
Reasoning About Interactive Systems

Ralph Back, Anna Mikhajlova, and Joakim von Wright

Turku Centre for Computer Science, Åbo Akademi University
Lemminkäisenkatu 14A, Turku 20520, Finland
phone: +358-2-215-4032, fax: +358-2-241-0154

backrj, amikhajl, jwright@abo.fi

Abstract. The unifying ground for interactive programs and compo-
nent-based systems is the interaction between a user and the system
or between a component and its environment. Modeling and reasoning
about interactive systems in a formal framework is critical for ensur-
ing the systems’ reliability and correctness. A mathematical foundation
based on the idea of contracts permits this kind of reasoning. In this
paper we study an iterative choice contract statement which models an
event loop allowing the user to repeatedly choose from a number of ac-
tions an alternative which is enabled and have it executed. We study
mathematical properties of iterative choice and demonstrate its model-
ing capabilities by specifying a component environment which describes
all actions the environment can take on a component, and an interactive
dialog box permitting the user to make selections in a dialog with the
system. We show how to prove correctness of the dialog box with respect
to given requirements, and develop its refinement allowing more complex
functionality and providing wider choice for the user.

1 Introduction

Most of contemporary software systems are inherently interactive: desk-top ap-
plications interact with a user, embedded systems interact with the environment,
system integration software interacts with the systems it integrates, etc. In ad-
dition, in systems constructed using an object-oriented or a component-based
approach objects or components interact with each other.

To be able to verify the behavior of an interactive system in its entirety, it is
first necessary to capture this behavior in a precise specification. Formal methods
have been traditionally weak in capturing the intricacy of interaction. Probably
for this reason, the importance of specifying and verifying program parts de-
scribing interaction with the environment (especially in case of interacting with
a human user) is considered as secondary to the importance of establishing cor-
rectness of some “critical” parts of the program. However, in view of the growing
complexity and importance of various interactive systems, the need for verify-
ing correctness of interaction becomes obvious. For instance, embedded systems,
which are intrinsically interactive and often used in safety-critical environments,
can lead to dramatic consequences if they ignore input from the environment or
deliver wrong output.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1460–1476, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



Reasoning About Interactive Systems 1461

Component-oriented approach to software design and development is rapidly
gaining popularity and stimulates research on methods for analysis and con-
struction of reliable and correct components and their compositions. Compo-
nent compositions consist of cooperating or interacting components, and for
each component all the other components it cooperates with can be collectively
considered as the environment. Although various standard methods can be used
for reasoning about separate components, component environments present in
this respect a challenge. The ability to model and reason about component envi-
ronments is critical for reasoning about component-based systems. The designer
of a component should be aware of the behavior of the environment in which
the component is supposed to operate. Knowing the precise behavior of the en-
vironment, it is then possible to analyze the effect a change to the component
will have on the environment, design an appropriate component interface, etc.

Interaction is often multifaceted in the sense that component-based systems
can interact with the user and interactive programs can be component-based.
Moreover, for components in a component-based system their environment can
be transparent, they will interact with this environment in the same way regard-
less of whether it is another component or a human user.

To a large extent the weakness of verification techniques for interactive parts
of programs can be explained by the lack of modeling methods capable of captur-
ing interaction and the freedom of choice that the environment has. Accordingly,
development of a specification and verification method in a formalism expressive
enough to model interaction is of critical importance. The mathematical foun-
dation for reasoning about interactive systems, based on the idea of contracts,
has been introduced in [4, 6]. In particular, Back and von Wright proposed using
an iterative choice contract statement which describes an event loop, allowing
the user to repeatedly choose from a number of actions an alternative which
is enabled and have it executed. In this paper we focus on the iterative choice
statement, examine its modeling capabilities, and develop its mathematical prop-
erties. In particular, we present rules for proving correctness of iterative choice
with respect to given pre- and postconditions, and rules for iterative choice re-
finement through refining the options it presents and adding new alternatives.
We illustrate the expressive power and versatility of iterative choice by specify-
ing a component environment which describes all actions the environment can
take on a component, and an interactive dialog box permitting the user to make
selections in a dialog with the system. We show how to prove correctness of
the dialog box with respect to given requirements, and develop its refinement
allowing more complex functionality and providing wider choice for the user.

Notation: We use simply typed higher-order logic as the logical framework in the
paper. The type of functions from a type Σ to a type Γ is denoted by Σ → Γ
and functions can have arguments and results of function type. Functions can be
described using λ-abstraction, and we write f. x for the application of function
f to argument x.



1462 Ralph Back, Anna Mikhajlova, and Joakim von Wright

2 Contracts and Refinement

A computation can generally be seen as involving a number of agents (programs,
modules, systems, users, etc.) who carry out actions according to a document
(specification, program) that has been laid out in advance. When reasoning
about a computation, we can view this document as a contract between the
agents involved. In this section we review a notation for contract statements.
A more detailed description as well as operational and weakest precondition
semantics of these statements can be found in [4, 6].

We assume that the world that contracts talk about is described as a state σ.
The state space Σ is the set (type) of all possible states. The state has a number
of program variables x1, . . . , xn, each of which can be observed and changed
independently of the others. A program variable x of type Γ is really a pair of
the value function valx : Σ → Γ and the update function setx : Γ → Σ → Σ.
Given a state σ, valx . σ is the value of x in this state, while σ′ = setx . γ. σ is
the new state that we get by setting the value of x to γ. An assignment like
x := x + y denotes a state changing function that updates the value of x to the
value of the expression x+ y, i.e. (x := x+ y). σ = setx . (valx . σ + valy. σ). σ.

A state predicate p : Σ → Bool is a boolean function on the state. Since
a predicate corresponds to a set of states, we use set notation (∪, ⊆, etc.) for
predicates. Using program variables, state predicates can be written as boolean
expressions, for example, (x + 1 > y). Similarly, a state relation R : Σ →
Σ → Bool relates a state σ to a state σ′ whenever R. σ. σ′ holds. We permit a
generalized assignment notation for relations. For example, (x := x′ | x′ > x+y)
relates state σ to state σ′ if the value of x in σ′ is greater than the sum of the
values of x and y in σ and all other variables are unchanged.

2.1 Contract Notation

Contracts are built from state changing functions, predicates and relations. The
update 〈f〉 changes the state according to f : Σ → Σ. If the initial state is
σ0 then the agent must produce a final state f. σ0. An assignment statement
is a special kind of update where the state changing function is an assignment.
For example, the assignment statement 〈x := x + y〉 (or just x := x + y when
it is clear from the context that an assignment statement rather than a state
changing function is intended) requires the agent to set the value of program
variable x to the sum of the values of x and y.

The assertion {p} of a state predicate p is a requirement that the agent must
satisfy in a given state. For instance, {x+ y = 0} expresses that the sum of (the
values of variables) x and y in the state must be zero. If the assertion does not
hold, then the agent has breached the contract. The assumption [p] is dual to an
assertion; if the condition p does not hold, then the agent is released from any
obligation to carry out his part of the contract.

In the sequential action S1; S2 the action S1 is carried out first, followed by
S2. A choice S1 t S2 allows the agent to choose between carrying out S1 or S2.



Reasoning About Interactive Systems 1463

In general, there can be a number of agents that are acting together to change
the world and whose behavior is bound by contracts. We can indicate explicitly
which agent is responsible for each choice. For example, in the contract

S = x := 0; ((y := 1 tb y := 2) ta x := x + 1); {y = x}a

the agents involved are a and b. The effect of the update is independent of
which agent carries it out, so this information can be lost when writing contract
statements.

The relational update {R}a is a contract statement that permits an agent
to choose between all final states related by the state relation R to the initial
state (if no such final state exists, then the agent has breached the contract).
For example, the contract statement {x := x′ | x < x′}a is carried out by agent
a by changing the state so that the value of x becomes larger than the current
value, without changing the values of any other variables.

A recursive contract statement of the form (reca X • S) is interpreted as
the contract statement S, but with each occurrence of statement variable X
in S treated as a recursive invocation of the whole contract (reca X • S). A
more convenient way to define a recursive contract is by an equation of the form
X =a S, where S typically contains some occurrences of X . The indicated
agent is responsible for termination; if the recursion unfolds infinitely, then the
agent has breached the contract.

2.2 Using Contracts

Assume that we pick out one or more agents whose side we are taking. These
agents are assumed to have a common goal and to coordinate their choices in
order to achieve this goal. Hence, we can regard this group of agents as a single
agent. The other agents need not share the goals of our agents. To prepare for
the worst, we assume that the other agents try to prevent us from reaching our
goals, and that they coordinate their choices against us. We will make this a
little more dramatic and call our agents collectively the angel and the other
agents collectively the demon. We refer to choices made by our agents as angelic
choices, and to choices made by the other agents as demonic choices.

Having taken the side of certain agents, we can simplify the notation for
contract statements. We write t for the angelic choice tangel and u for the
demonic choice tdemon . Furthermore, we note that if our agents have breached
the contract, then the other agents are released from it, i.e. {p}angel = [p]demon ,
and vice versa. Hence, we agree to let {p} stand for {p}angel and [p] stand
for {p}demon . This justifies the following syntax, where the explicit indication
of which agent is responsible for the choice, assertion or assumption has been
removed:

S ::= 〈f〉 | {p} | [p] | S1; S2 | S1 t S2 | S1 u S2

This notation generalizes in the obvious way to generalized choices: we write
t{Si | i ∈ I} for the angelic choice of one of the alternatives in the set {Si | i ∈ I}



1464 Ralph Back, Anna Mikhajlova, and Joakim von Wright

and we write u{Si | i ∈ I} for the corresponding demonic choice. For relational
update, we write {R} if the next state is chosen by the angel, and [R] if the next
state is chosen by the demon. Furthermore, we write (µX • S) for (recangel X • S)
and (νX • S) for (recdemon X • S); this notation agrees with the predicate
transformer semantics of contracts.

The notation for contracts allows us to express all standard programming
language constructs, like sequential composition, assignments, empty statements,
conditional statements, loops, and blocks with local variables.

2.3 User Interaction

Interactive programs can be seen as special cases of contracts, where two agents
are involved, the user and the computer system. The user in this case is the angel,
which chooses between alternatives in order to influence the computation in a
desired manner, and the computer system is the demon, resolving any internal
choices in a manner unknown to the user.

User input during program execution is modeled by an angelic relational
assignment. For example, the contract

{x, e := x′, e′ | x′ ≥ 0 ∧ e > 0}; [x := x′ | − e < x′2 − x < e]

describes how the user gives as input a value x whose square root is to be
computed, as well as the precision e with which the computer is to compute this
square root.

This simple contract specifies the interaction between the user and the com-
puting system. The first statement specifies the user’s responsibility (to give an
input value that satisfies the given conditions) and the second statement speci-
fies the system’s responsibility (to compute a new value for x that satisfies the
given condition).

2.4 Semantics, Correctness, and Refinement of Contracts

Every contract statement has a weakest precondition predicate transformer se-
mantics. A predicate transformer S : (Γ → Bool) → (Σ → Bool) is a function
from predicates on Γ to predicates on Σ. We write

Σ 7→ Γ =̂ (Γ → Bool) → (Σ → Bool)

to denote a set of all predicate transformers from Σ to Γ . A contract statement
with initial state in Σ and final state in Γ determines a monotonic predicate
transformer S : Σ 7→ Γ that maps any postcondition q : Γ → Bool to the weak-
est precondition p : Σ → Bool such that the statement is guaranteed to terminate
in a final state satisfying q whenever the initial state satisfies p. Following an
established tradition, we identify contract statements with the monotonic pred-
icate transformers that they determine. For details of the predicate transformer
semantics, we refer to [4, 6].



Reasoning About Interactive Systems 1465

The total correctness assertion p {|S |} q is said to hold if the user can use the
contract S to establish the postcondition q when starting in the set of states p.
The pair of state predicates (p, q) is usually referred to as the pre- and postcon-
dition specification of the contract S. The total correctness assertion p {|S |} q,
which is equal to p ⊆ S. q, means that the user can (by making the right choices)
either achieve the postcondition q or be released from the contract, no matter
what the other agents do.

A contract S is refined by a contract S′, written S v S′, if any condition that
we can establish with the first contract can also be established with the second
contract. Formally, S v S′ is defined to hold if p {|S |} q ⇒ p {|S′ |} q, for any p
and q. Refinement is reflexive and transitive. In addition, the contract construc-
tors are monotonic, so a contract can be refined by refining a subcomponent.

The refinement calculus provides rules for transforming more abstract pro-
gram structures into more concrete ones based on the notion of refinement of
contracts presented above. Large collections of refinement rules are given, for
instance, in [6, 10].

3 Iterative Choice and Its Modeling Capabilities

3.1 Modeling Component Environment

To demonstrate how the iterative choice statement can be used to model a
component environment, let us first introduce the notion of a component. We
view a component as an abstract data type with internal state and methods
that can be invoked on the component to carry out certain functionality and
(possibly) change the component’s state.

c = component
x : Σ := x0

m1 (val x1 : Γ1, res y1 : ∆1) = M1,
. . .
mn (val xn : Γn, res yn : ∆n) = Mn

end

Here x : Σ are the variables which carry the internal component’s state. These
variables have some initial values x0. Methods named m1, . . . , mn are specified
by statements M1, . . . , Mn respectively. Invocation of a method on a component
has a standard procedure call semantics, with the only difference that the value
of the component itself is passed as a value-result argument. We will denote
invocation of mi on c with value and result arguments v : Γi and r : ∆i by
c.mi(v, r).

An environment using a component c does so by invoking its methods. Every
time the environment has a choice of which method to choose for execution. In
general, each option is preceded with an assertion which determines whether the
option is enabled in a particular state. While at least one of the assertions holds,
the environment may repeatedly choose a particular option which is enabled and



1466 Ralph Back, Anna Mikhajlova, and Joakim von Wright

have it executed. The environment decides on its own when it is willing to stop
choosing options. Such an iterative choice of method invocations, followed by
arbitrary statements not affecting the component state directly, describes all the
actions the environment program might undertake:

begin var l : Λ • p; do q1 :: c.m1(g1, d1); L1 〈〉 . . . 〈〉 qn :: c.mn(gn, dn); Ln od end

Here the construct inside the keywords do .. od is the iterative choice statement.
The alternatives among which the choice is made at each iteration step are
separated by 〈〉. Variables l : Λ are some local variables initialized according to
p, predicates q1 . . . qn are the asserted conditions on the state, and statements
L1 through Ln are arbitrary. The initialization p, the assertions q1 . . . qn, and
the statements L1, . . . , Ln do not refer to c, which is justified by the assumption
that the component state is encapsulated.

The whole program statement is a contract between the component c and any
environment using c. The method enabledness condition qi corresponds to the
assumptions made by the corresponding method mi, as stated in its subcontract
(the method body definition). For example, in a component EntryField a method
SetLength(val l : Nat) can begin with an assumption that the length l does
not exceed some constant value lmax. An environment invoking SetLength on
EntryField will then have to assert that a specific length does indeed satisfy this
requirement:

do length ≤ lmax :: EntryField .SetLength(length); . . . od

The assumption of this condition in the body of SetLength will pass through, as
{p}; [p] = {p}, for all predicates p.

3.2 Modeling an Interactive Dialog Box

Suppose that we would like to describe a font selection dialog box, where the
user is offered the choice of selecting a particular font and its size. The user can
select a font by typing the font name in the entry field; the selection is accepted
if the entered font name belongs to the set of available fonts. The size of the
font can also be chosen by typing the corresponding number in the entry field.
The user may change the selections of both the font and the size any number
of times before he presses the OK button, which results in closing the dialog
box and changing the corresponding text according to the last selection. We can
model this kind of a dialog box as shown in Fig. 1. In this specification fentry :
String and sentry : Nat are global variables representing current selections of the
font name and its size in the corresponding entry fields of the dialog box. The
constants Fonts : set of String and Sizes : set of Nat represent sets of available
font names and font sizes.

When the user opens the dialog box, he assumes that the default entries for
the font name and size are among those available in the system, as expressed by
the corresponding assumption in DialogBoxSpec. If this assumption is met by the
system, the user may enter new font name, or new font size, or leave the current



Reasoning About Interactive Systems 1467

DialogBoxSpec = [fentry ∈ Fonts ∧ sentry ∈ Sizes];
do true :: {fentry := s | s ∈ Fonts}
〈〉 true :: {sentry := n |n ∈ Sizes}
od

Fig. 1. Specification of a dialog box

selections intact. The user may select any alternative any number of times until
he is satisfied with the choice and decides to stop the iteration. Note that to
model dialog closing, we do not need to explicitly maintain a boolean variable
Ok pressed , have all the options enabled only when ¬Ok pressed holds, and set
it explicitly to true to terminate iteration: all this is implicit in the model.

This is a very general specification of DialogBoxSpec, but still it is a useful
abstraction precisely and succinctly describing the intended behavior. In Sec. 4.3
we will show how one can check correctness of this specification with respect to a
given precondition and postcondition. Also, this specification can be refined to a
more detailed one, specifying an extended functionality, as we will demonstrate
in Sec. 4.5.

4 Definition and Properties of Iterative Choice

We begin with studying mathematical properties of an angelic iteration operator,
which is used to define iterative choice.

4.1 Angelic Iteration and Its Properties

Let S be a monotonic predicate transformer (i.e., the denotation of a contract).
We define an iteration construct over S, angelic iteration, as the following fix-
point:

Sφ =̂ (µX • S; X t skip) (Angelic iteration)

As such, this construct is a dual of the weak iteration S∗ defined in [6] by
(νX • S; X u skip).

Theorem 1. Let S be an arbitrary monotonic predicate transformer. Then

Sφ = ((S◦)∗)◦

Intuitively, the statement Sφ is executed so that S is repeated an angelically
chosen (finite) number of times before the iteration is terminated by choosing
skip. For example, (x := x+1)φ increments x an angelically chosen finite number
of times, and has, therefore, the same effect as the angelic update {x := x′ |x ≤
x′}.

A collection of basic properties of angelic iteration follows by duality from
the corresponding properties of weak iteration proved in [5].



1468 Ralph Back, Anna Mikhajlova, and Joakim von Wright

Theorem 2. Let S and T be arbitrary monotonic predicate transformers. Then

(a) Sφ is monotonic and terminating

(b) Sφ preserves termination, strictness, and disjunctivity

(c) S v Sφ

(d) (Sφ)φ = Sφ

(e) Sφ; Sφ = Sφ

(f) S v T ⇒ Sφ v T φ

Here, a predicate transformer S is said to be terminating if S. true = true, strict
if S. false = false, and disjunctive if S. (∪i ∈ I • qi) = (∪i ∈ I • S. qi), for I 6= ∅.

To account for tail recursion, angelic iteration can be characterized as follows:

Lemma 1. Let S and T be arbitrary monotonic predicate transformers. Then

Sφ; T = (µX • S; X t T )

This lemma provides us with general unfolding and induction rules. For ar-
bitrary monotonic predicate transformers S and T ,

Sφ; T = S; Sφ; T t T (unfolding)

S; X t T v X ⇒ Sφ; T v X (induction)

From the unfolding rule with T taken to be skip we get the useful property
that doing nothing is refined by angelic iteration:

skip v Sφ

Angelic iteration can also be characterized on the level of predicates:

Lemma 2. Let S : Σ 7→ Σ be an arbitrary monotonic predicate transformer
and q : PΣ an arbitrary predicate. Then

Sφ.q = (µx • S. x ∪ q)

When applied to monotonic predicate transformers, the angelic iteration op-
erator has two interesting properties known from the theory of regular languages,
namely, the decomposition property and the leapfrog property.

Lemma 3. Let S and T be arbitrary monotonic predicate transformers. Then

(S t T )φ = Sφ; (T ; Sφ)φ (decomposition)

(S; T )φ; S v S; (T ; S)φ (leapfrog)

(if S is disjunctive, then the leapfrog property is an equality).
Lemma 1, Lemma 2, and Lemma 3 follow by duality from the corresponding

properties of weak iteration as given in [6].



Reasoning About Interactive Systems 1469

Let us now study under what conditions the total correctness assertion
p {|Sφ |} q is valid. In lattice theory, the general least fixpoint introduction rule
states that

tw v f. t<w

t v µ f

where {tw | w ∈ W} is a ranked collection of elements (so that W is a well-
founded set and v < w ⇒ tv v tw), t<w is an abbreviation for (tv | v < w • tv),
and t = (tw ∈ W • tw). When used for predicates, with Sφ. q = (µx • S. x∪ q),
this rule directly gives us the correctness rule for angelic iteration

pw ⊆ (S. p<w) ∪ q

p {|Sφ |} q

(angelic iteration
correctness rule)

where {pw | w ∈ W} is a ranked collection of predicates and p = (∪w ∈ W · pw).
If the ranked predicates are written using an invariant I and a termination
function t, then we have

I ∩ t = w ⊆ S. (I ∩ t < w) ∪ q

I {|Sφ |} q

where w is a fresh variable. Intuitively, this rule says that at every step either
the invariant I is preserved (with t decreasing) or the desired postcondition q is
reached directly and the iteration can terminate. This corresponds to temporal
logic assertions “I until q” and “eventually not I”. Since t cannot decrease
indefinitely, this guarantees that the program eventually reaches q if it started
in I.

4.2 Iterative Choice and Its Properties

Now we consider a derivative of the angelic iteration Sφ, the iterative choice
statement. This specification construct was defined in [6] as follows:

do 〈〉ni=1gi :: Si od =̂ (Iterative choice)
(µ X • {g1}; S1; X t . . . t {gn}; Sn; X t skip)

As such, iterative choice is equivalent to the angelic iteration of the statement
tn

i=1{gi}; Si,

do 〈〉ni=1gi :: Si od = (tn
i=1{gi}; Si)φ

and its properties can be derived from the corresponding properties of the angelic
iteration.

An angelic iteration is refined if every alternative in the old system is refined
by the angelic choice of all the alternatives in the new system.



1470 Ralph Back, Anna Mikhajlova, and Joakim von Wright

Theorem 3. For arbitrary state predicates g1, . . . , gn and g′1, . . . , g
′
m, and arbi-

trary contract statements S1, . . . , Sn and S′
1, . . . , S

′
m we have that

(∀i | 1 ≤ i ≤ n • {gi}; Si v tm
j=1{g′j}; S′

j) ⇒
do 〈〉ni=1gi :: Si od v do 〈〉mj=1g

′
j :: S′

j od

This can be compared with the rule for Dijkstra’s traditional do-loop, where ev-
ery alternative of the new loop must refine the demonic choice of the alternatives
of the old loop (and the exit condition must be unchanged).

Two useful corollaries state that whenever every option is refined, the itera-
tive choice of these options is a refinement, and also that adding alternatives in
the iterative choice is a refinement.

Corollary 1. For arbitrary state predicates g1, . . . , gn and g′1, . . . , g
′
n, and arbi-

trary contract statements S1, . . . , Sn and S′
1, . . . , S

′
n we have that

g1 ⊆ g′1 ∧ . . . ∧ gn ⊆ g′n ∧ {g1}; S1 v S′
1 ∧ . . . ∧ {gn}; Sn v S′

n ⇒
do 〈〉ni=1gi :: Si od v do 〈〉ni=1g

′
i :: S′

i od

Corollary 2. For arbitrary state predicates g1, . . . , gn+1 and arbitrary contract
statements S1, . . . , Sn+1 we have that

do 〈〉ni=1gi :: Si od v do 〈〉n+1
i=1 gi :: Si od

The correctness rule for iterative choice states that for each ranked predicate
which is stronger than the precondition there should be a choice decreasing the
rank of this predicate or the possibility of establishing the postcondition directly:

pw ⊆ ∪n
i=1(gi ∩ Si. p<w) ∪ q

p {| do 〈〉ni=1gi :: Si od |} q

(iterative choice
correctness rule)

When the ranked predicates are written using an invariant I and a termina-
tion function t, this rule becomes

p ⊆ I I ∩ t = w ⊆ ∪n
i=1(gi ∩ Si. (I ∩ t < w)) ∪ q

p {| do 〈〉ni=1gi :: Si od |} q

From the correctness rule we immediately get the iterative choice introduc-
tion rule

pw ⊆ ∪n
i=1(gi ∩ Si. p<w) ∪ q[x′ := x]

{p}; [x := x′ | q] v do 〈〉ni=1gi :: Si od

(iterative choice
introduction rule)

where x does not occur free in q.



Reasoning About Interactive Systems 1471

4.3 Proving Correctness of the Interactive Dialog Box

Suppose that the font “Times” belongs to the set of available fonts, Fonts, and
the size 12 is in the set of available sizes, Sizes . Can the user, by making the
right choices, select this font with this size? The answer to this question can be
given by verifying the following total correctness assertion:

“Times” ∈ Fonts ∩
12 ∈ Sizes {|

do true :: {fentry := s | s in Fonts}
〈〉 true :: {sentry := n |n in Sizes}
od

|} fentry = “Times”∩
sentry = 12

Using the rule for the correctness of iterative choice with the invariant I and
the termination function t such that

I = “Times” ∈ Fonts ∩ 12 ∈ Sizes
t = #({“Times”, 12} \ {fentry, sentry})

we then need to prove two subgoals:

1. “Times” ∈ Fonts ∩ 12 ∈ Sizes ⊆ I
2. I ∩ t = w ⊆ true ∩ {fentry := s | s in Fonts}. (I ∩ t < w) ∪

true ∩ {sentry := n |n in Sizes}. (I ∩ t < w) ∪
fentry = “Times” ∩ sentry = 12

The first subgoal states that the precondition is stronger than the invariant and
is trivially true. The second subgoal states that, when the invariant holds, at least
one of the alternatives will decrease the termination function while preserving
the invariant. It can be proved by using the definition of angelic relational update
and rules of logic.

Being very simple, this example nethertheless demonstrates the essence of
establishing correctness in the presence of iterative choice. By verifying that this
specification is correct with respect to the given pre- and postcondition, we can
guarantee that any refinement of it will preserve the correctness.

4.4 Data Refinement of Iterative Choice

Data refinement is a general technique by which one can change data represen-
tation in a refinement. A contract statement S may begin in a state space Σ and
end in a state space Γ , written S : Σ 7→ Γ . Assume that contract statements
S and S′ operate on state spaces Σ and Σ′ respectively, i.e. S : Σ 7→ Σ and
S′ : Σ′ 7→ Σ′. Let R : Σ′ → Σ → Bool be a relation between the state spaces Σ′

and Σ. Following [3], the statement S is said to be data refined by the statement
S′ via the relation R, denoted S v{R} S′, if {R}; S v S′; {R}. An alternative
and equivalent characterization of data refinement using the inverse relation R−1

arises from the fact that {R} and [R−1] are each others inverses, in the sense
that {R}; [R−1] v skip and skip v [R−1]; {R}. Abbreviating {R}; S; [R−1] by
S ↓{R} we have that

S v{R} S′ ≡ S ↓{R} v S′



1472 Ralph Back, Anna Mikhajlova, and Joakim von Wright

We will call D an abstraction statement if D is such that D = {R}, for some
R. In this case, our notion of data refinement is the standard one, often referred
to as forward data refinement or downward simulation.

Data refinement properties of angelic iteration and iterative choice cannot
be proved directly by a duality argument from the corresponding results for the
traditional iteration operators. However, they can still be proved:

Theorem 4. Assume that S and D are monotonic predicate transformers and
that D is an abstraction statement. Then

Sφ ↓D v (S ↓D)φ

As a consequence, the angelic iteration operator preserves data refinement:

Corollary 3. Assume that S, S′ and D are monotonic predicate transformers
and that D is an abstraction statement. Then

S vD S′ ⇒ Sφ vD S′φ

Proofs of Theorem 4 and Corollary 3 can be found in [2].
Data refinement rules for iterative choice also arise from the corresponding

rules for angelic iteration. First, data refinement can be propagated inside iter-
ative choice:

Theorem 5. Assume that g1, . . . , gn are arbitrary state predicates, S1, . . . , Sn

are arbitrary contract statements, and D is an abstraction statement. Then

do 〈〉ni=1gi :: Si od↓D v do 〈〉ni=1D. gi :: Si ↓D od

A more general rule shows how a proof of data refinement between itera-
tive choices can be reduced to proofs of data refinement between the iterated
alternatives.

Theorem 6. Assume that g1, . . . , gn and g′1, . . . , g
′
m are arbitrary state predi-

cates, S1, . . . , Sn and S′
1, . . . , S

′
m are arbitrary contract statements, and D is an

abstraction statement. Then

(∀i | 1 ≤ i ≤ n • {gi}; Si vD tm
j=1{g′j}; S′

j) ⇒
do 〈〉ni=1gi :: Si od vD do 〈〉mj=1g

′
j :: S′

j od

Proofs of Theorems 5 and 6 can be found in [2]. A useful special case of these
theorems is when the number of choices is the same and they are refined one by
one.

Corollary 4. Assume that g1, . . . , gn and g′1, . . . , g
′
n are arbitrary state predi-

cates, S1, . . . , Sn and S′
1, . . . , S

′
n are arbitrary contract statements, and D is an

abstraction statement. Then

D. g1 ⊆ g′1 ∧ . . . ∧ D. gn ⊆ g′n ∧ {g1}; S1 vD S′
1 ∧ . . . ∧ {gn}; Sn vD S′

n ⇒
do 〈〉ni=1gi :: Si od vD do 〈〉ni=1g

′
i :: S′

i od



Reasoning About Interactive Systems 1473

4.5 Data Refinement of Interactive Dialog Box

Let us now demonstrate how our original specification of a dialog box can be
data refined to a more concrete one. Suppose that we would like to describe
a dialog box, where the user can select a font by choosing it from the list of
available fonts or by typing the font name in the entry field. The size of the font
can also be chosen either from the list of sizes or by typing the corresponding
number in the entry field. Using the iterative choice statement, we can model
this kind of a dialog box as shown in Fig. 2.

In this specification the arrays fonts : array 1..fmax of String and sizes :
array 1..smax of Nat are used to represent lists of the corresponding items. When
the user opens the dialog box, the system initializes fonts and sizes to contain
elements from the constant sets Fonts and Sizes . The function array to set , used
for this purpose, is given as follows:

array to set = (λ (a, n) . {e | ∃ i • 1 ≤ i ≤ n ∧ a[i] = e})

The initialization conditions #Fonts = fmax and #Sizes = smax state, in ad-
dition, that the arrays contain exactly as many elements as the corresponding
constant sets. Indices fpos : Nat and spos : Nat represent the currently cho-
sen selections in the corresponding arrays and are initialized to index some
items in fonts and sizes ; the variables fentry and sentry are initialized with
values of these items. The implicit invariant maintained by DialogBox states
that fonts [fpos ] = fentry and sizes [spos ] = sentry, i.e. the currently selected
font in the list of available fonts is the same as the one currently typed in the
font entry field, and similarly for font sizes.

The iterative choice statement is the contract stipulating the interaction be-
tween the user making choices and the system reacting to these choices. Consider,

DialogBox = [fentry , sentry , fonts, sizes , fpos, spos :=
fentry ′, sentry ′, fonts ′, sizes ′, fpos ′, spos ′ |

array to set(fonts ′, fmax) = Fonts ∧ #Fonts = fmax ∧
array to set(sizes ′, smax) = Sizes ∧ #Sizes = smax ∧
fentry ′ = fonts ′[fpos ′] ∧ sentry ′ = sizes ′[spos ′]∧
1 ≤ fpos ′ ≤ fmax ∧ 1 ≤ spos ′ ≤ smax ];

do true :: {fentry := fentry ′ | ∃ i • 1 ≤ i ≤ fmax ∧ fonts [i] = fentry ′};
[fpos := fpos ′ | fonts[fpos ′] = fentry ]

〈〉 true :: {sentry := sentry ′ | ∃ i • 1 ≤ i ≤ smax ∧ sizes [i] = sentry ′};
[spos := spos ′ | sizes [spos ′] = sentry ]

〈〉 true :: {fpos := fpos ′ | 1 ≤ fpos ′ ≤ fmax}; fentry := fonts[fpos ]
〈〉 true :: {spos := spos ′ | 1 ≤ spos ′ ≤ smax}; sentry := sizes [spos ]
od

Fig. 2. Specification of a dialog box refinement



1474 Ralph Back, Anna Mikhajlova, and Joakim von Wright

for example, the case when the user wants to select a font by directly choosing
it from the list of available fonts, as modeled by the third alternative. First, the
user is offered to pick an index fpos ′, identifying a certain font in the list of
fonts, and then the system updates the variable fentry to maintain the invariant
fonts [fpos ] = fentry.

The abstraction relation coercing the state of DialogBox to the state of
DialogBoxSpec is essentially an invariant on the concrete variables:

array to set(fonts , fmax ) = Fonts ∧ #Fonts = fmax ∧ 1 ≤ fpos ≤ fmax ∧
array to set(sizes , smax ) = Sizes ∧ #Sizes = smax ∧ 1 ≤ spos ≤ smax ∧
fentry = fonts [fpos ] ∧ sentry = sizes [spos ]

Strictly speaking, we should distinguish between fentry, sentry of
DialogBoxSpec and fentry, sentry of DialogBox ; the abstraction relation also
includes the conditions fentry = fentry0 and sentry = sentry0, where fentry0

and sentry0 denote fentry and sentry of DialogBoxSpec. It can be shown that
DialogBoxSpec v{R} DialogBox , where

R. concrete. abstract = array to set(fonts , fmax ) = Fonts ∧ #Fonts = fmax ∧
array to set(sizes , smax ) = Sizes ∧ #Sizes = smax ∧
1 ≤ fpos ≤ fmax ∧ 1 ≤ spos ≤ smax ∧
fentry = fonts [fpos ] ∧ sentry = sizes [spos ]∧
fentry = fentry0 ∧ sentry = sentry0

with concrete = fentry , sentry, fonts , sizes , fpos , spos and abstract = fentry0,
sentry0.

5 Conclusions and Related Work

We have described an interactive computing system in terms of contracts binding
participating agents and stipulating their obligations and assumptions. In par-
ticular, we have focused on the iterative choice contract and studied its algebraic
properties and modeling capabilities. This work extends [4] where Back and von
Wright introduced the notions of correctness and refinement for contracts and
defined their weakest precondition semantics.

The notion of contracts is based on the fundamental duality between demonic
and angelic nondeterminism (choices of different agents), abortion (breaching a
contract), and miracles (being released from a contract). The notion of angelic
nondeterminism goes back to the theory of nondeterministic automata and the
nondeterministic programs of Floyd [8]. Broy in [7] discusses the use of demonic
and angelic nondeterminism with respect to concurrency. Some applications of
angelic nondeterminism are shown by Ward and Hayes in [12]. Adabi, Lamport,
and Wolper in [1] study realizability of specifications, considering them as “de-
termined” games, where the system plays against the environment and wins if
it produces a correct behavior. Specifications are identified with the properties
that they specify, and no assumptions are made about how they are written.



Reasoning About Interactive Systems 1475

Moschovakis in [11] studies non-deterministic interaction in concurrent commu-
nication also considering it from the game-theoretic perspective.

Another direction of related work concentrates on studying the role of interac-
tion in computing systems. Wegner in [13] proposes to use interaction machines
as “a formal framework for interactive models”. Interaction machines are de-
scribed as extensions of Turing machines with unbounded input streams, which
“precisely capture fuzzy concepts like open systems and empirical computer sci-
ence”. The main thesis of work presented in [13] and further developed in [14] is
that “Logic is too weak to model interactive computation” and, instead, empiri-
cal models should be used for this purpose. Apparently, first-order logic is meant
by the author, which is indeed too weak for modeling interaction. However, our
formalization is based on an extension of higher-order logic and, as such, is
perfectly suitable for this purpose. Also, it is claimed in [13] that “Interaction
machines are incomplete in the sense of Gödel: their nonenumerable number of
true statements cannot be enumerated by a set of theorems. [...] The incomplete-
ness of interactive systems implies that proving correctness is not merely hard
but impossible.” We believe that our work presents a proof to the contrary.

As future work we intend to investigate modeling capabilities of iterative
choice further. In particular, its application to modeling client and server proxies
in distributed object-oriented systems appears to be of interest. Various archi-
tectural solutions, such as implicit invocation [9], can also be described in this
framework, and the work on this topic is the subject of current research.

References

[1] M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable specifications
of reactive systems. In Proceedings of 16th ICALP, volume 372 of LNCS, pages
1–17, Stresa, Italy, 11–15 July 1989. Springer-Verlag.

[2] R. Back, A. Mikhajlova, and J. von Wright. Modeling component environments
and interactive programs using iterative choice. Technical Report 200, Turku
Centre for Computer Science, September 1998.

[3] R. J. R. Back. Changing data representation in the refinement calculus. In 21st
Hawaii International Conference on System Sciences. IEEE, January 1989.

[4] R. J. R. Back and J. von Wright. Contracts, games and refinement. In 4th Work-
shop on Expressiveness in Concurrency, EXPRESS’97, volume 7 of Electronic
Notes in Theoretical Computer Science. Elsevier, September 1997.

[5] R. J. R. Back and J. von Wright. Reasoning algebraically about loops. Technical
Report 144, Turku Centre for Computer Science, November 1997.

[6] R. J. R. Back and J. von Wright. Refinement Calculus: A Systematic Introduction.
Springer-Verlag, April 1998.

[7] M. Broy. A theory for nondeterminism, parallelism, communication, and concur-
rency. Theoretical Computer Science, 45:1–61, 1986.

[8] R. W. Floyd. Assigning meaning to programs. In J. T. Schwartz, editor, Math-
ematical aspects of computer science, volume 19, pages 19–31. American Mathe-
matical Society, 1967.

[9] D. Garlan and D. Notkin. Formalizing design spaces: Implicit invocation mecha-
nisms. In VDM 91, Volume 1: Conference Contributions, LNCS 551, pages 31–44.
Springer-Verlag, Oct. 1991.



1476 Ralph Back, Anna Mikhajlova, and Joakim von Wright

[10] C. C. Morgan. Programming from Specifications. Prentice–Hall, 1990.
[11] Y. N. Moschovakis. A model of concurrency with fair merge and full recursion.

Information and Computation, 93(1):114–171, July 1991.
[12] N. Ward and I. Hayes. Applications of angelic nondeterminism. In P.A.C.Bailes,

editor, 6th Australian Software Engineering Conference, pages 391–404, Sydney,
Australia, 1991.

[13] P. Wegner. Interactive software technology. In J. Allen B. Tucker, editor, The
Computer Science and Engineering Handbook. CRC Press, in cooperation with
ACM, 1997.

[14] P. Wegner. Interactive foundations of computing. Theoretical Computer Science,
192(2):315–351, Feb. 1998.


	Introduction
	Contracts and Refinement
	Contract Notation
	Using Contracts
	User Interaction
	Semantics, Correctness, and Refinement of Contracts

	Iterative Choice and Its Modeling Capabilities
	Modeling Component Environment
	Modeling an Interactive Dialog Box

	Definition and Properties of Iterative Choice
	Angelic Iteration and Its Properties
	Iterative Choice and Its Properties
	Proving Correctness of the Interactive Dialog Box
	Data Refinement of Iterative Choice
	Data Refinement of Interactive Dialog Box

	Conclusions and Related Work

