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Abstract—This paper introduces a framework simulating a
system level power management for many-cores targeting server
cards used in warehouse-sized data centers. The energy con-
sumption for different operating performance points of a TI-
OMAP3530 chip was measured and is used by the framework to
estimate the system energy consumption. The proposed system
level power management shows a typical 34 % energy saving for
randomly generated requests compared to a system lacking any
power management.

I. INTRODUCTION

Energy efficiency and physical size have become key issues
for server cards used in warehouse-sized data centers. These
factors do not only affect the operational costs and ecological
footprint, but also have an impact on the possibilities to
construct or expand data centers. A cluster of mobile CPUs can
provide the same computational power as server-grade CPUs,
but with lower total energy consumption. The usage of mobile
CPUs also aims at obtaining cheaper and physically smaller
individual server cards by minimizing the need of cooling
infrastructure. With an average of 10 to 50 percent CPU
utilization for servers [1] and a large load fluctuation found in
typical web services [2] the use of slower but more energy-
efficient cores enables system level power management, which
dynamically matches the load fluctuation to the computational
capacity, at a much finer granularity than server-grade cores.

This paper presents a system level power management for
many-core server cards consisting of mobile CPUs. Compared
to related works [3][4], the presented power management
system uses both sleep states and dynamic voltage frequency
scaling (DVFS) to continuously match the work-load while
minimizing the system power consumption. Moreover the
presented framework uses control theory and the features of
the PID controller as basis for anticipating the work-load and
switching between sleep states as well as CPU frequencies.

II. SIMULATION FRAMEWORK

A simulation framework was created to simulate and mea-
sure the total energy reduction induced by using the power
management. The framework will minimize the total energy
consumption by disabling cores while maintaining a QoS
defined by the user. The framework consists of three blocks
shown in Figure 1.

a) System monitor: The monitor block is the source of
information on which the other blocks are applying func-
tionality. The input to the monitor, shown in Figure 2(A),

is randomly generated requests to the service. The system
will dynamically adapt to handle all the incoming requests by
monitoring the quality of service (QoS), presented in Figure
2(B). The QoS is determined by calculating the difference
between the incoming requests and the current capacity of
the system. The requests that are not being handled due to
insufficient capacity will be delayed and added to the job
queue of the next iteration.

b) Dynamic core allocation: The core allocation block
in this framework will during run-time add or subtract cores
to or from the system. As the QoS value describes the perfor-
mance, one or more cores are added to the system according to
the QoS value which is the result of the control error provided
by the feedback loop in Figure 1. The allocation block can
determine the trend of both the incoming request curve and
the QoS curve. The trends of both curves are determined by the
derivative of the functions with respect to time. By following
the trend and enabling cores before receiving a large set of
requests, the QoS will not suddenly drop. If the QoS value
remains high while the request curve drops the system reduces
the amount of cores and thus reduces the energy consumption.
This action is taken if the QoS curve remains high for a longer
time, which is determined by integrating the QoS curve over
a time window. Depending on the received integral value, the
system disables a certain amount of cores. Additionally the
allocation block monitors the trend of the request curve to get
an insight into the demand of future performance.

c) System capacity: The capacity of the system is de-
pendent on the amount and the capacity of the cores in use.
The capacity block sends the current capacity of the system
as feedback to the monitor to use in the next iteration of the
power management system.

The framework supports frequency scaling. As the frame-
work is assuming an optimal allocation of tasks on the cores,
the load of all cores, except one, is 100 %. The last core
enabled, which is eventually not fully loaded, can scale down
its frequency to reduce the energy consumption.
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Fig. 1: Main blocks in simulation framework



Fig. 2: Results from simulation. A: Incoming requests, B: QoS value, C: Number of cores in use, D: Energy consumption

III. SIMULATION PARAMETERS

To obtain values for the simulation framework and be able
to run a proof-of-concept simulation, the power dissipation
of one BeagleBoard revision C3 low-power platform was
measured. The BeagleBoard is equipped with one ARM
Cortex A8 processor-based TI-OMAP3530 chip. The system
ran Angstrom Linux kernel version 2.6.32 and was controlled
through a remote serial console. The operating performance
points (OPPs) of the TI-OMAP3530 chip were used to dy-
namically scale the clock frequency and voltage of the ARM
subsystem. The OPPs were accessed through the Linux ACPI.
To avoid unwanted energy consumption, the display subsystem
of the TI-OMAP3530 was disabled. The BeagleBoard includes
a resistor, which provides a way to measure the current
consumption used by the board. The voltage drop across the
resistor was measured for each OPP and the corresponding
power was calculated. The obtained power values of the
system running at respective voltage and clock frequency are
displayed in Table I. To ensure that the load would remain
constant during the measurements, the processor was stressed
to 100 % utilization using a simple program that recursively
counts Fibonacci numbers. The idle power for 720 MHz was
measured to be 1.2 W.

IV. RESULTS

By generating requests to the system, the energy con-
sumption for the many-core system can be estimated. The
result in Figure 2(C) shows that the number of cores changes
dynamically according to the variance in load and QoS during
the simulation of 40 seconds. Figure 2(D) shows that dynamic
core allocation will reduce the overall energy consumption of
the system. The QoS can occasionally drop to low level, as
seen in Figure 2(B), even though the system is anticipating the

TABLE I: Measured power dissipation of the BeagleBoard

Frequency (MHz) 720 600 550 500 250 125
Voltage (V) 1.35 1.35 1.27 1.20 1.06 0.985
Power (W) 1.40 1.15 1.05 1.00 0.65 0.55

trends both in terms of requests and QoS. By increasing the P,
I and D values in the controller, the system is set to prioritize
higher performance instead of low energy consumption and
vice versa by decreasing the values. In order to estimate
the energy reduction, we calculated the energy consumption
for the system without any power management applied and
run the simulation several times. As a core uses 1.40 W
of power during full load and 1.2 W of power idling, the
total energy reduction for the incoming requests is on average
34 % lower than the energy consumed by a system without
power management. The system without power management
is assumed to have 10 cores statically allocated and no DVFS.

V. CONCLUSION AND FUTURE WORK

We have shown that it is possible to reduce the energy con-
sumption while maintaining the needed system performance
in a many-core system by using dynamic core allocation.
The strategy of dynamic core allocation is to enable and
disable CPU cores during run-time in order to reduce energy
consumption. The simulation framework uses a control system
which uses features from the PID controller to anticipate
the incoming request curve and match the system capacity
accordingly. We intend to further improve the system by
creating a more intelligent core allocator and include migration
of tasks between cores during run-time. Frequency scaling for
every core in the system would also improve the conservation
of energy during a non-optimal distribution of tasks between
the cores.
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