
Generalizing Action Systems to Hybrid Systems

R.-J. Back, L. Petre and I. Porres

Turku Centre for Computer Science (TUCS)
Lemminkäisenkatu 14A, FIN-20520 Turku, Finland

{Ralph-Johan.Back,Luigia.Petre,Ivan.Porres}@abo.fi

Abstract. Action systems have been used successfully to describe di-
screte systems, i.e.,systems with discrete control acting upon a discrete
state space. In this paper we extend the action system approach to hybrid
systems by defining continuous action systems. These are systems with
discrete control over a continuously evolving state, whose semantics is
defined in terms of traditional action systems. We show that continuous
action systems are very general and can be used to describe a diverse
range of hybrid systems. Moreover, the properties of continuous action
systems are proved using standard action systems proof techniques.

1 Introduction

A system using discrete control over continuously evolving processes is referred
to as a hybrid system. The use of formal methods and models to describe hybrid
systems has attracted quite a lot of attention in the last years, with a number
of different models and formalisms being proposed in the literature (see e.g., [2,
13,9]). We continue this line of research, essentially proposing what we believe is
a new and very general model for hybrid systems, based on the action systems
paradigm.

Action systems [4] have been used successfully to model discrete systems, i.e.,
systems that use a discrete control upon a discrete state space. Their original
purpose was to model concurrent and distributed systems. In this paper we
show that the action system model can be adapted to model hybrid systems.
An important advantage of this adaption is that standard modeling and proof
techniques, developed for ordinary action systems, can be reused to model and
reason about hybrid systems.

Our extension of action systems to hybrid systems is based on a new approach
to describing the state of a system. Essentially, our state variables will range
over functions over time, rather than just over values. This allows a variable to
capture not only its present value, but also the whole history of values that the
variable has had, as well as the default future values that the variable will receive.
Updating a state variable is restricted so that only the future behavior of the
variable can be changed, not its past behavior. We will refer to action systems
with this model of state as continuous action systems. Continuous action systems
are inspired by, but differ from, the extension of action systems to hybrid systems
described in [14].

M. Joseph (Ed.): FTRTFT 2000, LNCS 1926, pp. 202–213, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Generalizing Action Systems to Hybrid Systems 203

Proofs about action system properties are based on the refinement calcu-
lus [7]. This extends the programming logic based on weakest precondition pre-
dicate transformers that was proposed in [10]. Action systems are intended to be
stepwise developed, the correctness of these refinement steps being verified wit-
hin the refinement calculus. Thereby, we get an implicit notion of refinement also
for continuous action systems. Even though the refinement of hybrid systems is
not the purpose of this paper, the approach we adopt for hybrid systems fits
well into the refinement calculus and it can be used for systems where correct
construction is a central concern.

The refinement calculus is based on higher-order logic, which in turn is an ex-
tension of simply typed lambda calculus. Functions are defined by λ-abstraction
and can be used without explicit definition and naming. As an example, the fun-
ction that calculates the successor of a natural number is defined as (λn ·n+1).
We denote by f.x the application of the function f to the argument x so that,
e.g., (λn · n + 1).1 = 2. A binary relation R ⊆ A × B is here considered as a
function R : A → PB, i.e., mapping elements in A to sets of elements in B.

We proceed as follows. The action system model is briefly reviewed in Sec-
tion 2. We define the continuous action systems in Section 3. Their semantics
is specified by explaining how to translate them into ordinary action systems.
Section 4 contains examples of hybrid systems, modeled using our framework. In
Section 5 we show how to prove safety properties for continuous action systems.
Conclusions and comparisons to related work are presented in Section 6.

2 Action Systems

We start by giving a brief overview of the action systems formalism. An action
system is essentially a discrete state space updated by a discrete control mecha-
nism. The state of the system is described using attributes or program variables.
We define a finite set Attr of attribute names and assume that each attribute
name in Attr is associated with a non-empty set of values. This set of values is
the type of the attribute. If the attribute x takes values from Val, we say that
x has the type Val and we write it as x : Val . We consider several predefined
types, like Real for the set of real numbers, Real+ for the set of non-negative real
numbers, and Bool for the boolean values {F,T}.

An action system consists of a finite set of attributes, used to observe and
manipulate the state of the system, and a finite set of actions that act upon the
attributes. This set of actions models the control mechanism over the state of
the system. An action system A has the following form:

A
∧= |[var x : Val • S0 ; do A12 . . . 2 Am od]| : y

Here x : Val = x1 : Val1, . . . , xn : Valn are the local attributes of the system, S0
is a statement that initializes the attributes, while ‘Ai = gi → Si’, i = 1, . . . , m,
are the actions of the system. The boolean expression gi is the guard of the
action Ai and Si is the body of the action. The attributes y = y1, . . . , yk are
defined in the environment of the action system and called imported attributes.

204 R.-J. Back, L. Petre and I. Porres

Attributes in x may be exported, in the sense that they can be read, or written,
or both read and written by environment actions. In this case, we decorate these
attributes with −, + or ∗, respectively. An action A of the form ‘g → S’ is a
guarded statement that can be executed only when g is enabled, i.e., when g
evaluates to T. The body S of an action is defined by the following syntax:

S ::= abort | skip | x : = e | [x : = x′|R] | if g then S1 else S2 fi | S1 ; S2

Here x is a list of attributes, e is a corresponding list of expressions, x′ is a list of
variables standing for unknown values, and R is a relation specified in terms of x
and x′. Intuitively ‘skip’ is the stuttering action, ‘x : =e’ is a multiple assignment,
‘if g then S1 else S2 fi’ is the conditional composition of two statements, and
‘S1 ;S2’ is the sequential composition of two statements. The action ‘abort’ always
fails and is used to model disallowed behaviors. Given a relation R(x, x′) and a
list of attributes x, we denote by [x : = x′|R] the non-deterministic assignment
of some value x′ ∈ R.x to x (the effect is the same as abort, if R.x = ∅).
The semantics of the actions language has been defined in terms of weakest
preconditions in a standard way [10]. Thus, for any predicate q, we define

wp(abort, q) = F
wp(skip, q) = q
wp(x : = e, q) = q[x := e]
wp([x : = x′|R], q) = (∀x′ ∈ R.x · q[x := x′])
wp(S1 ; S2, q) = wp(S1, wp(S2, q))
wp(if g then S1 else S2 fi, q) = if g then wp(S1, q) else wp(S2, q) fi

The term q[x := e] stands for the result of substituting e for all free occurrences
of variable x in predicate q.

The execution of an action system is as follows. The initialization S0 will
set the attributes x to some specific values, using a sequence of possibly non-
deterministic assignments. Then, enabled actions are repeatedly chosen and exe-
cuted. The chosen actions will change the values of the attributes in a way that
is determined by the action body. Two or more actions can be enabled at the
same time, in which case one of them is chosen for execution, in a demonically
non-deterministic way. The computation terminates when no action is enabled.
Actions systems model parallel execution by interleaving atomic actions in a
demonically non-deterministic fashion.

In the following, we specify a notion of time and show how to model attributes
that are functions of time. These extensions to the action systems formalism
define a new model for hybrid systems.

3 Continuous Action Systems

A system using a discrete control mechanism over a continuously evolving state
is referred to as a hybrid system. In this section we introduce continuous action
systems, an extension of the action system formalism to model hybrid systems.

A continuous action system consists of a finite set of time-dependent attri-
butes together with a finite set of actions that act upon them. The attributes

Generalizing Action Systems to Hybrid Systems 205

can range over discrete or continuous domains and form the state of the system.
A continuous action system is of the form:

C
∧= |(var x : Real+ → V al • S0 ; do g1 → S12 . . . 2 gm → Smod)| : y (1)

Intuitively, executing a continuous action system proceeds as follows. There
is an implicit variable now, that shows the present time. Initially now = 0.
The initialization S0 assigns initial time functions to the attributes x1, . . . , xn.
These time functions describe the default future behavior of the attributes, whose
values may, thereby, change with the progress of time. The system will then start
evolving according to these functions, with time (as measured by now) moving
forward continuously. The guards of the actions may refer the value of now, as
may expressions in the action bodies and the initialization statements.

As soon as one of the conditions g1, . . . , gm becomes true, the system choo-
ses one of the enabled actions, say gi → Si, for execution. The choice is non-
deterministic if there is more than one such action. The body Si of the action
is then executed. Execution is atomic and instantaneous. It will usually change
some attributes by changing their future behavior. We write x :− e for an as-
signment rather than x := e, to emphasize that only the future behavior of the
attribute x is changed to the function e and the past behavior remains unchan-
ged. Attributes that are not changed will behave as before. After the changes
stipulated by Si have been done, the system will evolve to the next time instance
when one of the actions is enabled, and the process is repeated. The next time
instance when an action is enabled may well be the same as the previous, i.e.,
time does not need to progress between the execution of two enabled actions.
This is usually the case when the system is doing some (discrete, logical) compu-
tation to determine how to proceed next. Such computation does not take any
time. It is possible that after a certain time instance, none of the actions will
be enabled anymore. This just means that the system will continue to evolve
forever according to the functions last assigned to the attributes.

As an example of a continuous action system consider the system in Fig. 1.
The attributes x and clock are first initialized to the constant function (λt · 0)
and the switching function up is set to the constant function (λt · F). The guard
of the first action is immediately enabled at time 0, so the first action’s body
is executed immediately. The future behaviors of clock and x are changed to
increase linearly from 0, and the future behavior of up is changed to the constant
function (λt · T), i.e., up is set to be T in all the future time instances. After
this, the system starts to evolve by advancing time continuously. In particular,
the value of x increases linearly, depending on time. When x gets value 1, the
second action is enabled. The clock is then first reset, the future behavior of
x is changed to decrease linearly with the clock value, and the future value of
up is set to the constant F. This continues until x reaches 0, when the first
action is again enabled, changing x to increase again, and so on. The effect of
these two actions is a sawtooth-like behavior, where the value of x alternatively
increases and decreases forever. The evolution of the system is also described in
Fig. 1, showing each attribute on the same time domain together with the points

206 R.-J. Back, L. Petre and I. Porres

Saw
∧= |(var x, clock : Real+ → Real ; up : Real+ → Bool

• x :− (λt · 0) ; clock :− (λt · 0) ; up :− (λt · F);
do x.now = 0 ∧ ¬up.now →

clock :− (λt · t − now);
x :− clock ; up :− (λt · T)

2 x.now = 1 ∧ up.now →
clock :− (λt · t − now);
x :− (λt · 1 − clock.t);
up :− (λt · F)

od
)|

2nd
act act

1st 2nd
actact

1st

t

x

up

0

clock

1

True

False

0

1

t

t

0 21 3

Fig. 1. Continuous action system Saw (left) and its behavior (right).

in time where a discrete action is performed. We see that a continuous action
system is just a non-deterministic way of defining a collection of time dependent
functions. One of the main advantages of this model for hybrid computation is
that both discrete and continuous behavior can be described in the same way.
In particular, if the attributes are assigned only constant functions, we obtain a
discrete computation.

Semantics of continuous action systems. Let C be the continuous action
system in (1). We explain the meaning of C by translating it into an ordinary
action system. Its semantical interpretation is given by the following (discrete)
action system C̄:

C̄
∧= |[var now : Real+, x : Real+ → Val

• now := 0 ; S0 ; N ;
do g1 → S1 ; N2 . . . 2 gm → Sm ; N od

]| : y

(2)

Here the attribute now is declared, initialized, and updated explicitly. It models
the time moments that are of interest for the system, i.e., the starting time
and the succeeding moments when some action is enabled. The value of now is
updated by the statement N

∧= now := next.gg.now . Here gg = g1 ∨ ... ∨ gm

is the disjunction of all guards of the actions and next is defined by

next.gg.t
∧=

{
min{t′ ≥ t | gg.t′}, if ∃ t′ ≥ t such that gg.t′

t, otherwise.
(3)

The function next models the moments of time when at least one action is enab-
led. Only at these moments can the future behavior of attributes be modified. If

Generalizing Action Systems to Hybrid Systems 207

no action will ever be enabled, then the second branch of the definition will be
followed, and the attribute now will denote the moment of time when the last
discrete action was executed. In this case the discrete control terminates and
the attributes will evolve forever according to the functions last assigned. We
assume in this paper that the minimum in the definition of next always exists
when at least one guard is enabled in the present or future. Continuous action
systems that do not satisfy this requirement are considered ill-defined.

The future update x :− e is defined by x :− e
∧= x := x/now/e where

x/t0/e
∧= (λt · if t < t0 then x.t else e.t fi). Thus, only the future behavior of x

is changed by the future update. It is important to note that all the attributes of
a continuous action system are functions of time, except for now. As an example,
the statement x :− (λt · t) updates the default future of x with an increasing
function, while x :− (λt · now) updates it with a constant function. We write
x :− c as a shorthand for x :− (λt · c) when c is a constant function.

This explication of a continuous action system shows it essentially as a collec-
tion of time functions x0, . . . , xn over the non-negative reals, defined in a step-
wise manner. The steps form a sequence of intervals I0, I1, I2, . . . , where each
interval Ik is either a left closed interval of the form [ti . . . ti+1) or a closed in-
terval of the form [ti, ti], i.e., a point. The action system determines a family
of functions x0, . . . , xn which are stepwise defined over this sequence of inter-
vals and points. The extremes of these intervals correspond to the control points
of the system where a discrete action is performed. In the Saw example, the
sequence of intervals is [0], [0 . . . 1), [1 . . . 2), [2 . . . 3), . . . As such, the continuous
action system can be best understood as the limit of a sequence of approximati-
ons of the time functions x0, . . . , xn, defined over successively longer and longer
intervals [0 . . . ti), where i = 0, 1, 2, Looking at the example in this way, its
sequence of initial segments is [0], [0 . . . 1), [0 . . . 2), [0 . . . 3), . . . and the defined
approximations are successively:

x0.t = 0, 0 ≤ t; x1.t = t, 0 ≤ t; x2.t =
{

t, 0 ≤ t < 1
1 − t,1 ≤ t

; x3.t =




t, 0 ≤ t < 1
1 − t,1 ≤ t < 2
t − 2,2 ≤ t

For each attribute xi there is a defined history of its past, i.e. the interval
[0,now), its present value in the point [now], and a default future. The execution
of an action can modify the present value of an attribute and its default future,
but not its past. It is important to note that such a definition does not necessa-
rily determine a single function for xi. Because of the non-deterministic choices
involved, there might be a collection of such function tuples that are allowed
by the continuous action system, and we cannot know which one of these will
actually be the one the system follows. Thus, the system behavior may only be
determined up to a certain tolerance, and any system behavior that is within
these limits is possible.

Another important observation regards the possibility of Zeno behavior. That
is, our definition does not guarantee that the sequence of generated intervals
will cover all the non-negative reals. They might only cover an initial segment of
these. In this case, there is a limit point of time that the action system reaches

208 R.-J. Back, L. Petre and I. Porres

when the number of iterations reaches infinity. These systems are well-defined
but the simple explication of the behavior of the hybrid system is then not
sufficient. For this, we further assume that the system is restarted at the limit
point, and repeat the process again. This is meaningful if all the attribute values
converge to a well-defined value in the limit. This restart can be carried out
as many times as needed. Thus, a continuous action systems may have multiple
limit points in its execution. However, the standard action system semantics does
not allow multiple limit points, so this is a point where the semantics has to be
extended. For simplicity, we assume in the sequel that there is no Zeno-behavior
and a single limit point is sufficient. The absence of Zeno behavior means that
the action system will define the values of the attributes for the whole domain
of Real+.

A simple way of reaching a limit point is when a control computation (where
the time does not advance) does not terminate. This means that the conti-
nuous behavior of the system is stuck at the last time instance reached. Non-
termination of the control computation is most certainly undesired and unin-
tended. This means that is desirable to prove that control computations where
time does not advance always terminate.

Composing continuous action systems In order to model complex hybrid
systems, where several different subsystems or components evolve concurrently,
we need to formally define the composition of continuous action systems. Two
actions systems communicate by means of imported and exported variables.
We can also model other means of communication using the action systems
framework [6], but this is out of the scope of this paper. For parallel composition,
we may also need to rename certain attributes of the system when describing
more complex systems, but we ignore this aspect here for brevity.

We define the parallel composition of two continuous systems by using essen-
tially the parallel composition operator for ordinary action systems [5]. Thus, if
we have two continuous action systems C and C′ as in (1), then their parallel
composition is the continuous action system C ‖ C′ defined as follows:

C ‖ C′ ∧= |(var x : Real+ → Val, x′ : Real+ → Val′;
• S0 ; S′

0;
do g1 → S12 . . . 2 gm → Sm2 g′

1 → S′
12 . . . 2 g′

n → S′
n od

)| : (y ∪ y′) − (z ∪ z′)

(4)

where the unprimed entities originally belonged to C and the primed entities
to C′. We assume here that the variables x and x′ are disjoint. We need to
combine the continuous action systems before we translate them into discrete
action systems, because the local variable now appears in both C̄ and C̄′. By
combining the continuous action systems first, we ensure that C ‖ C′ uses a
single now variable, which is checked by actions from both components.

Thus, parallel composition essentially combines the attributes of the two
component systems and, therefore, their continuous evolution. Because the ac-
tions in the parallel composition are the combined actions of the two systems,

Generalizing Action Systems to Hybrid Systems 209

discrete changes will usually occur more frequently. An action in one component
system may depend on an attribute in the other component system, which may
be again modified by actions of the former system. This means that the behavior
of a system in a parallel composition is usually different from the behavior of
the system when it is alone.

4 Modeling Systems

In this section we illustrate how a hybrid system can be described as a conti-
nuous action system. We show how to model real-time systems, systems using
differential equations, and also a press that reacts to external signals from the
environment.

We can use clock variables to measure the passage of time and to correlate
the execution of an action with the time. A clock variable is an attribute that
measures the time elapsed since it was set to zero. Assume that c is an attribute
of type Real. We then use the following definition for resetting the clock c:

reset(c) ∧= c :− (λt · t − now)

This definition is just a convenience for correlating the behavior of a system
with the passage of the time. Since a clock variable is a regular attribute, we
can define as many clocks as needed and reset them independently. It is also
possible to do arithmetic operations with clock variables, to use time constrains
as guards, or to refer to past values of an attribute, e.g. x.(now − 1). Hence,
continuous action systems can be used to model real-time systems.

The behavior of a dynamic system is often described using a system of dif-
ferential equations. We can allow this kind of definitions by introducing the
shorthand

ẋ :− f
∧= [x :− y | y.now = x.now ∧ ẏ = f.y, y ≥ now]

This will assign to x a time function that satisfies the given differential equation
and which is such that the function x is continuous at now. As an example,
if f = (λt · c), where c is a constant value, then we have that ẋ :− (λt · c) ≡
x :− (λt · x.now + c ∗ (t − now)). Thus, we can use continuous action systems
to express hybrid systems using either explicit functional expressions or implicit
differential equations.

An example of a press from a metal processing factory [12] is shown in Fig. 2.
The press works as follows. First, its lower part is raised until the middle position.
Then an upper conveyor belt feeds a metal blank into the press. When the press
is loaded (signalled by sensor1 being T), the lower part of the press is raised
until the top position and the blank is forged. The press will then move down
until the bottom position and the forged blank is placed into a lower conveyor
belt. When the press is unloaded (signalled by sensor2 being T), its lower part
is raised to the middle position, ready for being loaded again.

The press works cyclically and keeps evolving from one phase to another. We
model these phases with a task attribute in the continuous action system Press

210 R.-J. Back, L. Petre and I. Porres

top

middle

bottom

sensor1

sensor2

Press
∧=

|(var p, c : Real+ → Real;
task : Real+ → {loading, pressing, unloading,

moving2unload, moving2load}
• reset(c) ; p :− middle ; task :− loading;

do task.now = loading ∧ sensor1.now →
reset(c) ; p :− (λt · middle + v ∗ c.t);
task :− pressing

2 task.now = pressing ∧ p.now = top →
reset(c) ; p :− (λt · top − v ∗ c.t);
task :− moving2unload

2 task.now = moving2unload ∧ p.now = bottom →
p :− bottom ; task :− unloading

2 task.now = unloading ∧ ¬sensor2.now →
reset(c) ; p :− (λt · bottom + v ∗ c.t);
task :− moving2load

2 task.now = moving2load ∧ p.now = middle →
p :− middle ; task :− loading

od
)| : sensor1, sensor2

Fig. 2. Press functioning as a continuous action system.

shown in Fig. 2. This attribute can have the discrete values loading, pressing,
moving2unload, unloading, moving2load. The continuous attribute p shows the
position of the press plate and is, at different moments in time, a linearly in-
creasing, a linearly decreasing or a constant function of time. The positions of
reference for the press, i.e. bottom, middle, and top, are given as parameters.

The press example is a typical part of a control system. This kind of systems
are essentially composed from several components that work together in order
to meet the requirements of the overall system. Thus, an important feature of a
component is its interaction with the environment. In the case of the press the
interaction with the environment (two conveyor belts) is modeled with several
sensors. The sensors are modeled as imported attributes that can be changed
by the environment at any time. The press reads the values that sensor1 and
sensor2 display, but these values are updated by the environment in a way we
are not interested in here.

Other types of hybrid systems can be modelled as well using continuous
action systems. Some more examples can be found in [8,14].

5 Safety Properties

Properties of continuous action systems can be established by proving that these
properties hold for the corresponding discrete action systems. Hence, there is no
special proof theory for continuous action systems, but the standard proof theory
for action systems suffices (with the exception that we may need to consider

Generalizing Action Systems to Hybrid Systems 211

multiple limit points, as was mentioned earlier). In this paper, we concentrate
on safety properties, as in many cases they are the kind of properties that we
want to initially establish for hybrid systems.

A common characterization for a safety property is that nothing ‘bad’ hap-
pens during the lifetime of the system. Put in another way, a safety property
is a ‘good’ property G that always holds, i.e., (∀t ≥ 0 · G.t). We can esta-
blish this property for the action system C in (1) by proving that a property
I

∧= (∀t | 0 ≤ t < now · G′.t) is an invariant of the corresponding discrete
action system C̄, where (∀t ≥ 0 · G′.t ⇒ G.t). This implies the safety property,
provided that the system does not have a Zeno behavior and does not terminate
(i.e., now will go to infinity in the system). More precisely, the safety property
G holds when the system is started in an initial state satisfying P , if and only
if the following three conditions are satisfied for C̄:

∀t ≥ 0 · G′.t ⇒ G.t

P ⇒ wp(now := 0 ; S0 ; N, I)

I ∧ gi ⇒ wp(Si ; N, I), i = 1, . . . , m

Consider the press example in Fig. 2. We consider two safety properties. First, we
want to prove that the movable plate of the press does not pass the limits of the
machine. Formally this is expressed by (∀t ≥ 0 · bottom ≤ p.t ≤ top), where p is
the vertical position of the plate. Second, we want to prove that p is a continuous
function on Real+. We need to choose an invariant I that allows us to establish
the safety property (∀t ≥ 0 ·bottom ≤ p.t ≤ top)∧(p continuous on Real+) using
the proof rule above.

For the first conjunct of the safety property, an invariant of the form (∀t | 0 ≤
t ≤ now · bottom ≤ p.t ≤ top) would be sufficient. However, to prove the global
continuity property, we need a stronger invariant, which also ensures that the
press remains in the correct position during the loading and unloading opera-
tions. The following invariant I is sufficient for establishing the required safety
property:

I
∧= (p continuous on [0, now] ∧ (∀t | 0 ≤ t ≤ now · bottom ≤ p.t ≤ top) ∧

(∀t | 0 ≤ t ≤ now · task.t = loading ⇒ p.t = middle) ∧
(∀t | 0 ≤ t ≤ now · task.t = unloading ⇒ p.t = bottom))

The proof must establish that the invariant is satisfied by the initialization from
the moment 0 until the first moment an action is enabled and during the time
elapsed between the execution of two actions. The discharging of the proof ob-
ligations can be found in [8].

6 Conclusions and Related Work

In this paper we have shown how to generalize the action systems framework
for modeling hybrid systems, by introducing the notion of continuous action

212 R.-J. Back, L. Petre and I. Porres

systems. We model attributes in continuous action systems as functions over
time that are updated in a way that only changes their present and future
behavior. Essentially, this amounts to extending the notion of state with both
an history and a default future, thus generalizing the classical action systems
approach that only handles the present state.

This extension allows us to model systems that combine discrete control
with continuous behavior, the latter either defined by explicit functions of time
or by differential equations. We have also shown that the continuous action sy-
stems model provides a simple way of defining the parallel composition of hybrid
systems, using communication by means of imported and exported attributes.
Finally, we explained how to prove safety properties of continuous action systems
using the classical invariant method. We illustrated these concepts with a simple
example, while a complete case study can be found in [3].

The idea of extending an existing formalism to model real-time systems by
introducing a variable representing the time was presented by Abadi and Lam-
port in [1]. We follow the same approach here, extending an existing formalism
to handle hybrid systems instead of creating a new formalism specific for such
systems. This provides a clear advantage, as we can reuse all the previous results
on action systems to study real-time and hybrid systems models.

Rönkkö and Ravn [14] have already proposed a model for combining action
systems and continuous behavior, called hybrid action systems. In their model,
the continuous evolution of a variable is modeled as a special kind of atomic
action. An atomic action cannot be interrupted and its bounds are specified in
advance. This affects the parallel composition of systems, since different simulta-
neous actions must be combined into a sequence of atomic actions. In the worst
case, the parallel composition of two systems with n and m actions leads to
a system with n ∗ m actions. Also, there is no implicit notion of time in their
approach, which is not intended for modeling real-time systems. In our model,
parallel composition of two such systems gives a continuous action system with
n + m actions. This is a major simplification for handling large systems.

These advantages still exist when comparing our formalism with the hybrid
automata [2]. The number of states in the parallel composition of two hybrid
automata is also the product of the number of states of the original automata.
Note that in the hybrid automata formalism, transitions are fired synchronously,
while in the action system formalism actions are selected and executed asynchro-
nously. The continuous action system formalism is more expressive than hybrid
automata, as it allows references to historical values of the attributes in guards
and expressions. Compared to hybrid automata, our model also allows the at-
tributes to be selectively updated: only those attributes that are changed need
to be mentioned in an action.

Another interesting model for hybrid systems is provided by phase transition
systems [11]. In this model, the continuous behavior of the system is modeled
using a finite set of activities. However, only one activity can be enabled at a
certain time. Thus, a single activity completely defines the continuous behavior
of a system. Again, our model allows the attributes to be selectively updated.

Generalizing Action Systems to Hybrid Systems 213

The next step in the development of the continuous action systems formalism
is to illustrate their stepwise refinement. This will provide for the derivation of
executable control programs that are correct with respect to their specification,
given as a continuous action system.

Acknowledgement We would like to thank Cristina Cerschi, Mauno Rönkkö
and Hannu Toivonen for our inspiring discussions as well as to the anonymous
referees for their useful comments on the topics covered in this paper.

References

1. M. Abadi and L. Lamport. An old-fashioned receipe for real time. ACM Transac-
tions on Programming Languages and Systems, 16(5):1543–1571, 1994.

2. R. Alur, C. Courcoubetis, T.A. Henzinger, and P.H. Ho. Hybrid automata: an
algorithmic approach to the specification and verification of hybrid systems. In
R.L. Grossman, A. Nerode, A.P. Revn, and H. Rischel, editors, Hybrid Systems I,
volume LNCS 736, pages 209–229. Springer-Verlag, 1993.

3. R. J. R. Back and C. Cerschi. Modeling and verifying a temperature control system
using hybrid action systems. In Proc. of the 5th Int. Workshop in Formal Methods
for Industrial Critical Systems, 2000, to appear.

4. R. J. R. Back and R. Kurki-Suonio. Decentralization of process nets with centrali-
zed control. In 2nd Symp. on Principles of Distributed Computing, volume LNCS
873, pages 131–142. ACM SIGACT-SIGOPS, 1983.

5. R. J. R. Back and K. Sere. Stepwise refinement of parallel algorithms. In Science
of Computer Programming 13, pages 133–180, 1991.

6. R. J. R. Back and K. Sere. From action systems to modular systems. In Formal
Methods Europe (FME ’94), volume LNCS 873, pages 1–25. Springer-Verlag, 1994.

7. R. J. R. Back and J. von Wright. Refinement Calculus - A Systematic Introduction.
Springer-Verlag, 1998.

8. R.J. Back, L. Petre, and I. Porres. Generalizing action systems to hybrid systems.
Technical Report 307, TUCS Turku Centre for Computer Science, 1999.

9. M.S. Branicky. General hybrid dynamical systems: modeling, analysis and control.
In R. Alur, T. A. Henzinger, and E. D. Sontag, editors, Hybrid Systems III, volume
LNCS 1066, pages 186–200. Springer-Verlag, 1996.

10. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall International, 1976.
11. Y. Kesten, Z. Manna, and A. Pnueli. Verification of clocked and hybrid systems. In

Lectures on Embedded Systems, volume LNCS 1494, pages 4–73. Springer-Verlag,
1998.

12. C. Lewerentz and T. Lindner. Formal Development of Reactive Systems: Case
Study Production Cell., volume LNCS 891. Springer-Verlag, 1995.

13. A. Nerode and W. Kohn. Models for hybrid systems: automata, topologies, con-
trollability, observability. In R.L. Grossman, A. Nerode, A.P. Revn, and H. Rischel,
editors, Hybrid Systems I, volume LNCS 736, pages 317–356. Springer-Verlag, 1993.

14. M. Rönkkö and A.P. Ravn. Action systems with continuous behaviour. In P. J.
Antsaklis, W. Kohn, M. Lemmon, A. Nerode, and S. Sastry, editors, Hybrid Systems
V, volume LNCS 1567, pages 304–323. Springer-Verlag, 1999.

	Introduction
	Action Systems
	Continuous Action Systems
	Modeling Systems
	Safety Properties
	Conclusions and Related Work

