
208

XP as a Framework for Practical Software Engineering Experiments

 Ralph Johan Back, Luka Milovanov, Ivan Porres and Viorel Preoteasa
TUCS Turku Centre for Computer Science and

 Department of Computer Science, Åbo Akademi University
 Lemminkäisenkatu 14A
 FIN-20520 Turku, Finland

Abstract
We discuss how Extreme Programming (XP) can be
used as the base software development method to per-
form practical experiments in software engineering. We
show how the main features of XP can help us to mini-
mize some of the problems and difficulties that appear
when trying to perform such experiments in a university
environment. We also discuss the execution and experi-
ences from one experiment studying a new methodol-
ogy: the Stepwise Feature Introduction.

Keywords
Extreme Programming, Software Engineering Research.

1 INTRODUCTION
The Software Engineering discipline studies how to
build large software systems that fulfill the user’s re-
quirements, are reliable and are constructed on time and
budget. This includes the study of many different con-
cepts and techniques used in software development:
software process models, modeling notations, pro-
gramming languages and methods, testing and valida-
tion strategies, CASE tools, etc.

One of the problems that hinders the research and im-
provement of these techniques is the difficulty to per-
form significant controlled experiments. Many meth-
ods, such as Extreme Programming (XP) [4] or the
Unified Modeling Language (UML) [16], have been
conceived in the context of large industrial projects.
However, in most cases, it is almost impossible to per-
form controlled experiments in an industrial setting. A
company can rarely afford to develop the same product
twice by the same team but using different methods,
and then compare the resulting products and the team
performances.

On the other hand, universities employ highly qualified
research personnel that can employ considerable time to
study better ways to build software, without the pres-
sure of having to release new software products to the
market. In this sense, a university setting could be the
ideal place to perform practical experiments and test
new ideas in software engineering.

However, researchers also find difficulties while testing
new ideas in practice. First, it is possible that an ex-
periment does not reflect the conditions found in a de-
velopment company since researchers do not need to
develop actual products. Secondly, university experi-
ments must usually be performed by students. Students

are not necessarily less capable than employed software
developers, but they must be trained and their pro-
gramming experience and motivation in the project may
vary. There is also a high turnover rate as the students
graduate and quit. Finally, although there is no market
pressure, a researcher does not have unlimited funds, so
it is necessary to optimize the costs of the experiments.

In this paper, we discuss how Extreme Programming
can be applied as the base software process to perform
practical experiments in software engineering in a uni-
versity context. We think that many of the XP charac-
teristic features help us to circumvent some of the prob-
lems described above. We also discuss the execution of
an experiment using XP.

In this experiment we employed six undergraduate
students under three summer months to develop an
advanced text editor. We used XP as the base software
process and we tested a new programming methodology
currently under development: the Stepwise Feature
Introduction (SWFI) [1].

2 XP AS A FRAMEWORK FOR
EXPERIMENTS

In order to perform a non-trivial experiment on software
engineering, we need to develop a non-trivial software
application, or, at least, to simulate its development.
Therefore, when planning an experiment we need to
define what software must be developed and also which
processes, methods, programming languages and tools
will be used to build the software. These can be either
well-established practices, such as C++ programming
language and water-fall process model, or they can be
new techniques that we want to try out.

The actual topics for an experiment are these new tech-
niques and their impact on practical software develop-
ment. To simplify the variability of an experiment and
maximize its viability, it is better to test only one or two
new techniques at a time. The question is which exist-
ing programming languages, software processes and
tools are best suited as a base framework to perform
these experiments.

In this section we outline the main characteristics be-
hind the XP process and explain why they fit into our
framework for experimenting in software engineering.
We also propose some additional roles to the XP project
staff which allow us to make the framework more effec-
tive.

209

2.1 Simplicity
One of the features that we appreciate most in XP is its
simplicity. First of all, XP is easy to learn. Students
learn it quickly, and they can learn it while doing what
they like: programming. That does not imply that XP is
easy to teach. The coach has a high responsibility for
the education of the programmers and the adoption of
XP by the team depends on the skills of the coach. Sec-
ondly, with XP it is possible to start a project in a short
time.

In our case we had our first project running in two
weeks, counting from the first meeting, where the
members of the team where introduced, to the first
integration of code. We were really satisfied with this
time interval since all the developers where second year
students and they were not familiar with XP.

2.2 Pair Programming and Team Dynamics
Pair programming has many significant benefits: better
detailed design (in XP the design is performed on the
fly), shorter program code and better communication
within team members. Also, many common program-
ming mistakes are caught as they are being typed, etc
[7]. As it has been frequently reported [7, 8, 10, 15, 18],
pair programming also has a great educational aspect.
Programmers learn from each other while working in
pairs. This is especially interesting in our context since
in the same project we can have students with different
programming experience.

Thanks to pair programming, we can expect that the
senior students will teach the juniors while program-
ming. Therefore programmer’s training is more effi-
cient since the learning continues as long as one pro-
grammer in a pair knows something that his partner
does not. The two are so engaged in the coding task that
it seems that much of the communication is non-verbal
[13].

It seems that XP works better with a small number of
developers. This is not a problem since in our experi-
ments we can employ just a small number of program-
mers due to economical constrains. This helps to estab-
lish better communication within the team. The work of
a coach is also more efficient in small groups.

2.3 Iteration Planning and On-site Customer
The on-site customer forces the development team to
focus on the product, not on the experiment. In our case
the customer can be another fellow researcher, who
otherwise would not be involved in the experiment.
Nothing, however, prevents the customer from partici-
pating in the project as a coach if he or she has the re-
quired skills. Short release cycles maximize feedback
from the customer and force the team to have a working
system as soon as possible.

We can use the XP iteration planning also to decide
when to introduce or remove a method under test. The
team should start the development of a product in an
experiment using only proven techniques to learn the
XP method thoroughly. Once the team has produced
one or two iterations, it is time to introduce the experi-
mental methods to test.

2.4 Collective Code Ownership
The concept of collective code ownership is also neces-
sary since we expect a high turnover of students be-
tween different experiments, many of which may be
consecutive stages in a long range product development
effort. New programmers need to read and understand
the code that was written before, so the code should be
very readable and understandable. As described in [17],
a well-defined coding standard and the sharing culture
encouraged by pair programming can help in this re-
spect

Another important issue is the legal ownership of the
code. According to Finnish law, code developed by an
employed programmer (including a student employed
as a programmer) is owned by his employer. However,
the code developed by a student as part of an exercise is
own by the student.

To avoid any possible legal issue in this matter we de-
cided to use an open source license for the code pro-
duced in our experiments. This does not actually solve
the problem of who owns the code, but it ensures that
the code will always be available for inspection, modi-
fication and publication.

2.5 Continuous Integration
Continuous integration has an interesting side effect
that we discovered when analyzing the results of the
project. The repository used for integration contains an
invaluable trace of the activity of the programmers. For
example, CVS [5], an open source version control sys-
tem, keeps track of who performs each check-in and
when. This information can be retrieved and analyzed
later on, as it was done in [11]. This helps us to monitor
and measure the speed of the development in an easy
and unobtrusive way: the programmers do not even
need to know how their work is monitored. We consider
this ethical, since the programmers know from the very
beginning that they participate in an experiment and
that their work will be monitored.

2.6 Additional Roles in Experimental Projects
Based on the facts mentioned above, we found that XP
is well suited as a framework for practical software
engineering experiments. However, besides the stan-
dard roles in XP project such as programmer, customer
and coach, we need to introduce some additional roles:
lecturer and methodologist.

The task of a lecturer is to give short tutorials to the
programmers and perhaps even coach at the beginning
of the project. The goal of a tutorial is to give an overall
introduction of the concepts or techniques that will be
used in the project. Tutorials should not teach every-
thing, they just give the strictly necessary information
for starting the project. Tutorials are necessary, since
our programmers may not have all appropriate knowl-
edge and working experience for the project. For exam-
ple, a full course on design patterns [9] can be 30 hours
long. In about two to four hours it is, however possible
to introduce the idea of patterns and teach one or two
patterns that the coach thinks will be used in the project.

Ideally, a lecturer appears only at the very beginning of

210

the project. However, he should be available for consul-
tations during the length of the project to explain issues
that the coaches cannot resolve.

The task of a methodologist is to ensure that the meth-
ods under test are applied correctly. Unlike a lecturer, a
methodologist has to participate in the project through-
out its whole life, but unlike the coach, he does not need
to be in close contact with the team on a daily basis.

It is not necessary that different people play the roles of
lecture and methodologist. Having lecturers involved in
a project as coaches would be useful because they know
the concepts that are used very well. However, the work
of a methodologist requires a lot of effort and can be
more efficient if he or she does not have other roles in
the project.

3 USING XP IN AN ACTUAL EXPERIMENT
In this section, we describe our first complete experi-
ment sing XP as the base software process. The objec-
tive of the experiment was to test the methods of Step-
wise Feature Introduction in practice. Since it was our
first attempt to use XP in an experiment, we were also
testing how XP performs in a university setting. A fur-
ther goal was to see whether a non-trivial piece of soft-
ware can be produced by inexperienced students in a
short time span. The product to be built was an outline
text editor [2].

The project was carried out by ten persons. One profes-
sor acted as customer and methodologist. Three Ph.D.
students acted as lecturers and coaches. Finally, six
undergraduate students were the developers. Most of
the students had completed their second year in the
computer science/engineering curriculum and had basic
courses in programming but not all of them had courses
on software engineering. None of the students were
familiar with XP or SWFI.

The programming language of the project was Python
[12]. To keep track of the project assets, we used the
CVS version control system. One of the students had
some experience with Python before and none of them
was familiar with CVS.

3.1 Stepwise Feature Introduction
Stepwise Feature Introduction is a software develop-
ment methodology based on incremental extensions of
an object-oriented software system with only one new
feature at a time.

It has much in common with the original stepwise re-
finement method [3], the main difference being that
software is built bottom-up with an emphasis on object-
oriented programming.

According to this methodology, a software system
should be built in thin layers where each successive
layer introduces a new feature to the system and does
not break the functionality implemented in previous
layers. Each layer represents a running system with a
functionality that extends the previous layer. The basic
layer is a system with minimal functionality.

Each successive layer is described as a collection of

classes that are extensions of classes from the previous
layer. The extension is implemented using inheritance
(also using multiple inheritance), delegation or forward-
ing. The inherited methods are supposed to remain
unmodified or to be redefined such that the new code
achieves the same effect as the inherited one, plus pos-
sibly some additional effect on newly introduced attrib-
utes. All class members, once introduced, should be
present in the extensions of a class through all of the
higher layers.

3.2 Organization of the Project
The project ran during three summer months in three
phases: training, programming and cleaning up. The
project started with a meeting where all the members
were introduced to each other. The overall working
conditions and the schedule were discussed.

The first phase of the project took the first two weeks.
The students attended tutorials on XP, Python and one
of its user interface toolkits, design patterns, and CVS.
They were also introduced to the product and its re-
quirements. The average time spent on each tutorial was
three hours.

The second phase was the main and the longest and it
took nine weeks. During this time the project was car-
ried out according to the guidelines that were presented
to the students in the learning phase. The PhD students
were coaching and helping the students with the tasks.
When the overall structure of the code started to be-
come too complicated the coaches got more involved to
help the students to refactor and simplify the code.

In the last phase we stopped introducing functionality to
the editor and focused on debugging, code cleaning and
on reviewing and writing documentation. There was
also some work to increase the performance of the
product.

3.3 Experiences and Impressions
We managed to build the project on time and, what is
more important, we managed to extract a lot of useful
feedback about the method [2].

The learning part of the project turned out to be very
useful. As it was also observed in [6], well-chosen short
tutorials focused on topics that are needed in the project
(techniques, tools) got the project running in no time.

Pair programming worked well in our project. At the
beginning we mixed the students who knew Python
with the ones that were learning it. This fact leads to a
quick start. However, pair programming did not work
so well during debugging. The students complained that
it was easier and faster to debug the code alone since
“everybody has a different theory about where the bug
is”.

Our programmers did not like to write tests before the
actual code. They considered it counterintuitive and
preferred to write the tests while or after the code.

At the beginning of the project we also wanted to use
the design by contracts [14] technique, but it turned out
that we wanted too much in too short time. In the future

211

we will refrain ourselves from introducing too many
new concepts at the same time to inexperienced stu-
dents.

4 CONCLUSIONS
Experiments in software engineering are expensive and
difficult to setup. Extreme Programming can help us to
study new software construction methods by providing
a flexible software process that is easy to learn, keeps
the programmers focused on the product and not on the
experiment and allows us to observe the results of the
programmers right from the beginning. We have shown
that using XP we can perform such experiments in a
university setting and the experiments are performed
faster and with less effort [2].

However, we cannot always apply XP as described in
[4]. There are some cases where we definitely cannot
apply XP in an experiment, e.g. if the topic of the ex-
periment is another software process. In other cases, we
can use XP, but we still need to adapt it so that some
task is emphasized more often than it usually is. For
example, if the topic of an experiment is a modeling
notation such as UML, we need to be sure that model-
ing appears as a central task in the software process
used in the experiment.

ACKNOWLEDGMENTS
We would like to thank Rasmus Back, Linus Bernas,
Tomas Czarnecki, Marcus Eriksson, Mats Sjöberg and
Max Söderström for their participation in the experi-
ment described in this paper.

REFERENCES
[1] R. J. Back. Software Construction by Stepwise Fea-

ture Introduction. To appear in Proceedings of the
ZB2001- Second International Z and B Conference,
Springer Verlag LNCS Series, 2002.

 [2] R. J. Back, L. Milovanov, I. Porres and V. Preo-
teasa. An Experiment on Extreme Programming and
Stepwise Feature Introduction. Technical Report No
451. Turku Centre for Computer Science. March
2002.

 [3] R. J. Back and J. von Wright. Refinement Calculus
-A Systematic Introduction. Springer-Verlag, 1998.

[4] K. Beck. Extreme Programming Explained: Em-
brace hange. Addison-Wesley, 1999.

[5] B. Berliner. CVS Web Site. Available electronically
at: htp://www.cvshome.org/.

[6] K. Boutin. Introducing Extreme Programming in a
Research and Development Laboratory. In G. Succi
and M. Marchesi, editors, Extreme Programming
Examined. Addison-Wesley, 2001.

[7] A. Cockburn and L. Williams. The Costs and Bene-
fits of Pair Programming. In Proceedings of eX-
treme Programming and Flexible Processes in Soft-
ware Engineering XP2000, 2000.

[8] L. L. Constantine. Constantine on Peopleware.
Englewood Cliffs: Prentice Hall, 1995.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison-Wesley, 1995.

[10] D. H. Johnson and J. Caristi. Extreme Program-
ming and the Software Design Course. In Proceed-
ings of XP Universe, 2001.

[11] S. Koch and G. Schneider. Results from Software
Engineering Research into Open Source Develop-
ment Projects Using Public Data. 2000. Available
at:
http://opensource.mit.edu/papers/kochossoftwareeng
ineering.pdf.

[12] M. Lutz. Programming Python. O’Reily, 1996.

[13] R. C. Martin. RUP / XP Guidelines: Pair Pro-
gramming. ational Software White Paper. Available
at:http://www.cs.unb.ca/profs/wdu/cs4025/pairprogr
amming.pdf, 2000.

[14] B. Meyer. Object-Oriented Software Construction.
Prentice Hall, second edition edition, 1997.

[15] M. M. Müller and W. F. Tichy. Case Study: Ex-
treme Programming in a University Environment. In
Proceedings of the 23rd Conference on Software
Engineering. IEEE Computer Society, 2001.

[16] OMG. OMG Unified Language Specification.
Version 1.4, February 2001, available at:
http://www.omg.org.

[17] W. C. Wake. Extreme Programming Explored. The
XP series. Addison-Wesley, 2000.

[18] L. A. Williams and R. R. Kessler. Experimenting
with Industry’s Pair-Programming Model in the
Computer Science Classroom. Journal on Software
Engineering Education, December 2000.

