
Transformational Support for Model-Based Testing –
from UML to QML

Fredrik Abbors1, Tuomas Pääjärvi1, Risto Teittinen2,
Dragoş Truşcan1, and Johan Lilius1

1 Dept. of Information Technologies, Åbo Akademi University,
Joukahaisenkatu 3-5, 20520, Turku, Finland

Email: fabbors|tpaajarv|dtruscan|jolilius@abo.fi

2 Nokia Siemens Networks, Linnoitustie 6, 02600, Espoo, Finland
Email: risto.teittinen@nsn.com

Abstract. Model-Based Testing (MBT) has lately gained increased popularity due
to the benefits that it provides in terms of automation of the test generation process.
There are several tools capable of applying MBT using behavioral models of the
system under test (SUT). However, as complex systems are specified using differ-
ent perspectives, like architecture, data, behavior, which benefit from proper tool
support especially in the Unified Modeling Language (UML) community, there is
a gap between the graphical capabilities and expressiveness of the UML-based and
MBT tools. In this paper, we present an approach in which the information de-
scribing different perspectives of the system under test is collected from the UML
models of the SUT and transformed into input for a MBT tool, to be used for auto-
matic test generation, execution, and evaluation.

1 Introduction

Testing has become an important activity of the software development, which according
to some studies can take more than 40 percent of the development resources [1]. Recently,
Model-Based Testing (MBT) has gained momentum by advocating the use of models for
automatic test generation, execution, and evaluation. The basic idea in MBT is to check
the conformance of a system implementation, aka system under test (SUT), against a
model specifying its behavior. Currently there are established approaches for performing
MBT from behavioral models, and the corresponding tools are available (an exhaustive
list can be found in [2]). However, complex systems are often described using several
perspectives like behavioral, architectural, data, which should also be considered during
the testing process. Thus, one should include such information in the specification of
the SUT and use it for test generation. Most of the current MBT tools provide support
for modeling the behavior of the SUT, but few are able to consider different types of
information or the information is expressed using textual format.

In recent years, the Unified Modeling Language (UML) [3] has become one of the
most popular languages for system specification. UML provides a collection of diagrams
that can be used to model different perspectives of the system and there is a plethora of
tools that can be used for UML-based specification. Therefore, we would like to take
advantage of the existing UML tool support for specifying the SUT, and later use the

resulting models for test generation. In order to have a smooth transition between the
UML and the MBT tools, transformations should be used for collecting necessary infor-
mation and creating the input for the testing tools. Such transformations will also enable
a smooth integration of the UML tools in the MBT tool chain.

In this paper we employ a transformational approach to reduce the gap between UML
and MBT tools. As an instance of our approach, we exemplify with a concrete transfor-
mation that translates UML models into input for a tool used for automated test design,
namely Conformiq’s Qtronic [4]. The transformation is defined in a general manner with
respect to UML, such that it can be applied to different UML modeling tools. The ap-
proach is exemplified with a telecommunications case study3.

1.1 System Modeling with UML

In our system specification, we apply a systematic approach for creating a set of models
from the requirements in order to capture different views of the SUT. UML is used as
specification language. The main purpose of the modeling process is to describe several
perspectives of the SUT, like requirements, architecture, data, behavior, such that the in-
formation contained in these models can be used not only for development, but also for
automated test generation using specialized test generation tools. As the models are de-
rived from requirements, it is important to track how different requirements reflect in the
models, on different perspectives and on different abstraction levels. It is also important
to propagate requirements through the test generation and test execution processes, such
that one can verify what parts of the models and consequently, which requirements have
been tested and validated.

Fig. 1. System modeling process

Our approach is di-
vided into five (horizon-
tal) phases as depicted in
Fig. 1. The first phase
deals with requirements
analysis, and has as main
purpose the identification
of the system require-
ments from the related
standards and protocol
specifications. The sec-
ond phase structures the
features and functional
requirements of the sys-
tem, using the UML and
Systems Modeling Lan-
guage (SysML) [6] diagrams, respectively. In the third phase, the main usage scenarios
of the system are specified in a use case model both textually and via message sequence
charts (MSCs). The fourth phase looks into deriving the domain, behavioral and data
models of the system starting from the previously specified models. The process is itera-
tive so phases three and four can be visited several times and the models are constructed

3 detailed examples can be found in [5]

incrementally. The last phase deals with creating specific system configurations by in-
stantiating the concepts abstracted in the precedent models. Several models result after
applying this process and they are described in more detail in the following sections.

A set of rules and guidelines are defined for ensuring the quality of the resulting mod-
els, by checking that the models are syntactically correct [7]. These rules also ensure that
the models are consistent to each other and moreover, that they contain the information
needed in the later phases of the testing process. Tool support is provided for automati-
cally verifying these rules using the Object Constraint Language (OCL) [8].

1.2 The Qtronic tool

Conformiq Qtronic [4] is a tool for model-driven test case design, which generates tests
from the specification of the SUT using various coverage criteria. The Qtronic Model-
ing Language (QML) is used for describing different aspects of the SUT like input/output
ports and messages, message structure, behavior, etc. The behavior of the SUT can be de-
scribed either textually in Java or graphically using UML statemachines. State machines
are drawn with the Qtronic Modeler, whereas the rest of the system specification is done
in QML, following object-oriented principles. As such, the SUT is specified as a class
that can have attributes and methods. The methods are later used as the action language
in the state model. In Qtronic, the messages sent or received by the SUT are defined
as records, that is user-defined types that can contain variables, methods, operators,
and nested types. Records can inherit other records. Inbound and Outbound ports
describe which records may be sent or received. Several input/output ports can be spec-
ified. The ports and the messages that are exchanged constitute the interface of the SUT
to its environment. This interface is declared under the system-block. In QML, a state
machine is a separate thread. Other threads can be declared by extending the Thread-
class or by declaring a class that implements the Runnable interface. One important
aspect is that multiple instances of the same state machine can be executed in parallel in
order to allow testing of concurrent behavior. The communication between threads can
be implemented either by message passing or or by shared variables.

2 Deriving the QML Model from UML

Domain
model

Data model State Machines
+ Requirements

QML files

System-block

Records

Methods

State Machines

UML

QML

Test configuration

Transformation

Network
configuration

model

Fig. 2. Transformation from UML to QML

The main purpose of the transformation
is to automatically extract the necessary
information from the UML models and
use it for creating the model used by
Qtronic for test generation. The trans-
formation can be seen as composed of
several parts (see Fig. 2), each described
in the following subsections. Throughout
this section, we will use excerpts from
a telecommunications case study mod-
eling a Mobile Switching Server (MSS),
which will be used as the SUT. The MSS
is a central element of 2nd and 3rd gen-
eration mobile telecommunication networks. The MSS connects calls between mobile

phones and fixed network. It takes into account movement of mobile phones at the time
of call set up and during the calls.

2.1 Generating the Interfaces and Ports of the System

Fig. 3. Class diagram representing a Domain Model

In our UML model-
ing approach, a do-
main model (Fig. 3)
is used to depict the
components of the do-
main, and how they
are connected via in-
terfaces. Domain com-
ponents can communi-
cate with each other
via messages belong-
ing to various proto-
cols. For cutting down
the complexity, the mes-
sages sent and received
on each protocol level,
for instance Mobility
Management (MM), are
modeled separately by
interface classes.

In QML, interfaces are described with the system-block which describes ports that
can be used to communicate with the environment, and what messages on each port
can be sent and received. The Inbound ports declare messages to be received by the
SUT from the environment, whereas the Outbound ports declare messages to be sent
from the SUT to the outside world. As such, the ports of the SUT are obtained directly
from interface classes in the domain model (see Fig. 3). Inbound messages are taken
from the interface realization offered by the SUT, and Outbound messages are taken
from the interface realization used by the SUT. The name of the ports will be composed
of two components, the direction and the interface name, respectively. UML operations
are listed as messages transferred through the ports, and they are declared elsewhere as
records. Section 2.2 describes in more detail how QML records are created and how
record variables are defined. The partial result of applying the transformation on the MM
interfaces in Fig. 3 is shown in Listing 1.1.
/ / Sys tem b l o c k example
sys tem {

Inbound MM in : l o c a t i o n u p d a t i n g r e q u e s t , a u t h e n t i c a t i o n r e s p o n s e , i d e n t i t y r e s p o n s e , T M S I r e a l l o c a t i o n c o m p l e t e ,
C M s e r v i c e r e q u e s t , a l e r t i n g , c a l l c o n f i r m e d , connec t , c o n n e c t a c k , s e t u p , d i s c o n n e c t , r e l e a s e ,
r e l e a s e c o m p l e t e ;

Outbound MM out : l o c a t i o n u p d a t i n g a c c e p t , a u t h e n t i c a t i o n r e q u e s t , i d e n t i t y r e q u e s t , a l e r t i n g , c a l l p r o c e e d i n g ,
connec t , c o n n e c t a c k , s e t u p , d i s c o n n e c t , r e l e a s e , r e l e a s e c o m p l e t e ;

}

Listing 1.1. Example of QML system-block for Fig. 3

2.2 From UML Data Models to QML Message Types

Fig. 4. Message declaration in UML

In order to generate
proper test cases from
system models, a de-
scription of the data
used by the system
is needed. We model
these data explicitly
via class diagrams. We
refer to this model
as the data model.
The data model of the
SUT depicts each mes-
sage type as a class,
whereas the parameters of the message are represented as class attributes. We structure
the message definition based on their corresponding protocols and use inheritance to
model common parameters for a given message. Figure 4 presents an example of a UML
data model from our case study.

/ / example r e c o r d o f LU
r e c o r d MM messages{

p u b l i c S t r i n g p r o t o c o l d i s c r i m i n a t o r ;
p u b l i c S t r i n g s k i p i n d i c a t o r ;
p u b l i c S t r i n g m e s s a g e t y p e ;

}
/ / r e c o r d i n h e r i t a n c e
r e c o r d l o c a t i o n u p d a t i n g r e q u e s t ex tends

MM messages{
p u b l i c i n t l o c a t i o n u p d a t i n g t y p e ;
p u b l i c S t r i n g c i p h e r i n g k e y s e q u e n c e n u m b e r ;
p u b l i c S t r i n g l o c a t i o n a r e a i d e n t i f i c a t i o n ;
p u b l i c S t r i n g m o b i l e s t a t i o n c l a s s m a r k 1 ;
p u b l i c S t r i n g m o b i l e i d e n t i t y ;

}

Listing 1.2. QML record declaration

In QML, messages are described as
records that are used for communicating
with the environment. QML records are
user-defined types similar to classes. The
fields of a record can be of type: byte,
int, boolean, long, float, double,
char, array, String, or of another
record type. In our transformation, records
are obtained from classes in the UML data
model. Attributes of the UML classes are
transformed into the fields of the record. Inheritance in UML is reflected in QML using
the extends relationship. For instance, the location update request record in
Listing 1.2 is obtained from the LOCATION UPDATE REQUEST class in Fig. 4 follow-
ing the described approach. We point out that the model does not indicate value ranges of
the fields. Instead, the value ranges are checked later on by the protocol codecs provided
by the test system.

2.3 Mapping the UML State Machine to the QML State Machine

As mentioned previously, the behavior of the SUT can be specified in Qtronic either tex-
tually in QML or graphically using a restricted version of the UML state machines. For
simplicity, we have chosen to follow the latter option as the target of our transformation.
Thus, the transformation is basically a matter of transforming the UML state machine
into the corresponding state machine used by the Qtronic tool, which in practice is equiv-
alent with a transformation at the XMI-level. Figure 5(a) shows a UML state machine4,
whereas Fig. 5(b) shows the same state machine transformed to QML. As one can notice,

4 The state machine has been created in the MagicDraw UML modeling tool

(a) (b)

Fig. 5. Example of UML state machine (a) and its equivalent in Qtronic Modeler (b)

there is a strong similarity between the two models, however with small differences. For
instance, both state and sub-state machines are supported and propagated at Qtronic level.
In UML, triggers and actions are declared as methods (selected only from the operations
of the interface classes in the domain model).

void MM LOCATION UPDATING ACCEPT (){
MM LOCATION UPDATING ACCEPT l o c a t i o n u p d a t i n g a c c e p t ;
MM out . send (l o c a t i o n u p d a t i n g a c c e p t) ;
re turn ;
}

Listing 1.3. Example of a generated QML method

In QML, triggers are imple-
mented by messages (record in-
stantiations) received on a certain
port, whereas actions can be seen
as methods of the SUT class def-
inition. This approach allows one to perform further processing of the system data
before sending a given message to the output port5. The method generated for the
MM LOCATION UPDATING ACCEPT() in Fig. 5(b) is shown in Listing 1.3.

2.4 Propagating System Requirements from UML to QML

In our modeling approach, requirement models are used for structuring and interrelating
the requirements of the SUT using SysML Requirement Diagrams. The requirements are
defined on several levels of abstraction following a functional decomposition and they
can be related to other requirements or linked (traced) to different diagrams and model
elements in UML, for example to state machines and class diagrams. Figure 6 shows
an example of a requirement diagram. The main purpose of tracing requirements is in
analyzing which parts of the specification “implement” different requirements and it will
allow later on to propagate these requirements from models to tests.

Qtronic provides support for requirement coverage during test generation. Require-
ments are associated to state models, more precisely to the actions on transitions via
the requirement statement. This is achieved by either attaching a requirement as an
action on a transition, or in a method in the QML textual notation file. Basically, the re-

5 If needed, additional QML instructions can be manually inserted in the generated methods,
before the .send() statement

quirements in Qtronic are tags that are used to trace if a specific action in the state model
has been covered by the generated test cases.

Fig. 6. Example of SysML requirements model

In the current approach,
we are interested in col-
lecting from the UML state
models only those require-
ments that are attached to
state transitions. However,
nothing prevents us from
collecting the requirements
from other UML
diagrams, as well, if needed.
The requirements are cap-
tured from UML transitions
and placed on the corre-
sponding transition in QML,
using the requirement-
statement (see Fig. 5(b)). Hi-
erarchy can also be propa-
gated from UML to Qtronic by analyzing how the requirements are structured in the
requirement models. For instance, requirement “6/1/1” in Fig. 5(b) is obtained from
requirement “6.1.1” in Fig. 6, which at UML-level was attached to the transition
Authentication→Ciphering in Fig. 5(b). Upon importing a QML model in
Qtronic, requirements are displayed hierarchically in Qtronic’s UI (Fig. 7) from where
requirements-based test derivation can be pursued.

2.5 Generating the QML Test Configuration

Fig. 7. Example of Qtronic’s UI with requirements

In UML, we use ob-
ject diagrams (see
Fig. 8) for speci-
fying network con-
figurations instanti-
ated from the do-
main model (see
Fig. 3). Multiple in-
stances of the same
class can be instan-
tiated and proper-
ties specific to each
instance are initial-
ized. Such diagrams
can be used for
defining the testing
setup in the QML
model. In this case
the :MSS depicts the SUT, while the other instances represent the test environment.

Fig. 8. Example of configuration diagram

As illustrated in Figs. 3 and 8, a
:MS (mobile subscriber) is a user of
the SUT and communicates with the
SUT via the MM interface. The test
configuration in our example consists
of three mobile subscribers. In QML,
a subscriber is modeled as a record
(Fig. 9(a)) with the same attributes as
in the domain model (Fig. 3). The test
configuration is translated into QML
in two steps: first the properties of the
test components are extracted from
the UML domain model and are de-
clared in the constructor method of
the SUT specification class (MSS in
our case) as shown in Fig. 9(b). In the
second step, each test component is instantiated and its properties are initialized with the
values taken from the configuration diagram (Fig. 9(c)). The test components are stored
into an array, which is later used for starting as threads separate versions of the SUT.

2.6 Assigning the State Model to the SUT Specification

f o r (i n t i = 0 ; i <=2; i ++){
MSS mss = new MSS(m y S u b s c r i b e r s [i]) ;
Thread t = new Thread (mss) ;
t . s t a r t () ;
}

Listing 1.4. State machine instantiation in Qtronic

At this point, the only thing left
to be done is to connect the SUT
class specification to the graphical
state model. This is done by calling
the constructor method for the state
machine. Once the state machine has been constructed, the concurrency of the SUT can
be tested by starting (via the Thread.start() method) separate execution threads
for each test component (i.e., subscriber) (Listing 1.4). The approach allows for different
mobile subscribers to concurrently communicate to the SUT using different configura-
tion parameters. This is needed as in telecom systems such as MSS one needs to test the
presence of multiple mobile subscribers interacting with the MSS (in practice, one MSS
can serve up to few millions of users). In addition, we need to test calls between pairs of
subscribers, where one call requires two subscribers, i.e. the one who calls and the one
who receives the call (known as A and B subscribers).

3 Tool Support

The mappings from UML to QML discussed in the previous section have been defined in
such a way that any set of models based on UML and containing the required information
can be used as a source of the transformation. However, as various UML tools implement
the UML metamodel differently, the implementation of the transformation, from UML
to QML, had to be customized for the specific tool used.

In our case, the MagicDraw [9] modeling tool has been used for creating (via the pro-
cess described in Fig. 1) and for assuring the quality of the UML models via validation

r e c o r d S u b s c r i b e r s {
p u b l i c S t r i n g my name ;
p u b l i c boolean fo l lowOn ;
p u b l i c S t r i n g domain ;
p u b l i c S t r i n g r o l e ;
p u b l i c boolean

r e g i s t e r e d ;
p u b l i c S t r i n g i m s i ;

}

(a)

c l a s s MSS ex tends S t a t e M a c h i n e
{

p u b l i c S t r i n g my name ;
p u b l i c boolean fo l lowOn ;
p u b l i c S t r i n g domain ;
p u b l i c S t r i n g r o l e ;
p u b l i c boolean r e g i s t e r e d ;
p u b l i c S t r i n g i m s i ;

p u b l i c MSS(S u b s c r i b e r s sub){
my name = sub . my name ;
fo l lowOn = sub . fo l lowOn ;
domain = sub . domain ;
r o l e = sub . r o l e ;
r e g i s t e r e d = sub . r e g i s t e r e d ;
i m s i = sub . i m s i ;
}
}

(b)

/ / ∗∗∗ MAIN ∗∗∗
void main (){

S u b s c r i b e r s m y S u b s c r i b e r s [] = new S u b s c r i b e r s [3] ;
m y S u b s c r i b e r s [0] . my name = ”ms#1 ” ;
m y S u b s c r i b e r s [0] . fo l lowOn = f a l s e ;
m y S u b s c r i b e r s [0] . domain = ” 2G” ;
m y S u b s c r i b e r s [0] . r o l e = ”MOC” ;
m y S u b s c r i b e r s [0] . r e g i s t e r e d = t rue ;
m y S u b s c r i b e r s [0] . i m s i = ” 234800000000921 ” ;

m y S u b s c r i b e r s [1] . my name = ”ms#2 ” ;
m y S u b s c r i b e r s [1] . fo l lowOn = f a l s e ;
m y S u b s c r i b e r s [1] . domain = ” 2G” ;
m y S u b s c r i b e r s [1] . r o l e = ”MTC” ;
m y S u b s c r i b e r s [1] . r e g i s t e r e d = t rue ;
m y S u b s c r i b e r s [1] . i m s i = ” 234800000000922 ” ;

m y S u b s c r i b e r s [2] . my name = ”ms#3 ” ;
m y S u b s c r i b e r s [2] . fo l lowOn = f a l s e ;
m y S u b s c r i b e r s [2] . domain = ” 3G” ;
m y S u b s c r i b e r s [2] . r o l e = ”MOC” ;
m y S u b s c r i b e r s [2] . r e g i s t e r e d = t rue ;
m y S u b s c r i b e r s [2] . i m s i = ” 234800000000923 ” ;

(c)

Fig. 9. Example of subscriber record (a); StateMachine-class (b); main method of the SUT
specification class (c)

rules written in OCL. Once completed, the models are exported to XMI [10] format. A
Python script is used for automating the transformation. The script consists of seven sep-
arate modules (Python-source files). A parser module parses the XMI file and structures
the information in a tree-like representation (using the lxml[11] library). This representa-
tion is used by the other modules for creating QML-related information. A state machine
creator module uses the collected information in the parser to generate the QML state
machine. A record creator module uses the collected information in the parser to gen-
erate the QML records. A method creator module uses the information collected by the
parser to generate the textual annotations for ports, methods, and for the main function.
A definition module declares patterns of the QML elements that are used for creating the
QML models. A manifest creator module generates the QML manifest file, which lists
the generated files for a given project, whereas a main module is used to control and to
invoke the functionality of the other modules during the transformation.

The script is structured in such a way that it easily can be modified and extended
to suite input from other modeling tools or generate models for other MBT tools. For
example, if another modeling tool is used, only the parser module has to be modified.

4 Related Work

Several research works discuss transformational approaches for model-based testing. In
the following we will only discuss several of them which we consider related to our ap-
proach. A transformation from test models, expressed using the UML 2 Testing Profile
(U2TP), to TTCN-3 is proposed in [12]. This transformation is closer to code generation
and has as the main purpose the creation of test specifications from test models, while
our transformation translates UML models into input for a test derivation tool. A transfor-
mational framework in the context of MDA is suggested in [13] with the main purpose
of deriving tests from system models expressed in a restricted version of UML, called
essential UML. A set of transformational rules are specified between the source and the

target language, the essential Test Modeling Language (eTML), a variant of the U2TP.
A similar approach is described in [14], where test models are integrated along with a
MDA development process. Again, the main focus of the transformation is on deriving
the test specifications expressed in TTCN-3 at different levels of the MDA process. The
source models for the proposed transformations are expressed using a UML profile for
Enterprise Distributed Object Computing (EDOC) or in Sun’s J2EE. This work is closer
to ours since it generates the final test specifications by combining model transformation
and code generation.

5 Conclusions

We have presented an approach in which the UML models used for system specification
are automatically transformed into input for a test generation tool. Our work had two
main goals: on the one hand, we wanted to show that one can benefit from the graph-
ical capabilities and expressivity of the UML specifications during the test generation
process. Such an approach circumvents the currently limited modeling capabilities of
certain test generation tools. We also wanted to take advantage of the validation capabili-
ties of existing UML tools, which currently exceed those of the MBT tools. On the other
hand, we intended to provide a solution for improving the transition between different
steps of the MBT process, by suggesting a set of mappings between UML and QML that
can be used to automate the transition and thus improve the existing tool chain.

References
1. Scott, E., et al.: The Alignment of Software Testing Skills of IS Students with Industry Prac-

tices. Journal of Information Technology Education (2004)
2. Utting, M., Legeard, B.: Practical Model-Based Testing - A Tools Approach. Denise E. M.

Penrose (2007)
3. Object Management Group: Unified Modeling Language (OMG UML) ver. 2.1.2 Document

formal/2007-11-02, available at http://www.omg.org/spec/UML/2.1.2/.
4. Conformiq: Qtronic http://www.conformiq.com/.
5. Abbors, F., et al.: A semantic transformation from UML models to input for the qtronic test

design tool. Technical Report 942, TUCS (Apr 2009)
6. Object Management Group: Systems Modelling Language (OMG SysML) ver. 1.0 Document

formal/2007-09-01, available at http://www.omg.org/spec/SysML.
7. Abbors, J.: Increasing the Quality of UML Models Used for Automatic Test Generation.

Master’s thesis, Åbo Akademi University (2009)
8. Object Management Group: Object Constraint Language v2.0. OMG. (May 2006) http:

//www.omg.org/spec/OCL/2.0/PDF.
9. NoMagic: MagicDraw http://www.magicdraw.com/.

10. Object Management Group: XML Metadata Interchange (2007) http://www.omg.org/
spec/XMI/2.1.1/PDF/index.htm.

11. lxml homepage: http://codespeak.net/lxml/.
12. Zander, J., et al.: From U2TP Models to Executable Tests with TTCN-3 - An Approach to

Model Driven Testing. In: TestCom. (2005) 289–303
13. Busch, M., et al.: A model transformer for test generation from test models. In: 9th Interna-

tional Conference on Quality Engineering in Software Technology (CONQUEST). (2006)
14. Born, M., et al.: Combining System Development and System Test in a Model-Centric Ap-

proach. In: Rapid Integration of Software Engineering Techniques (RISE). Volume 3475 of
LNCS. Springer Berlin/Heidelberg (2005) 132–143

