
From UML Behavioral Descriptions to Efficient
Synthesizable VHDL

Dag Björklund and Johan Lilius

TUCS Turku Centre for Computer Science
Lemmink̈aisenkatu 14, FIN-20520 Turku, Finland

Åbo Akademi University, Department of Computer Science
{dbjorklu,jolilius}@abo.fi

Abstract: Different approaches to high-level synthesis are currently being studied
for different specification language - target language pairs. In the paper we de-
scribe a strategy for high-level synthesis that can be used for code generation from
several specification languages into several target languages. We demonstrate the
approach using VHDL synthesis from UML behavioral models as an example. The
UML models are first translated into textual code in a language called SMDL.
SMDL is a high level language for multiple models of computation that can be
compiled into efficient target language code e.g. VHDL.

1 INTRODUCTION

There are numerous languages and visual specification tools seeking to take system develop-
ment to the next level of abstraction. Most languages provide simulation tools, many of them
also have code generation of some quality to some target languages. Usually the concepts of
the specification language are mapped as directly as possible to the target language, closing
the gap between abstraction levels with some extra code. This approach makes the generated
code somewhat readable, which is a requirement, since the code is often also quite inefficient
forcing the designer to tweak it by hand.

We are designing a language called SMDL for interfacing different high-level models of
computation with different target language implementations [3]. The language is compiled into
a low level optimized representation, from which target language code like C or VHDL can be
generated.(We should use the term code synthesis instead of code generation, since synthesis
denotes an optimized translation process from spec to a target language). Out method also
allows for direct synthesis of assembly code, or hardware netlists.

In this paper we will demonstrate the use of our approach for one particular purpose, namely
that of VHDL generation from UML behavioral models. Many embedded systems designers
are hoping the Unified Modeling Language (UML) [7] will become a comprehensive system-
level modeling language. The UML provides many different diagrams or views of a system:
class, component and deployment diagrams focus on different aspects of the structure of a
system while the behavioral diagrams such as collaboration, statechart, activity and interaction
diagrams focus on its dynamics.

Since it has become a widely used standard, tools for simulating and verifying UML models
exist and more are to come. When going from UML to VHDL, also the existing tools for VHDL
simulation can be used; however, in our methodology we feel that simulating the UML models
directly would be preferable, since the generated code does not easily map back to the original
model due to the optimizing synthesis process.

The translation from UML models to SMDL is performed using the aUML toolkit [9].
The aUML tool can be used to transform and extract information from UML models. The
models are read from XMI [8] files created by any XMI-compliant UML editor. The process of

converting UML models created by different UML editors into different target language code,
e.g. VHDL or C, is illustrated in Figure 1.

Several people have worked on system-
UML
Editor I

Editor II
UML

OptimizerXMI SMDL

VHDL

C
aUML

Figure 1: The code generation process

level synthesis into VHDL [5,6], but not many
address UML. Furthermore, our approach is
more generic and can be used with many sys-
tem level specification languages into many
target languages.

In section 2, we introduce the SMDL lan-
guage, section 3 deals with UML to SMDL
translation, section 5 covers the SMDL to VHDL compilation, and finally we give a conclusion.

2 THE SMDL LANGUAGE

SMDL is a language with formal semantics and high-level concepts such as states, queues
and events. It can be used as a stable platform for interfacing system specifications with tools
for code synthesis, animation, verification etc. We will briefly introduce the language in this
section, refer to [2–4] for further information.

The main programming unit in the language is thestate block. A state block can
represent different model elements in UML diagrams e.g. a state in a statechart, an activity
in an activity diagram, an active object in a collaboration diagram etc. State transitions are
represented using thegoto statement with aif statement checking for presence of events. The
par statement is used to denote concurrency. Each statement in a program has a unique label.
The state configuration of a running program is the set of active labels and the state of the event
queues. An execution engine picks a label from the active set and executes the corresponding
statement. The semantics of the statements are defined usingstructural operational rules. As
an example, we show the rule for thepar statement below.

l ∈ α ∧ L[l] = par(l1, l2, · · · , ln)

< α, q >
l:par(l1,l2,...,ln)
−−−−−−−−−−−→< α− {l}

⋃n
i=1{li}, q >

Informally the rule states: if the labell belongs to the active setα, and l belongs to apar
statement (L[l] = par(..)), then thepar statement can be executed, resulting in a new state
configuration, where the parametersl1, l2, · · · , ln have been added to the active set, whilel
was removed. Since there may be several labels active simultaneously we have introduced the
notion ofscheduling policy. A scheduling policy defines in which order the active labels are
executed. Eachstate block can be assigned a different scheduling policy. In this way we can
simulate different computation models. Some of the scheduling policies we have defined are
e.g. theinterleavingpolicy that picks one active label per cycle and runs it and thertc policy
that executes a run-to-completion step at each cycle. The run-to-completion algorithm is the
underlying execution semantics of UML statecharts.

3 FROM UML TO SMDL

The translation from UML to SMDL is fairly straightforward due to the high-level concepts
like queues, states etc. present in both languages. We will demonstrate the translation from
UML statecharts and collaboration diagrams by a running example. Figure 2 a) shows a UML
collaboration diagram containing two active objectsA and B, with behavior modeled using
statecharts. The statechart for theB object contains two orthogonal regionsB1 andB2. The
UML model can be translated into the SMDL code in Figure 2 b). In this piece of code, all

2

A: B:

a1 a2
e2/^e1

b3 b4
e1

b1 b2
e1

q

e1
B1

B2

1 sys: state
2 event e1; queue q;
3 policy interleaving;
4 l1: par(A,B)
5 A: state
6 queue qA; event e2;
7 policy rtc;
8 a1: state
9 l2: if qA.e1 then
10 l3: emit(q.e1); l4: goto(a2) endif;
11 l5: endstate a1
12 a2: state l6: endstate a2
13 l7: endstate A
14 B: state
15 policy rtc;
16 l8: par(B1,B2)
17 B1: state
18 b1: state
19 l9: if q.e1 then l10: goto(b2) endif;
20 l11: endstate b1
21 b2: state
22 l12: if q.e1 then l13: goto(b1) endif;
23 l14: endstate b2
24 l15: endstate B1
25 B2: state
26 b3: state
27 l16: if q.e1 then l17: goto(b4) endif;
28 l18: endstate b3
29 b4: state l19: endstate b4
30 l20: endstate B2
31 l21: endstate B
32 l22: endstate sys

(a) (b)

Figure 2: A UML behavioral model and its SMDL translation

sys l1

A

B

a1

l8

l2

l3
qA.e1

l5

[else]

l4
^q.e1

a2 l6

B1

B2

b1

b3

l9
l10

q.e1

l11

[else]

b2 l12

l13
q.e1

l14

[else]

l16

l17
q.e1

l18

[else]

b4 l19

Figure 3: An activity diagram that illustrates the operational semantics of the program in Fig-
ure 2 b)

statements are given labels by hand in order to make it easier to demonstrate some issues.
The objects (or threads)A andB are modeled asstate blocks (lines 5 and 14) that are run
concurrently (line 4). The interleaving policy is used to schedule the top-level state block (line
3). Since the behavior of the objects is modeled using statecharts, theA and B blocks are
scheduled internally by rtc policies (lines 7 and 15). The state transitions in the statecharts
are represented by theif , goto statements (e.g. line 19). Notice that we now are using two
different scheduling policies i.e. we are usingheterogenous models of computation.

4 FROM SMDL TO AUTOMATA

Most approaches for high-level synthesis try to map the high-level concepts as directly as pos-
sible to the target language concepts. In our approach, we go through yet a few intermediate
steps, ending up with low-level finite state machine descriptions, that we can optimize, and
from which we can easily generate code in different target languages. We first reduce the
SMDL program to an automaton where the scheduling policy has been applied. This is illus-
trated in figures 3 to 5.

3

If we ignore the scheduling policies and only consider the operational semantics of the
statements, we can illustrate the SMDL program in the example by the activity diagram in
Figure 3. This diagram shows the state of the active set, as well as the event emissions etc.
At first, the sys label of the top-levelstate statement is active. Running the statement
simply activates the next label namelyl1 , belonging to thepar statement. Running thepar
statement activates theA andB labels. The vertical bar denotessplitting of control, i.e. both
statements after the bar are active. By removing trivial states and transitions, that only activate
some label(s) and deactivate themselves, results in the diagram in Figure 4.

Two consecutivestate labels likeA and
S

Aa1 Aa2
qA.e1/^q.e1

B1b1

B2b3

B1b2
q.e1

B2b4
q.e1

q.e1

Figure 4: Trivial states removed

a1 (whereA is a superstate ofa1) for example,
have been truncated into theA a1 state. States
belonging topar statements likel1 have been
removed etc. Applying the rtc policy for the
statechart substates compiles away the orthog-
onality of theB statechart1 by taking the carte-
sian product of the states. The initial states of the orthogonal regions in the original UML
model areb1 andb3 or B1b1 andB2b3 in the activity diagram in Figure 4. We replace this
initial state configuration by a stateB1b1 B2b3.

When the evente1 is received, both regions
S

Aa1

B1b1_B2b3

Aa2
qA.e1/^q.e1

B1b2_B2b4
q.e1

B1b1_B2b4
q.e1

q.e1

Figure 5: Scheduling policies applied

take transitions, ending up in statesB1b2 and
B2b4. Again we replace this state configura-
tion with the stateB1b2 B2b4. Carrying on,
we obtain the diagram of Figure 5 with two par-
allel state machines (applying the interleaving
policy preserves the parallelism). From here it is easy to proceed to code generation.

5 FROM AUTOMATA TO VHDL

The parallel FSM’s from the previous sections will be translated into two VHDL processes
implementing a state machine each. Before doing so, however, we will show that optimizations
can be performed on the FSM’s. The result will be a minimal low-level representation of the
original model from which we can generate target language code, in this case VHDL. Often
the VHDL synthesis tool could perform the same optimizations if we were to skip this step.
We could actually proceed to netlist generation directly, instead of generating VHDL. We have
also experimented with C code generation and have achieved significant object code footprint
reductions using the optimization.

Our optimization process is similar to that of the POLIS approach [1] and it is based on
Software Graphs or S-Graphs. An S-Graph is a directed acyclic graph used to describe a
decision tree with assignments. The S-Graphs can be minimized, which allows us to generate
code that is optimized for size, another property of the S-Graphs is that they are very well-suited
for code-size and performance estimation, which is often important in embedded systems.

We will here demonstrate how the FSM in the lower thread in Figure 5 can be reduced using
S-Graphs. An S-graph consists of a set of verticesV which contains four types of vertices:
BEGIN, END, TEST and ASSIGN. Every S-graph has one vertex of type BEGIN, called the
source and one vertex of type END, called the sink. All other vertices are of type TEST or
ASSIGN. Each TEST vertexv has two children, which are calledtrue(v) andfalse(v) .
Each BEGIN or ASSIGN vertexu has only one childnext(u) . Each vertex is labeled with a
function. Two nodes areisomorphicif they have the same label, and their child or children are
isomorphic. A test node is redundant if both its true- and false-branch lead to the same node.

1Orthogonality in UML statecharts is not actual concurrency

4

state=B1b1_B2b3

state=B1b1_B2b4

e1

state=B1b2_B2b4

e1

end

state:=B1b2_B2b4state:=B1b2_B2b4

e1

state:=B1b1_B2b4

begin

state=B1b1_B2b3

state=B1b1_B2b4

e1

state=B1b2_B2b4

e1

end

state:=B1b2_B2b4state:=B1b1_B2b4

begin

(a) (b)

Figure 6: (a) An S-Graph of the lower thread of Figure 5 (b) Reduced S-Graph

If there are no two isomorphic nodes in an S-graph, and all redundant tests are eliminated, the
graph is said to bereduced. A reduced S-Graph can usually be optimized further by reordering
the nodes, but this procedure is beyond the scope of this paper.

The S-graph of the FSM of threadB is shown in Figure 6. The dashed lines denote false-
branches; solid lines denote true-branches. The node labeledstate=B1b1 B2b3 is a TEST
node checking if the machine is in stateB1b1 B2b3, thee1 nodes check for the presence of
evente1 , while the nodes with labels containing assignments (:=) are ASSIGN nodes doing
state transitions. Figure 6 (b) shows the reduced S-graph; the reduction resulted in two fever
nodes in this minimal example.

The VHDL code for theB process generated from an unreduced S-Graph is shown in Fig-
ure 7 (a) while Figure 7 (b) shows the code generated from the reduced S-Graph. The code
generation from the S-Graphs proceeds in a bottom up fashion node by node. For example
in the reduced graph (Figure 7 b)) , we start by translating one of the assignment nodes, e.g.
state:=B1b2 B2b4 directly into VHDL (line 11). Traversing the graph upwards, we find
the TEST node labelede1 , which is translated into the procedure call and if statement in lines
9 and 10. Continuing up in the graph, we find edges to two TEST nodes resulting in anor
guard in theif statement (line 8). As we reach the begin node, we start over from the bottom
choosing the other assign node (state:=B1b1 B2b4) etc.

Often the biggest gap in going from system level specifications to an implementation lies
in the communication schemes. Each UML statechart is equipped with a FIFO event queue.
The communication between state machines in a collaboration diagram is not well defined in
the UML standard. The topic of communication synthesis from high level specifications is
covered in some detail in e.g. [5]. We take a similar approach, and e.g. generate a procedure
queue q get event(uml event) for checking the event on the top of queueq. We
will not further cover the communication issue in this paper, though an important one.

Synthesizing these two pieces of code from our toy example resulted in about 2 percent
smaller area for the reduced version, that is no significant improvements in this case; however,
a minimal representation for code synthesis often has bigger advantages.

6 CONCLUSIONS AND FUTURE WORK

We have presented an approach using which, UML behavioral diagrams can be used for system
level synthesis of VHDL code. The method can also be used with other visual formalisms. We

5

1 B: process (clk,reset)
2 variable state : StateType := B1b1 B2b3;
3 variable uml event : EventType;
4 begin
5 if reset = ’0’ then
6 state := B1b1 B2b3;
7 elsif clk’event and clk = ’1’ then
8 if state = B1b1 B2b3 then
9 queue q get event(uml event);
10 if uml event=e1 then
11 state := B1b2 B2b4;
12 end if;
13 elsif state = B1b1 B2b4 then
14 queue q get event(uml event);
15 if uml event=e1 then
16 state := B1b2 B2b4;
17 end if;
18 elsif state = B1b2 B2b4 then
19 queue q get event(uml event);
20 if uml event=e1 then
21 state := B1b1 B2b4;
22 end if;
23 end if;
24 end if;
25 end process B;

1 B: process(clk,reset)
2 variable uml event : EventType;
3 variable state : StateType := B1b1 B2b3;
4 begin
5 if reset = ’0’ then
6 state := B1b1 B2b3;
7 elsif clk’event and clk = ’1’ then
8 if state = B1b1 B2b3 or state = B1b1 B2b4 then
9 queue q get event(uml event);
10 if uml event = e1 then
11 state := B1b2 B2b4;
12 end if;
13 elsif state = B1b2 B2b4 then
14 queue q get event(uml event);
15 if uml event = e1 then
16 state := B1b1 B2b4;
17 end if;
18 end if;
19 end if;
20 end process B;

(a) (b)

Figure 7: Generated VHDL code (a) non-optimized (b) optimized

translate the system-level specifications into an optimized format, from which we are able to
synthesize compact code in different target languages. The ultimate goal of our process would
be to skip the software compilers, VHDL synthesis tools etc. and go straight in to assembly
code, and hardware netlists.

There are still ambiguities in many UML diagram types, and above all, the semantics of
combinations of diagram types, like collaboration and statechart diagrams is not clear. We
need to study more in depth the existing communication schemes between active objects in
UML etc. And identify missing and ambiguous concepts.

The tools for performing the different transformations between SMDL and the target lan-
guages are still under development.

REFERENCES
[1] Felice Balarin et al.Hardware-Software Co-Design of Embedded Systems. Kluwer Academic Pub-

lishers, 1997.
[2] Dag Björklund. The SMDL statechart description language: Design, semantics and implementation.

Master’s thesis,̊Abo Akademi University, 2001.
[3] Dag Björklund and Johan Lilius. A language for multiple models of computation. InSymposium on

Hardware/Software Codesign 2002. ACM, 2002.
[4] Dag Björklund, Johan Lilius, and Ivan Porres. Towards efficient code synthesis from statecharts. In

pUML Workshop at UML2001, october 2001.
[5] G. Fernandes Marchioro J.-M. Daveau and A.A. Jerraya. VHDL generation from SDL specification.

In C. Delgado Kloos and E. Cerny, editors,Hardware Description Languages and their Applications
(CHDL ’97), Toledo, Spain, 1997. Chapman and Hall.

[6] Sanjiv Narayan, Frank Vahid, and Daniel D. Gajski. Translating system specifications to VHDL.
In IEEE European Design Automation Conference, pages 390–394, Amsterdam, The Netherlands,
1991.

[7] OMG. OMG Unified Language Specification. Version 1.3 , March 2000, available from
http://www.omg.org.

[8] OMG. Omg XML metadata interchange (XMI) specification. OMG Document formal/00-11-02.
Available at www.omg.org.

[9] Ivan Porres. A toolkit for manipulating UML models. Technical Report 441, Turku Centre for Com-
puter Science, 2002.

6

