...,am}, and (c;j)nxn is the discernibility matrix of S. If
C — Bholdsin S, then D = {a;,,...,a;,} isaminimal subset of C which satisfies
D — B ifand only if y;; A--- Ay, isaprime implicant of fc‘?_ﬂg.

Example5.14 Let us consider the information system S of Example 4.1. Its discerni-
bility matrix (c;;) is presented in Example 5.5. If we set B = {4}, then the trivial
dependency A — B holds in S§. The dependency function of the dependency A — B
is

= (2V4)A(IV2VA)A(2VIVAA(IVAA(IVIVY)
= (1V4)A(2V4)
= 4V (1A2),

S
fA—)B

where i stands for y;. The function £ 5 has obviously the prime implicants 4 and
(1A2), which implies that {4} and {1, 2} are the minimal subsets D of A which satisfy
D — B.
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5.4 A datatype and basic algorithms for discernibility ma-
trices

In this section we present a simple implementation of discernibility matrices as a data
type, which is sufficient for us to solve problems concerning, cores, dependencies,
independent sets, and reducts in an information system.

The discernibility matrix could be given as an n x n—matrix in which the entry (z, )
is the vector x(c;;), but as we have seen, only the entries ¢;;, where 1 < ¢ < j < n,
are needed. Therefore, we introduce the following representation which saves always
over half of the space compared to the matrix representation.

Let S = (U, A,{V,}aca) be an information system such that U = {z1,...,z,}
and A = {ai,...,an}. Then the discernibility matrix (c;;j)nxn Of S can be repre-
sented as an array c[1..n(n — 1)/2] of length n(n — 1)/2, in which

clk] = x(cij),
where k = j(j —1)/2—i+1forall1 <i< j<mn.

Example 5.15 The discernibility matrix of Example 5.5 can be represented as an array
c[1..6] in which

C[l] = X(Cl2) =(0,1,0, 1)’ 6[2] = X(023) = (17 0,0, 1)’
=x(c13) = (1,1,0,1),

cld] = x(esa) = (1,0,1,1), ¢[5] = x(c24) = (0,0,1,0),
= x(c14) = (0,1,1,1).

We define the operations meet (V), join (A), difference (-) and complement () in
{0, 1}™. For all vectors u, v and integers 7, 1 < ¢ < m,

(uVwv); = O0ifandonlyifu; =v; =0,

(uAv); = lifandonlyifu; =v; =1,

(u—v); = Llifandonlyifu; =1,v; =0,
(u'); = 1ifandonlyifu; = 0.

Obviously, the complexity of all these operations is O(m).

Let S = (U, A,{Va}aca) be an information system such that U = {z1,...,z,}
and A = {ay,...,an}. Our first algorithm tests for any z;,z; € Uand B C A
whether (z;, ;) € Ind(B) holds or not. The Algorithm B-INDISCERNIBLE is based
on Lemma 5.1.

Algorithm 5.16 B-INDISCERNIBLE

Input: Anarray c[l..n(n — 1)/2] such that forall 1 < i < j < n, c[k] = x(cij),
where k = j(j — 1)/2 — ¢ + 1, an m-sized vector b = x(B), and two integers
1<i,j<n.

Output: “yes” if (z;,z;) € Ind(B) and “no” otherwise.

1. Ifi = 7, then output “yes” and halt. Otherwise, go to 2.
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2. Ifi>j, thenh:=14, i:=3, j:=h.
3. IfbAc[j(j —1)/2 —i+ 1] = Oy, then output “yes”, otherwise output “no”.

Obviously, Algorithm B-INDISCERNIBLE takes O(m) time. Of course, we have
assumed that the array c[1..n(n—1)/2] has been computed in advance. The assumption
is justified when the algorithm is applied for various choices of B and (;, z;), but a
fixed information system S.

The following algorithm computes for any z; € U and B C A the equivalence
class of Ind(B) containing x;, that is, the set z; /Ind(B).

Algorithm 5.17 B-CLASS

Input: Anarray c[l..n(n — 1)/2] such that forall 1 < i < j < m, c[k] = x(cij),
where k = j(j — 1)/2 — i + 1, an m-sized vector b = x(B), and an integer q.
Output: An n-sized vector v corresponding the set z; /Ind(B).

1. Start with v := 0,,.

2. Forall j:=1,...n,v[j] := 1if (z;,z;) € Ind(B) holds (which can be tested
with Algorithm B-INDISCERNIBLE).

3. Output v.

The complexity of Algorithm B-CLASS is O(nm).

Suppose B and D are subsets of attributes. Next we present an algorithm which
checks whether Ind(B) = Ind(D) holds. Our Algorithm EQUIVALENT is based on
Corollary 5.3.

Algorithm 5.18 EQUIVALENT

Input: Anarray c[l..n(n — 1)/2] such that forall 1 < ¢ < j < n, c[k] = x(cij),
where k = j(j — 1)/2 — i+ 1, and two vectors b = x(B) and d = x(D).

Output: “yes”, if Ind(B) = Ind(D) holds and “no” otherwise.

1. Ifforall k:=1,...,n(n —1)/2, c[k] Ab = Oy, if and only if c[k] A d = Oy,
then output “yes”; otherwise output “no”.

The complexity of Algorithm EQUIVALENT is O(n?m), because the size of the array
cis O(n?) and the tests c[k] A b = 0,, and c[k] A ¢ = 0,, take O(m) time.

Our next algorithm returns an answer to the question whether the condition D —
B holds in S. It is based on (5.3).

Algorithm 5.19 DEPENDENCY

Input: Anarray c[l..n(n — 1)/2] such that for all 1 < i < j < n, c[k] = x(cij),
where k = j(j —1)/2 — i+ 1, and two vectors b = x(B) and d = x(D).

Output: “yes”, if D — B holds and “no” otherwise.

1. Ifforall k:=1,...,n(n — 1)/2, c[k] A b # Oy, implies c[k] A d # Oy, then
output “yes”; otherwise output “no”.
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The complexity of this algorithm is O(n?m).

The following algorithm computes for any subset B(C A) of attributes the core of
B. The method is based on Proposition 5.6(b). Note that we could compute the core
of B also by the condition a € COREs(B) if and only if Ind(B) # Ind(B — {a}),
and by applying Algorithm EQUIVALENT. However, this method requires O (n2m?)
time and our algorithm CoRE is a little faster. Its complexity is O(n%m).

Algorithm 5.20 CoRE

Input: Anarray c[l..n(n — 1)/2] such that forall 1 < i < j < m, c[k] = x(cij),
where k = j(j —1)/2 — i+ 1, and a vector b = x(B).

Output: A vector v = x(COREs(B)).

1. Start with v = 0,,.

2. Forall k:=1,...,n(n —1)/2, if b A c[k] contains exactly one 1 and this is in
the 4th position, then v[i] = 1.

3. Output v.

By using Algorithm CORE it is easy to decide whether a subset B C A is independent
or not. Namely, B € INDg if and only if B = COREs(B). Also this test requires
O(n?m) time.

It is quite easy to compute one reduct of B. We start with the set B and cancel
successively its elements in a way that any set C' obtained by cancelling some elements
satisfies Ind(B) = Ind(C). We stop this procedure if C is such that for any Cy
obtained from C' by cancelling one element, we get Ind(B) # Ind(C4) (cf. the proof
of Proposition 3.5(a)). In the sequel v[v; = 0] denotes the vector v with ith element v;
fixed to 0. The denotation v[v; = 1] is defined similarly.

Algorithm 5.21 REDUCT

Input: Anarray c[l..n(n — 1)/2] such that forall 1 < i < j < n, c[k] = x(cij),
where k = j(j — 1)/2 — i+ 1, and a vector b = x(B).

Output: x(C) for some C € REDg(B).

1. Startwithv =b

2. Forallz:=1,...,m,letv[i] =0ifforallk =1,...,n(n—1)/2, c[k] AN b #
0y, implies c[k] A v[v; = 0] # Op,.

3. Output v.

The complexity of this algorithm is O(n?m?). Next we shall present a method
which computes the set REDg(B) for any B C A. By Proposition 5.8(a) the set of
all minimal true vectors of the discernibility function f§ is the set of characteristic
vectors of the reducts of B. Similarly, if C — B holds, then by Proposition 5.12(a)
the set of all minimal true vectors of the dependency function fc‘? ., g equals the set of
characteristic vectors of the minimal subsets D of C such that D — B holds.

Our following algorithm MF-vECTORS1 computes the set max F(fg) for a dis-
cernibility function £§. It is based on Proposition 5.8(b).
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Algorithm 5.22 MF-VECTORS1

Input: Anarray c[l..n(n — 1)/2] such that forall 1 < i < j < n, c[k] = x(cij),
where k = j(j —1)/2 — i+ 1, and a vector b = x(B).

Output: The set max F(fg)

1. Start with M F := (.
2. Forallk:=1,...,n(n—1)/2,if c[k] Ab # Op,, then M F := MFU{(c[k] \D)'}.
3. Delete from M F all vectors which are not maximal.

4. Output M F.

The complexity of Step 2 is O(n?m). Because M F contains at most n(n — 1)/2
vectors of length m after Step 2, the time need by Step 3 is O(n*m) which is also the
complexity of Algorithm MF-VECTORSL.

The following algorithm computes the set max F(fCS_>B) of a dependency func-
tion £, . The method is based on Proposition 5.12.(b).

Algorithm 5.23 MF-VECTORS2

Input: Anarray c[l..n(n — 1)/2] such that forall 1 < i < j < m, c[k] = x(cij),
where k = j(j — 1)/2 — i + 1, and two vectors b = x(B) and d = x(C) such that
C — B holds.

Output: The set max F(f<, )

1. Start with M F := (.
2. Forallk:=1,...,n(n—1)/2,if c[k] Ab # Op,, then M F := MFU{(c[k]Ad)'}.
3. Delete from M F all vectors which are not maximal.

4. Output M F.

The complexity of Algorithm MF-VECTORS2 is also O(n*m) which the time needed
by the dominating Step 3.

In what follows we shall consider the question of how to compute the set
min T(f5) from max F(fg). These considerations have originally appeared in [1],
but we have slightly altered them.

Let f be a isotone Boolean function, MT C minT(f) and M F C max F(f).
That is, MT and M F, respectively, denote the partial knowledge of min7'(f) and
max F'(f) currently in hand. In other words, MT (M F') contains all sets which at
present time are surely known to be in min 7'( f) (max F'(f)). Define

T(MT)={v|v>wforsomew € MT} and
F(MF)={v|v <wforsomew € MF}.

Itis clear, that T(MT) C T(f) and F(MF) C F(f),and T(MT)N F(MF) = 0.
A vector w is called unknown if

u e {0,1Y™ — (T(MT) U F(MF)),



CHAPTER 5. DISCERNIBILITY MATRICESAND FUNCTIONS 44

since it is not known at the current stage whether u is a true vector or a false vector of
f. There is no unknown vector if and only if T'(MT) U F(MF) = {0,1}™ holds, i.e.,
MT = minT(f) and M F = max F(f).

The following general algorithm computes the set min7'(f) assuming that
max F'(f) is known. The algorithm is modified from Algorithm IDENTIFY in [1].

Algorithm 5.24 MT-VECTORS
Input: max F(f).
Output: minT(f).

1. Start with MT := §(C minT'(f)) and M F := max F(f).

2. Testif T(MT)U F(MF) = {0,1}™ holds. If so, output MT and halt. Other-
wise go to 3.

3. Find an unknown vector u (which necessarily is in T'(f)). Then compute a
minimal vector y satisfying y < wand y € T(f). Let MT := MT U {y}.
Return to 2.

In [1] is defined the following problem which is equivalent to Step 2.

Problem 5.25 EQ
Instance: Incomparable sets MT, M F(C {0,1}™)suchthat T (MT)NF(MF) = (.
Question: Does T(MT) U F(MF) = {0,1}™ (i.e., no unknown vector) hold?

It is not known whether Problem EQ is solvable in polynomial time or not. The
length of the input to Problem EQ is m(|MT| + |MF|). Let us denote by Trq the
time required to solve Problem EQ. We shall see that if Problem EQ is solvable in
time polynomial in its input length, then finding an unknown vector in Step 3 of MT-
VECTORS can also be done in polynomial time.

Leta = (a1, as,...,a;) € {0,1}* for some 0 < k < m. We define

MT[a] = min{(vgt1,-..,9m)|v € MTandv; <a;,i=1,2,...,k},
minT(f)a] = min{(vgt1,.-.,Vm) |v €EminT(f) andv; < a;,t=1,2,...,k},

MFla] = max{(vkt+1,..-,Vm)|v € MFandv; > a;,i=1,2,...,k}, and
max F'(f)[a] = max{(vk+1,...,9m)|v € maxF(f)andv; > a;,9=1,2,...,k},
where v; refers to the ith element of the vector v = (v1,..., vk, Vk11,..-,0,). OUr
following method computes the set M T'[a] for any a = (a1, ..., ax) from the set MT'.

The method for the set M F'[a] is analogous.

Algorithm 5.26 MT[a]-VECTOR
Input: A vector a = (a1, ...,ax) and the set MT.
Output: The set M T|a].

1. Start with MT, = 0.

2. Forallv € MT, ifforall s = 1,...,k, v; < a;, then MT, := MT, U
{(Vks1y--rvm)}
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3. Delete from M T, all vectors which are not minimal.
4. Output MT,.

The complexity of Algorithm MT[a]-VECTOR is O(m|MT|?) which is the time
needed by the step 3. Similarly, the complexity of the method MF[a]-VECTOR which
computes M F[a] from M F is O(m|MF|?).

Suppose a = (ay,as,...,ax) € {0,1}* for some 0 < k < m. Let us denote by
fa the function obtained from f by fixing variables y; to a; fori = 1,...,k. Then
obviously min7'(f)[a] = minT(f,) and max F(f)[a] = max F(f,). It is clear
that if MT C minT(f) and MF C max F(f), then MT[a] C minT(f)[a] and
MFla] C max F(f)[a] for any a. Moreover, MT[a] = minT(f)[a] and M F[a] =
max F'(f)[a] if and only if

(5.6) T(MT[a]) U F(MF[a]) = {0,1}™*

If the current M T[a] and M F[a] do not satisfy (5.6), then at least one of a® = (a, 0)
and a! = (a, 1) does not satisfy (5.6) in which a is replaced by a° and a, respectively
(see [1D).

This fact implies that the following algorithm, which is a corrected version of
Algorithm UNKNOWN in [1], outputs an unknown vector.

Algorithm 5.27 UNKNOWN

Input: Incomparable sets MT, M F(C {0,1}™) such that T(MT) N F(MF) =0
and T(MT)U F(MF) # {0,1}™, where n > 2.

Output: An unknown vector w.

1. Leta® := (0),a' := (1) and k := 1.

2. Ifk <m—1,9g0to 3. If Kk = m — 1, then at least one of My := {0,1} —
(T(MT[a®]) U F(MF[a])) and M; := {0,1} — (T(MT]a']) U F(M F[a']))
is nonempty. If My # G and b € My, let u := (a®,b) and halt. Otherwise, let
u := (al,b), where b € My, and halt.

3. Testif T(MT[a®]) U F(MF[a®]) = {0,1}™* holds (i.e., solve problem EQ).
If “no”, let a® := (a°,0), a' := (a®,1) and k := k + 1. Return to 2. Otherwise
(i.e., “yes”), a® := (a',0), a' := (a',1) and k := k + 1. Return to 2.

Since MT[a]-VECTOR, MF[a]-VECTOR and EQ are called most m times in UN-
KNOWN, the complexity of Algorithm UNKNOWN is

O(m(m(|MT|* + |MF*) + Tpo(m(|MT| + | MFY)))).

Next shall we consider the second half of Step 3 of MT-VECTORS. We shall
present Algorithm MINIMAL, which computes a minimal true vector y from an un-
known vector u (which necessary belongs to T'(f)). The algorithm is based on the fact
that for all v € {0, 1}™ and a isotone function f, f(v) = 1ifand only if v £ w for all
w € max F(f).

Algorithm 5.28 MINIMAL
Input: A vectoru € T(f) — T(MT) and max F(f).
Output: A minimal vector y suchthaty € T'(f) — T(MT).
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1l y:=u.
2. Fori:=1,2,...,m,lety[i] = 0] if y[y; = 0] £ v for all v € max F(f).
3. Output y.

The running time of MINIMAL is clearly O(m?| max F(f)|).

Let us consider the complete running time of Algorithm MT-VECTORS. One
iteration of Steps 2 and 3 is done in O(m(m(|MT|? + |MF|? + |max F(f)|) +
Teo(m(|MT| + |MF|)))) time and thus the total running time of MT-VECTORS is

O(m| min T'(f)|(m(| min T(f)|*+| max F(£)*)+Te(m(| min T(f)|+| max F(£)))))).

Now we can present the following algorithm, which finds the reducts of given
subset of an information system.

Algorithm 5.29 REDUCTS

Input: Anarray c[l..n(n — 1)/2] such that forall 1 < ¢ < j < m, c[k] = x(cij),
where k = j(j — 1)/2 — i + 1, and a vector x(B).

Output: A set of vectors corresponding to REDp(X).

1. Compute the set of vectors max F(f5) with Algorithm MF-VECTORS1.

2. Compute the set of vectors min T'(f§) with Algorithm MT-VECTORS and out-
put it.

We have already seen that | max F(fg)| < n? and | minT(f§)| = |REDs(B)|.
Recall that the complexity of Step 1 is O(n*m). Hence, the total running time of
Algorithm REDUCTS is

O(m|REDs(B)|(m(|REDs(B)|* + n*) + T (m(|REDs(B)| +n%)))).

Example5.30 As we have seen, the information system of Example 4.1 can be repre-
sented as an array c[1..6], where

C[l] = X(012) = (Ov 1,0, 1)’ 0[2] = X(C23) = (1’ 0,0, 1)1
c[3] = x(c13) = (1,1,0,1),

0[4] = X(C34) = (1a 0,1, 1)’ 6[5] = X(024) = (07 0,1, 0)1
c[6] = x(c14) = (0,1,1,1).

We shall illustrate how Algorithm REDuUCTS computes the reducts of the set
{1,2,3,4}. We first have to compute the set max F(f$) with Algorithm MF-
VECTORS1. Obviously, MF := {(c[i] A x(A)) | 1 < i < 6,x(A) A c[k] #
0.} = {(1,0,1,0), (0,1,1,0), (0,0,1,0), (0,1,0,0), (1,1,0,1), (1,0,0,0)}. The
vectors (1,1,0,1), (1,0,1,0), and (0,1,1,0) are maximal in M F, which implies
max F(f3) = {(1,1,0,1), (1,0,1,0), (0,1,1,0)}. Next we shall compute the set
min T(f§) with algorithm MT-VECTORS. It starts with MT := @ and MF :=
max F(f3).

It is obvious that T(MT) U F(MF) # {0,1}*, so we execute Algorithm UN-
KNOWN:
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e k=1:a"=(0),a' = (1); MT[a"] = 0, M F[a°] = {(1,0,1),(1,1,0)}.
e k=2:a"=(0,0),a! =(0,1); MT[a®] = 0§, MF[a°] = {(0,1),(1,0)}.
e k=3:a"=(0,0,0),a! = (0,0,1); MT[a%] = 0, MF[a®] = {(1)} = {1}.

Now F(M F[a°]) = {0, 1}, thatis, Mo = 0. So, we must compute the sets MT[al] =
f and MF[a'] = {(0)} = {0}. Hence, M; = {1}, which impliesb = 1 and u =
(0,0,1,1).

Because u is a minimal true vector, MT = {(0,0,1,1)}and M F = {(1,1,0,1),
(1,0,1,0), (0,1,1,0)}. Now T(MT) U F(MF) # {0,1}%, so we shall execute
UNKNOWN again:
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ok =1 : a% = (0),a! = (1); MT[a®] = {(0,1,1)}, MF[a®] =
{(1,0,1),(1,1,0)}.
ok =2 :a° = (1,0),a = (1,1); MT[a°] = {(1,1)}, MF[a°] =
{(0,1), (1,0)}
e k=3:a=(1,1,0),a' = (1,1,1); MT[a°] = 0; MF[a®] = {(1)} = {1}.
Because T(MT[a’]) U F (MF[ %) = {0, 1}, we have to compute the sets MT[a'] =

{(1)} = {1} and MF[a'] = 0. So, M; = {0} which impliesb = 0 and u =

(1,1,1,0).
The true vector (1,1, 1,0) is minimal. Thus, MT = {(0,0,1,1), (1,1,1,0)} and
MF = {(1,1,0,1), (1,0,1,0), (0,1,1,0)}. Now T(MT) U F(MF) = {0,1}4,

which implies that (0, ,1,1) and (1,1,1,0) are the vectors corresponding to the
reducts of A.

If the dependency C — B holds in an information system, then the following
algorithm finds the set of the characteristic vectors of all minimal subsets D of C
which satisfy D — C.

Algorithm 5.31 MIN-DEPENDENCY

Input: Anarray c[l..n(n — 1)/2] such that forall 1 < i < j < n, c[k] = x(cij),
where k = j(j — 1) /2 — i+ 1, and two vectors x(B) and x(C') which satisfy C — B
inS.

Output: {x(D) | D is aminimal subset of C which satisfies D — B}.

1. Compute the set of vectors max F(fOﬂB) with Algorithm MF-VECTORS2.

2. Compute the set of vectors min T'(f5 , 5) with Algorithm MT-VECTORS and
output it.

Obviously, |max F (5, 5)| < n? and if we denote k = |{x(D) | D is a minimal
subset of C' which satisfies D — B}|, then the total running time of Algorithm MIN-
DEPENDENCY is

O(mk(m(k? +n*) + Tpo(m(k +n?)))).

Example 5.32 The information system of Example 4.1 can be represented as an array
c[1..6], where

C[l] = X(012) = (07 1,0, 1)’ 0[2] = X(023) = (17 0,0, 1)’
6[3] (613) (1, 1, 0, 1),

c[4] = x(e34) = (1,0,1,1),  ¢[5] = x(c24) = (0,0,1,0),
0[6] (014) 0, 1, 1, 1).

If we set B = {4}, then the dependency A — B holds in S. Next we shall show
how Algorithm MIN-DEPENDENCY computes the set of all minimal subset D of A
which satisfy D — B. First we shall compute the set max F(fA3_>B) with Algorithm
MF-VECTORS2. Obivously, MF := {(c[i] A x(A)) | 1 < i < 6, c[i] A x(B) #
0.} = {(1,0,1,0), (0,1,1,0), (0,0,1,0), (0,1,0,0), (1,0,0,0)}. The vectors
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(1,0,1,0) and (0,1,1,0) are maximal in MF, which implies max F(f{.5) =
{(1,0,1,0), (0,1,1,0)}. Next we shall compute the set min T'(f 5, 5) with algorithm
MT-VECTORS. It starts with MT := () and M F := max F(f{, p).

It is obvious that T(MT) U F(MF) # {0, 1}*, so we have to execute Algorithm
UNKNOWN:

e k=1:a"=(0),a! = (1); MT[a°] = 0, MF[a®] = {(1,1,0)}.
e k=2:a%=(0,0),a! = (0,1); MT[a®] = 0, MF[a’] = {(1,0)}.
e k=3:a%=(0,0,0),a' = (0,0,1); MT[a’] = 0, MF[a®] = {(0)} = {0}.

Now F(M F[a°]) = {0}, that is, Mo = {1}, which implies b = 1 and u = (0, 0,0, 1).
Because w is minimal true vector, MT = {(0,0,0,1)} and MF = {(1,0,1,0),
(0,1,1,0)}. Clearly, T(MT)UF(MF) # {0, 1}*, so we must run UNKNOWN again:

e k=1:a%=(0),a! = (1); MT[a"] = {(0,0,1)}, MF[a®] = {(1,1,0)}.
e k=2:a%=(1,0),a! = (1,1); MT[a®] = {(0,1)}, MF[a®] = {(1,0)}.
e k=3:a=(1,1,0),a' = (1,1,1); MT[a®] = {(1)} = {1}; MF[a°] = 0.

Because T(MT[a’]) U F(MF[a°]) = {1}, we get My = {0} and b = 1. Hence,
u = (1,1,0,0) which is a minimal true vector. Then MT = {(0,0,0,1), (1,1,0,0)}
and MF = {(1,0,1,0), (0,1,1,0)}. Now T(MT) U F(MF) = {0,1}*, which
implies that (0,0, 0, 1) and (1, 1,0, 0) are the characteristic vectors of the subsets D of
A which satisfy D — B.



Chapter 6

Dependence Spaces

6.1 Congruencesand closure operatorson semilattices

In this section we study congruences on semilattices. Most of the results in this section
appear in the literature (see [4, 14], for example), but in some cases we give new proofs.
Moreover, statement (a) of Lemma 6.3 and Propositions 6.8 and 6.9 cannot be found
in the mentioned sources.

In what follows, we regard a semilattice P = (P, o) also as a join-semilattice
(P, <) in which the order relations is defined by

a <bifandonlyifaob = b;

clearly, aobis the join of a and b in (P, <). We say that P has a zero if thereis0 € P
such that a = a o 0 for all a € P. Obviously, the algebra P = (P, o) has a zero if and
only if the ordered set (P, <) has a bottom element _L, and in that case 0 = L.

Lemma6.1l If P = (P,o) is a finite semilattice with a zero, then the ordered set
(P, <) is alattice.

Proof. Because P isfinite, \/ P = A 0 exists in P and it is the greatest element. By
assumption, P has a bottom element 0. Thus, AP =V 0 =0.1fS = {ay,...,a,}is
a nonempty subset of P, then \/ S = a1 o - - - o a,,. Moreover, 0 € S*, which implies
St =£ (. By Lemma 2.1 this yields that A S = \/ S* exists for all S C P. O

Let P = (P, o) be a semilattice and let K be a congruence on P, that is, for all
ai,as,bi,byin P, (al, bl) € K and (ag,bg) € K imply (al oas9, by Obg) € K. Letus
recall that the congruence class of K containing a is denoted by a/ K, and the quotient
set of P modulo K is denoted by P/K. By setting

(6.1) a/KVb/K = (aob)/K

for all a,b € P we get a well-defined binary operation on P/K which is associative,
commutative, and idempotent. Thus (P/K, V) is a semilattice, the quotient semilattice
of P modulo K. If <p/k is the the corresponding partial order, then (P/K, <p/k) isa
join-semilattice in which the join of any elements a/K and b/K isa/K V b/ K (which
justifies our use of the symbol V).

50
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Lemma 6.2 Let K be a congruence on a semilattice P = (P, o).
(@) If K > 1is an integer and a1, ...,ax,b1,.-., by are elements of P such that
(ai,bi) € Kforl <i<k,then (alo---oak,blo---obk) € K.
(b) If P isfinite, then any K-class B € P/K contains \/ B as its greatest element.
(€) If (a,b) € Kanda < ¢ < b, then (b,¢c) € K

Proof. Claim (a) follows from the definition of congruence relations by a simple
induction. For (b) suppose that B = {a1,...,ax} is a congruence class of K. Then
(a1,a;) € K for 1 <14 < k. By (a) and idempotency, this implies (a1,a10---0ag) €
K, thatis, \V B € B. Obviously, a; < ajo---oagforall 1 <i < k. Hence, \V B is
the greatest element in B. (c) Because (a,b) € K implies (a o ¢,bo¢) € K for any
ce€ P,thena < candc <bimply (c,b) € K. O

Congruences on semilattices may be defined by means of closure operators. Simi-
larly, closure operators on finite semilattices can be defined by means of congruences.
In the following we shall describe these constructions.

Let (P, <) be an ordered set. Then a function C : P — P is called a closure
operator (see e.g. [4]), if forall a,b € P,

@ a<Ca),

(b) a <bimplies C(a) < C(b), and

(© C(C(a)) =Cl(a).

An element a € P is called closed if C(a) = a. The set of all closed elements of P is
denoted by Pe.

If (P, <) has a top element T, then T < C(T) < T which impliesthat T € P¢
and it is the top element of Po. Moreover, if P has a bottom element L, then L. < a
for all € P, which implies C(L) < C(a) for all a € P. Thus, P¢ has a bottom
element C(L). We extent C' to subsets of P in the natural way: for S C P, C(S) =
{C(a) | a € S}.

Lemma 6.3 If (P, <) is a complete lattice and C' : P — P is a closure operator, then
the following facts hold.

@ CS)=cnes)) forallsCP.

(b) Po={C(a)]|ae€ P}.

() ApSePcforall S C Pe.

(d) C(a)=Ap{b€ Pc|a<b}

(e) (Pg,<)isacomplete lattice such that for every subset S of P,

/\PCS = ApS;
Ve, S = C(Vp9).

Proof. (a) Suppose S C P. Foralla € S, C(a) < C(VS) sincea < VS.
Hence, \/ C(S) < C(V S) and hence C(V C(S)) < C(C(V S)) = C(V S). On the
other hand, a < C(a) < V{C(a) | a € S} =V C(S) forall a € S, which implies
VS <VC(S)and C(V S) < C(V C(S)).

(b) If a € P isclosed, then C(a) = a, thatis, a € {C(b) | b € P}. Conversely, if
a € {C(b) | b € P}, thena = C(b) for some b € P. Obviously, C(a) = C(C(b)) =
C(b) = a, i.e., ais closed.
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(c) Suppose S C Pg. Then Ap S < C(ApS). Itisclearthat ApS < a forall
a € S, which implies C(Ap S) < C(a) = aforalla € S. Hence, C(ApS) is a
lower bound for S and thus C(Ap S) < Ap S.

(d) Obviously, C(a) < Ap{b € Pc | a < b}. Because C(a) € Pc, this implies
C(a) € {b€ Po | a <b}. Hence, Ap{b € Pc | a < b} < C(a).

(e) We have seen that Pc has the top element T and the bottom element C(.L).
Hence, Ap, 0 = T = Ap0, Ap, Pc = C(L) = ApPc, Vp,0 = C(L) =
C(Vp®),and Vp, Pc = T = C(T) = C(Vp Pc). If S is a nonempty subset of
Pc, then Ap S € P by (c) and hence Ap, S = Ap S. By Lemma 2.1,

VPCS = /\PCSU
= Ap{be Pc|a<bforallac S}

Ap{b € Pc|VpS < b}
= C(VpS).

Note that Lemma 6.3(c) holds for any ordered set (P, <).

If P = (P, o) is a finite semilattice and K is a congruence on P, then by Lemma
6.2(b) the block a/K has the greatest element \/ a/K for all a € P. We define the
following function.

Ck:P— P, ar—)\/a/K.

Then the following proposition holds.

Proposition 6.4 If P = (P, o) is afinite semilattice and K is a congruence on P, then
the mapping Ck is a closure operator. Moreover, ker Cx = K.

Proof. We show that Cx satisfies conditions (a)—(c) in the definition of closure
operators. (a) The facta € a/K impliesa < VVa/K = Ck(a). (b) Assume a <
b. Then (a,Ck(a)) € K and (b,Ck (b)) € K imply (a o b,Ck(a) o Ck(b)) =
(b,Ck(a) o Ck(b)) € K. Hence, Ck(a) o Cx(b) < Ck(b). Since z oy > y for
any z,y € P, this implies that Ck (a) o Ck(b) = Ck(b), i.e., Ck(a) < Ck(b). (c)
Ck(Ck(a)) =V Ck(a)/K =V a/K = Ck(a).

Suppose (a,b) € K. Then (a,Ck(a)) € K and (b,Ck(b)) € K imply
(b,Ck(a)) € K and (a,Ck (b)) € K. Hence, Ck(a) < Ck(b) and Ck (b) < Ck(a),
i.e.,, Ck(a) = Cgk(b). On the other hand, assume Ck(a) = Ck(b). Then the facts
(a,Ck(a)) € K and (Ck(b),b) € K imply (a,b) € K. O

If K is a congruence on a finite semilattice (P, o), then we denote the set P¢,)
simply by Px. By the previous proposition, every congruence on a finite semilattice
defines a closure operator. In what follows we shall see how every closure operator
defines a congruence relation.

Proposition 6.5 If P = (P, o) is a finite semilattice with a zeroand C : P — Pisa
closure operator, then the following facts hold.

(@) (Pg, <) is a lattice.

(b) The mapping C' is a homomorphism from (P, o) onto (P¢, Vp, ).

(c) The ker C'is a congruence on P.
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Proof. Statement (a) follows from Lemmas 6.1 and 6.3(e). (b) By Lemma 6.3,
C(aob) = C(C(a) o C(b)) = C(a) Vp, C(b). Hence, C is a homomorphism.
Moreover, Pc = {C(a) | a € P} which implies that C is onto. That (c) follows from
(b) is a well-known fact of general algebra. O

In the sequel we denote ker C' by K¢.

We have shown that if P = (P, o) is a finite semilattice with a zero, then every
congruence K on P defines a closure operator Cx : P — P, and every closure
operator C' : P — P defines a congruence K¢ on P. Moreover, the following lemma
holds.

Lemma6.6 Let P = (P, o) be a finite semilattice with a zero.
(@) If K is a congruence on P, then K = K¢,
(b) If C : P — P is aclosure operator, then C' = C k).

Proof. (a) If K is a congruence on P, then for all a,b € P, (a,b) € K &
CK((I) = CK(b) < (a, b) € K(C’K)-

(b) If C : P — P is a closure operator, then for all a,b € P, C(a) = C(b) &
(a,b) € Ko & Cik,)(a) = Cix,)(b). O

By Lemma 6.6 we can write the following proposition.

Proposition 6.7 If P = (P, o) is a finite semilattice with a zero, then the mappings
C — K¢ and K — Cg form a pair of mutually inverse bijections between the set of
all closure operators C' : P — P and the set of all congruences on P. O

If P = (P, o) is a finite semilattice with 0 and K is a congruence on P, then the
quotient semilattice has a least element 0/ K, and hence it is a lattice by Lemma 6.1.
Therefore, we can write the following proposition.

Proposition 6.8 Let P = (P, o) be a finite semilattice with a zero and let K be a
congruence on P. If we set

a/KVb/K = (aob)/K, and
a/KANb/K = (Ck(a)ApCk(b))/K,

then the algebra (P/K, Vv, A) is a lattice.

Proof. We have already seen that the well-defined binary operation vV on P/K is
associative, commutative, and idempotent. The operation A is also well-defined on
P/K, and clearly it is commutative and idempotent. For all a, b, c € P,

/K A (/K Ac/K) = o) K A (Cx(b) Ap Cxc(¢))/ K
= (Ck(a) Ap Ck(Ck (b) Apc Ck(c)))/K = (Ck(a) Ap Ck (b) AP Ck(c))/K
= (Ck(a) Apx Ck(b) Ap Ck(c))/K = (Ck(Ck(a) Ap Ck (b)) Ap Ck(c))/ K
— (Cx(a) Ap Cx(b)/K A C/K = (a/K Ab/K) A c/K.

Hence, A is associative. Next we show that the absorption identities (L4) and (L4)?
hold.
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a/KV (a/K ANb/K) = Ck(a) V (Ck(a) Ap Ck(b))/K
= (C’K(a) o (CK(a) Ap CK(b))/K e CK(a)/K = a/K.

Similarly,
a/K A (a/KVB/K)=a/K A (acb)/K
= (CK(G,) Ap CK(a o b)/K = C’K(a)/K = a/K.
Hence, the algebra (P/ K, V, A) is a lattice. O

If P = (P,0) is a finite semilattice with a zero, then for every closure opera-
tor C : P — P, the set (P¢, <) is a lattice by Proposition 6.5(a). In particular, if
K is a congruence on P, then (Px,Vpg, Apx), Where a Vp, b = (a o b)/K and
a Ap, b= a Apb, is a lattice. Next we shall show that the lattices (P/K, Vv, A) and
(Px, V pg, Apg ) are isomorphic.

Proposition 6.9 If P = (P, o) is a finite semilattice with a zero and K is a congruence
on P, then

¢:P/K — Pg,
a/K — CK(a)

defines an isomorphism between the lattices (P/ K, V,A) and (Pk, Vpy, Apg )-

Proof. By Proposition 6.5(b), the closure operator C'ic is a homomorphism from
(P,0) onto (Pk,Vp,). Because by Proposition 6.4, ker Cx, = K, then the func-
tion ¢ : P/K — Pk, given by o(a/K) = Ck(a), is an isomorphism between
(P/K,V) and (Pk,Vp,) by Homomorphism Theorem. Because (P/K,V,A) and
(Pk, Vpg, Apy ) are lattices, the claim follows from Proposition 2.14. O

6.2 Congruencesand dense sets of semilattices

In the previous section we saw how every congruence on a finite semilattice defines
a closure operator, and vice versa. In this section we show that every subset of a
semilattice defines a congruence on that same semilattice.

The following binary relation is defined in [14]. Suppose P = (P, o) is a semilat-
ticeand T' C P. Then we define a binary relation K1 on P by

Ky ={(b,c) € P?| foralla € T, b < aifandonlyif ¢ < a}.
Then the following lemma holds.

Lemma6.10 Let P = (P, o) be a semilattice. Then for all T' C P, the relation K is
a congruence on P.

Proof. It is obvious that K is an equivalence relation. Suppose (b1,c1) € Kr,
(b2,c2) € Kranda € T. If by 0 ba < a, then by, b2 < a, which implies c¢1, ¢z < a,
from which we deduce ¢y o ¢o < a. Similarly, ¢; o ca < a implies by o bs < a. Thus
(b1 obg,cq 0 02) € Krp. Od
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The following definition of dense sets can also be found from [14] in different
form. Let P = (P, o) be a semilattice and assume K is a congruence on P. Then a
subset T of P is called dense with respect to K if K = K.

If P = (P,o) is a finite semilattice and K is a congruence on P, then we can
denote as in the previous section the closure operator corresponding K by Ck, and the
set of closed elements corresponding to C'k is by Px. We have the following result.

Proposition 6.11 If P = (P, o) is a finite semilattice and K is a congruence of P,
then the following facts hold.

(a) K = K(pK).

(b) If T" is dense with respect to K, then T' C Pg.

Proof. (a) If (b,c) € K, then Ck(b) = Ck(c). Leta € Pg. If b < q, then
¢ < COk(c) = Ck(b) < Ck(a) = a. Similarly, ¢ < a implies b < a. Hence,
(b,c) € K(py). Conversely, if (b,c) € K(py), then for all a € Pk, the conditions
b < aand ¢ < a are equivalent. Because Ck(b) € Px and b < Ck(b), then
¢ < Ck(b) which implies Ck(c¢) < Ck(Ck(b)) = Ck(b). Similarly, we can show
that Ck (b) < Ck(c). Hence, Ck(b) = Ck(c), i.e., (b,c) € K.

(b) Suppose T is a dense with respect to K and let a be an arbitrary element of 7T'.
If a € Pk, then a < Ck(a). Because (a,Ck(a)) € Kr and a < a(€ T'), we get
Ck(a) < a, a contradiction! Hence, a € Pg. O

We have shown that if P = (P, o) is a finite semilattice, then every subset of P
defines a congruence on P. Similarly, every congruence K on P defines a family of
dense sets 7 such that K = K forall T' € 7. Moreover, the set Pk is the greatest
dense set. Next we try to find the least dense set.

We know that if P = (P, o) is a finite semilattice with a zero and K is a congruence
on P, then the algebra (P, Vp,,Ap ), Wherea Vp, b= Cg(aob)and a Ap, b=
aApb, is a lattice. If we denote by M ( Pk ) the set of meet-irreducible elements a # 1
of Pk, then the following proposition holds.

Proposition 6.12 Let P = (P, o) be a finite semilattice with a zero and let K be a
congruence on P. Then M(Pg) is the least dense set with respect to K.

Proof. First, we shall show that M(Pg) is dense. The fact M(Px) C Pk,
obviously implies K = K(p,) C Kaqpy)- Suppose (b,c) € Kpqpy) and (b,c) &
K (p,) forsomebd,c € P. Thenthere existsa € Px—M(Px) suchthateither (i) < a
andc £ aor (ii)b £ aand ¢ < a holds. Let us denote S = {z € M(Pxk) | a < z}.
Because P is finite, the lattice (Pg, <) satisfies the ACC. Then by Lemma 2.13 and
Lemma 6.3(e), a = Ap, S = Ap S. Let us consider the case (i). The conditionb < a
implies that b < z forall z € S. Because S C M(Pxk), ¢ < z forall z € S. Hence,
c is a lower bound for S, which implies ¢ < Ap S = a, a contradiction! Similarly,
the case (ii) leads to contradiction. Thus (b,¢) € K py), which implies that the set
M(Pg) is dense.

Secondly, we shall show that M(Pg) is the least dense set. Assume M(Pxk) —
T # ( for some dense set T'. This implies that there exists a € M(Pg) — T. Because
a € M(Pxk) and Py is finite, there exists exactly one b € Px which satisfies a—< b in
Pg. Clearly, forall z € T, b < x implies a < x. Suppose there exists € T such that
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a<zandb £ z. Because T' C Pk, a < z Ap, b < b. The condition a—< b (in Pk)
implies a = = Ap, b. Because a is a meet-irreducible element of Px, a = z ora = b.
Obviously both of these equations lead to a contradiction. Hence, forallz € T, a <
implies b < z. Thus (a,b) € K(p,) = K, i.e., Ck(a) = Ck(b). Because a,b € Pk,
we get a = Ck(a) = Ck(b) = b, a contradiction! Thus, M(Px) — T = ( for all
dense sets T'. |

By Propositions 6.11 and 6.12 we can now give the following characterization of
dense sets.

Proposition 6.13 If P = (P, o) be a finite semilattice with a zero and assume K is a
congruence on P, then T(C P) is dense with respect to K if and only if M(Pg) C
T C Pk. O

Our two following results show how to compute the value Ck (a) for any a € P.

Lemma6.14 If P = (P, o) be a finite semilattice with a zero and assume K is a
congruence on P, then

Cx(a) = Npfb € M(Pk) | a < b}.
Proof. Because b € Pk, a < bifand only if Cx(a) < b, and hence the equation

b,
follows directly from Ck(a) = Ap{b € M(Pk) | Ck(a) < b}. |

Proposition 6.15 Let P = (P, o) be a finite semilattice with a zero and assume K is
a congruence on P. If T is a dense subset of P, then

Ck(a)=A\p{beT|a<b}.
Proof. By Lemma 6.3(d) and Proposition 6.4,
Ck(a) = Ap{b € Pk | a < b}
and by Lemma 6.14,
Cx(a) = Ap{b € M(Pk) | a < b}.

Proposition 6.13 implies that if 7" is a dense subset of P, M(Px) C T C Pg holds.
Hence for all ¢ € P,

{be M(Pk)|a<b}C{beT|a<b}C{be Px|a<b}
which implies by Lemma 2.3,

Ck(a)=Ap{b€ Pk |a<b} <Ap{b€T|a<b} <Ap{be M(Pk)|a<
b} = Ck(a),

thatis, Cx(a) = Ap{b€ T | a < b}. O
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6.3 Closureoperatorsand dense sets of dependence spaces

We recall Novotny’s and Pawlak’s definition of dependence spaces (see [12], for exam-
ple). The considerations of this section are mainly special cases of the results presented
in Section 6.1. If A isanonempty set, then the algebra (p(A), U) is a semilattice which
has () as the zero element. Since B C C'ifand only if BUC = C forall B,C € p(A),
the corresponding join-semilattice is (p(A), C). If A is a finite nonempty set and K a
congruence on the semilattice (p(A4), U), then the ordered pair D = (A, K) is said to
be a dependence space.

Let D = (A, K) be a dependence space. The operation of the corresponding
quotient semilattice (p(A)/K, V) is defined by B/K vV C/K = (BUC)/K. Since
forall B,C € p(A), B/K < C/K ifandonly if B/K v C/K = C/K, the partial
order is given by the condition

(6.2) B/K <C/Kifandonlyif( BUC)/K =C/K.
For a dependence space D = (A, K) amapping Cp : p(A) — p(A) is defined by
Cp(B) =|JB/K

for all B C A. Recalling the finiteness of the semilattice (p(A),U), it is obvious by
Lemma 6.2(b) that for every B(C A), the block B/K contains Cp(B) which is its
greatest element. By Lemma 6.4 it is clear that Cp is a closure operator and

(6.3) (B,C) € K ifand only if Cp(B) = Cp(C)

for all B,C € p(A). From conditions (6.2) and (6.3) and Lemma 2.6(b) it follows,
that we can determine Cp(B) for every B C A by the rule

Cp(B) ={a € A|{a}/K < B/K}.

We have seen how every dependence space D = (A, K) defines a closure operator Cp.
The following Lemma is obvious by Lemma 6.5(c).

Lemma6.16 Let C be a closure operator on a finite set A. If we define a binary
relation K¢ on p(A) by setting

(B,C) € K¢ifandonly if C(B) = C(C)
forall B,C € p(A), then D¢ = (A, K¢) is a dependence space. O

Thus, every closure operator C : p(A) — p(A) defines a dependence space D¢ =
(A, K¢). By Lemma 6.6 we can write the following lemma.

Lemma 6.17 Let A be a finite set.
(@) If D = (A, K) is a dependence space, then K = K(c,,).
(b) If C is a closure operator on A, then C = C(p,.). ad

The following proposition is clear by Proposition 6.7.
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Proposition 6.18 For any finite set A, the mappings C — D¢ and D — Cp form a pair
of mutually inverse bijections between the sets of all closure operators C : p(A) —
p(A) and the set of all dependence spaces D = (4, K). O

It is obvious that every dependence space D = (A, K) defines a closure system
L c,,) (denoted shortly by £p) on A. Clearly,

Lp={BCA|B=JB/K}.

Note that Lp consists of the greatest elements with respect to inclusion of the
K -classes. The following proposition is obvious by Propositions 6.8 and 6.9.

Proposition 6.19 Let D = (A, K) be a dependence space.
(@) If we set

B/KVC/K =(BUC)/K and
B/K AC/K = (Cp(B)NCp(C))/K

forall B,C € p(A), then the algebra (p(A)/K, V, A) is a lattice.

(b) The mapping ¢ : p(A)/K — Lp, C/K — Cp(C), defines an isomorphism
between the lattices (p(A)/K,V,A)and (Lp,Vipy, Ap)- m]

By Theorem 2.14 it is clear that for all B, C(C A),

(6.4) Cp(B) C Cp(C) ifand only if B/K < C/K.

Example6.20 Let A = {1,2,3,4} and K be the congruence on (p(A),U) whose
congruence classes are {0}, {{1}}, {{2}}, {{3}}, {{4} {1,2}, {1,4}, {2,4},
{1,2,4}}, {{1,3}}, {{2,3}} and {{3,4}, {1,2,3}, {1, 3,4}, {2,3,4}, {1,2,3,4}}.
The closure lattice (£Lp, C) corresponding dependence space D = (A, K) is presented

in Figure 5. Moreover, M(Lp) = {{1, 2,4}, {1,3}, {2, 3} }.
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6.4 Independent setsand reducts

We shall review some notions and basic results concerning dependence spaces. Lem-
mas 6.21 and 6.23 can be found also in [10, 12, 14]. Earlier versions of other results
in this section are presented in [8] where they are formulated by the means of closure
systems. Here we present similar considerations by applying dense sets. Our main
result in this section gives a new characterization to the reducts of a given subset of a
dependence space.

Let D = (A, K) be a dependence space. A subset B(C A) is called independent,
if B is minimal with respect to inclusion in its K -class; otherwise it is called depen-
dent. We denote the set of all independent subsets of D by IN Dp. The next lemma
characterizes the independent subsets of a dependence space. Moreover, it shows that
every subset of an independent set is independent.

Lemma6.21 If D = (A, K) is a dependence space and B C A, then the following
conditions hold.

(@ BeINDpifandonlyif (B,B —{a}) ¢ K foralla € B.

(b)IfBe INDpand C C B,thenC € IND»p.

Proof. If B € INDp, then obviously (B,B — {a}) ¢ K forall a € B. Con-
versely, suppose (B, B — {a}) ¢ K holds forall a € B. If B ¢ IN Dp, then there
exists C C B which satisfies (B,C) € K. Ifa € B—C,thenC C B —{a} C B,
which implies by Lemma 6.2(c) that (B, B — {a}) € K, a contradiction!

(b) Suppose B(C A) is independentand C' C B. If C' ¢ IN Dp, then there exists
a € Csuchthat (C,C—{a}) € K. Thisimplies (B, B—{a}) = (CU(B-C),(C—
{a}) U (B - C)) € K, acontradiction! O

Remark 6.22 Let us note that this notion of independence is actually equivalent to a
general notion of independence with respect to a closure operator. Let C be a closure
operator on A. The set B C A is said to be C-independent if a ¢ C(B —{a}) for every
a € B (cf. [6], for example). If D = (A, K) is a dependence space and B C A, then
by (6.3) and Lemma 2.6(b), (B,B — {a}) ¢ K < Cp(B) # Cp(B —{a}) © a ¢
Cp(B — {a}) forall a € B. Hence, forall B C A, B € INDp ifand only if B is
Cp-independent.

As we have already shown, the notion of dependence spaces could equivalently be
defined as a pair D = (A, C), where C is a closure operator on a finite set A. By our
remark, the set I N Dp can be defined in this structure by the means of a general notion
of independence known in the literature.

Forany B(C A),asetC(C A)isareductof Bif C C B, (B,C) € K,and C €
IN Dp. The set of all reducts of B will be denoted by RE Dp(B). In the other words,
a subset C(C B) is a reduct of B, if C is minimal in the block B/K with respect to
the inclusion relation. Because A is finite, it is obvious that the ordered set (p(A), C)
is finite. Hence, it satisfies the DCC. Because {C C B | C € B/K} is a nonempty
subset of p(A), by the dual of Lemma 2.4 this implies that {C C B | C € B/K} has
a minimal element i.e., a reduct of B.

An element a € B is said to be indispensable for B if (B, B — {a}) ¢ K. The set
of all indispensable elements forms the core of B, which is denoted by COREp(B).
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Lemma6.23 If D = (A, K) is a dependence space and B C A, then for all B C A,
COREp(B) = (| REDp(B).

Proof. Assume a € COREp(B) and a ¢ C for some C € REDp(B). Hence,
C C B-{a} C Band (C,B) € K, which implies by Theorem 6.2(c) that (B, B —
{a}) € K, a contradiction!

Conversely, suppose a € Y REDp(B) and (B, B—{a}) € K. Because (p(A), C
) satisfies the DCC, then by the dual of Lemma 2.4, a nonempty subset {C C B—{a} |
(B,C) € K} of p(A) has a minimal element C. Trivially, C € REDp(B). Because
a ¢ C thisimplies a ¢  REDp(B), a contradiction! O

Finding all reducts of a given set is known as the reduction problem. In what
follows we shall study this basic problem closely. By definition, a dependence space
is a pair D = (A, K) in which A is a finite nonempty set and K is a congruence on
the semilattice (p(A), U). Moreover, p(A) has a zero element (). We say that a subset
T C p(A) is dense in a dependence space D if T is a dense with respect to K subset
of p(A) in the sense of Section 6.2, that is,

K =Kr={(B,C) e p(A)?| forall L e T,BC Lifandonly if C C L}.

It is clear that 7 is dense if and only if M(Lp) C T C Lp.
By Proposition 6.15 we can write the following result.

Proposition 6.24 Let D = (A, K) be a dependence space. If a subset 7(C p(A)) is
dense, then
Cp(B)=({LeT|BCL}

for all B C A. O

Lemma6.25 Let D = (A, K) be a dependence space. If a subset 7(C p(A)) is
dense, then the following conditions are equivalent for all B, C C A.

(a) Cp(B) < Cp(C).

(b)Forall L € T,C C L implies B C L.

Proof. Suppose Cp(B) C Cp(C). Then by Lemma 2.6(c), C C L < Cp(C) C
L=Cp(B)C L& BC Lforall L € T, because T C Lp.

On the other hand, assume C C L implies B C Lforall L € 7. Then {L € T |
C C L} C{L e T | B C L}, which implies Cp(B) C Cp(C) by Lemmas 2.3 and
Proposition 6.24. O

Next we present two simple corollaries of the previous lemma. They are based on
the following obvious condition which hold for all B,C, L C A,
(C C LimpliesBC L)< (B— L # 0impliesC — L # 0),
and the fact that Cp is a closure operator.

Corollary 6.26 Let D = (A, K) be a dependence space. If a subset 7(C p(.A)) is
dense, then the following conditions are equivalent for all B, C C A.

(a) Cp(B) <€ Cp(O).

(b)Forall L e T, B — L # 0 impliesC — L # 0.
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Corollary 6.27 Let D = (A, K) be a dependence space. If a subset 7(C p(.A)) is
dense, then the following conditions are equivalent for all C' C B(C A).

(@) Cp(B) = Cp(O).

(b)Forall L e T, B — L # 0 impliesC — L # 0.

The following proposition characterizes the set IN Dp and for all B C A the set
COREp(B) by means of dense sets.

Proposition 6.28 Let D = (A, K) be a dependence space. If a subset 7(C p(A)) is
dense, then the following equations hold for all B C A.

(@ INDp ={B € p(A) |foralla € B, B— L = {a} forsome L € T}.

(b) COREp(B)={a€ B|B—L={a}forsomeL € T}.

Proof. Assume B C A and a € B. Because B — {a} C B, we get by Corollary
6.27 that (B, B — {a}) € K < Cp(B) # Cp(B — {a}) < there exists L € T such
that B— L # 0and (B—{a}) — L =0« B— L = {a} forsome L € T. This
equivalence implies both (a) and (b). O

Out next proposition characterizes the reducts a of given set by applying dense
sets.

Proposition 6.29 Suppose D = (A4, K) is a dependence space and let 7 C p(A) bea
dense subset. If B C A, then C € REDp(B) if and only if C is minimal with respect
to the inclusion relation among the subsets of A such that C N (B — L) # 0 for all
L € T which satisy B — L # ().

Proof. Suppose that C € REDp(B). Then C C B and Cp(B) = Cp(C). By
Corollary 6.27, CN(B—L) = (BNC)—L = C — L # @ whenever B— L # 0. If C
is not minimal, there isa Cy C C such that C; N (B — L) # () whenever (B — L) # ()
forall Le T.ButCy c C C BimpliesCin(B—L)=(CiyNB)—L=C,— L.
So, Cp(C1) = Cp(B) = Cp(C), that is, C'is not independent, a contradiction!

Conversely, let C be a minimal subset of A which satisfies C N (B — L) # 0
forall L € Tsuchthat B— L # 0. If C € B, then C; = (BUC) C C and
Cin(B-L)=(BNC)N(B—-L)=CnN (B - L) # 0 whenever B — L # 0,
a contradiction! So, C C B. SinceC — L = CN (B — L), we get (B,C) € K.
Assume C ¢ IN Dp. Then there isa C; C C such that Cp(C1) C Cp(C) = Cp(B).
Because C; C B, this implies C1 N (B — L) = C1 — L # O whenever B— L # (), a
contradiction! O

Note that Proposition 6.29 characterizes the reducts of B as subsets of A (cf.
Proposition 5.7). As in Section 5 we shall need this particular characterization later
when we are writing an algorithm which computes REDgs(B) for an arbitrary set
B(C A) of attributes.

Example 6.30 Let us consider the dependence space D of Example 6.20. Now

M(["D) = {{17 2, 4}7 {L 3}7 {27 3}}
is the least dense set,and A — L # @ forall L € M(Lp)}.
The reducts of A are the minimal subsets C' of A, which satisfy C N (A — L) =
CNL =C—-L # 0forevery L € M(Lp) such that A — L # (. Clearly,
REDp(A) ={{3,4},{1,2,3}} and COREp(A) = {3}.



CHAPTER 6. DEPENDENCE SPACES 62

6.5 Dependency relationsin dependence spaces

Here we study dependency relations of dependence space. Note that Propositions 6.32
and 6.34 can be found in [14]. Assume that D = (A, K) is a dependence space. A
subset B(C A) is said to be dependent on C(C A) in D, which will be denoted by
C — B (D), if Cp(B) C Cp(C). The relation — (D) is called the dependency
relation of D. Usually we write simply C' — B instead of C — B (D) if there is no
danger of confusion.

Because Cp is a closure operator, then B C C implies C — B. Let T be a
dense subset of p(A). Then by Corollary 6.26 the following condition holds for all
B,C C A,

(65 C — Bifandonlyif B— L # (@ impliesC —L#@forallL eT.

In Section 5.3 we presented a solution to the following problem. Let & =
(U, A,{Va}aeca) be an information system in which the sets U, V are finite, and
B,C(C A) satisfy C — B in S. Then find all minimal subsets D of C which satisfy
D — B (S). Here we give a solution to the corresponding problem in the case of
dependence spaces. In [14] is also presented a solution, but our approach essentially
differs from it.

Proposition 6.31 Let D = (A, K) be a dependence space and assume 7 is a dense
subset of D. If C — B holds, then the following conditions are equivalent.

(a) D is a minimal subset of C such that D — B.

(b) D is aminimal subset of A such thatforall L € 7, DN (C — L) # () whenever
B—-L#0.

Proof. Suppose C — B holds and assume D is a minimal subset of C' such that
D — B. Because D C C,we get D = C' N D. The assumption D — B implies
DN(C-L)=(CND)—L=D-L # Qforall L € T suchthat B—L # (. Assume
D is not minimal, that is, there exists D1 C D which satisfies D; N (C — L) # ( for
all L € T suchthat B— L # (). But D; C Cimplies Dy — L # Qforall L € T
which satisfy B — L # (), a contradiction!

Conversely, assume C — B and that D is a minimal subset of A which satisfies
DN (C — L) # 0 whenever B — L # (). By this assumption it is clear that D C C.
Hence, D— L= (CND)—L=DN(C—L)#@forall L € T suchthat B—L # 0,
that is, D — B. Suppose D is not minimal, that is, there exists D1 C D such that
Dy — B. The condition D1 € D C Cimplies D1 — L = D1N(C— L) # (0 whenever
B — L # 0, a contradiction! O

Reducts of a subset of a dependence space can be described by means of depen-
dency relation as follows.

Proposition 6.32 If D = (A, K) is a dependence space and B,C C A, thenC isa
reduct of B if and only if C is a minimal subset of B with respect to inclusion relation
which satisfies C — B.

Proof. If C is a reduct of B, then trivially C — B. Suppose there exists a set
C1 C C which satisfies C; — B, i.e., Cp(B) C Cp(Ci). Because Cp is a closure
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operation, then Cp(C1) C Cp(C) = Cp(B). Hence, Cp(B) = Cp(C1) which implies
(B,C1) € K, acontradiction!

Conversely, assume C is a minimal subset of B which satisfies C — B. Because
Cp(B) C Cp(C), C C B, and Cp is a closure operator, Cp(B) = Cp(C). Assume C
is not independent, that is, there exists a subset C; ¢ C(C B) such that (C1,C) € K.
This implies Cp(B) = Cp(Ch), i.e., C1 — B, a contradiction! O

If we denote by « the inverse of the relation —, then the following result holds.
Lemma6.33 If D = (4, K) is a dependence space, then K = — N «.

Proof. Forall B,C C A, (B,C) € K & Cp(B) = Cp(C) & Cp(B) C
Cp(C)and Cp(C) CCp(B) < B— Cand B + C. O

The following proposition characterizes the dependency relations.

Proposition 6.34 Let A be a finite nonempty set and let » be a binary relation on
p(A). Then there exists a dependence space D = (A, K) such that  is its dependency
relation if and only if r satisfies the following conditions for all B,C, D C A,

(@) B C Cimplies (C,B) € r

(b) (B,C) e rand (C,D) € rimply (B,D) € r.

(c) (B,C) erand(B,D) e rimply (B,CUD,)e€r.

Proof. Suppose r is a binary relation on p(A) which satisfies the conditions (a)—(c).
Letusset K =rNr~1. By (a), (B,B) € rand (B, B) € ! forall B C A. Hence,
(B,B) € K, i.e., K isreflexive. If (B,C) € K, then (B,C) € r and (B,C) € r~!
hold, which implies (C,B) € r—!tand (C,B) € r, i.e, (C,B) € K. Thus, K is
symmetric. If (B,C) € K and (C,D) € K, then (B,C) € rand (C,D) € r
which implies (B, D) € r by (b). Similarly, (B,C) € »— and (C, D) € r—! imply
(C,B) € rand (D,C) € r. By (b), (D,B) € r, ie., (B,D) € r~!. Hence,
(B,D) € K, thatis, K is an equivalence.

Suppose (B1,C1) € K and (By,C3) € K. The fact By, By C By U By implies
(B1UBg, B1) € rand (B1UBg, Bg) € r by (a). Then by (b) we get (B1UB2,C1) € 7
and (B1 U By,C3) € r. This implies by (c), (B1 U B,C1 U Cs) € r. Similarly,
(B1,C1) € K and (Bg,C2) € K imply (C1,B;1) € r and (Ca,B2) € r. From
C1,Cy C Cy U Cy we get (01 U 02,01) € r and (Cl U 02,02) € r. Hence,
(Cl U CQ,BI) € r and (Cl U CQ,BQ) € r, which implies (Cl UCy,B1 U Bg) er,
that is, (B1 U Ba,C1 U C3) € r~1. Now (B; U B2, C1 U C3) € K holds, i.e., K isa
congruence on (p(A), V).

Next we show that for all B,C C A, (B,C) € rifand only if B — C (D),
where D = (A,K)and K = rnr~L If B — C, then Cp(C) C Cp(B). By (),
this implies (Cp(B),Cp(C)) € r. Because (B,Cp(B)) € K C rand (Cp(C),C) €
K C r, we get (B,C) € r by (b). On the other hand, suppose (B,C) € r. Since
(Cp(B),B) € K C rand (C,Cp(C)) € K C r, then (Cp(B),Cp(C)) € r. This
implies by (c) that (Cp(B),Cp(B)UCp(C)) € r. Similarly, Cp(B) C Cp(B)UCp(C)
implies (CD(B) U CD(C),CD(B)) € 7, that is, (CD(B),CD(B) U CD(C)) e r L
Thus, (Cp(B),Cp(B) UCp(C)) € K. Because Cp(B) is the greatest element in the
congruence class Cp(B)/ K, Cp(B) C Cp(B) U Cp(C) C Cp(B). Hence, Cp(C) C
Cp(D), thatis, B — C.
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Conversely, we show that the relation — satisfies conditions (a)-(c). By the fact
that Cp is a closure operator, the condition B C C implies Cp(B) C Cp(C), i.e.,
C - B. If B— Cand C — D, then Cp(D) C Cp(C) C Cp(B), which implies
B - D. If B— Cand B — D, then Cp(C) C Cp(B) and Cp(D) C Cp(B),
which implies Cp(C U D) = Cp(Cp(C) U Cp(D)) C Cp(Cp(B)) = Cp(B). Hence,
B —-CUD. a

6.6 Dependence spaces and infor mation systems

In this section we shall see how every information system defines a dependence space,
and that for each dependence space there exists an information system which corre-
sponds to this dependence space. We also give detailed methods for these construc-
tions. Let us recall from Section 4.2 the definition of the binary relation Ks for an
information system & = (U, A, {Va }aca):

Ks ={(B,C) € p(A)? | Ind(B) = Ind(C)}.

By Proposition 4.3 it is obvious that if S is an information system, then the pair
Ds = (A, Kg) is a dependence space.

Lemma 6.35 If S is an information system, then the following assertions hold.
(@) C(ps) = Cs.
(b) Lipg) = Ls.
(€) M(L(pg)) = M(Ls).

Proof. (a) Assume B,C C A. By Proposition 4.6(c), Cs(B) = Cs(C) if and only
if (B,C) € Ks, which is equivalent to Cipz)(B) = Cpg)(C) by (6.3). Statements
(b) and (c) follow easily from (a) by the fact that there exists a bijective relationship
between closure operators and closure systems. i

We have seen that in a dependence space D the function Cp can be computed
from any dense subset 7(C p(A)). In the following we see how every information
system S = (U, A,{Va}aca) determines a dense subset of o(A) in the dependence
space Ds = (A, Ks). First we shall present this useful lemma. Here —C denotes the
covering relation of (Ls, C).

Lemma6.36 Let S = (U, A,{Va}aca) be an information system in which U =
{z1,...,z,} and A = {a1,...,am}. If (¢ij)nxn is the discernibility matrix of S
and 1 < ¢ < j < n, then the following holds.

(@) (z4,z5) € Ind(A — ci5).,

(b) A — ¢4 is the greatest subset B of A which satisfies (z;, z;) € Ind(B).

(c) If C € M(Ls), then there exists ¢ € A — C such that Ind(C U {a}) C
Ind(CU{c}) C Ind(C) forallae A - C.

Proof. (a) Because a(z;) = a(z;) forall a € A — ¢;j, (x;,2;) € kera for all
a € A — cij. Hence, (@, 2;) € Nag(a—c;;) kera = Ind(A — cij).

(b) Let B be a subset of A such that (z;,z;) € Ind(B). Then forall a € B,
(zi,zj) € Ind(B) C Ind({a}). Thisimplies a(z;) = a(z;), i.e., a € A — ¢;;.
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(c) Suppose C € M(Ls). Because C € Lg, then for all a € A — C holds
Ind(C U{a}) C Ind(C). Because Ls is finite, then there exists exactly one D € Lg
such that C—C D in Ls. Suppose ¢ € D — C. Then Ind(D) = Ind(C U {c}) C
Ind(C) holds.

Assume a € A—C and let us denote C, = Cs(CU{a}). Thisimplies Ind(C,) =
Ind(CU{a}) C Ind(C). If D € C,,thenC C DNC, C D. Because C—C D in Lg,
then either (i) C = D or (ii) C = C, holds. But (i) implies Ind(C) = Ind(CU{c}) a
contradiction! Similarly, (ii) implies Ind(C) = Ind(CU{a}), a contradiction! Hence,
D C C, which implies Ind(C U{a}) = Ind(C,) C Ind(D) = Ind(C U{c}) forall
acA-C. O

Proposition 6.37 Let S = (U, A, {Va}aca) be an information system in which U =
{z1,...,2zn}, A={a1,...,an}, and let (¢;;)nxn be the discernibility matrix of S. If
(Ls, Q) is the closure lattice of S, then the following holds.

(@Foralll1 <i<j<n,(A-cy)€Ls.

0)IfC e M(Ls), thenC = A —¢;jforsomel <i < j<mn.

Proof. Now Cs(A — ¢;5) = {a € A | Ind(A — ¢;ij) € Ind({a})}. Itis clear that
(A —cij) CCs(A —¢y) forall 1 <i < j <n.We have to show that Cs(A — ¢;5) C
(A — ¢j;) holds. Suppose a € Cs(A — ¢;;). Then Ind(A — ¢;5) C Ind({a}). By
Lemma 6.36(a), (zi,z;) € Ind(A — ¢;;), which implies (z;,z;) € Ind({a}), i.e.,
a(z;) = a(z;). Thus, a € A — ¢;;.

(b) Assume C € M(Ls), Then by Lemma 6.36(c), there exists ¢ € A — C such
that Ind(C U {a}) C Ind(C U{c}) C Ind(C) foralla € A — C. Because Ind(C U
{c}) C Ind(C), there exists (z;,z;), 1 < i < j < n such that (z;,z;) € Ind(C)
and (z;, ;) € Ind(C U {c}). Because a(z;) = a(z;) foralla € C, C C A — ¢;;.
Next we show that (A —¢;;) € C. Ifa € A—¢;;, then (z;, z;) € Ind({a}). Suppose
a & C. We know that (z;,z;) € Ind(C). Hence, (z;,z;) € Ind(C) N Ind({a}) =
Ind(C U {a}). Because foralla € A — C holds Ind(C U {a}) C Ind(C U {c}), we
get (z;,z;) € Ind(C U {c}), a contradiction! Hence, (A — ¢;;) C C, which implies
C = (A — Cij)- O

Proposition 6.37 has the following corollary.

Corollary 6.38 Suppose S = (U, A, {V,}aca) is an information system in which U =
{z1,...,zn}, A={a1,...,am}, and (¢;j)nxn is the discernibility matrix of S. Then
the set {A —¢;; | 1 <i < j < n} isdense in the dependence space Ds = (A4, Ks).

Example 6.39 The discernibility matrix of the information system S in Example 4.1
is presented in Example 5.5. It can be easily computed that

{A — Cij | 1<i<y< ’I’L} = {{173}’ {3}7 {1}’ {2’3}7 {17 2’4}7 {2}}

Moreover,
M(ﬁs)g{A—Cz'j | 1SZ<]§N}§£S

We have shown how a dense subset of the dependence space Ds = (4, Ks) can
be determined from the discernibility matrix of a given finite information system S.
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Next we shall show that for every dependence space D there is an information system
Sp such that D = Dg,,. Our construction is modified from the one presented in [14]
which is not so precise.

Let D = (A, K) be a dependence space such that M(Lp) = {L1,..., Ly} and
letus put U = {x1,...,zre1}. We define a function h : U? — p(A) as follows:

1. h(zi,z;)) =Aforl1 <i<k+1.

(
2. h(wl,wz)— i1 for2<:<k+1.
h(xz,:v]) = h(z1,2;) Nh(zy,z;) for2 <i<j<k+1
h(

zj,x;) = h(zs,z;) for2 <i<j<k+1
Further, for all a € A, we define a binary relation r, on U by
(zi,zj) € rq ifand only if a € h(z;, z;),
forall 1 < 4,7 < k + 1. Then the following lemma holds.

Lemma6.40 Let D = (A,K) be a dependence space such that M(Lp) =
{L1,..., Ly} and letus put U = {z1,...,zr+1}. Thenforall a € A, the relation r,
is an equivalence on U.

Proof. Because forall1 < i < k+1landa € A, a € h(x;,z;) which implies
(xi,x;) € rq. Hence, rq is reflexive. Suppose (z;,z;) € rq. Thena € h(z;, z;) =
h(zj,x;). Thus, (zj,x;) € rq, 1.., Tq IS Symmetric. Suppose (z;,z;) € 7o and
(xj,%1) € rq. Without any loss of generality we may assume ¢ < j < [. Because
a € h(z;,z;) and a € h(z;, z;) imply a € h(z1,z;) N h(z1,z;) and a € h(z1,z;) N
h(z1,z), we have a € h(z1,z;) N h(z1,x;). Thisimplies a € h(z;, z;), that is, 74 is
transitive. |

Example 6.41 Let us consider the dependence space D of Example 6.20 in which

M(Lp) = {{1,2,4},{1,3},{2,3}}.

If we set U = {x1,x2,z3, x4}, then we may define a function  : U2 — M(Lp),
which is presented in Table 3.

‘ I T2 I3 T4
1 A {1,2,4y {1,3} {2,3}
zg | {1,2,4} A {1} {2}
z3 | {1,3} {1} A {3}
z4 | {2,3} {2} {3} A
Table 3

The equivalence classes of equivalences r,, Where a € A, are:
o U/r1={{1,2,3},{4}} =: {b1, b3},
o U/ry ={{1,2,4},{3}} =: {3, 63},
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o U/'r'3 = {{17374}’ {2}} = {b:f’ b%},
b U/T4 = {{1’ 2}7 {3}7 {4}} =: {b%’ b%7 b%}

As before, let us denote by v, the canonical map U — Ul/e, = — z /e, of an equiva-
lence e.

Proposition 6.42 Let D = (A, K) be a dependence space in which M(Lp) =
{L1,..., Ly} and letus put U = {x1,...,zk41}. If we seta* = v,,, Vor = U/r, for
alla € A,and B* = {a* | a € B} forall B C A, then Sp = (U, A*, {Va}eca+) is
an information system such that

(B,C) € K ifand only if (B*,C*) € K(s,,).

Proof. Suppose (B,C) € K holds. Then Cp(B) = Cp(C), and for all L €
M(Cp) the conditions B C L and C C L are equivalent. It is obvious that ker a* =
ker v,, = rq. Hence, forall B C A, Ind(B*) = (\,«cp+ kera* = (\,ep Ta- SUPPOSE
(@i, z;) € Ind(B*). Then (z;,z;) € NgenTa thatis, (z;,z;) € rq forall a € B.
Hence, B C h(z;,z;) = h(z1,z;) N h(z1,z;). Because h(zi,z;) € M(Cp) and
h(wl,xj) € M(C’D), this implies C C h(:vi,xj) = h(l‘l,l‘i) N h(ml,:cj). Then
(i, 25) € NaecTa = Ind(C*). Similarly, we can show that Ind(C*) C Ind(B*).
Hence, Ind(B*) = Ind(C*), which implies (B*, C*) € K s,,).

Conversely, if (B*,C*) € K(s,), then Ind(B*) = Ind(C*). Hence, for all
(z1,2), 2 < i < k+1, (z1,2;) € Ind(B*) = NaepTa if and only if (z1,z;) €
Ind(C*) = Ngec Ta» that is, B C h(x1, hs) if and only if C C h(x1, h;) for all
2 < i< k+ 1. Because M(Lp) = {h(z1,2;) |2 <i< k+1},weget B C Lif
and only if C C L forall L € M(Cp), which implies (B,C) € K. 0

Example 6.43 The information system Sp corresponding to the dependence space D
of Example 6.20 can be represented by Table 4. The values b] refer to Example 6.41.

| |2 |3 |4

o [0 55 |5
o | B | B2 | 83 | B4
s | B | B2 | 9 | b
oo | B | B2 | 3 | B

Table 4
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A representation for dependence
spaces

7.1 Differencefunctionsin dependence spaces

In this section we study difference functions which help us to write an algorithm for
the reduction problem that is in many cases more efficient than those presented in
[12, 13]. The notion of difference functions is introduced in [8]. However, here we
give an equivalent, but a clearer definition.

Suppose that D = (A, K) is a dependence space in which A = {a1,...,am}. For
any B C A, let §(B) denote the disjunction of all variables y;, where a; € B. We

define the difference function fZ (y1, .. .,ym) of B as the conjunction
N\ §B-1L).
LEM(Lp)
B—L#D

It is clear that the function fZ is isotone. Since A® =1, f2 = T < B C L for all
Le M(Lp) < (B,0) € K.

By the definition of f2 we can now write the following conditions for every
B,C(C A).

(71)  fEx(C)=1<Cn(B-L)#0forall L € M(Lp) suchthat B — L # 0.
(7.2)  fP(x(C)) =0« C C (B — L) forsome L € M(Lp) such that B — L # 0.

Our next proposition follows easily from Proposition 6.29 and (7.1) and (7.2).
Proposition 7.1 If D = (A, K) is a dependence space and B C A, then

(@ minT(fE) = {x(C) | C € REDp(B)}, and

(b) max F(£5) = max{x((B — L)) | L € M(Lp), B — L # 0}. 0

Also the following corollary is obvious.

Corollary 7.2 If D = (A, K) is a dependence space and B C A, then {a;,,...,a;,}
is a reduct of B if and only if y;, A --- A y;, is a prime implicant of f7.

Example 7.3 In Example 6.20,

68
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{A-L|A-L#0, Le M(Lp)} = {{3},{2,4},{1,4}}.
Hence,
fRP=3A2VHAAVA=3A(A4V(IA2)=(BA4)V(1A2A3),

where 4 stands for y;. The function £ has obviously the prime implicants (3 A 4) and
(1 A2 A 3), which implies REDp(A) = {{3,4},{1,2,3}}.

7.2 Dependency functionsin dependence spaces

Here we introduce the notion of dependency functions in the context of dependence
space. They enable us to give a method for finding for a dependency C — B the set
of all minimal subsets D of C' which satisfy D — B.

Suppose that D = (A, K) is a dependence space in which A = {a1,...,an}.
If the dependency C — B holds in D, then we define the difference function
2,5y, - - -, ym) of the dependency C' — B as the conjunction

N\ §(C-1L).
LEM(Lp)

B—L#0

Obviously, the function £ P, 5 is isotone, and f2 = T if and only if (B,0) € K.
We can now write the following conditions for every B, C(C A).

(73)  fP.5(x(D))=1<DN(C—L)+#0Bforall L € M(Lp) suchthat B — L # {.
(74)  fP.5(x(D))=0<« D C (C— L) forsome L € M(Lp) such that B — L # 0.

The following proposition follows easily from (7.3), (7.4), and Proposition 6.31.

Proposition 7.4 If D = (A, K) is a dependence space and B C A, then
(@ minT(f P, 5) = {x(D) | D is a minimal subset of C such that D — B}, and
(b) max F(f#, p) = max{x((C — L)) | L € M(Lp), B — L # 0}. O

Now we can write the following corollary.

Corollary 7.5 If D = (A, K) is a dependence space and the dependency C — B
holds in D, then D = {a;,, ..., a;,} is a minimal subset of C such that D — B holds
if and only if y;; A --- Ay, is aprime implicant of fCD_>B.

Example 7.6 Let us consider the dependence space D of Example 6.20. If we set
B = {4}, then A — B. Obviously

{A —-L | B-L 7é (07 Le M(‘C'D)} = {{274}7 {174}}
The dependency function of the dependency A — B is
fPp=(0V4A2V4E)=4V(1A2),

where 4 stands for y;. The function f 2, 5 has obviously the prime implicants 4 and
(1A2), which implies that {4} and {1, 2} are the minimal subsets D of A which satisfy
A — B.
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7.3 A datatypeand basic algorithmsfor dependence spaces

In this section we present a simple implementation of dependence spaces as a data type,
which is sufficient for us to solve problems concerning cores, dependence relations,
independent sets and reducts.

By Proposition 6.24 we can compute the closure Cp(B) from any dense set 7(C
p(A)) of a dependence space D. As we have seen, M(Lp) is the least dense set.
Hence, the simplest way to represent a dependence space D = (A, K), where A =
{ai1,...,am}, isto give a set of vectors Mp which corresponds to the sets in M(Lp),
i.e, v € Mp if and only if v = x(L) for some L € M(Lp). The space needed to
represent D in this manner is O(m|M (Lp))).

Example 7.7 The dependence space D in Example 3.9 can be represented as a set of
vectors {(1,1,0,1), (1,0,1,0), (0,1,1,0)}.

The following algorithm which finds the vector corresponding to the set Cp(B)
for any B(C A) is based on Proposition 6.24. The complexity of this algorithm is
O(m|M(Lp))).

Algorithm 7.8 CLOSURE
Input: M = {x(L) | L € M(Lp)} and a vector b = x(B).
Output: ¢ = x(Cp(B)).

1. Start with ¢ := 1,,.
2. Forallve M,ifb<wv,thenc:=cAw.

3. Output c.

By (6.3), (B,C) € K if and only if Cp(B) = Cp(C). Hence, the test whether
(B,C) € K holds, takes O(m|M(Lp)|) steps, for we may form the closures
Cp(B),Cp(C) and then check whether they are equal or not. Similarly, the complexity
of the test whether the dependency C' — B (D) holds is O(m|M(Lp)]).

The following algorithm computes the set COREp(B) for any B C A. Observe
that we could compute the core of B also by the condition a € COREp(B) if and
only if Cp(B) # Cp(B — {a}), and by applying Algorithm CLOSURE. But this
method takes O(m?|M(Lp)]|) time, while the complexity of the following algorithm
is O(m|M(Lp)|). Itis based on Proposition 6.28(b).

Algorithm 7.9 CoRE
Input: M ={x(L)|L e M(Lp)}andb= x(B).
Output: x(COREp(B).

1. Start with ¢ = 0,,.

2. Forall v € M, if b— v contains exactly one 1 and this is in the ith position, then
cltf] :==1.

3. Output c.
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By applying Algorithm CORE it is easy to decide whether a subset B is indepen-
dent or not. Namely, B € IN Dp ifand only if B = COREp(B). Obviously this test
requires O(m|M(Lp)|) time. Next we give Algorithm REDUCTS which computes on
reducts of an arbitrary subset.

Algorithm 7.10 REDUCT
Input: M = {x(L)| L € M(Lp)}and b= x(B).
Output: x(C) for some C € REDp(B).

1. Start with ¢ :=b.

2. Foralli :=1,...,m, let¢[i] := 0 if forallv € M, b — v # 0,, implies
clei = 0] — v # Opy,.

3. Output c.

The complexity of Algorithm REDUCT is O(m?|M(Lp)])

We have seen that the set of all minimal true vector of the difference function £Z is
the set of characteristic vectors of the reducts of B. Similarly, for a dependency C' —
B the set of all minimal true vectors of the function f2, 5 is the set of characteristic
vectors of the minimal subsets D of C such that D — B holds.

The following algorithm computes the set max F'(fZ). It is based on Proposition
7.1(b).

Algorithm 7.11 MF-VECTORS3
Input: M ={x(L)|L € M(Lp)}andb= x(B).
Output: max F(f%).

1. Startwith M F :=(. Forallv € M, ifb—v # 0y, then M F := MFU{(b—v)'}.
2. Delete from M F all vectors which are not maximal.

3. Output M F.

The complexity of the previous algorithm is O(m|M(Lp)[?). Which is the time
needed by the dominating Step 2. It is obvious that | max F(f%) < |M(Lp)|. Our
next algorithm computes the set max F(fCZB) of the dependency function fCD%B.
The method is based on Proposition 7.4(b).

Algorithm 7.12 MF-VECTORS4

Input: M = {x(L) | L € M(Lp)} and vectors b = x(B) and ¢ = x(C) which
satisfy C — B (D).

Output: max F(f2, ).

1. Startwith M F :=(. Forallv € M, ifb—v # 0Oy, then M F := MFU{(c—v)'}.
2. Delete from M F all vectors which are not maximal.

3. Output M F.
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The complexity of the previous algorithm is O(m| M (Lp)|?).
Now we can present an algorithm, which finds the reducts of a given subset B of a
dependence space D = (A4, K).

Algorithm 7.13 REDUCTS
Input: M = {x(L) | L € M(Lp)}and b= x(B).
Output: A set of vectors corresponding to REDp(B).

1. Compute the set max F'(f%) with Algorithm MF-VECTORS3.

2. Compute the set min T'(fZ) with Algorithm MT-VECTORS and output it.

We already know that |max F(f5)] < |M(Lp)| and |minT(fF)| =
|REDp(B)|. Because the complexity of Step 1 is O(m|M(Lp)|?), the total running
time of Algorithm REDUCTS is

O(m|REDp(B)|(m(|[REDp(B)[*+|M(Lp)|*)+Trq(m(|REDp(B)|+|M(Lp))))))-

Example 7.14 As we have seen, the dependence space of Example 3.9 can be repre-
sentedasaset M = {(1,1,0,1),(1,0,1,0),(0,1,1,0)} of vectors. We show how Al-
gorithm REDUCTS computes the reducts of the vector (1, 1,1, 1), which corresponds
to the set {1,2,3,4}. First we compute the set max F(f%) with Algorithm MF-
VECTORS3. Because x(A) — v # 0y, forall v € M,

MF :={(1,1,0,1), (1,0,1,0), (0,1,1,0)}.
Clearly all vectors in M F' are maximal which implies
max F(f%) :={(1,1,0,1),(1,0,1,0), (0,1,1,0)}.

Next we compute the set min 7'(f7) with Algorithm MT-SETs. This computation
is already presented in Example 5.28. Hence, min T(f}f) ={(0,0,1,1), (1,1,1,0)},
which implies that (0,0,1,1) and (1,1, 1,0) are the vectors corresponding to the
reducts of A.

If the dependency C' — B holds in D, then the following algorithm finds the set
of characteristic vectors of all minimal subsets D of C which satisfy D — B.

Algorithm 7.15 MIN-DEPENDENCY

Input: M = {x(L) | L € M(Lp)} and two vectors b = x(B) and ¢ = x(C) such
that C — B inD.

Output: {x(D) | D is a minimal subset of C which satisfies D — B}.

1. Compute the set max F(f2, 5) with Algorithm MF-VECTORs4.

2. Compute the set min T'(£2, 5) with Algorithm MT-VECTORS and output it.

Obviously, |max F(fZ,5)| < |[M(Lp)| and if we denote k = |[{D | Dis a
minimal subset of C' which satisfies D — B}|, then the running time of Algorithm
MIN-DEPENDENCY is

O(mk(m(k? + |M(Lp)I?) + Teg(m(k + IM(LD)]))))-



CHAPTER 7. A REPRESENTATION FOR DEPENDENCE SPACES 73

Example 7.16 The dependence space of Example 6.24 can be represented as a set
M = {(1,1,0,1),(1,0,1,0),(0,1,1,0)} of vectors. Let us set B = {4}. We
show how Algorithm MIN-DEPENDENCY computes the set of the characteristic vec-
tors of all minimal subsets D of A which satisfy D — B. First we compute the set
max F(f,2, p) with Algorithm MF-VECTORS4. First,

MF = {(x(A) —v) |b—v #0, forallv e M} ={(1,0,1,0), (0,1,1,0)}.
Obviously, both vectors in M F' are maximal which implies

max F(fP. 5) = {(1,0,1,0), (0,1,1,0)}.

In Example 5.30 it was already presented how we can compute the set
minT(fP,5) with Algorithm MT-VECTORS.  Obviously, minT(fP.5) =
{(0,0,0,1), (1,1,0,0)}, which implies that {4} and {1, 2} are the minimal subsets
D of A which satisfy D — B.

Suppose § = (U, A,{Va}aca) is an information system such that U =
{z1,..., 2o}, A ={a1,...,am}, and (¢;j)nxn is the discernibility matrix of S, then
by Corollary 6.38, the set {A —¢;; | 1 < i < j < n}isdensein Ds = (4, Ks).
Especially,

M(['('Ds)) - {A—cij |1<i<j<n}
By this fact it is now easy to write an algorithm which computes from the representa-
tion of an information system S the presentation of the dependence space Dg.

If V = {v1,...,v} is aset of vectors, then A{v1,ve,...,v;} is an abbreviation
forvyg A (va A+ A (v—1 Awy)). IfV =0, then AV = 1,,. This operation is used in
Step 2 of the algorithm. The complexity of A V' is O(m|V]).

Algorithm 7.17 INFO-T0-DEPE

Input: Anarray c[l..n(n — 1)/2] such that forall 1 < i < j < n, c[k] = x(cij),
where k = j(j — 1)/2 — i+ 1, and a vector b = x(B).

Output: M = {x(L) | L € M(L(pg))}

1. Startwith MF :={c[k]' |1 <k <n(n-1)/2}.
2. Forallve MF,ifv=A{we MF |v<w} then MF := MF — {v}
3. Output M F.

The complexity of the algorithm is O(n*m)

Example 7.18 The discernibility matrix of Example 5.5 can be represented as an array
¢[1..6] in which

, 1,0, 1)’ c[2] = X(CZS) = (17 0,0, 1),
= x(a13) = (1,1,0,1),
,0,1, 1)’ c[5] = X(C24) = (07 0,1, 0)1
= x(c14) = (0,1,1,1).
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After Step 1, MF = {(1,0,1,0), (0,1,1,0), (0,0,1,0), (0,1,0,0), (1,1,0,1),
(1,0,0,0)}. Now

e (1,0,1,0) # A{w € MF | (1,0,1,0) < w} = A0 = 1.
0,1,1,0) # A0 = 1,,.

0,0,1,0) = A{(1,0,1,0),(0,1,1,0)}.

0,1,0,0) = A{(0,1,1,0),(1,1,0,1)}.

1,1,0,1) # A0 = 1.

1,0,0,0) = A{(1,0,1,0),(1,1,0,1)}.

(
(
(
(
(
(

Hence, Ds can be represented as the set {(1,0,1,0), (0,1,1,0), (1,1,0,1)} of vec-
tors.
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