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Abstract

In 2001 Carlsson and Fullér introduced the possibilistic mean value, vari-
ance and covariance of fuzzy numbers. In 2002 Fullér and Majlender intro-
duced the notations of crisp weighted possibilistic mean value, variance and
covariance of fuzzy numbers, which are consistent with the extension prin-
ciple. In this paper we will show some (nhormative) properties of possibility
distributions.

1 Probability

In probability theory, the dependency between two random variables can be char-
acterized through their joint probability density function. Namely, if X and Y are
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two random variables with probability density functions fx (x) and fy (y), respec-
tively, then the density function, fx y (z,y), of their joint random variable (X,Y),
should satisfy the following properties

/ Ifxy(z,t)dt = fx(z), / fxy(ty)dt = fy(y), N
R R

for al xz,y € R. Furthermore, fx(x) and fy (y) are called the the marginal prob-
ability density functions of random variable (X,Y). X and Y are said to be inde-
pendent if

fxy(z,y) = fx () fy (),
holdsfor al x, y. The expected value of random variable X is defined as

B(X) = [ fxeyte

and if g isafunction of X then the expected value of g(X') can be computed as
B(9(X)) = [ a(o)fx(a)da.

Furthermore, if h isafunction of X and Y then the expected value of 4(X,Y") can
be computed as

BX.Y) = [ W)y (a.)dady
Especially,
mx+n:/

(z +y)fxy(z, y)dedy = / zfx(z)dx
R2 R

+ / ufy(W)dy = B(X) + E(Y),
R

that is, the the expected value of X and Y can be determined according to their
individual density functions (that are the marginal probability functions of random
variable (X, Y)).

Leta,b € RU {—o0,00} with a < b, then the probability that X takes its value
from [a, b] is computed by

b
HXGMW:/fﬁmm

The covariance between two random variables X and Y is defined as
Cov(X,Y) = E((X = E(X)(Y — E(Y))) = E(XY) = E(X)E(Y)

— [ ot epdsdy — [ afx@is [ ufv @



and if X and Y are independent then Cov(X,Y) = 0. The variance of random
variable X is defined as the covariance between X and itself, that is

Var(X) = E(X?) — (E(X))* = /Rx?fx(x)dx — (/R a:fX(a:)da:)Q.

For any random variables X and Y and real numbers A and 1 the following rela-
tionship holds

Var(AX + uY) = A2Var(X) 4+ p?Var(Y) + 2AuCov(X,Y).

If X and Y are random variables with finite variances Var(X') and Var(Y') then
the probabilistic Cauchy-Schwarz inequality can be stated as

[Cov(X,Y)]? < Var(X)Var(Y),

where Cov(X,Y") denotes the covariance between X and Y. Furthermore, the
correlation coefficient between X and Y is defined by

X V) — Cov(X,Y)
XY = X Var(Y)

anditisclearthat —1 < p(X,Y) < 1.

2 Possibility

A fuzzy set A in R is said to be a fuzzy number if it is normal, fuzzy convex
and has an upper semi-continuous membership function of bounded support. The
family of all fuzzy numbers will be denoted by F. A ~-level set of afuzzy set A
inR™ isdefined by [A]Y = {x € R™ : A(z) >~} if vy > 0and [A]Y = cl{z €
R™ : A(x) > ~} (the closure of the support of A) if v = 0. If A € Fisafuzzy
number then [A]” isaconvex and compact subset of R for all v € [0, 1].

Fuzzy numbers can be considered as possibility distributions. Let a,b € R U
{—00, 00} with a < b, then the possibility that A € F takesitsvaluefrom [a, b] is
defined by [7]
Pos(A € [a,b]) = max A(z).
z€[a,b]
A fuzzy set B in R™ issaid to be ajoint possibility distribution of fuzzy numbers
A; € Foi=1,...,m,if it satisfiesthe relationship

B(z1,..., =A;(xz;), Ve, eRi=1,...,m.
leelﬁg);;éi (1 Tm) i(x), Ya; 7 m



Furthermore, A; is called the i-th marginal possibility distribution of B, and the
projection of B on the i-th axisis A; fori = 1,..., m. We emphasise here that
the joint possibility distribution always uniquely defines its marginal distributions
(the shadow of B onthei-th axisisexactly A;), but not vice versa.

Let B dencte ajoint possibility distribution of A1, Ay € F. Then B should satisfy
the relationships

max B(z1,y) = A1(21), maxB(y,z2) = Az(x2), Vo1, 22 € R.
Yy Yy

If A, € F,¢=1,...,m, and B is their joint possibility distribution then the
relationships B(z1, ..., Tm) < min{A;(z1),..., Am(z,)} and [B]Y C [A1]Y x
-+ X [A]7, hold for al zy, ..., 2z, € Rand~ € [0, 1].

For m = 2 then any ~-level set of [B]” should be contained by the rectangle

determined by the Cartesian product of the v-level sets of marginal distributions
[A1]7 x [A9]7, and it should reach each side of that rectangle.

In the following the biggest (in the sense of subsethood of fuzzy sets) joint possi-
bility distribution will play a specia role among joint possibility distributions; it
defines the concept of independence of fuzzy numbers.

Definition 2.1. Fuzzy numbers A; € F,i=1,...,m, are said to be independent
if their joint possibility distribution, B, is given by

B(z1,...,zmy) =min{A1(z1),..., An(Tm)},
or, equivalently, [B]Y = [A1]7 x---x[Ap]7, forall z4,. .., 2, € Rand~y € [0, 1].

Margina probability distributions are determined from the joint one by the princi-
pleof 'fallingintegrals and marginal possibility distributions are determined from
the joint possibility distribution by the principle of 'falling shadows .

Let A € F be fuzzy number with [A]” = [a1(7),a2(7)], v € [0,1]. A function
f:]0,1] — Rissaid to beaweighting function [4] if f isnon-negative, monotone
increasing and satisfies the following normalization condition

1
| ey =1. @
In [4] the f-weighted possibilistic mean (or expected) value of fuzzy number A
was defined as Layy) )
ai(y) + a2(y
Ej(A) = /0 —— (). 3

It should be noted that if f(v) = 2v,~ € [0,1] then

1 a a 1
Ef(A):/O —1(7); 20) 2vd7=/0 [a1(7) + az(7)] vdy-



That isthe f-weighted possibilistic mean val ue defined by (3) can be considered as
ageneralization of possibilistic mean value introduced in [1]. From the definition
of aweighting function it can be seen that f(~y) might be zero for certain (unim-
portant) v-level sets of A. So by introducing different weighting functions we can
give different (case-dependent) importances to y-levels sets of fuzzy numbers.

Examplel. Let A = (a, b, «, 3) be a fuzzy number of trapezoidal form with peak
[a, b], left-width o > 0 and right-width 5 > 0, and let f(v) = (n + 1)y, n > 0.
Thev-level of A iscomputed by [A]” = [a — (1 —v)a, b+ (1 —7)5], Vv € [0, 1].
Then the weighted possibilistic mean values of A are computed by

1 « I} a+b 08—«
Ef(A)—§<a_n+2+b+n+2> 2 +2(n+2)'

lim Ef(A) = lim ( =

n—oo n—oo

cH—b+ 00—« _a+b
2 " 2(n+2) 2

Let A and B be fuzzy numbers and let f be a weighting function. In [4] the f-
weighted possibilistic variance of A was defined by

Vary(A) = /0 1 <M>2ﬂwdm (@)

and the f-weighted covariance of A and B isdefined as

f(y)dy. )

Laz(y) —ai(y) ba(y) —b1(v)
Covs(A, B) :/0 5 : 5

It should be noted that if f(v) = 2v, v € [0,1] then

Var(A) = /01 <M>22m

1
—5 [ [a20) - )Py = Var(a),
and
1, —a —
Covy(A,B) _/O 2(7) . 1(7) b2(7) . bl('v)f(,y)d,y

1

1
=5 | (@)~ a12) (a0) - b)) 21y = Cov(A, B).
0



Where Var(A) and Cov(A, B) denote the possibilistic variance and covariance
introduced by Carlsson and Fullér in[1]. That isthe f-weighted possibilistic vari-
ance and covariance defined by (4) and (5) can be considered as a generalization
of It can easily be verified that the weighted covariance is a symmetrical bilinear
operator.

Example 2. Let A = (a,b, a, 3) be a trapezoidal fuzzy number and let f(v) =
(n + 1)~™ be a weighting function. Then,

La —a
Vary(A) = (n+ 1)/0 [M ~"dy
_[b—a a+ﬂr (n+1)(a+3)?
a )

2 2(n+2 4(n+2)2(n +3)

b—a
lim Vary(A) = .

n—oo 2

The following theorem shows that the variance of linear combinations of fuzzy
numbers can easily be computed (in a similar manner as in probability theory).

Theorem 2.1. [4] Let f be a weighting function, let A and B be fuzzy numbers
and let A and . be real numbers. Then the following properties hold,

Varp(AA + uB) = A\*Vary(A) + p*Var ;(B) + 2|\||u|Cov (A, B).

Example 3. Let A = (a,b,a,3) and B = (a/,V,d/, ') be fuzzy numbers of
trapezoidal form. Let f(v) = (n + 1)7™, n > 0, be a weighting function then the
power-weighted covariance between A and B is computed by

b—a a+p ||V—-d o+
Covid B) ===+ 30 59| 2 T2m19)
(n+1)(a+B)(a + )
A(n+2)%(n+3)
o,
lim O AB _b—a V-4
i Covy(d, B) = —— ——

Ifa = bandd = ¥, i.e we have two triangular fuzzy numbers, then their
covariance becomes

(a+pB)(a +p)

Covi(A B) = S m+3)




3 On possibilistic dependencies

The main drawback of definition (5) isthat Cov (A, B) > 0 for any pair of fuzzy
numbers. However, in probability theory the covariance can definitely be negative.
To overcome this difficulty we introduced the definition of central value of afuzzy
number and a dependency relation between y-level sets of fuzzy numbersviatheir
joint possibility distributionsin [5] as follows

Definition 3.1. [5] Let A € F be a fuzzy number with [A]" = [ai(7), a2(7)],
v € [0, 1]. The central value of [A] is defined by

1

C([A]7) = W/[A]w xdx.

It is easy to see that the central value of [A]” is computed as

1 @0 a(y)+ax(y)
am)—al(v)/a =y

Definition 3.2. Let Ay,..., A, € F be fuzzy numbers, and let g : R” — R be

c(lA]) =

1(7)

a continuous function. Then, g(A4, ..., A,) is defined by the sup—min extension
principle [6] asfollows
g(AhaATL)(y) = sup mln{Al(wl)avAn(xn)}

Definition 3.3. [5] Let A4,..., A, € F befuzzy numbers, let B be their joint
possibility distribution and let v € [0, 1]. The central value of the v-level set of
g(Ay, ..., Ay) with respect to their joint possibility distribution B is defined by

1

Cp A, A = — x)dz,
([9( 1 )] ) f[Bh :lr/[ I g9(x)
where g(x) = g(z1, ..., xy,).

In [5] we proved that the central value operator is linear.

Theorem 3.1. [5] Let A, B € F befuzzy numbers, let C be their joint possibility
distribution and let v € [0, 1]. Then

Co([A+ B]?) = Co([A]") + Ce([B]).

Definition 3.4. [5] Let A, B € F befuzzy numbers, let C' betheir joint possibility
distribution, and let v € [0, 1]. The dependency relation between the -level sets
of A and B is defined by

Relo([A]", [B]") = Cc([(A — Ce([A)(B — Ce(1B1))]7),



which can be written in the form,
Rele ([A], [B]") =
1 1 1
T]W o /[Cw:cydacdy W /[cw rdz X Ty /[C]V ydy.

The covariance of A and B with respect to aweighting function f isdefined as[5]

Covy(A.B) = [ Relc (AT (1)1 ()i
1
= [ fee(taBr) = co(lar) - Co((BP)] f)a

In [5] we proved that if A, B € F are independent then Cov (A, B) = 0. The
variance of afuzzy number A isdefined as[5]

1 a —a 2
Varp(A) = Covs(A, A) :/0 (az(7) - 1(7))

f(v)dy.

In [5] we proved that the that the ’principle of central values' leads us to the same
relationships in possibilistic environment as in probabilitic one. It is why we can
claim that the principle of ’ central values' should play an important rolein defining
possibilistic dependencies.

Theorem 3.2. [5] Let A, B and C' be fuzzy numbers, and let A, 4 € R. Then
Cov(AA+ uB,C) = XCov(A,C) + uCovys(B,C),
where all termsin this equation are defined through joint possibility distributions.
Theorem 3.3. [5] Let A and B be fuzzy numbers, and let A, 1 € R. Then
Var;(AA + uB) = A\?Var;(A) + p*Var ;(B) + 2AuCov (A, B).
and if A and B areindependent then Var(A + B) = Var(A) + Var(B).
Furthermore, in [2] we have shown the following theorem.

Theorem 3.4. Let A, B € F befuzzy numbers (with Var;(A) # 0 and Var;(B) #
0) with joint possibility distribution C. Then, the correlation coefficient between
A and B, defined by

_ Covy(A,B)

B \/Var;(A)Var(B)

pf(A, B)

satisfies the property

for any weighting function f.



Let us consider three interesting cases. In [5] we proved that if A and B are
independent, that is, their joint possibility distributionis Ax B then ps(A, B) = 0.

Figure 1: Independent possibility distributions.

Consider now the case depicted in Fig. 2. It can be shown [2] that in this case
pf(A,B) = 1.

Figure 2: Thecaseof ps(A, B) = 1.



Consider now the case depicted in Fig. 3. It can be shown [2] that in this case

Covs(A, B)
A, B) =
i) V/Var;(A)Var;(B)
B I (az(7) —ai(y ))(bz —bi(y )) ()
\/ i 3 d’y\/ Rt D iy
=1
Figure 3: Thecaseof ps(A, B) = —
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