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Abstract. Sharing between B constructs is limited, both on the specification and
the implementation level. The limitations stem from the single writer/multiple
readers paradigm, restricted visibility of shared variables, and structural con-
straints to prevent interference. As a consequence, applications with inherent
sharing requirements have to either be described as large monolithic constructs or
be underspecified, leading to a loss of modularity respectively certain desirable
properties being unprovable.
We propose a new compositional symmetric shared access mechanism based on
roles describing rely/guarantee conditions. The mechanism provides for multiple
writers on shared constructs, visibility of shared variables in the accessors’ in-
variants, and controlled aliasing. Use is uniform in machines, refinements, and
implementations. Sharing is compositional: all proof obligations are local and do
not require knowledge of the other accessors’ specifications, let alone their or the
shared construct’s implementation.
Soundness of the mechanism is established by flattening.

1 Introduction

The B method provides support for modularization and, herewith, for information hid-
ing, compositionality of module operations, reusability of modules, and decomposition
of proofs [4, 5]. Modules can be combined using a number of different mechanisms.
Refinement being ‘almost’ monotonic with respect to the composition mechanisms,
most proof obligations arise on a per module base. The few additional restriction on
the global structure can be checked automatically. In this compositional approach, we
can focus on a part of a large system, establish desired properties for this part, and be
guaranteed that these properties hold in the complete system.

To achieve compositionality [8] and independent refinement, sharing is restricted in
B. Sharing is based on the single writer/multiple readers paradigm. If several constructs
access a shared construct, only one accessor (writer) can modify the state of the shared
construct. The other accessors (readers) are limited to read-only access, respectively
to calling inquiry operations. To ensure that invariants cannot be invalidated, only the
single writer is allowed to reference variables of the shared construct in its invariant.
Because of these limitations, applications with inherent sharing requirements cannot be
handled satisfactorily, as described in Sect. 2.2.
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We introduce a new sharing mechanism that overcomes the single writer and the
variable visibility restrictions. Multiple constructs can have write access to a shared
construct and reference shared variables in their invariants. The mechanism is compo-
sitional: all proof obligations arise on a per module base and only a few automatically
checkable restrictions on the sharing graph are required for global correctness. The key
element are freely specifiable accessor roles, which determine how the different acces-
sors can use the shared construct. Adherence to these role specifications guarantees that
the accessors do not invalidate each others invariants.

Role specifications can be considered as guarantee conditions in the sense of Cliff
Jones [15] with the rely conditions being given by the other roles. Rely/guarantee con-
ditions (also known as assumption/commitment specifications) have been developed as
a compositional proof method for shared variable and message-passing concurrency
with interleaving semantics. This paper shows that the same theory is also applicable to
modular sequential systems with sharing.

Section 2 reviews the existing sharing mechanisms and illustrates a shortcoming on
a concrete example. Throughout the paper we use numbered variations of the same ex-
ample. In Sect. 3 we take the problem to its roots, analyzing the reasons for the existing
restrictions. Section 4 introduces the new mechanism. We provide further details of the
sharing mechanism in Sect. 5. In Sect. 6 we list the complete syntax, the proof obliga-
tions, the visibility rules, and the well-formedness criteria for the composition graph.
Using flattening of constructs, we prove the soundness of the proposed mechanism in
Sect. 7. Sect. 8 lists related work and draws the conclusions.

2 The Problem

2.1 Review of Existing Composition Mechanisms

B has three different constructs: machines, refinements, and implementations, distin-
guished by different syntactic restrictions. Machines express original specifications.
Refinements are intermediate constructs. An implementation denotes the end of a re-
finement chain and contains executable code. In addition to behavioral specifications,
refinements and implementations contain data refinement relations in form of gluing
invariants. Machines can be parameterized. Parameters are instantiated by the single
writer.

The B method has four mechanisms to compose constructs. The different mech-
anisms can be used in different constructs. The target of a composition is always a
machine.

INCLUDES The INCLUDESclause can appear in machines and refinements. It can
be understood as textual inclusion with the restriction that variables of the included
machine can only be modified indirectly through operations of the included machine so
that the invariant of the included machine is preserved. The including construct instanti-
ates the parameters of the included machine and can reference variables of the included
machine in the invariant. The including construct becomes the focus of refinement, the
included construct doesn’t have to be implemented unless it is also imported.
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USES TheUSESclause can only appear in machines. It provides for limited sharing
on the specification level. Any number of machines can use a shared machine. All us-
ing and the used machine must be included into a common machine, which becomes
the focus of refinement. The using machines cannot be refined. They have read-only
access to the shared machine and can reference shared variables in their invariants. To
guarantee that the including machine, which is the only writer, does not invalidate the
invariants of the using machines, the using machines’ invariants have to be proved upon
inclusion.

SEES TheSEESclause can appear in any construct. It provides for read only access to
a shared machine. Variables of the seen machine cannot be referenced in the invariant of
the seeing construct. Without this restriction, the invariant of the seeing machine could
be invalidated by the construct with write access to the seen machine.

IMPORTS The IMPORTSclause can only appear in implementations. The import-
ing machine instantiates the parameters of the imported machine, can call both inquiry
and modification operations and can reference variables of the imported machine in its
invariant. Imported machines can be seen by any number of other constructs.

Summary The INCLUDESandUSESclauses can be considered as weak or syntactic
relations [5]. Their aim is to combine text of machine specifications; this structure is not
reflected in subsequent refinements or in the final implementation.SEESandIMPORTS
on the other hand are strong relations as the shared code will remain visible as a module
in the final implementation.

2.2 A Problem with the Existing Mechanisms

In this subsection, we illustrate a shortcoming of the existing sharing mechanisms with
a concrete example. The example’s main characteristic are its inherent sharing require-
ments.

We consider a control system for a manufacturing plant consisting of various de-
vices, such as robot arms and conveyor belts. Each device is controlled by its own
software module, the centralRunoperation of which is periodically called by a sched-
uler. Whenever a device controller notices an error, the device is stopped and an alarm
is registered in a central database. The plant operator can list the active alarms on the
screen and deactivate alarms after fixing their cause. The devices check whether all their
alarms have been deactivated and if so resume work.

The database is shared between all the device controllers and the monitoring con-
sole. They all need both read and write access: the device controllers need to check for
active alarms and enter new alarms, the monitoring console needs to list active alarms
and change the activity status of alarms.

How do we specify, refine, and implement such an architecture using B’s existing
composition mechanisms? Let us first look at the specification. Since the devices are to
a certain degree independent and since multiple instances of the same device type can
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exist, it makes sense to specify them modularly using separate machines. Likewise, the
database is captured by a separate machine, which is accessed by the device controllers
and the monitoring console (Fig. 1 a). As remarked above, all accessors need both read
and write access to the shared database. However, the existing sharing mechanisms are
limited by the single writer paradigm (Sect. 2.1).

This sharing architecture is possible withSEESor USES, if the called operations,
such asNewAlarmin Database1, are specified as inquiry only – although their imple-
mentations modify the concrete state:

MACHINE Database1
OPERATIONS

NewAlarm(type) =̂ PRE type ∈ NAT THEN skip END ;
bb← ActiveAlarms =̂ BEGIN bb :∈ BOOL END;
. . .

END

Unfortunately, this underspecification precludes any sensible reasoning. Becauser
there is no set of active alarms inDatabase1, we cannot express the fact that the con-
veyor belt is only running if none of its alarms are active. Likewise, we cannot prove
that an alarm will remain active until acknowledged by the operator. In conclusion, this
architecture cannot be applied satisfactorily in B.

An alternative architecture is based on a top machineTop as single writer to the
database, to which the device controllers and the monitoring console have only read ac-
cess employingSEESor USES(Fig. 1 b). In this scenario, the device controllers cannot
register alarms in the database directly. Instead, they have to return the corresponding
information upon being called byTop, which in turn enters the alarms into the database.
This becomes rather cumbersome if there are intermediate machines through which the
information has to be passed or if the information does not have a constant length.

An additional problem becomes apparent when looking at the active alarms display
operation of the monitoring console. This operation has to get a list of all active alarms.
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This list not being constant in size, it cannot be returned by a single operation call.
Instead, the elements have to be retrieved one by one –like the results of an SQL query
in C. It is often simpler if the database maintains a set of already returned elements (See
e.g. [6] for details of such a retrieval operation.) rather than requiring the search criteria
together with a resume index to be passed with every call. However, if the retrieval
operation updates a variable, it cannot be called by the monitoring console with read-
only access. This problem could again be ‘solved’ by an undesirable underspecification.

EmployingSEESin the device controllers we would be forced to specify properties
relating devices and the database (e.g., the conveyor belt is only running if none of its
alarms are active) in theTopmachine rather than in the device controllers. WithUSES
on the other hand, we would be allowed to reference variables of the database in the
invariants of the device controllers, but would not be allowed to refine the latter leading
either to a monolithic implementation ofTopor a difficult to manage almost duplication
of constructs.

In any case, the all including constructTopbecomes the single focus of refinement
without any direct support for architectural structure preserving refinement. Whereas
it is definitely beneficial that B does not force the specification and implementation
structures to be identical, the example shows that there are cases where more support
for structure preserving refinement would be needed.

The problems of access restrictions can be overcome by merging all device con-
trollers and the monitoring console into one big machine (Fig. 1 c). This, however, leads
to a loss of modularity and, herewith, of information hiding, compositionality, reusabil-
ity (e.g. multiple instantiation if we have several conveyor belts), and decomposition of
proofs.

The same problems reoccur at the refinement and implementation level, where we
are also restricted by the single writer approach and the limitations of shared variables
visibility. The above problems are not limited to our specific example. Further motiva-
tion to analyze the reasons for the current restrictions and to suggest new mechanisms
are, e.g., given by [22, Chapters 4, 5, 6, and 7].

3 Analysis of the Problem

In this section, we analyze the reasons for the single writer and shared variable visibility
restrictions. In a nutshell, the restrictions are due to interference that would contradict
compositionality and independent refinement by invalidating local proofs.

Consider a variation of the plant control system where alarms are set on the con-
sole. The conveyor belt simply adjusts its execution status based on whether there
are active alarms in the system. The shared machineDatabase2contains a variable
activeAlarms⊆NAT. The conveyor belt is specified as follows, using the keywordUTI-
LIZESto indicate some sort of sharing access:

MACHINE ConveyorBelt2
UTILIZES Database2
VARIABLES running
INVARIANT running∈BOOL ∧ (running=TRUE⇒ activeAlarms=∅)
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When the console sets an alarm it invalidates the invariant ofConveyorBelt2if run-
ning is TRUE. A construct with write access to a shared machine may invalidate any
other accessor’s invariant, if the latter references variables of the shared machine.

Such undesirable interferences cannot be ruled out with local proofs for any of the
three machinesDatabase2, ConveyorBelt2, or Console2. They require either a global
approach or a modular approach with noninterference proofs like [20]. In both cases we
would loose the benefits of independent refinement provided by a compositional theory
[25].

Hence we have to choose between having multiple writers without the possibility
to reference variables of the shared machine in any of the accessors’ invariants or the
current single writer paradigm. Not being able at to reference variables of the shared
machine in any of the accessors’ invariants is too restrictive, precluding the proving of
many properties. For example, we cannot prove that the conveyor belt is only running if
there are no active alarms because the variableactiveAlarmsof Database2is not visible
in the invariant ofConveyorBelt2.

The same problems of destroying each other’s invariants exist on the refinement and
implementation levels. In addition to the local invariant, also the gluing invariant, ex-
pressing the data refinement relation, could be invalidated if we were to allow multiple
writers [23].

On the positive side, we can note that multiple writers never invalidate the invariant
of the shared machine as all modifications are done through operation calls.

4 Role-Based Access

To guarantee interference freedom among multiple accessors of a common machine,
only the possible modifications to the shared variables are relevant. We define these
effects in form of accessroles as part of the shared machine. Accessing constructs
declare which role(s) they play. The accessors guarantee to perform only modifications
allowed by the declared role(s). In return, they can rely on the other accessors adhering
to their roles. Let constructA accesses a shared machine in roleR1. If the other roles
R2, . ., Rn maintain the invariant ofA, then any accessor in roleRi (i ∈ 2. .n maintains
the invariant ofA. Thus, we can both specify and refine accessorA without knowing the
other accessors’ specifications or implementations.

Because a library machine might foresee multiple sharing scenarios and because a
custom machine might be used in multiple instances with different sharing, we allow
the definition of multiplecontractswith different roles.

4.1 Role Specifications

We illustrate the concept on our plant control system. This time, the conveyor belt
creates the alarms reacting to sensors and an emergency stop button. The monitoring
console is used to deactivate alarms.Database3defines a contractSingleDevicewith
two rolesCreator andController, intended to capture the accesses byConveyorBelt3
andConsole3respectively. An instance ofDatabase3with contractSingleDevicecan
have at most two accessors, one for each role.
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MACHINE Database3
CONTRACTS

SingleDevice =̂
Creator = ANY type WHERE type∈NAT THEN NewAlarm(type) END,
Controller = ANY aa WHERE aa∈activeAlarmsTHEN ResetAlarm(aa) END

VARIABLES alarms, activeAlarms, alarmType
INVARIANT alarms⊆NAT ∧ activeAlarms⊆alarms ∧ alarmType∈alarms→NAT
INITIALISATION alarms, activeAlarms, alarmType:=∅, ∅, ∅
OPERATIONS

aa← NewAlarm(type) =̂
PRE type∈NAT THEN

ANY nn WHERE nn∈NAT-alarms THEN
aa, alarms:=nn, alarms∪{nn} ‖
activeAlarms, alarmType(nn):=activeAlarms∪{nn}, type

END
END;

ResetAlarm(aa) =̂ PRE aa∈activeAlarms
THEN activeAlarms:=activeAlarms-{aa} END;

nof← NofActiveAlarms =̂ nof:=card (activeAlarms);
. . .

END

We specify the set of alarms as a subset ofNAT and the active alarms as a subset
of all alarms. The attributealarmTypeis a functions fromalarmsto NAT. More on this
approach of mapping records/classes to B, including proper treatments of finiteness,
can be found in [18, 6].

4.2 Accesses

The machineConveyorBelt3declares that it accesses theDatabase3asCreator in a
SingleDevicecontract. We use a ‘!’ as separator of the qualified identifier because the
dot is reserved for possible renaming.

MACHINE ConveyorBelt3
ACCESSES Database3!SingleDevice AS Creator
VARIABLES running
INVARIANT running∈BOOL ∧ (running=TRUE⇒ activeAlarms=∅)
INITIALISATION running:=TRUE
OPERATIONS

rr← Run =̂
CHOICE

ANY type WHERE type∈0. .8
THEN NewAlarm(type) ‖ running, rr:=FALSE, FALSE END

OR running, rr:=bool (activeAlarms=∅), bool (activeAlarms=∅)
END;

EmergencyStop =̂ BEGIN NewAlarm(9) ‖ running:=FALSE END
END

The operationsRunandEmergencyStophave to act as refinements ofCreator[] skip
on the state space of theDatabase, which is clearly the case. This also implies, that
inquiry operations can be freely called by any accessor.
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Furthermore, we need to show that another construct, accessingDatabase3in the
second roleControllercannot invalidate the invariant ofConveyorBelt3. To this aim, we
show that the role specificationController executed like an operation on the combined
state space ofDatabase3and ConveyorBelt3maintains the latter’s invariant. This is
the case, becauseController can only deactivate alarms. Deactivation is unproblematic
because the second conjunct of the invariant ofConveyorBelt3is an implication and not
an equality.

4.3 Refining and Implementing Accesses

Refinements and the implementation ofConveyorBelt3have to make the same changes
to the variables of the shared machineDatabase3.

We assumeMotor3 to be a machine controlling the power of the motor andSensor3
a sensor that is activated if a load on the conveyor belt is about to fall off the edge.

IMPLEMENTATION ConveyorBelt3′ REFINES ConveyorBelt3
ACCESSES Database3!SingleDevice AS Creator
IMPORTS M.Motor3, S.Sensor3
INVARIANT running=M.on
OPERATIONS

rr← Run =̂
VAR ss, nof IN

ss← S.ReadSensor;
IF ss=TRUE THEN M.ShutOff; NewAlarm(0)
ELSE nof← NofActiveAlarms; IF nof=0 THEN M.TurnOn END
END

END;
EmergencyStop =̂ BEGIN M.ShutOff; NewAlarm(9) END

END

Instead of accessing the database itself, the implementationConveyorBelt3′ could
also import another machine that accesses the database and performs the changes.

4.4 Instantiation

In the existing composition mechanisms, the single writer also instantiates the machine
parameters of the utilized machine. In our new mechanism, instantiation is separate
from access using theINSTANTIATESclause, which specifies the machine, the contract,
and the values of the parameters, if any. For example, we might have an implementation
Main3′, which imports the accessors and instantiates the shared database:

IMPLEMENTATION Main3′ REFINES Main3
INSTANTIATES Database3!SingleDevice
IMPORTS ConveyorBelt3, Console3

Every accessed copy of a shared machine must be instantiated exactly once in an
implementation, naming the same contract as all accessors. Renaming can be performed
in theACCESSESandINSTANTIATESclauses, thus allowing multiple instances with
possibly different contracts. The renaming of the construct containing theINSTANTI-
ATESclause determines the number of instances.
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5 Further Aspects of Role-Based Access

5.1 Replicated Roles

In the previous section we have used role-based access for a plant control with a single
device. In reality, we have many devices, which all have almost identical role specifica-
tions. Rather than requiring textual duplication, we introduce a replication mechanism
over a constant set. Thus, we can define the roleCreatorof Database4as follows:

MACHINE Database4
CONTRACTS

MultipleDevices =̂
Creator(no∈0. .19) =

ANY type WHERE type∈10×no. .10×no+9 THEN NewAlarm(type) END,

This example definition allows 20 accessors in the role of creators, one for each
value between 0 and 19. The replicatorno may be used inside the scope of the role
definition like a constant. A construct that accesses a shared machine in a replicated
role has to indicate its replication value. The conveyor belt could be defined as:

MACHINE ConveyorBelt4
ACCESSES Database4!MultipleDevices AS Creator(0)

For the non-interference proofs the other replicated roles have to be considered like
different role specifications. In the example, we would have to prove thatCreator(nn)
for nn∈1. .19maintains the invariant ofConveyorBelt4. This is the case if we adapt the
invariant ofConveyorBelt3as below and adjusting theRunoperation correspondingly.

INVARIANT
running∈BOOL ∧ (running=TRUE⇒ activeAlarms∩(alarmType−1[0..9])=∅)

5.2 Form of Role Specifications

As shown in the examples, role specifications take the format of normal B operations.
Traditionally, rely/guarantee conditions are expressed as predicates over the current and
the next state of variables. However, we feel that operation-like specifications are more
in line with B.

As a guiding principle, we allow the same statements as in operations of a refine-
ment that includes the accessed machine. Thus, multiple substitutions, sequencing, and
nondeterministic choice are all allowed, but loops are not. Variables can be read directly,
but modified through operation calls only. To gain sufficient expressiveness, either loops
or direct modifications should be made legal.

We do not have to prove that operation calls in role specifications satisfy the pre-
conditions of the called operations, because we perform these proofs for the actual
accessors. As an engineering aid, the tools should nevertheless support conformance
proofs for role specifications. Precondition violating role specifications do not give the
accessor more freedom, but make the non-interference proofs for other accessors more
difficult.
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The role specifications, like any module interfaces, should be very simple com-
pared to the code of the actual accessors. Hence, roles are described like operations,
rather than full machines with variables that maintain their values between calls. Such
specifications would require full-blown construct refinement with gluing invariants be-
tween role and local variables in accessors and also more complex non-interference
proofs. The simple format suffices in most cases and is, combined with some coding
tricks modifying the operation specifications, as general as full machines.

The relative simplicity of the role specifications compared to the code of the actual
accessors reduces the complexity of the non-interference proofs. The simplification of
the non-interference proofs for all other accessors on all refinement levels by far out-
weighs the additional burden of the single role adherence proof.

An overly weak role specification makes it easy to prove role adherence, but impos-
sible to guarantee non-interference for other accessors. An overly strong specification
causes the opposite problem. Writing the role specifications is a design step, like any
other definition of module interaction.

5.3 Adherence to Role Specifications

An operation of an accessor adheres to a role specification if it either acts as a refine-
ment of the specification or asskipon the state space of the accessed machine. We add
skipas an implicit choice to every role specification. This corresponds to the guarantee
condition being reflexive [15], respectively the stuttering transition being built into the
semantics [3, 17].

Whether an operationO that refines a role specificationR is called multiple times
or whetherO acts as a refinement ofRˆ (=skip[]R[](R;R)[] . . .) has the same effect for
the other accessors. This corresponds to the guarantee condition being transitive [15],
respectively mumbling being built into the semantics. Explicitly allowing mumbling
makes the proofs more difficult and can –provided we allow direct write access or loops
in role specifications– always be replaced with a weaker role specification. For simplic-
ity, we do not consider mumbling in this paper.

In the initialization of the accessors we only allow inquiry operations of the ac-
cessed machine to be called. Otherwise we would have to define an order in which
the accessors are initialized and could not assume the shared machine to be in its initial
state when the accessors are initialized. The initializations acting asskipon the accessed
machine, they automatically adhere to the role specifications.

5.4 Sharing Structure

Sharing is used to get multiple access paths to the same data. In the presence of indepen-
dent refinement, we need some structural restrictions to control aliasing. In this section,
we give two examples of what could go wrong without such structural restrictions. A
full account of the restriction is given in Sect. 6.4.

We adopt the following notation in figures: The primed constructs are the imple-
mentations refining the unprimed machines. Multiple instances of an accessed machine
–if present– are graphically indicated by duplication to make collaborations clear. We
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append the name of the actual contract to the name of the accessed machine. The access
arrows are adorned by the role(s) and possibly the replication values, the instantation
arrow by the possible renaming. In a slight abuse of notation, it would also be possi-
ble to visualize roles as UML style interfaces (circles) attached to the shared machine.
However, our notion of roles and that of UML interfaces is not identical because our
roles contain guarantee conditions rather than the signatures of callable operations.

Consider a machineA that accesses a shared machineS (left branch of Fig. 2 a).
The implementationA′ also accessesSand furthermore importsB. MachineB does not
accessS, but the implementationB′ does. Even if we locally prove that the operations
of A′ act as a refinements of the operations ofA, this property might not hold in the
complete system.A′ may call operations ofB and, thereby, unknowingly modifyS.
This might lead toSbeing modified differently than specified inA, B′ observingS in a
state where the gluing invariant ofB′ does not hold, andA′ violating preconditions of
operations ofS. This problem is due toA′ accessingSboth traceably and untraceably.
The problem is not bound toB only accessingS in the implementation. An invisible
access could also be created ifB′ would not accessSdirectly, but import a machineE
that accessesS.

Without constraints on the composition graph, also the interaction between the old
and the new composition mechanism can lead to problems. A seeing constructC′ (right
branch of Fig. 2 a) assume that the state of the seen machineSdoes not change during
the execution of an operation ofC′. To enforce this, the seeing constructC′ can only call
inquiry operations. In proofs ofC′, no substitutions are made on the state of the seen
machineS. If C′ could indirectly modifyS, global correctness would be invalidated.
This could, for example, happen if the seeing machine imports a third machineD, the
implementation of which accessesS. Thus, we need restrictions on the structure of the
development to ban such architectures.

5.5 Emulating the Existing Composition Mechanisms

The existing composition primitivesIMPORTSandSEEScan be emulated usingAC-
CESSESandINSTANTIATESas follows: A contract permitting a single writer with full
access rights and an infinite number of readers with askip role specification is added
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to the shared construct. Then,IMPORTScan be replaced with an access in the writer
role and an instantiation. TheSEESclauses are replaced with accesses in the replicated
reader role. Because the existing mechanismsIMPORTSandSEEScapture a frequent
special case and because abolishing them would require more complicated global re-
strictions based not only on the structure but also the semantics of roles, it makes sense
to have all mechanisms at our disposition.

Promotion of operations (turning operations of a utilized machine into proper opera-
tions of the utilizing construct) would only be possible in combination withACCESSES
in trivial cases where the other accessors do not make any observable modifications
(e.g., for the single writer in the above emulation contract). Furthermore, promotion of
operations is much less important withACCESSES, because the latter provides for mul-
tiple writers. Therefore, we do not consider the promotion of operations from accessed
machines, but rather count promotion as a further reason to also keep the existing import
mechanism.

TheUSESmechanism cannot be emulated because it dictates that the used machine
be included into another machine whereas an accessed machine cannot be included.
INCLUDES, being a copying rather than a sharing mechanism, cannot be emulated
with ACCESSES.

6 Formal Definitions

6.1 Syntax

We give the following extended syntax definitions [2, p 715ff] for machines, refine-
ments, and implementations:

MACHINE
Machine Header

CONSTRAINTS
Predicate

CONTRACTS
Contract List

ACCESSES
Access List

INSTANTIATES
Inst List

USES
. . .

REFINEMENT
Machine Header

REFINES
Id List

ACCESSES
Access List

INSTANTIATES
Inst List

SETS
. . .

IMPLEMENTATION
Machine Header

. . .
VALUES

Predicate
ACCESSES

Access List
INSTANTIATES

Inst List
IMPORTS
. . .

Contract List, AccessList, andInst List are defined as follows:

Syntactic Category Definition

Contract List Contract; Contract List
Contract

Contract Contract Name =̂ Role List
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Syntactic Category Definition

Role List Role, Role List
Role

Role Role Name = Statement
Role Name(Replicator ∈ Set) = Statement

Access List Access; Access List
Access

Access Machine Name!Contract Name AS Acc Role List
Renamed Name.Machine Name!Contract Name
AS Acc Role List

Acc Role List Acc Role, Acc Role List
Acc Role

Acc Role Role Name
Role Name(Simple Term)

Inst List Inst, Inst List
Inst

Inst Machine Name!Contract Name
Machine Name!Contract Name(Expression List)
Renamed Name.Machine Name!Contract Name
Renamed Name.Machine Name!Contract Name(Expression List)

Contract Name, Role Name, Replicator, Machine Name, andRenamedNameall
stand forIdentifier. The form of the role specification is discussed in detail in Sect. 5.2.

6.2 Proof Obligations

We give the proof obligations for machines and implementations containing anAC-
CESSESclause. The rules for refinements are analogous. As noted in Sect. 5.2, the
CONTRACTSclause does not give rise to any proof obligations. We leave out sets, con-
stants and assertions as the respective proof obligations are unchanged. Figure 3 gives
an overview of the proof obligations.

MACHINE Ms(Ps)
CONSTRAINTS Cs

CONTRACTS
K =̂

R1 = F1,
R2 = F2

VARIABLES Xs

INVARIANT Is
INITIALISATION Us

OPERATIONS
us ← Os(ws) =̂

PRE Qs THEN Vs END
END

MACHINE M1(P1)
CONSTRAINTS C1

ACCESSES
Ms!K AS R1

VARIABLES X1

INVARIANT I1
INITIALISATION U1

OPERATIONS
u1 ← O1(w1) =̂

PRE Q1 THEN V1 END
END

IMPLEMENTATION
M′

1(P1)
REFINES M1

ACCESSES
Ms!K AS R1

CONCRETE VARS
X′

1

INVARIANT I′1
INITIALISATION U′

1

OPERATIONS
u1 ← O1(w1) =̂

BEGIN V′
1 END

END

We use the abbreviationsA1 for P1∈P1(INT) andAs for Ps∈P1(INT). Occurrences
of Os in U1, V1, U′

1, V′1, F1, andF2 should be replaced byVs with the parameters
substituted accordingly [2, p 314ff]. As in [2] we do not make this substitution explicit
in the proof obligations.
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M
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s 

in
 [2

]

refinement/role adherence

Semantics of arrows

non-interference

accesses (calls satisfy preconditions)

consistency (init establishes invariant,
operations preserve invariant)

(n)
proof obligation
number (cf. text)

Fig. 3.Proof Obligations for an Accessing Machine and Implementation

MachineM1 The first proof obligation ofM1 states that the initialization must establish
the invariant. The role of the accessed machine is similar to the one of an included
machine, except that its parameters are not actualized [2, p 331ff].

A1 ∧ C1 ∧ As ∧ Cs ⇒ [Us][U1]I1 (1)

The next obligation concerns the preservation of the invariant of the accessing ma-
chine by its operations:

A1 ∧ C1 ∧ I1 ∧ Q1 ∧ As ∧ Cs ∧ Is ⇒ [V1]I1 (2)

The third obligation states that the operations of the accessor must conform to the
declared role. Note that there is no corresponding obligation for the initialization be-
cause the latter may not call modification operations of the accessed machine. Because
both the role specificationFs and the operationO1 operate onXs, renaming must be
performed. LetX̂s be a fresh set of variables, then we get

A1 ∧ C1 ∧ I1 ∧ Q1 ∧ As ∧ Cs ∧ Is ∧ X̂s=Xs ⇒ [[Xs:=X̂s]V1]¬[F1 []skip ]¬(X̂s=Xs) (3)

If a construct accesses a machine in multiple roles, its operations have to conform
to the nondeterministic choice of the two roles. Thus, ifM1 were to accessMs asR1

andR2, thenF1 would have to be replaced byF1[]F2.
The fourth obligation concerns the interference freedom by all other roles, which in

our case is onlyR2.

A1 ∧ C1 ∧ I1 ∧ As ∧ Cs ∧ Is ⇒ [F2]I1 (4)

For replicated roles, we have to prove non-interference for all replication values
except for the one of the accessor in question. Let us assume the following replications
R1(g1∈G1) andR2(g2∈G2) and letM1 accessMs asR1(h1). Then we get the following
three obligations:

h1∈G1 (4’)
A1 ∧ C1 ∧ I1 ∧ As ∧ Cs ∧ Is ∧ g1∈G1-{h1}⇒ [F1]I1
A1 ∧ C1 ∧ I1 ∧ As ∧ Cs ∧ Is ∧ g2∈G2 ⇒ [F2]I1
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Replication not only avoids duplication of role specifications, it also leads to a re-
duction of the overal proof burden by combining many similar non-interference obliga-
tions.

The proof obligations for operation calls (satisfy precondition) are unchanged.

Implementation M0

1 For the implementationM′
1 we have 3 proof obligations. The first

two proof obligations concerning initialization and operation refinement are similar to
those of an implementation that imports another machine [2, p 597ff].

A1 ∧ C1 ∧ As ∧ Cs ⇒ [Us][U′
1]¬ [U1]¬I′1 (5)

The second proof obligation is for the operation refinement. The 1-to-1 data refine-
ment of the shared variables is explicit in this obligation(X̂s=Xs).

A1 ∧ C1 ∧ I1 ∧ I′1 ∧ Q1 ∧ As ∧ Cs ∧ Is ∧ X̂s=Xs ⇒ (6)
[[u1:=û1][Xs:=X̂s]V′

1]¬[V1]¬([Xs:=X̂s]I′1 ∧ û1=u1 ∧ X̂s=Xs)

For sharing in the implementation only, we have to prove adherence rather than 1-
to-1 data refinement in the implementation. The third and last obligation concerns the
interference freedom. As noted above for machines, it should be replicated if some of
the roles are.

A1 ∧ C1 ∧ I1 ∧ I′1 ∧ As ∧ Cs ∧ Is ⇒ [F2]I′1 (7)

If M or M′
1 also instantiatesMs, sayPs with Ns, thenAs can be replaced by the

stronger predicatePs=Ns in the above proof obligations. In this case we have the ad-
ditional proof obligation that the actual parameters satisfy the constraints, as forIN-
CLUDESandIMPORTS.

6.3 Visibility Rules

For brevity, we only summarizes some key aspects of the visibility rules here. In the
CONTRACTSclause we allow only read access to variables. A construct’s own sets and
constants as well as those of seen machines are allowed as parameters of instantiations.
To prevent cyclic dependencies, sets and constants of included, used, imported, and
accessed machines are, on the other hand, not visible in theINSTANTIATESclause.

Only a construct’s own sets and constants and those of seen machines, but not those
of imported machines may be used as parameters of instantiations. In their initializa-
tions, accessors can call only inquiry operations of an accessed construct.

If a constructA only instantiates, but does not accessB, then none of the objects of
B are visible inA. Like SEES, but unlikeINCLUDES, ACCESSESis not transitive. If
machineA includes, uses, sees, imports, or accessesB andB accessesC, then the objects
of C are not visible inA. It is, however, possible thatA also accessesC (Fig. 2 b).
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6.4 Well-Formedness of the Composition Graph

The well formedness criteria for the composition graph concerningACCESSESto guar-
antee global correctness are presented below. They are simple enough to be checked
automatically.

Similar checks are already performed for the existing composition mechanisms [2,
21]. For simplicity, we talk about ‘accessed machines’ instead of renamed instances
thereof.

The following conditions can be verified by the type checker on a per-construct
base:

1. If a machine, a refinement, or an included machine thereof accesses a machineMs

asR of contractK then this construct’s implementation must either accessMs asR
of contractK or import exactly one machine that contains such an access.

2. If a machine, a refinement, or an included machine thereof accesses a machineMs

asR1, . . ., Ri of contractK then this construct’s implementation may not accessMs

in any other roles nor import a machine accessingMs in any other roles. (The proof
obligation for operation refinement would not allow modifications not covered by
R1, . . ., Ri anyhow.)

3. A construct and one of its included machines cannot access the same machine in
the same role.

4. If a machine, a refinement, or an included machine thereof contains an instantia-
tion, then all further refinements and the implementation must either contain the
same instantiation with the same parameters or include/import without renaming a
machine containing such an instantiation.

The following conditions must be checked globally for complete projects:

1. Every accessed machine is instantiated exactly once in an implementation.
2. Every shared machine is accessed at most once in each role, respectively for each

replication value, by an implementation
3. All accesses and the instantiation of a machine are for the same contract.
4. An accessed machine cannot be included or imported. This also implies that neither

a used nor a using machine can be accessed.
5. A seen machine must either be instantiated or imported.

To present the remaining architectural condition, we extend the notation of [21].
The relational notation is as in B: ‘+’ denotes the transitive non-reflexive closure, ‘∗’
the transitive and reflexive closure, and ‘;’ composition.

1. M1 sees M2 iff the implementation ofM1 sees the machineM2.
2. M1 m sees M2 iff machineM1 sees machineM2.
3. M1 imports M2 iff the implementation ofM1 imports the machineM2.
4. M1 accesses M2 iff the implementation ofM1 accesses the machineM2.
5. M1 dependson M2 iff the implementation ofM1 is built utilizing M2:

dependson =̂ (sees∪imports∪accesses)+.
6. M1 can alter M2 iff the implementation ofM1 can alter the variables ofM2:

can alter =̂ dependson∗; (imports∪accesses).
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7. M1 any accesses M2 iff M1, one of its refinements, or its implementation accesses
the machineM2.

8. M1 (imp acc Ms) M2 iff the implementation ofM1 imports the machineM2 and
M2 accessesMs.

9. M1 traceably accesses M2 iff M1 accessesM2 through a chain of imports, in which
all machines accessM2:
M1 traceably accesses M2 =̂ M1 (imp acc M2)∗; accesses M2.

10. M1 untraceablyaccesses M2 iff M1 indirectly accessesM2 in a way other than an
imports chain, in which all machines accessM2:
untraceablyaccesseŝ= (dependson; accesses)-traceablyaccesses.

11. M1 instantiates M2 iff the implementation ofM1 instantiates the machineM2.
12. M1 references M2 iff the implementation ofM1 references the machineM2: refer-

enceŝ= (sees∪imports∪accesses∪instantiates)+.
13. id is the identity relation.

The composition graph must then satisfy the following condition:

((sees∪ imports∪ accesses); can alter)∩ (i)
(((imports∪ accesses); m sees+) ∪ (sees; m sees∗)) = ∅ ∧

any accesses∩ untraceablyaccesses= ∅ ∧ (ii)
references∩ id = ∅ (iii)

The first conjunct states that a seen machine must not be modified. The second conjunct
asserts that no construct accesses the same machine directly and untraceably. The third
conjunct excludes cyclic dependencies.

The right branch of Fig. 2 a) violates the first conjunct of the above condition, the
left branch violates the second conjunct.M′ not accessingS has nothing to do with
the violations; the corresponding access in the left figure is just shown as an additional
option.

7 Soundness

In this section we give a partial proof of the soundness of our new shared access mech-
anism. We syntactically merge a shared machine and all its accessing machines into a
new machine and the implementation of the shared machine along with the implemen-
tations of the accessors into a new implementation. Then we show that all the proof
obligations of these two constructs, which do not contain the new mechanism, are im-
plied by the obligations of the individual constructs. Namely, the invariant of the merged
machine holds and the implementation is a correct refinement.

Because we have substitutions of bothVs andV′s for Os, we have to indicate which
body is used. We write[Os\Vs] for this extended substitution which includes the pa-
rameters, e.g.,[Os\Vs] (a← Os(b)) equals[us, ws:=a, b]Vs if us is the output andws

the input parameter ofOs. We assume here that operations are not recursive.
Let Ms, M1, andM′

1 be as in Sect. 6.2. Furthermore, letM2 andM′
2 be like M1

andM′
1 respectively, but with index ‘2’. WithM′

S as in Fig. 4, we get the two merged
constructsM andM′ (Fig. 4). Note thatV′s gets substituted forOs in the implementation
M′.



448 Martin Büchi and Ralph Back

IMPLEMENTATION
M′

s(Ps)
REFINES Ms

CONCRETE VARS
X′

s

INVARIANT I′s
INITIALISATION U′

s

OPERATIONS
us ← Os(ws) =̂

BEGIN V′
s END

END

MACHINE M(P1, P2, Ps)
CONSTRAINTS

C1 ∧ C2 ∧ Cs

VARIABLES X1, X2, Xs

INVARIANT I1 ∧ I2 ∧ Is
INITIALISATION

Us; [Os\Vs](U1 ‖ U2)
OPERATIONS

u1 ← O1(w1) =̂
PRE Q1 THEN

[Os\Vs]V1

END;
u2 ← O2(w2) =̂

PRE Q2 THEN
[Os\Vs]V2

END
END

IMPLEMENTATION
M′(P1, P2, Ps)

REFINES M
CONCRETE VARS

X′
1, X′

2, X′
s

INVARIANT I′1 ∧ I′2 ∧ I′s
INITIALISATION

U′
s; [Os\V′

s](U′
1; U′

2)
OPERATIONS

u1 ← O1(w1) =̂
BEGIN [Os\V′

s]V′
1 END;

u2 ← O2(w2) =̂
BEGIN [Os\V′

s]V′
2 END

END

Fig. 4.Flattened Constructs

Theorem 1. If all proof obligations ofMs, M′
s, M1, M′

1, M2, andM′
2 are true ([2, p

763ff], Sect. 6.2), then all proof obligations ofM andM′ hold.

Several soundness proofs of the rely/guarantee method for shared variable systems
have been given in the literature for different formalisms [24, 27, 1, 12]. The proof of
this theorem is very similar.

8 Summary

8.1 Related Work

The use of assumptions and commitments to achieve compositionality in program veri-
fication was first proposed by Francez and Pnueli [11]. Jones introduced rely/guarantee
conditions as a method for top-down program development [15]. Ketil Stølen has added
wait-conditions to handle synchronization and auxiliary variables to increase expres-
siveness [24]. Jones himself applied the idea to object-oriented systems [16]. Rely/gua-
rantee specifications have also been incorporated into temporal logic-based formalisms,
thereby also capturing certain liveness properties: Collete added them to UNITY [7] and
Abadi and Lamport to TLA [1]. Misra and Chandy have first used assumption/commit-
ment specifications for message passing systems [19]. A unifying overview of shared
variable and message passing assumption/commitment specifications is given by [26].

Neither VDM nor Z have an equally powerful modularization mechanism as B,
although some constructions have been suggested [9, 13]. RAISE, Cogito, and other re-
lated formalisms provide different forms of modularization. However, we are not aware
of any compositional symmetric shared access mechanism comparable to ours.
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Both Jones [15] and Stølen [24] combined rely/guarantee specifications with a
VDM like logic and syntax. However, their aim was to reason about concurrent pro-
grams only and they have not investigated rely/guarantee specifications in VDM for
modular sharing. Whereas existing work has mostly focused on the use of assump-
tion/commitment specifications for concurrent system, this paper has applied them to
achieve compositionality in sequential systems with shared components.

Role-based contracts for different forms of collaborations have been proposed, e.g.,
by Helm et al for object-oriented systems [14] and by Francez and Forman for interact-
ing processes [10]. Role-based specifications expressing rely/guarantee conditions as
part of the shared construct are believed to be new. Traditionally, a rely/guarantee pair
is part of each component to be composed. Centralization of all rely/guarantee specifi-
cations is possible in our case because only a single component is shared, whereas most
other approaches handle mutual sharing. Our benefit is that all proofs for an accessor
can be performed without knowing the other accessors.

Pioneering work in explaining the existing B composition mechanisms and their
interplay with refinement has been done by Bert, Potet, and Rouzaud [5, 21].

8.2 Conclusions

We have extended the B method with a compositional symmetric shared access mech-
anism that overcomes the limitations of the single-writer restriction and the limited
visibility of shared variables of the existing mechanisms. Based on rely/guarantee con-
ditions expressed as accessor roles of the shared construct, the new mechanism is com-
positional, providing for independent refinement without the need to know the other
accessors. The abstraction of possible modifications into compact role specifications
simplifies the non-interference proofs. The new mechanism provides for flexible shar-
ing on all levels; applications with sharing requirements can be specified, refined, and
implemented without loss of modularity or underspecification as has been the case with
the existing mechanisms. Uniform applicability in all constructs, replicated roles, mul-
tiple contracts, and good integration with existing composition mechanism add to the
flexibility of the new mechanism.

For the new mechanism, we have given formal definitions of the syntax, the proof
obligations, the visibility rules, and the restrictions on the composition graph. A partial
soundness proof completes the paper.
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450 Martin Büchi and Ralph Back

[3] R. Back and J. von Wright. Trace refinement of action systems. InCONCUR 94, pages
367–384. LNCS 836, Springer Verlag, 1994.

[4] J. A. Bergstra, J. Heering, and P. Klint. Module algebra.Journal of the ACM, 37(2):335–
372, 1990.

[5] Didier Bert, Marie-Laure Potet, and Yann Rouzaud. A study on components and assembly
primitives in B. InProceedings of the first B conference, pages 47–62, 3 rue du Mar´echal
Joffre, BP 34103, 44041 Nantes Cedex 1, 1996. IRIN Institut de recherche en informatique
de Nantes.
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