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Abstract

In 2001 Carlsson and Fullér introduced the possibilistic mean value, vari-
ance and covariance of fuzzy numbers. In 2002 Fullér and Majlender intro-
duced the notations of crisp weighted possibilistic mean value, variance and
covariance of fuzzy numbers, which are consistent with the extension prin-
ciple. In this paper we will show some (normative) properties of possibility
distributions.

1 Probability

In probability theory, the dependency between two random variables can be char-
acterized through their joint probability density function. Namely, if X and Y are
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two random variables with probability density functions fX(x) and fY (y), respec-
tively, then the density function, fX,Y (x, y), of their joint random variable (X,Y ),
should satisfy the following properties∫

R

fX,Y (x, t)dt = fX(x),
∫
R

fX,Y (t, y)dt = fY (y), (1)

for all x, y ∈ R. Furthermore, fX(x) and fY (y) are called the the marginal prob-
ability density functions of random variable (X,Y ). X and Y are said to be inde-
pendent if

fX,Y (x, y) = fX(x)fY (y),

holds for all x, y. The expected value of random variable X is defined as

E(X) =
∫
R

xfX(x)dx,

and if g is a function of X then the expected value of g(X) can be computed as

E(g(X)) =
∫
R

g(x)fX(x)dx.

Furthermore, if h is a function ofX and Y then the expected value of h(X,Y ) can
be computed as

E(h(X,Y )) =
∫
R2

h(x, y)fX,Y (x, y)dxdy.

Especially,

E(X + Y ) =
∫
R2

(x+ y)fX,Y (x, y)dxdy =
∫
R

xfX(x)dx

+
∫
R

yfY (y)dy = E(X) + E(Y ),

that is, the the expected value of X and Y can be determined according to their
individual density functions (that are the marginal probability functions of random
variable (X,Y )).

Let a, b ∈ R ∪ {−∞,∞} with a ≤ b, then the probability that X takes its value
from [a, b] is computed by

P(X ∈ [a, b]) =
∫ b

a
fX(x)dx.

The covariance between two random variables X and Y is defined as

Cov(X,Y ) = E
(
(X − E(X))(Y − E(Y ))

)
= E(XY )− E(X)E(Y )

=
∫
R2

xyfX,Y (x, y)dxdy −
∫
R

xfX(x)dx
∫
R

yfY (y)dy,



and if X and Y are independent then Cov(X,Y ) = 0. The variance of random
variable X is defined as the covariance between X and itself, that is

Var(X) = E(X2)− (E(X))2 =
∫
R

x2fX(x)dx−
(∫

R

xfX(x)dx
)2

.

For any random variables X and Y and real numbers λ and µ the following rela-
tionship holds

Var(λX + µY ) = λ2Var(X) + µ2Var(Y ) + 2λµCov(X,Y ).

If X and Y are random variables with finite variances Var(X) and Var(Y ) then
the probabilistic Cauchy-Schwarz inequality can be stated as

[Cov(X,Y )]2 ≤ Var(X)Var(Y ),

where Cov(X,Y ) denotes the covariance between X and Y . Furthermore, the
correlation coefficient between X and Y is defined by

ρ(X,Y ) =
Cov(X,Y )√

Var(X)Var(Y )
,

and it is clear that −1 ≤ ρ(X,Y ) ≤ 1.

2 Possibility

A fuzzy set A in R is said to be a fuzzy number if it is normal, fuzzy convex
and has an upper semi-continuous membership function of bounded support. The
family of all fuzzy numbers will be denoted by F . A γ-level set of a fuzzy set A
in Rm is defined by [A]γ = {x ∈ Rm : A(x) ≥ γ} if γ > 0 and [A]γ = cl{x ∈
R
m : A(x) > γ} (the closure of the support of A) if γ = 0. If A ∈ F is a fuzzy

number then [A]γ is a convex and compact subset of R for all γ ∈ [0, 1].

Fuzzy numbers can be considered as possibility distributions. Let a, b ∈ R ∪
{−∞,∞} with a ≤ b, then the possibility that A ∈ F takes its value from [a, b] is
defined by [7]

Pos(A ∈ [a, b]) = max
x∈[a,b]

A(x).

A fuzzy set B in Rm is said to be a joint possibility distribution of fuzzy numbers
Ai ∈ F , i = 1, . . . ,m, if it satisfies the relationship

max
xj∈R, j �=i

B(x1, . . . , xm) = Ai(xi), ∀xi ∈ R, i = 1, . . . ,m.



Furthermore, Ai is called the i-th marginal possibility distribution of B, and the
projection of B on the i-th axis is Ai for i = 1, . . . ,m. We emphasise here that
the joint possibility distribution always uniquely defines its marginal distributions
(the shadow of B on the i-th axis is exactly Ai), but not vice versa.

Let B denote a joint possibility distribution of A1, A2 ∈ F . Then B should satisfy
the relationships

max
y

B(x1, y) = A1(x1), max
y

B(y, x2) = A2(x2), ∀x1, x2 ∈ R.

If Ai ∈ F , i = 1, . . . ,m, and B is their joint possibility distribution then the
relationships B(x1, . . . , xm) ≤ min{A1(x1), . . . , Am(xm)} and [B]γ ⊆ [A1]γ ×
· · · × [Am]γ , hold for all x1, . . . , xm ∈ R and γ ∈ [0, 1].

For m = 2 then any γ-level set of [B]γ should be contained by the rectangle
determined by the Cartesian product of the γ-level sets of marginal distributions
[A1]γ × [A2]γ , and it should reach each side of that rectangle.

In the following the biggest (in the sense of subsethood of fuzzy sets) joint possi-
bility distribution will play a special role among joint possibility distributions: it
defines the concept of independence of fuzzy numbers.

Definition 2.1. Fuzzy numbers Ai ∈ F , i = 1, . . . ,m, are said to be independent
if their joint possibility distribution, B, is given by

B(x1, . . . , xm) = min{A1(x1), . . . , Am(xm)},

or, equivalently, [B]γ = [A1]γ×· · ·×[Am]γ , for all x1, . . . , xm ∈ R and γ ∈ [0, 1].

Marginal probability distributions are determined from the joint one by the princi-
ple of ’falling integrals’ and marginal possibility distributions are determined from
the joint possibility distribution by the principle of ’falling shadows’.

Let A ∈ F be fuzzy number with [A]γ = [a1(γ), a2(γ)], γ ∈ [0, 1]. A function
f : [0, 1]→ R is said to be a weighting function [4] if f is non-negative, monotone
increasing and satisfies the following normalization condition∫ 1

0
f(γ)dγ = 1. (2)

In [4] the f -weighted possibilistic mean (or expected) value of fuzzy number A
was defined as

Ef (A) =
∫ 1

0

a1(γ) + a2(γ)
2

f(γ)dγ. (3)

It should be noted that if f(γ) = 2γ, γ ∈ [0, 1] then

Ef (A) =
∫ 1

0

a1(γ) + a2(γ)
2

2γdγ =
∫ 1

0
[a1(γ) + a2(γ)] γdγ.



That is the f -weighted possibilistic mean value defined by (3) can be considered as
a generalization of possibilistic mean value introduced in [1]. From the definition
of a weighting function it can be seen that f(γ) might be zero for certain (unim-
portant) γ-level sets of A. So by introducing different weighting functions we can
give different (case-dependent) importances to γ-levels sets of fuzzy numbers.

Example 1. Let A = (a, b, α, β) be a fuzzy number of trapezoidal form with peak
[a, b], left-width α > 0 and right-width β > 0, and let f(γ) = (n+ 1)γn, n ≥ 0.
The γ-level of A is computed by [A]γ = [a− (1− γ)α, b+ (1− γ)β], ∀γ ∈ [0, 1].
Then the weighted possibilistic mean values of A are computed by

Ef (A) =
1
2

(
a−

α

n+ 2
+ b+

β

n+ 2

)
=
a+ b

2
+

β − α
2(n+ 2)

.

So,

lim
n→∞

Ef (A) = lim
n→∞

(
a+ b

2
+

β − α
2(n+ 2)

)
=
a+ b

2
.

Let A and B be fuzzy numbers and let f be a weighting function. In [4] the f -
weighted possibilistic variance of A was defined by

Varf (A) =
∫ 1

0

(
a2(γ)− a1(γ)

2

)2

f(γ)dγ, (4)

and the f -weighted covariance of A and B is defined as

Covf (A,B) =
∫ 1

0

a2(γ)− a1(γ)
2

·
b2(γ)− b1(γ)

2
f(γ)dγ. (5)

It should be noted that if f(γ) = 2γ, γ ∈ [0, 1] then

Varf (A) =
∫ 1

0

(
a2(γ)− a1(γ)

2

)2

2γdγ

=
1
2

∫ 1

0
[a2(γ)− a1(γ)]

2 γdγ = Var(A),

and

Covf (A,B) =
∫ 1

0

a2(γ)− a1(γ)
2

·
b2(γ)− b1(γ)

2
f(γ)dγ

=
1
2

∫ 1

0
(a2(γ)− a1(γ)) · (b2(γ)− b1(γ)) 2γdγ = Cov(A,B).



Where Var(A) and Cov(A,B) denote the possibilistic variance and covariance
introduced by Carlsson and Fullér in [1]. That is the f -weighted possibilistic vari-
ance and covariance defined by (4) and (5) can be considered as a generalization
of It can easily be verified that the weighted covariance is a symmetrical bilinear
operator.

Example 2. Let A = (a, b, α, β) be a trapezoidal fuzzy number and let f(γ) =
(n+ 1)γn be a weighting function. Then,

Varf (A) = (n+ 1)
∫ 1

0

[
a2(γ)− a1(γ)

2

]2

γndγ

=
[
b− a

2
+

α+ β

2(n+ 2)

]2

+
(n+ 1)(α+ β)2

4(n+ 2)2(n+ 3)
.

So,

lim
n→∞

Varf (A) =
b− a

2
.

The following theorem shows that the variance of linear combinations of fuzzy
numbers can easily be computed (in a similar manner as in probability theory).

Theorem 2.1. [4] Let f be a weighting function, let A and B be fuzzy numbers
and let λ and µ be real numbers. Then the following properties hold,

Varf (λA+ µB) = λ2Varf (A) + µ2Varf (B) + 2|λ||µ|Covf (A,B).

Example 3. Let A = (a, b, α, β) and B = (a′, b′, α′, β′) be fuzzy numbers of
trapezoidal form. Let f(γ) = (n+ 1)γn, n ≥ 0, be a weighting function then the
power-weighted covariance between A and B is computed by

Covf (A,B) =

[
b− a

2
+

α+ β

2(n+ 2)

][
b′ − a′

2
+

α′ + β′

2(n+ 2)

]

+
(n+ 1)(α+ β)(α′ + β′)

4(n+ 2)2(n+ 3)
.

So,

lim
n→∞

Covf (A,B) =
b− a

2
·
b′ − a′

2
.

If a = b and a′ = b′, i.e. we have two triangular fuzzy numbers, then their
covariance becomes

Covf (A,B) =
(α+ β)(α′ + β′)
2(n+ 2)(n+ 3)

.



3 On possibilistic dependencies

The main drawback of definition (5) is that Covf (A,B) ≥ 0 for any pair of fuzzy
numbers. However, in probability theory the covariance can definitely be negative.
To overcome this difficulty we introduced the definition of central value of a fuzzy
number and a dependency relation between γ-level sets of fuzzy numbers via their
joint possibility distributions in [5] as follows

Definition 3.1. [5] Let A ∈ F be a fuzzy number with [A]γ = [a1(γ), a2(γ)],
γ ∈ [0, 1]. The central value of [A]γ is defined by

C([A]γ) =
1∫

[A]γ dx

∫
[A]γ

xdx.

It is easy to see that the central value of [A]γ is computed as

C([A]γ) =
1

a2(γ)− a1(γ)

∫ a2(γ)

a1(γ)
xdx =

a1(γ) + a2(γ)
2

.

Definition 3.2. Let A1, . . . , An ∈ F be fuzzy numbers, and let g : Rn → R be
a continuous function. Then, g(A1, . . . , An) is defined by the sup–min extension
principle [6] as follows

g(A1, . . . , An)(y) = sup
g(x1,...,xn)=y

min{A1(x1), . . . , An(xn)}.

Definition 3.3. [5] Let A1, . . . , An ∈ F be fuzzy numbers, let B be their joint
possibility distribution and let γ ∈ [0, 1]. The central value of the γ-level set of
g(A1, . . . , An) with respect to their joint possibility distribution B is defined by

CB ([g(A1, . . . , An)]γ) =
1∫

[B]γ dx

∫
[B]γ

g(x)dx,

where g(x) = g(x1, . . . , xn).

In [5] we proved that the central value operator is linear.

Theorem 3.1. [5] Let A,B ∈ F be fuzzy numbers, let C be their joint possibility
distribution and let γ ∈ [0, 1]. Then

CC([A+B]γ) = CC([A]γ) + CC([B]γ).

Definition 3.4. [5] Let A,B ∈ F be fuzzy numbers, let C be their joint possibility
distribution, and let γ ∈ [0, 1]. The dependency relation between the γ-level sets
of A and B is defined by

RelC([A]γ , [B]γ) = CC
([

(A− CC([A]γ))(B − CC([B]γ))
]γ)

,



which can be written in the form,

RelC([A]γ , [B]γ) =

1∫
[C]γ dxdy

∫
[C]γ

xydxdy −
1∫

[C]γ dx

∫
[C]γ

xdx×
1∫

[C]γ dy

∫
[C]γ

ydy.

The covariance of A and B with respect to a weighting function f is defined as [5]

Covf (A,B) =
∫ 1

0
RelC([A]γ , [B]γ)f(γ)dγ

=
∫ 1

0

[
CC([AB]γ)− CC([A]γ) · CC([B]γ)

]
f(γ)dγ.

In [5] we proved that if A,B ∈ F are independent then Covf (A,B) = 0. The
variance of a fuzzy number A is defined as [5]

Varf (A) = Covf (A,A) =
∫ 1

0

(a2(γ)− a1(γ))2

12
f(γ)dγ.

In [5] we proved that the that the ’principle of central values’ leads us to the same
relationships in possibilistic environment as in probabilitic one. It is why we can
claim that the principle of ’central values’ should play an important role in defining
possibilistic dependencies.

Theorem 3.2. [5] Let A, B and C be fuzzy numbers, and let λ, µ ∈ R. Then

Covf (λA+ µB,C) = λCovf (A,C) + µCovf (B,C),

where all terms in this equation are defined through joint possibility distributions.

Theorem 3.3. [5] Let A and B be fuzzy numbers, and let λ, µ ∈ R. Then

Varf (λA+ µB) = λ2Varf (A) + µ2Varf (B) + 2λµCovf (A,B).

and if A and B are independent then Var(A+B) = Var(A) + Var(B).

Furthermore, in [2] we have shown the following theorem.

Theorem 3.4. LetA,B ∈ F be fuzzy numbers (with Varf (A) �= 0 and Varf (B) �=
0) with joint possibility distribution C. Then, the correlation coefficient between
A and B, defined by

ρf (A,B) =
Covf (A,B)√

Varf (A)Varf (B)
.

satisfies the property
−1 ≤ ρf (A,B) ≤ 1.

for any weighting function f .
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Let us consider three interesting cases. In [5] we proved that if A and B are
independent, that is, their joint possibility distribution isA×B then ρf (A,B) = 0.

Figure 1: Independent possibility distributions.

Consider now the case depicted in Fig. 2. It can be shown [2] that in this case
ρf (A,B) = 1.

Figure 2: The case of ρf (A,B) = 1.
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Consider now the case depicted in Fig. 3. It can be shown [2] that in this case

ρf (A,B) =
Covf (A,B)√

Varf (A)Varf (B)

= −

∫ 1
0

(a2(γ)− a1(γ))(b2(γ)− b1(γ))
12

f(γ)dγ√∫ 1
0

(a2(γ)− a1(γ))2

12
f(γ)dγ

√∫ 1
0

(b2(γ)− b1(γ))2
12

f(γ)dγ

= −1.

Figure 3: The case of ρf (A,B) = −1.
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