Contracts as Mathematical Entities
in Programming Logic

Ralph-Johan Back?® Joakim von Wright*

2 Abo Akademi University, Dept. of Computer Science and
Turku Centre for Computer Science (TUCS)

Abstract

We consider the notion of a contract that governs the behavior of a collection of
agents. In particular, we study the question of whether a coalition among these
agents can achieve a given goal by following the contract. We define a generalised
weakest precondition semantics for contracts that permits us to compute the initial
states from which a coalition has a winning strategy to reach their goal. Notions
of correctness and refinement with respect to coalitions are introduced, together
with proof rules for correctness and principles for refinement and equivalence trans-
formations. We illustrate the framework with a three agent contract, showing how
one can reason about the possibilities that different coalitions of agents have for
reaching specific goals.

1 Introduction

A computation can generally be seen as involving a number of agents (pro-
grams, modules, systems, users, etc.) who carry out actions according to a
document (specification, program) that has been laid out in advance. When
reasoning about a computation, we can view this document as a contract be-
tween the agents involved. In this paper we show how contracts can be used as
the starting point for a theory of program refinement. We describe a notation
for contracts and give them a formal meaning using an operational semantics.

The model described here generalises earlier work [5-7] in important ways. As
before, we interpret contracts as predicate transformers and use this interpre-
tation to reason about correctness and refinement. However, the agents play
a significant role in the semantics, and this makes it possible to reason about
and to compare what different groups of agents (coalitions) can accomplish
with a contract if they work together.

Preprint submitted to Elsevier Preprint

Our syntax for contracts can be seen as a generalisation of Dijkstra’s guarded
commands [1], and the predicate transformer semantics gives us access to the
concepts and methods of the refinement calculus [2,6,12]. When we consider
a specific contract and a specific coalition, the question of correctness reduces
to proving the existence of a winning strategy, and we have earlier shown how
this can be handled in terms of correctness and refinement [4—6]. The idea of
considering a system as a game between two players has also been considered
by, e.g., by Abadi, Lamport, and Wolper [1]. However, the way that we can
reason about different coalitions formed from an arbitrary number of agents
is an important generalisation.

We use simply typed higher-order logic as the logical framework in the paper.
The type of functions from a type ¥ to a type I' is denoted by ¥ — I' and
functions can have arguments and results of function type. Functions can be
described using A-abstraction and we write f.z for the application of function
f to argument z.

2 States and state changes

We assume that the world that contracts talk about is described as a state o.
The state space ¥ is the set (type) of all possible states. An agent changes the
state by applying a function f to the present state, yielding a new state f.o.
We think of the state as having a number of attributes z4,... ,x,, each of which
can be observed and changed independently of the others. Such attributes are
usually called program variables. An attribute x of type I' is really a pair
of two functions, the value function val, : ¥ — T' and the update function
sety, : I' = ¥ — . The function val, returns the value of the attribute z in a
given state, while the function set, returns a new state where = has a specific
value, with the values of all other attributes left unchanged. Given a state o,
val,. o is thus the value of z in this state, while ¢’ = set,.~. o is the new state
that we get by setting the value of = to ~.

An expression like x + y is a function on states described by (z + y).0 =
val,. o 4 val,. 0. We use expressions to observe properties of the state. They
are also used in assignments like x := x + y. This assignment denotes a state
changing function that updates the value of x to the value of the expression

x +y. Thus

(z:=a4vy).oc = set,.(val,.0+val,.0).0

A function f : ¥ — X that maps states to states is called a state transformer.
We also make use of predicates and relations over states. A state predicateis a

set of states, i.e., an element of PX. It can also be seen as a boolean function
p: X — Bool on the state (we will prefer set notation for predicates, writing
o € p for p.o). Predicates are ordered by inclusion, which is the pointwise
extension of implication on the booleans.

A boolean expression is an expression that ranges over truth values. It gives
us a convenient way of describing predicates. For instance, x < y is a boolean
expression that has value val,. o < val,.o in a given state o.

A state relation R : ¥ — Y — Bool relates a state o to a state ¢’ whenever
R.o.0" holds. Relations are ordered by pointwise extension from predicates.

Thus, R C R’ holds if R.oc C R'. ¢ for all states o.

We permit a generalized assignment notation for relations. For example, (z :=
¢’ | ' > x4 y) relates state o to state o’ if the value of z in ¢’ is greater than
the sum of the values of and y in ¢ and all other attributes are unchanged.
More precisely, we have that

(z :=1:’|:c’>:c—|—y).a.a’ =

(F2' » o' = set,. 2.0 A 2’ > val,. 0+ val,.0)

This notation generalizes the ordinary assignment; we have that o/ = (z :=
e).o iff (z := 2’ | 2’ = e).0.0'. For more details on this way of modelling
states and functions on states, see [6]

3 Contracts

Consider a collection of agents, each with the capability to change the state
by choosing between different actions. The behavior of agents is regulated by
contracts.

3.1 Basic contract syntax

Assume that there is a fixed collection A of agents, which are considered to
be atomic (we assume that we can test for equality between agents). We let
A range over sets of agents and a, b, ¢ over individual agents.

We describe contracts using a notation for contract statements. The syntax
for these is as follows:

S = <f> | if P then Sl else 82 fi | Sl 3 52 | {R}a | Sl L, 52

Here a stands for an agent while f stands for a state transformer, p for a state
predicate, and R for a state relation, both expressed using higher-order logic.

Intuitively, a contract statement is carried out (executed) as follows. The func-
tional update (f) changes the state according to the state transformer f, i.e.,
if the initial state is og then the final state is f.o9. An assignment statement is
a special kind of update where the state transformer is expressed as an assign-
ment. For example, the assignment statement (z := 2 + y)(or just z :=z + y
— from now on we will drop the angle brackets from assignment statements)
requires the agent to set the value of attribute z to the sum of the values of
attributes and y. We use the name skip for the identity update (id), where
id. o = o for all states o.

In the conditional composition if p then S; else S, fi, S; is carried out if p holds
in the initial state, and S; otherwise. In the sequential composition Sy ; Sy,
contract S; is first carried out, followed by S,.

The two last constructs (relational update and choice) introduce nondeter-
minism into the language of contracts. Both are indexed by an agent which is
responsible for deciding how the nondeterminism is resolved.

The relational update { R}, requires the agent a to choose a final state o so
that R.o.co' is satisfied, where o is the initial state. In practice, the relation
is expressed as a relational assignment. For example, {z := 2’/ | 2’ < z},
expresses that the agent a is required to decrease the value of the program
variable x. If it is impossible for the agent to satisfy this, then the agent has
breached the contract. In {z := 2’ | 2’ < z},, agent a must breach the contract
if z ranges over the natural numbers and its initial value is 0.

An important special case of relational update occurs when the relation R is of
the form (Ao o’ ¢ ¢/ = 0 Ap. o) for some state predicate p. In this case, { R}, is
called an assertion and we write it simply as {p},. For example, {z +y =0},
expresses that the sum of (the values of) 2 and y in the state must be zero.
If the assertion holds at the indicated place when the agent a carries out the
contract, then the state is unchanged, and the rest of the contract is carried
out. If, on the other hand, the assertion does not hold, then the agent has
breached the contract. The assertion {true}, is always satisfied, so adding this
assertion anywhere in a contract has no effect. Dually, {false}, is an impossible
assertion; it is never satisfied and always results in the agent breaching the
contract.

Finally, a choice S; L, S, allows agent a to choose which is to be carried out,
Sy or S;. To simplify notation, we assume that sequential composition binds
stronger than choice in contracts.

We also permit recursive contract statements. A recursive contract is defined

using an equation of the form
X =5

where S may contain occurrences of the contract variable X. With this defi-
nition, the contract X is intuitively interpreted as the contract statement S,
but with each occurrence of statement variable X in S treated as a recursive
invocation of the whole contract S. We also permit the syntax (rec X « 5) for
the contract X defined by the equation X = S.

An important special case of recursion is the while-loop which is defined in the
usual way:

while pdo S od £ (rec X ¢+ if p then S; X else skip fi)

This syntax for contracts differs from previous presentations [6,7] in two re-
spects. First, we make a clear distinction between deterministic and nondeter-
ministic constructs, and second, we do not associate recursion with an agents
(and as we shall see below, this means that an infinite unfolding as “bad” from
the point of view of any agent).

3.2 Operational semantics

We give a formal meaning to contract statements in the form of a structured
operational semantics. This semantics describes step by step how a contract
is carried out, starting from a given initial state.

The rules of the operational semantics are given in terms of a transition rela-
tion between configurations. A configuration is a pair (5,0), where

e S is either an ordinary contract statement or the empty statement symbol
A, and

e 0 is either an ordinary state, or the symbol L, (indicating that agent a has
breached the contract).

The transition relation — (which shows what moves are permitted) is induc-
tively defined by a collection of axioms and inference rules. It is the smallest
relation which satisfies the following (where we assume that o stands for a
proper state while 4 stands for either a state or the symbol L, for some agent

T):

o Functional update

({f)o) = (A foo) ({F),La) = (A, La)

o Conditional composition

p.o —p.o

(if p then Sy else S, fi,o) — (51,0) (if p then Sy else S fi, o) — (53, 0)

(if p then Sy else S fi, L,) — (A, L,)
Sequential composition
(5157> - (S{ap)//)
(513 92,7) = (51552,7) (A;5,7) = (5,7)
Relational update
R.o.o' R.o

0
({R}a,0) — (A, 0) ({R}a,0) — (A, L,) ({R}a, L) — (A, L)

o Choice

(Sl l—la 5277) - (5177) (Sl l—la 5237) - (5277)

o Recursion

X=5

(X,7) = (S7)

For the choice and the relational update, we could label the transition relation
with the agent responsible for carrying out the move. However, such a labeling
is really redundant since it can always be recovered from the configuration in
question. We have also implicitly assumed that equations of the form X = S
are available in an environment, in the standard way.

A scenario for the contract S in initial state o is a sequence of configurations
CO—)Cl—)CQ—)"'
where

(1) Co=(5,0),

(2) each transition C; — Cjyq is permitted by the axiomatization above, and
if the sequence is finite with last configuration C,,, then C,, = (/ or

3) if the seq is finite with last figuration C,,, then C A, y), fi
some 7.

Intuitively, a scenario shows us, step by step, what choices the different agents

have made and how the state is changed when the contract is being carried
out. A finite scenario cannot be extended, since no transitions are possible
from an empty configuration.

3.3 Frample: a resource game

As noted in [7], programs can be seen as special cases of contracts, where
two agents are involved, the user and the computer system. In simple batch-
oriented programs, choices are only made by the computer system, which
resolves any internal choices (nondeterminism) in a manner that is unknown
to the user of the system. We shall now consider more general interaction
involving several participants (agents).

The following example will be used throughout this paper, to illustrate differ-
ent aspects of contracts. Assume that the agents (ag, a1, ay) are placed in a
ring, with a collection of resources situated between them (r; is the collection
of resources placed between agents a;_y and a;;;, where arithmetic modulo 3
is used). The situation is illustrated by Figure 1.

Each agent a; has access to the resources in r;_; and r;4; but not to r;. Re-
sources are non-renewable, and we assume that the agents take turns grabbing
one from either side (left or right). An agent can also choose to do nothing.

r1

Fig. 1. Resource game

For example, if each r; contains three resources initially, then the following
scenario is possible:

. ag takes one from ry,
. a; takes one from rq,
. ay takes one from roq,
. ag takes one from r,

I

. ay takes one from rq,

. ay takes one from rq,

. ag takes one from rq,

. a1 does nothing,

. ay takes one from rq, and
10. ay takes one from ry.

© 00 =~ O Ot

At this point the nine resources are distributed so that ag has four, a; has
two, and ay has three.

Now let us formalise this situation as a contract. Initially, no agent has grabbed
any resource. Furthermore, we will assume that the resources are evenly dis-
tributed and we are only interested in the number of resources. Thus we can
characterise the initialisation as follows:

- A
int = ng,nq,n9,79,71,72 :=0,0,0,m,m,m

where n; models the number of resources that agent a; has grabbed and m is
the initial number of resources at each point (so m is a free variable).

The alternatives open to agent a; can be described as follows:

S; 2 grabl; U, skip L, grabr;

where
grabl; L {ric1 >0} ;nyriy i=n; + 1,y — 1
grabr, A {rig1 >0} smgripr i=mny 4+ Lyrgg — 1

where the arithmetic in the indices is modulo 3.

Now the whole system can be described as the following contract:

init ;

while ro +ry + 79 > 0 do
So 551352

od

Note that the situation is not symmetric with respect to the agents; on every
round ag gets to choose first. Another possibility would be to have a nondeter-
ministic ordering och choices by introducing a separate scheduler agent ¢ and
taking Soll..S1U. 59 as the loop body. However, this would not guarantee a fair
scheduling, since ¢ could decide to ignore one of the alternatives completely..

4 Predicate transformer semantics

The operational semantics describes all possible ways of carrying out a con-
tract. By looking at the state component of a final configuration we can see
what outcomes (final states) are possible, if all agents cooperate. However, in
reality the different agents are unlikely to have the same goals, and the way
one agent makes its choices need not be suitable for another agent. From the
point of view of a specific agent or a group of agents, it is therefore interesting
to know what outcomes are possible regardless of how the other agents resolve
their choices.

Consider the situation where the initial state o is given and a group of agents
A agree that their common goal is to use contract S to reach a final state
in some set ¢ of desired final states. It is also acceptable that the coalition is
released from the contract, because some other agent breaches the contract.
This means that the agents should strive to make their choices in such a way
that the scenario starting from (5,0) ends in a configuration (A,~) where v
is either an element in ¢, or L, for some b ¢ A (indicating that some other
agent has breached the contract).

For the purpose of analysing this specific case we can think of the agents in A
as being one single agent and dually, the remaining agents as also being one
single agent that tries to prevent the former from reaching its goal. As shown
in [7] an execution of the game can then be viewed as a two-person game where
one player tries to achieve a certain final situation while the other player tries
to prevent this. We also show in [7] how this intuition can be formalised by
interpreting contracts with two agents as predicate transformers. We shall now
introduce a more general predicate transformer semantics for contracts which
allows a more flexible analysis of a single contract from different points of
view.

4.1 Weakest preconditions

A predicate transformeris a function that maps predicates to predicates. We
order predicate transformers by pointwise extension of the ordering on pred-
icates, so F' C F' for predicate transformers holds if and only if F.q C F'.q
for all predicates ¢q. The predicate transformers form a complete lattice with
this ordering, and we use LI and M for these lattice operators.

Assume that S is a contract statement and A a coalition, i.e., a set of agents.
We want the predicate transformer wp.S. A to map postcondition ¢ to the
set of all initial states o from which the agents in A jointly have a winning
strategy to reach the goal ¢. Thus, wp. S. A. ¢ is the weakest precondition that

guarantees that the agents in A can cooperate to achieve postcondition gq.

The intuitive description of contract statements can be used to justify the
following definition of the weakest precondition semantics:

wp.(f).A.q = (Ao *q.(f.0))
wp. (if p then Sy else S; fi). A. ¢ (pNwp.Si. A.q) U (—~pNwp. Sy A.q)
wp. (S1;5;). A.g = wp.S;. A (wp. Sy. A, q)

(Ao *do’* R.o.o'Ng.0o') ifa€ A
(Ao * Vo'« R.o.0' = q.0') ifag A

wp.{R},.A.q =

wp. Si. A.qUwp.S,.A.q ifae A
wp. (Sl L, S2) Aq =)
wp.S1. A.gNwp. Sy . A.q ifadg A

(Since we identify sets and characteristic functions, we could also write wp. (f}. A. ¢
as {0 | ¢.(f.0)} or simply as ¢ o f, and similarly for the relational updates).

This means that a contract S is mathematically seen as an element (denoted
by wp. S) of the domain

PA— P — PY

These definitions can be seen as a generalisation of Dijkstra’s original seman-
tics for the language of guarded commands [1] and with later extensions to it,
corresponding to nondeterministic assignments, choices, and miracles [2,4,11].

The semantics of a recursive contract is given in a standard way, using least
fixpoints. Assume that a recursive contract statement (rec X + 5) and a coali-
tion A are given. Since S is built using the syntax of contract statements, we
can define a function that maps any predicate transformer X to the result of
replacing every construct except X in S by its weakest precondition predi-
cate transformer semantics (for the coalition A). Let us call this function fg 4.
Then fs 4 can be shown to be a monotonic function on the complete lattice
of predicate transformers, and by the well-known Knaster-Tarski fixpoint the-
orem it has a complete lattice of fixpoints. We then define the meaning of the
recursion as the least fixpoint:

wp.(rec X « S).A = p. fsa

The details work out in the same way as in the two-agent case [6].

10

4.2 Healthiness conditions

The fixpoint definition of the semantics of recursion makes use of the fact that
for all coalitions A and all contracts S the predicate transformer wp. S. A is
monotonic, 1.e.,

pCq = wp.S.A.qgCwp.5S A.q

holds for all predicates p and ¢. This is in fact the only one of Dijkstra’s
original four “healthiness” properties [1] that are satisfied by all contracts.

Although no other healthiness conditions hold universally, the property that
corresponds to Dijkstra’s “Law of Excluded Middle” is of interest; we say that
contract statement S is strict if

wp. S. 0. false = false

A contract statement S is guaranteed to be strict if the relation R in every
relational update {R}, in S is total.

4.3 Correctness and winning strategies

We say that agents A can use contract S in initial state o to establish post-
condition g (written o {| S [} 4 ¢) if there is a winning strategy for the agents in
A which guarantees that initial configuration (.5, 0) will lead to termination
in such a way that the final configuration is some (A,~) where v is either a
final state in ¢ or 1, for some b € A. This means that the agents in A can
make their choices so that all remaining possible scenarios are of the form

(S,0) = -+ —(A,y) whereyeqU{Ll,|b¢g A}

Thus o {| S [}4 ¢ means that, no matter what the other agents do, the agents
in A can (by making suitable choices) either achieve postcondition ¢ or make
sure that some agent outside A breaches the contract.

This is easily generalised to a general notion of correctness; we define correct-
ness of contract S for agents A, precondition p and postcondition g as follows:

pShaq = (Voep+o{Shiq)

The winning strategy theorem of [6] can now easily be generalised to take into
account collections of agents, to give the following:

11

Theorem 1 Assume that contract statement S, coalition A, precondition p
and postcondition q are given. Then p Cwp. S. A.q if and only if p {|S|}4 ¢.

From the wp-semantics and Theorem 1 it is straightforward to derive rules for
proving correctness assertions, in the style of Hoare logic:

Functional update

(Vo epeq.(f.0))
pA) g

o Conditional composition

pNb{Silag pn-b{S:ltaq

p {|if bthen S; else Sy fil}4 ¢
o Sequential update

pASitar r{lS:fag

p{lSi; 52104 q
o Relational update
Voepesdo's Roo.c' ANg.o' YVoepeVo' ¢« Roo.oc' = q.0
(p q)aeA (p q)a¢A
pA{R}alta g pA{R}al}a g
o Choice
S S
pASiltaq pe piS20a g we
pAlS1UaS2l}a g pAlS1Ua S2lta g

p{Siltagq Pﬂ&GAqa
p{]S1Ua S2[}a ¢

g A

o Loop
pNbNt=w{{SlspNt<w
p {|while bdo S od[}4 pN b

Here ¢ (the termination argument for the loop) is assumed to range over
some well-founded set W, and w is a fresh variable also ranging over W.

o Consequence

PCp piSHaqa q¢C¢
P ASTad

These are close to the traditional Hoare Logic rules for total correctness in
many ways. We include a rule for the while-loop rather than for recursion, for
simplicity. The existential quantifier in the first rule for relational update and
the existence of two alternative rules for choice (when ¢ € A) indicate that we
can show the existence of a general winning strategy by providing a witness
during the correctness proof. In fact, the proof encodes a winning strategy,

12

in the sense that if we provide an existential witness (for a relational update)
then we describe how the agent in question should make its choice in order
to contribute to establishing the postcondition. Similarly, the selection of the
appropriate rule for a choice encodes a description of how an agent should
make the choice during an execution.

4.4 Refinement of contracts

The predicate transformer semantics is based on total correctness. Tradition-
ally, a notion of refinement is derived from a corresponding notion of correct-
ness, so that a refinement S C S’ holds iff S’ satisfies all correctness (as well
as all other semantic) properties that S satisfies.

Since we define correctness for a collection of agents (whose ability to guaran-
tee a certain outcome we are investigating), refinement will also be relativised
similarly. We say that contract S is refined by contract S" for coalition A
(written S T4 5'), if S’ preserves all correctness properties of S’, for A. By
Theorem 1, we have

SC4 S = (Vgewp.S.A.g Cwp.S". A.q)

The traditional notion of refinement [2] is here recovered in the case when
the coalition A is empty; i.e., if all the nondeterminism involved is demonic.
Furthermore, the generalisation of refinement to include both angelic and de-
monic nondeterminism [4,6] is recovered by identifying the agents in A with
as the angel and the agents outside A as the demon.

Given a contract, we can use the predicate transformer formulation of refine-
ment to derive rules that allow us to improve a contract from the point of
view of a specific coalition A, in the sense that any goals achievable with the
original contract are still achievable with the new contract. These refinement
rules can be used for stepwise refinement of contracts, where we start from an
initial high level specification with the aim of deriving a more efficient (and
usually lower level) implementation of the specification.

5 Algebra of contracts

We shall now investigate the algebraic properties that are induced by the
predicate transformer semantics of contracts. We first consider the semantic
operator wp itself, and then the refinement relation.

13

5.1 Properties of wp

We already noted that wp is monotonic in its third argument, i.e., that wp. A. S
is a monotonic predicate transformer, for arbitrary A and S. Let us now in-
vestigate how the semantics changes when we apply various operations to the
coalitions under consideration.

Theorem 2 Let contract statement S and predicate q be arbitrary. Then

(a) ACA = wp.S.AC wp.S. A', provided that S is strict,
(b) wp.S.A.q C —wp.S. A(~q).

The proof of each of these properties is a tedious but straightforward induction
over the structure of contract statements.

Technically speaking, we have investigated to what extent the operator wp
is homomorphic in its second argument. Part (a) is a monotonicity property
which says that if new agents join a coalition, then the capabilities of the
coalition increase (i.e., it becomes easier to reach goals). On the other hand,
(b) indicates that if a coalition can establish a goal ¢ then the remaining agents
cannot establish —¢ (the reason that we do not have an equality in (b) is that
in an infinite scenario neither A nor A establishes any postcondition).

An immediate consequence of the monotonicity property is the following:
wp. S. Allwp.S. A" T wp.S. (AU A"

This can be interpreted as saying that the power of two combined coalitions
is greater (or at least as great) as the sum of their powers in isolation. The
dual property also holds:

wp.S.(ANA) C wp.S.AnNwp.S. A

This property does not have an immediate intuitive interpretation, except as
an alternative formulation of monotonicity.

5.2 Properties of refinement

It is easy to see that refinement for a given coalition is reflexive and transitive,

l.e.,

SE4S
SEAS/ A S/EAS” = STy S’

14

holds for arbitrary contract statements S, S’, and S”. Thus, contracts are
preordered by the refinement relation C 4, for a fixed coalition A.

This preordering induces equivalence classes of contract statements and a lat-
tice structure on these equivalence classes. The join operation LI4 corresponds
to a choice LI, for any agent ¢ € A and dually, the meet operation M4 corre-
sponds to a choice LI, for any agent a & A.

The duality that is thus created by the partitioning of the agents is reflected
in the following property:

SCa S8 = 535S
i.e., complementing the coalition reverses all refinements.
Next, we investigate homomorphism properties of the refinement relation.
Theorem 3 Let coalition A be arbitrary. Then

(a) RCR = {R},Ca{R}.ifa€ A, and

RCR = {R).Cu{Rl.ifagA;

S1Ea4 S AS;Es S, = if pthen Sy else Sy fi T4 if p then S7 else S) fi;
S1Ea ST A Sy Eg Sy = 5155, 5,457,955

S1TaS] AN S;Ea S = SiU, Sy Ty Spu, Sy for all a; and

(VX « SC45) = (rec X + S)Cy4 (rec X + 5).

b
c
d

e

o~ TN N
~— e N e’

The proof is again a straightforward but tedious induction over the structure of
contract statements. Here (b)—(e) essentially say that contexts are monotonic,
so we can always refine subcontracts. On the other hand, (a) indicates that to
refine a relational update {R}, we must know whether the agent a is in the
coalition considered or not.

5.3 Semantic equivalence

From the relativised refinement relation we can introduce an absolute one, by
requiring refinement for any coalition of agents:

SCS £ (VA-SC49)

In fact (because S’ T4 S is equivalent to S T4 S”) this non-relativased re-
finement relation is really the same as semantic equivalence S = S’ defined

by

S=S £ (VACA+VYgewp.S. A g=wp.5S. A.q)

15

Another important consequence of this is that if we want to transform a con-
tract statement S in such a way that all correctness properties are preserved,
then we should transform it under this semantic equivalence. The following
rules serve as a small example of what kind of transformations are then avail-

able:

Su, S = S
while p do S od = if p then S else skip fi ; while p do S od
{Ri}a; {R2}a = {R1; Ra}a
{R1}. U, {R2}s = {R1U Ry},
{1/} = (f)

where |f] is the relation corresponding to f, i.e., |f|.0.0" = (¢’ = f.0).

6 Reasoning about contracts

We shall finally consider how to reason about a contract from different points
of view. We focus on correctness reasoning, but we also hint at some refinement
possibilities.

We return to the resource game described in Section 3.3:
R = init;while rg + 7y + 73 >0 do Sy; .57 ;5; od

where we assume that all program variables (and m) range over the natural
numbers.

We concentrate on the question of the extent to which it is possible for agents
to get their fair share of the resources, or to prevent other agents from getting
their fair share. Since the initialisation states that the resources are initially
distributed equally (rq = ry = r, = m), agent a; getting a fair share means
that execution terminates with n; > m holding.

Intuitive reasoning should indicate that a single agent (say, agent 2) cannot
be certain to get its fair share, if the two other agents cooperate to prevent it.
This can be shown formally by showing

PAR Y apary m2 <m
where p is some suitable precondition.

We shall outline the proof of this property, showing that it holds under the
precondition m > 0 (if m = 0, then the final situation is trivially fair). This
can be done by unfolding the loop once and then showing that

16

(1) in the first iteration ag and @y can establishes an unfair situation, and
(2) from that point on the two agents can maintain the unfair situation.

For the first part we can show

P1 {1 50351592 [Hapar} P2

where

p1 18 ngo=ni=ne=0Arg=ri=rs=mAm>0

Py 18 Mg > Mo Any>ngArg<mAri<mAra=mAs=3mAm>0

where s abbreviates ng +nq +ny+rg+ 71 +ry. For this we use the correctness
rules for sequential composition and updates. When proving the correctness
steps for Sy and S; we have to give a witness for the existential quantifier in
the correctness rule; this corresponds to identifying the strategy (which is to
leave ry untouched as long as possible).

For the second part we want to prove the following:
p2 {|while rg + 7y 473 > 0 do Sy; 51552 0d [}{ay,00) 22 <M

This can be proved using the correctness rule for while-loop with a suitable
invariant that describes the unfair situation. The crucial component of this
invariant is the following:

ro <raArp <reA(rg=raVry =1y = ng >ng Vng > ng)

The termination argument for the loop is ry +ry+rs (the two agents can make
sure that the loop terminates).

This proof sketch should indicate that we can follow the same proof paradigm
as in traditional correctness proofs, i.e., we use the proof rules for correct-
ness to break down the correctness goal step by step, supplying invariants,
intermediate predicates, and existential witnesses when they are needed.

Correctness properties for a coalition are preserved by refinements for that
same coalition. Thus we could, e.g., change the rules of the game in a way
that gives agents ag and a; more alternatives and a; less alternatives, and the
correctness property that we proved would still be valid.

The correctness property considered above is just one of many possible exam-
ples. Even though one agent working alone cannot be certain to get its fair
share, it may be possible for two agents (say, ap and a;) to make sure that
they both get their fair share if they work together. To show this, we would

17

have to prove
P AR Biap,ae) 0 = mAng >m

again for some suitable precondition p.

7 Conclusion

We have described a computing system in terms of a (global) state that is
changed by a collection of agents. These agents are bound by contracts that
stipulate their obligations and assumptions. We describe contracts as syntac-
tic entities, and give them both an operational and a denotational (weakest
precondition) semantics. Given a specific goal that a coalition of agents is
requested to achieve, we can use traditional correctness reasopning to show
that the goal can in fact be achieved by the coalition, regardless of how the
remaining agents act.

Earlier formulations of computing systems as contracts [6,7] did not view
contracts as mathematical entities in their own right, but assumed a division
of agents into two groups (angels and demons) from the outset. The present
formulation allows us to analyse a single contract from the point of view
of different coalitions and compare the results. For example, it is possible
to study whether a given coalition A would gain anything by premitting an
outside agent b to join A. We could also model sources of errors as governed
by separate agents (in the form skip L. (error}). Then such an error source
can be “turned off” simply by including the agent ¢ into the coalition that is
being considered.

The contract approach generalises previous models for nondeterminism, both
in relational and in predicate transformer frameworks [3,6] and in process

algebra frameworks such as CSP [9] and CCS [35].

References

[1] M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable
specifications of reactive systems. In G.A. Rozenberg et al. (editors), Proc.
16th ICALP, volume 372 of Lecture Notes in Computer Science, 1-17, Stresa,
Italy, 1989, Springer—Verlag.

[2] R.J. Back. Correctness Preserving Program Refinements: Proof Theory and
Applications, volume 131 of Mathematical Centre Tracts. Mathematical
Centre, Amsterdam, 1980.

18

[4]

[5]

[6]

[8]

[9]

[10]

[11]

[12]

[13]

R.J. Back. Changing data representation in the refinement calculus. In 21st
Hawaii International Conference on System Sciences, January 1989.

R.J. Back and J. von Wright. Duality in specification languages: a lattice-
theoretical approach. Acta Informatica, 27:583-625, 1990.

R.J. Back and J. von Wright. Games and winning strategies. Information
Processing Letters 53(3):165-172, 1995.

R.J. Back and J. von Wright. Refinement Calculus: A Systematic Introduction.
Springer-Verlag, 1998.

R.J. Back and J. von Wright. Contracts, Games, and Refinement. Information
and Computation, 156:25-45, 2000.

E.W. Dijkstra. A Discipline of Programming. Prentice-Hall International,
1976.

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall
International, 1985.

R. Milner. Communication and Concurrency. Prentice-Hall International,
1989.

C.C. Morgan. Data refinement by miracles. Information Processing Letters,
26:243-246, 1988.

C.C. Morgan. Programming from Specifications. Prentice-Hall, 1990.

G.D. Plotkin. A structural approach to operational semantics. Tech. Rpt.
DAIMI FN 19, Computer Science Dept., Aarhus University, April 1981.

19

