
A Language for Multiple Models of Computation

Dag Björklund Johan Lilius
dag.bjorklund@abo.fi johan.lilius@abo.fi

Turku Centre for Computer Science (TUCS)
Lemminkäisenkatu 14 A, FIN-20520

Turku, Finland

ABSTRACT
We introduce a new kernel language for modeling hardware/software
systems, adopting multiple heterogenous models of computation.
The language has formal operational semantics, and is well suited
for model checking, code synthesis etc. For different blocks of
code, different scheduling policies can be applied, to reflect the
different interpretations of e.g. parallelism in different models of
computation. The user can add his own scheduling policies, to use
or explore different models of computation.

1. INTRODUCTION
One important characteristic of modern embedded systems like mo-
bile phones, multimedia terminals, etc. is that their design requires
several different description techniques. The radio-frequency part
of a mobile phone is designed using analog techniques: the sig-
nal processing part can be described using synchronous data-flow,
while the protocol stack uses an extended finite state machine based
description model.

This heterogeneity poses a challenge to embedded system design
methodologies in general, because at the moment it is not possible
to obtain comprehensive system models. This is a problem since
the increasing integration level of the devices implies that to ob-
tain optimal designs, architectural choices have to be evaluated at
an earlier stage than what is possible with current methods. Cur-
rent approaches force the designer to design the system using one
technique (e.g. by writing a functional specification in C++), and
to change description technique when making implementation de-
cisions (e.g. by transferring parts to hardware and describing them
using a HDL). Because the system description now exists in differ-
ent languages the comprehensive system model is lost. At the same
time, the ability to evaluate and simulate the system as a whole is
also lost or becomes very cumbersome.

This problem has been identified and many proposals exist: e.g.
Superlog [6], SpecC [7] or SystemC [14] are concrete languages
that try to address the problem. On an organizational level several
consortia are exploring different System Level Design Languages

(e.g. [16, 1]). Most of these proposals suffer from one problem:
they are based on some existing language paradigm onto which fea-
tures from another computational model are glued (e.g. Superlog
is based on Verilog, with features like records and pointers from C
added on top, while SystemC is class library for C++). These are
ad-hoc solutions that appeal to the designer with a background in
some programming, or hardware description language.

We believe that to obtain a good System Level Design Language
(SLDL) one needs to understand 2 things:

1. what are appropriate description techniques for certain appli-
cation domains, and

2. how to combine such description techniques into a unified
framework.

It is clear that the first point is well understood. This is exemplified
by the large amount of programming languages available on the
market. It is the second point that we feel is badly understood and
it is the long-term goal of our research to obtain such a unified
framework.

Central to our work is the notion of a model of computation. A
model of computation is a domain specific often-intuitive under-
standing of how the computations in that domain are done: it en-
compasses the designer’s notion of physical processes, or as Ed-
ward A. Lee [11] puts it, the “laws of physics” that govern com-
ponent interactions. Many different computational models exist:
Hardware is often seen as having asynchronousmodel of compu-
tation in the sense that everything is governed by a global clock,
while software has anasynchronousmodel of computation.1. A
system that is described using several models of computation is
calledheterogenous.

We are interested in understanding what the combination of mod-
els of computation means. Specifically we are interested in under-
standing the combination of models of computation from an opera-
tional perspective. Figure 1 shows an example of a system modeled
in two different models of computation: One of the states in a state
machine is refined by a Synchronous dataflow (SDF) graph [10].
The intended meaning of this diagram should be: “If event e1 ar-
rives on q1 while in statewait , move to stateprocess and start
processing events using the algorithm in the diagram”. However
several questions need to be answered before this description can
be implemented. For example: what happens if a seconde1 arrives
while the system is in stateprocess ?
1We acknowledge that this is a very simplistic point of view.

process

A B C
q2 q3

120 10 10 201

SDF

q1.e1

q1.e1

wait

Figure 1: A state machine, with one state refined by an SDF
graph

In practice one does not program in a model of computation but
in a programming language and we have therefore taken a slightly
broader definition and view a model of computation as consisting
of both a language and a corresponding semantics. The goal of our
research can now be stated as twofold:

1. the development of an unified operational mathematical model
of models of computation, and

2. the development of a a textual language, in which it will be
possible to program theses kinds of models using the same
syntactic elements to represent entities in the different mod-
els of computation.

The second goal is motivated by the fact that many of the languages
we have looked at (e.g. UML state machines [13], ESTEREL [4]
and Harel’s Statecharts [9]), use the same syntactic concepts but
with different semantics. What we would like to do is pinpoint the
semantic differences to certain syntactic concepts. For example the
notion of parallelism exists in all three languages above, but there
is certainly a difference in the semantics of parallelism between
UML state machines and Esterel. On the other hand all languages
also have a notion of interrupt (the trap-construct in Esterel and
hierarchical transitions in both variants of Statecharts) that seems
to have very similar semantics.

The semantics of our kernel language is structured in the follow-
ing way. We have a structured-operational-semantics (SOS) type
semantics for each syntactic entity. This semantics specifies what
is common to all models of computation. The differences between
models of computations have been encapsulated into functions that
we call scheduling policies. This technique allows us to explore the
semantic differences and commanilities between different concrete
languages.

The main contributions of the paper are:
1. an identification of a number of syntactic entities that are com-
mon for many different system level description languages together
with a corresponding syntax, and
2. an operational semantics that allows us to attach different in-
terpretations to syntactic elements thus enabling the description of
systems using different models of computation.

In section 2, we describe the kernel language, some of its concrete
syntax and motivate the choice of syntactic entities. In section 3
we briefly outline the operational semantics, and in section 4 the

scheduling semantics of the language. Finally in the last sections,
we present some examples and give a conclusion.

1.1 Related Work
Some related work in this area exists. The work of Lee et. al.
[12] is a comprehensive study of different models of computation.
The authors propose a formal classification framework that makes
it possible to compare and express differences between models of
computation. It is the only work that we know of that tries to for-
mally define what a model of computation means. The framework
is denotational and has no operational content. What this means
is, that Lee et. al. are able to describe models of computation that
we cannot model in our framework. Such models include timed
models and partial order based models. The reason for this is that
both timed and partial order based models are models that describe
constraintson possible implementations. Although we can model
data-flow in our language, we have to decide on a specific opera-
tional semantics for the data-flow. This semantics will be one of
several that preserves the partial-ordering between operations de-
scribed by the data-flow specification.

On the other hand Girault et al. [8] present ideas for combining dif-
ferent models of computation that are graphically modeled. For ex-
ample they combine SDF graphs with finite state machines. Their
idea is similar to ours in that they use state hierarchy to delineate
models of computation.

Finally we would like to point out that in [11], Lee independently,
proposes an approach that is conceptually essentially the same as
ours, i.e. he suggests that a language, or a set of languages, with a
given abstract syntax, can be used to model very different things de-
pending on the semantics and the model of computation connected
to the syntax.

2. THE KERNEL LANGUAGE
Our language is a small language, originally designed to describe
UML statecharts [5]. Its syntax is given in figure 2. Every state-
ment in a program has a unique label, given by either the designer
or a precompiler; for thestate and trap statements, the de-
signer is required to give a label. Looking at different languages
that are used for system specification, we have identified a number
of concepts that are common, but are interpreted differently given
a different computational model.

State The basic concept in our language is the notion of astate.
State is seldom explicit in programming languages like VHDL or
ESTEREL but many modeling languages like UML or Harel’s Stat-
echarts or Petri nets make state explicit. Through the notion of
state it will be possible to connect anaction languagefor describ-
ing sequential computations on data as in UML or SpecC. A state
is represented by astate - endstate block in the language.
The state blocks can be hierarchical and several can be active at the
same time (concurrency).

Interrupts An interrupt is an event of high priority that should be
reacted upon immediately, or almost immediately. In our language,
a trap - endtrap block is used to monitor interrupts. Interrupts
correspond totrap in ESTEREL and hierarchical transitions go-
ing upwards in the state hierarchy in both UML and Harel’s State-
charts.

Coroutines Coroutines are independent threads of control that can
be suspended and resumed. The first mainstream language to

if expthen l1 : stat1 elsel2 : stat2 end conditional
emit q.e[(exp)] emit an event
dequeueq1 delete an event
par(l1,l2,. . . ,ln) parallel statement
goto(l1,l2,. . . ,ln) state transition
state[policy][declarations] start of state block
endstatel end of state block
trap expin start of trap block
endtrap l do l1 : stat1 end of trap block
suspendl suspend a state
resumel1 resume a state
[[statements]] atomic block

Figure 2: The statements in our language

explicitly include coroutines was Simula. Later coroutines have
been replaced by threads and processes as abstraction mechanisms
in programming languages. However in modeling languages corou-
tines still play a crucial role, e.g. history states in both UML and
Harel’s’ Statecharts label the thread of control in a state as a corou-
tine, because the state is suspended when a hierarchical transition
takes the control out of the state.

Concurrency Concurrency can mean many things. In our lan-
guage, concurrency is indicated using thepar statement, where
the arguments are the labels of, usuallystate statements, which
should be run in parallel. However, the parallelism is interpreted
differently depending on the execution policy in effect in the cur-
rent scope (see below for a explanation of the execution policy).

Atomicity A novelty in our language is that we make atomicity ex-
plicit. Atomicity defines what the smallest observable state change
is. At the one extreme in traditional programming languages atom-
icity is not a part of the language itself, but is loosely defined by
multiprogramming concepts like semaphores and monitors. The
programmer is thus free to define the level of atomicity as he pleases,
but this often leads to programming errors as the atomicity does not
necessarily follow the scoping rules of the programming language.
At the other extreme, in synchronous languages like Esterel, atom-
icity encompasses the whole program, so that the internal workings
of the program are not observable. This is sometimes problematic
because the programmer is forced to think of the whole system as
a monolothic state machine. In [3] the problem is addressed by
desynchronizingthe large state machine. In the middle-field be-
tween these extremes other proposals exist, e.g. the GALS (Glob-
ally Asynchronous, Locally Synchronous) semantics proposed in
POLIS [2]. Here atomicity is confined to single state machines,
while communication between state machines can be observed. In
our approach we have introduced atomicity as an explicit syntactic
entity, the atomic brackets[] . It abides to the normal rules of
scoping and is thus less general than the first approach mentioned
above. But using this approach we can model its interaction with
the other constructs to obtain exactly the level of atomicity needed.

Communication policy The communication policy states how dif-
ferent modules of the system communicate with each other. Several
alternatives exist. For the moment we have taken a rather simple
approach which allows us to still model many more complex ap-
proaches.

We call the main communication media in our language,channels.
A channel can e.g. represent the global event queue in a UML stat-
echart, a link in an SDF graph etc. In state diagrams, an event is an

occurrence that may trigger a state transition. In UML statecharts,
there is an implicit global event queue; whereas, in our language
several channels can be declared and the scope of a channel decla-
ration is thestate block. The notation in our language for check-
ing for the presence of an event on a queue isq1.e1 , whereq1 is
the queue ande1 is an event. The events can also have values of
some built in type, or a type defined in the target language.

Data Data handling is not our primary concern at the moment, as
we are more interested in control-dominated programming; how-
ever, the language has a few primitive types like integers and floats.
Complex types, as well as functions and procedures are only de-
clared in the language, while their implementation is deferred to
the target language. This is the same approach as in ESTEREL.

The main elements in a program in our language are thestate
blocks. We could also call them e.g. actors or agents (the term
actor-oriented design is introduced in [11]), since depending on the
model of computation, a state block can represent e.g. a state in a
statechart or a node in an SDF graph etc.

3. OPERATIONAL SEMANTICS
The labels of the statements act as values for program counters.
The state of a program is represented by a tuple< α,suspend,q >
where:

• α⊆ Σ is the set of active labels,Σ is the set of all labels.

• suspendΣ→ Σ is a partial function. Ifsuspend(l) = l ′ then
l is a suspended state andl ′ is a substate ofl that was active
whenl was suspended.

• q is the set of event queues.

The active set represents the active threads of execution, and the la-
bels represent the current values of the program counters. Some of
the threads may be suspended. The operational semantics is given
by a set of rules that determine actions of the form:

premiss

< α,suspend,q >
statement−−−−−−→< α′,suspend′,q′ >

,

e.g. if the premiss holds the system can change from state
< α,suspend,q> to state< α′,suspend′,q′> by executingstatement.
We sometimes use the abbreviationσ for the state tuple. A subset
of the rules is given figure 32 . The rules determine how the state-
ments update the state of the machine.

An execution enginepicks labels from the set of active states and
then executes the rule corresponding to the statement at the label.
An execution policydecides on the order in which labels are picked
from the active list. We shall describe the issue of policies more in
depth below.

Before we can look more in detail at the operational rules we need
to formalize the structure of a program. A program is defined by

2We use the domain/range restriction operators� / � and the
domain/range subtraction6 / 7 operators as defined in Z [15]
to operate on the relations: LetS be a set andR a relation, then
R�S is a restriction ofR, where every element in the domain ofR
is a member of the setS. The domain/range subtraction operators
are similar, except they remove the elements in the set from the
relation.

the tuple〈 Σ, ↑ ,�,L 〉 where: Σ is the set of labels.↑ ⊂ Σ×Σ
is theparentrelation. The parent relation organizes the labels inΣ
hierarchically in a tree. We can take the closure↑∗ of the parent
relation ↑ . Let l1 and l2 be labels, thenl1 ↑∗ l2 means thatl1 is
an ancestorof l2 or in other words:l2 is inside the scope ofl1.
�⊂ Σ× Σ is the immediate successorrelation. If l1, l2 ∈ Σ and
l1 � l2 thenl2 succeedsl1 in the program.L : Σ→ statementis a
total function that maps each label to its statement.

There are in total 18 rules that define the semantics of the language.
In this paper we only show a few due to the space limitation.

Parallel statementA par statement can act when its label is ac-
tive; it adds all of its arguments to the active set. Note that the par
statement just creates new threads. It is the job of the policy to
decide how to schedule the threads.

Goto Thegoto statement is used to do state transitions. The only
way to escape a state block, is by using thegoto statement. It can
take many labels as parameters, which allows it to be used to model
fork transitions. It is enabled when its label is active; it removes the
subtree containing the source and target labels from the active set,
and activates the target labels (belonging to state statements) along
with any labels labelingtrap statements that are ancestors of the
target labels.

State A state statement can act when its label is active. It will
remove its label from the active set and add its successor to the
active set. It marks the beginning of a state block.

EndstateAn endstate statement can act when its label is active. It
removes its label from the active set, and reactivates the label of the
corresponding state statement. After this, the scheduler can execute
the state block again.

SequencingWhen a statement succeeded by a ’; ’ is executed, the
label of the statement that succeeds this statement in the code be-
comes active.

4. SCHEDULING SEMANTICS
We have presented the concrete syntax, and the execution seman-
tics of the language; however, there is still a freedom in how the
active labels are scheduled. We introduce anexecution policyfor
different models of computation that, connected to astate , will
schedule the substates according to the model of computation. A
program is executed by repeatedly running the policy of the top-
most state in the hierarchy. We well defineRUN functions imple-
menting the different execution policies. Each state in a program
has aRUN function that executes a policy. The topmost policy will
then schedule the states down in the hierarchy, which can have dif-
ferent policies assigned to them, thus having a different model of
computation. The entity that calls theRUN function of the top-level
state can be thought of as a global clock in the system.

To define theRUN functions we need some helper functions. A
label that belongs to a simple statement isenablediff the premiss
of the rule that corresponds to the statement holds; if a label be-
longs to a state statement, it is enabled iff it has descendants that
are enabled. A label can also become blocked by the scheduler,
and is then not enabled. The boolean functionIS ENABLED(l ,σ,β)
returns true if labell is enabled when the program is in stateσ and
the labels in setβ are blocked: (premiss(l ,σ) returns true if the pre-
miss of the rule forl holds in stateσ)

IS ENABLED(l ,σ,β)
1 if L [l] 6= state
2 return premiss(l ,σ)∧ l /∈ β
3 else
4 return ENABLED(l ,σ,β) 6= /0

TheENABLED(l ,σ,β) function returns the set of enabled labels that
are descendants ofl :

ENABLED(l ,σ,β)
1 return {l i : label | ISENABLED(l i ,σ,β)∧ l ↑∗ l i}

Now we can define theRUN functions for the scheduling policies.
The functions take the label of the state blockl , the current state of
the programσ and the blocked setβ as parameters and return the
next state of the program.

UML Statechart Semantics (run-to-completion)The semantics
of UML statecharts is based on the run-to-completion (RTC) step.
The rtc policy executes the UML statechart semantics. A state ex-
ecuting the rtc policy runs until no more runnable labels exists in
its scope. It first runs all the enabled statements, and then checks
if there are any more enabled labels left, adding any labels that are
not ancestors of the original enabled labels to the blocked set (line
5). If there are enabled non-blocked labels, it runs again. By this
blocking, we ensure that when a state transition is taken during a
rtc step, the newly activated state will not be executed during that
same step.

RUN(l ,σ,β)
1 ρ← ENABLED(l ,σ,β)
2 for each l i in ρ do
3 σ← RUN(σ, l i , /0)
4 ρ′← ENABLED(σ′, l , /0)
5 β′←{l j ∈ ρ′ | L [l j] = state∧ l j /∈ (ran(ρ� ↑∗)}
6 if ρ′−β′ 6= /0 then
7 return RUN(l ,σ′,β′)
8 return σ

Interleaving SemanticsThe policy for the interleaving semantics
picks a label from the enabled set nondeterministically under the
fairness assumption (The :∈ in line 2 denotes nondeterministic as-
signment).

RUN(l ,σ,β)
1 ρ← ENABLED(l ,σ,β)
2 l i :∈ ρ
3 return RUN(l i ,σ, /0)

Synchronous Dataflow SemanticsThe SDF semantics schedules
the substates according to a static scheduleS. The schedule is an
circular array of labels, assumed to belong tostate statements.
The SDF policy runs one of the substates in the schedule per invo-
cation, and has a variable to keep track of where it is in the sched-
ule.

RUN(l ,σ,β)
1 σ′← RUN(S.current(),σ, /0)
2 S.advance()
3 return σ′

Parallel statements l∈α∧L [l]=par(l1, l2, ··· ,ln)

<α,q>
l :par(l1,l2,...,ln)
−−−−−−−−−−−−→<α−{l}

⋃n
i=1{l i},q>

Goto l∈α∧L [l]=goto(l1, l2, ··· ,ln)

<α>
goto(l1, l2,··· ,ln)
−−−−−−−−−−−−→<α−ran({lmin}�↑+)

⋃n
i=1 trapanc(l i)∪{l1,...,ln}>

State l∈α∧L [l]=state∧l�l1

<α,suspend,q>
l :state−−−→<α−{l}∪{l1},suspend,q>

Endstate l∈α∧L [l]=endstate l′

<α,q>
endstate l′−−−−−−−→<α−{l}∪{l ′},q>

Sequence <α,q>
l1:stat1−−−−−→<α−{l1},q′>∧ l1�l2

<α,q>
l1:stat1;
−−−−−→<α−{l1}∪{l2},q′>

Figure 3: A subset of the operational rules of the language

5. EXAMPLES
We will now demonstrate the use of the language by two examples.

A State Machine with SDF subsystem
The model shown in section 1 can be written in our language as
depicted in Figure 4. The whole system is represented by theS
state. Thewait andprocess states represent the two states in
the state machine, thertc policy connected to theS state (line 4)
schedules these states according to the UML statechart semantics.
The transition fromwait to process is triggered by thegoto
statement in line 7, guarded by theif statement that checks for
the presence of eventstart on channelq1 . Theprocess state
schedules its substates according to the sdf policy with the given
static schedule (line 13). TheB state is executed twice for each
invocation of theA andC states since it consumes half the amount
of tokens thatA produces etc. The channels connecting the SDF
nodes can be given capacities as in line 12. The transition back
to thewait state is achieved by thegoto statement in line 26,
which is triggered by thetrap block which encloses the whole
SDF subsystem.

1 S: state
2 channel q1;
3 event start, stop;
4 policy rtc;
5 wait: state
6 if q1.start then
7 goto(process)
8 endif;
9 endstate wait
10 l1: trap q1.stop in
11 process: state
12 local channel q2(20), q3(40);
13 policy sdf(A,B,B,C);
14 par(A, B, C)
15 A: state
16 # code block for A
17 endstate A
18 B: state
19 # code block for B
20 endstate B
21 C: state
22 # code block for C
23 endstate C
24 endstate process
25 endtrap l1 do
26 goto(wait)
27 endstate S

Figure 4: Example Program 1

A UML Object Collaboration Diagram
As another example, we can model a collaboration of two active
objectsA andB that have behavior modeled by state machines, as
depicted in figure 6. We use the interleaving policy to schedule the
two objects modeled by states (line 5 and 13). Thepar statement
in line 4 will activate the two states, and the scheduler will repeat-
edly execute one step for one of them. A step in this case will be
a complete execution of the whole state block i.e. state machine of
the object, since they are internally scheduled by rtc policies.

1 collab: state
2 policy interleaving;
3 channel q1;
4 par(A, B)
5 A: state
6 policy rtc;
7 a: state
8 l1: if q1.e1 then goto(b) endif;
9 endstate a
10 b: state
11 l2: if q1.e1 then goto(a) endif;
11 endstate b
12 endstate A
13 B: state
14 channel q2;
15 policy rtc;
16 c: state
17 if q2.e2 then emit(q1.e1) endif;
18 endstate c
19 endstate B
20 endstate collab

Figure 5: Example Program 2

:B:A

a bq1.e1

c

q1

q2.e2/^q1.e1

Figure 6: A collaboration diagram with two active objects A
and B, with behaviour described by state machines

In the previous example, we stated that the rtc scheduler runs its
state block to completion, when it is called by the higher level in-
terleaving scheduler. This will happen in one atomic step. The ob-
servable state transitions in the state machine of objectA is shown
by the automaton figure 7 (a). If we were to replace the rtc policy

(a)

a b
q1.e1

q1.e1

(b)

a l1 l2b q1.e1

[true] q1.e1

q1.e1

[true]

q1.e1

Figure 7: Automaton describing the level of atomicity, when
using (a) rtc and (b)interleaving policies for the state machine
of object A in figure 6

with an interleaving policy, we could observe state changes some-
thing like in the automaton in 7 (b).

In this case we could also achieve the rtc semantics using the in-
terleaving policy, by encapsulating the state machine states with
atomic brackets[] . The scheduler would then again only run
one statement per step, but since an atomic region is executed like
a single statement, we would again get the same behavior as in 7(a).

6. CONCLUSIONS AND FURTHER WORK
We have presented a kernel language for describing systems with
several underlying models of computation. The novelty of our ap-
proach lies in the way we have separated the semantics of the model
of computation from other concepts like interrupts and communi-
cation.

We currently have a C code generator based on an execution en-
gine, i.e. we have a library containing implementations of the op-
erational rules as well as the scheduling policies, againts which the
generated code is linked. In the future we wish to adopt a more opti-
mal method, where we translate the code into finite state machines,
which we optimize. This method is demonstrated for a subset of
the language in [5] and can easily be used for generating assembly,
HDLs etc.

In [11] Lee, enumerates some models of computation, e.g. dataflow,
publisher/subscriber etc. We already discussed data-flow in the in-
troduction. At the moment the communication concepts in the lan-
guage are undeveloped, but a publisher/subscriber like model of
computation can easily be modeled using the existing communica-
tion mechanisms.

One of the problems in the present version of the language is that
the policies are expressed in an ad-hoc notation. We would like to
be able to express also the policies in our kernel language. This
will require the development of a metamodel for our language.

7. ACKNOWLEDGMENTS
We wish to thank the four anonymous reviewers of a previous ver-
sion of this work.

8. REFERENCES
[1] The Accellera Consrotium web site.Internet:

http://www.accellera.org.

[2] F. Balarin et al.Hardware-Software Co-Design of Embedded
Systems. Kluwer Academic Publishers, 1997.

[3] A. Benveniste, B. Caillaud, and P. L. Guernic. From
synchrony to asynchrony. InCONCUR’99, Concurrency

Theory, 10th International Conference, volume 1664 of
LNCS. Springer Verlag, 1999.

[4] G. Berry and G. Gonthier. The esterel synchronous
programming language: Design, semantics, implementation.
Science of Computer Programming, 19(2), 1992.

[5] D. Björklund, J. Lilius, and I. Porres. Towards efficient code
synthesis from statecharts. InpUML Workshop at UML2001,
october 2001.

[6] P. L. Flake and S. J. Davidmann. Superlog, a unified design
language for system-on-chip. InProceedings on the 2000
conference on Asia and South Pacific design automation,
pages 583 – 586. ACM Press, 2000.

[7] Gajski, Zhu, D̈omer, Gerstlauer, and Zhao.SpecC:
Specification Language and Methodology. Kluwer Academic
Publishers, 2000.

[8] A. Girault, B. Lee, and E. A. Lee. Hierarchical finite state
machines with multiple concurrency models.IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 18(6), june 1999.

[9] D. Harel and A. Naamad. The statemate semantics of
statecharts.ACM Tran. of Software Engineering and
Methodology, 5(4) Oct 1996.

[10] E. Lee and D. Messerschmitt. Synchronous dataflow.
Proceedings of the IEEE, 75(9), September 1987.

[11] E. A. Lee. Embedded software.Advances in Computers (to
appear), 56, 2002.

[12] E. A. Lee and A. Sangiovanni-Vincentelli. A framework for
comparing models of computation.IEEE Tran. on CAD,
17(12), 1997.

[13] Object Management Group.Unified Modeling Language
Specification 1.3, chapter 3.74. OMG, june 1999.

[14] The Open SystemC Initiative web site.Internet:
http://www.systemc.org.

[15] B. Potter, J. Sinclair, and D. Till.An Introduction to Formal
Specification and Z. Prentice Hall, 1991.

[16] The System Level Design Consortium web site.Internet:
http://www.sldl.org.

