
ABSTRACT
Simulation Nets (SNs) are Petri Nets (PNs) extended for

convenient modelling of discrete event simulation problems. The
extensions included are zero testing, firing time for transitions,
colored tokens, or-logic and interrupts. The tool XSimNet is an
interpreter which accepts a text equivalence, SNL, of SNs and
performs the simulation implied by the SN model. Validation is
facilitated by providing several forms of trace and statistics. The
automatic statistics collection concerning places and transitions
can be extended by user defined formulas.

INTRODUCTION
Few modelling tools for simulation stand on a firm theoreti-

cal base. Most are “ad hoc” and are tied to a specific language.
We propose a general modelling tool, SNs, based on the

well known PNs. The concept behind SNs is similar to that of
GPSS, with transactions (tokens) traversing a block diagram
(net).

The theoretical base of SNs allows consistent modelling and
therefore most of the different blocks (> 60) needed in GPSS can
be modelled by using half a dozen constructs only. Also in addi-
tion to simulating a SN model, it is possible to theoretically ana-
lyze the model itself.

A SN uses most of the classical extensions like inhibitor
arcs, time, colored tokens etc. Some new extensions are added,
such as interrupt arcs, stochastic or-logic and hierarcies of nets.
What might be characteristic for SN is also the way of modifying
the classical extensions. The modifications are done for simplify-
ing simulation modelling.

SN have been a research interest at the department since
1981 (Törn 1981). Two tools have been developed. SimNet,
which is written in Simula and available in VMS and MS-DOS,
has automatic statistics collection, animation (MS-DOS) and
most of the SN properties described below. XSimNet written in
C++ and described in a later chapter, is a further development of
SimNet. Both accepts a text equivalence of a restricted set of SNs
and performs the simulation implied by the SN model.

SIMULATION ENVIRONMENT

Structure of the environment
We aims at a simulation system, based on suitable PN

extensions, where we can draw the net in a graph editor, and then
execute it. Instead of building a huge application, with both
graph editing and interpretation of the net, we preferred to split
the system into several parts. The system development can thus
be divided into three main steps.

• Making up the rules and choose what extensions should
be added to PNs and define them. This is an ongoing pro-
cess.

• Definition of a data format for storing the nets, which will

be the interface between the applications. We prefer a
readable ascii file format. This means constructing a lan-
guage, SNL, including syntax and semantics.

• Construction and implementation of the applications. The
first steps are an interpreter and a graphical design tool for
SNs. The graph editor shall export the created graph to
SNL.

The structure above gives the opportunity to realize the parts
separated from each other. It also makes it easy to add other mod-
ules i.e. an automatic analyzing tool or applications transferring
statistics to graphs and animation.

Contemporary state
 The graph editor is under construction. The interpreter and

SNL definition are finished up to modifications and refinements.
The SNL language describes the net with respect to simulation. It
does not include graphical information i.e. coordinates for the
graphical symbols. This has to be added if the graph editor should
be able to recreate the graphical picture from the textual descrip-
tion of the net.

For this first version the net must be described in SNL by the
modeler. Here one can see the advantage of dividing the applica-
tion into separate parts and having a readable data file. Smaller
modifications could also be made directly in the SNL representa-
tion of the problem, even in the future, after the whole tool is
implemented.

It is difficult to give a precise definition of SNs because of
the ongoing development. In the following we will give a review
of the SNs at their current state and also discuss some future
amendments.

SIMULATION NETS
 In this section we will concentrate on the main difference

between SNs and PNs with respect to what is important for simu-
lation. Not every extension presented here is unique for SNs,
some of them are standard in other variants of PNs. We assume
some fundamental knowledge about PNs.

Time
Time is of central interest in simulation, the extension to

PNs is called Timed PNs. There are several ways of introducing
time in PNs. Four major strategies can be found.

1 When a transition is enabled there is a delay before the fir-
ing can take place. Under this time the token to be con-
sumed stays in it’s place.

2 When a transition fires, it will consume all required
tokens from it’s input places, keep the tokens unreachable
for some time and deposit them in the output places after
the time has passed.

3 Tokens have a time stamp, which means that despite of
residing in the in-place, they are kept ‘invisible’ for the
particular time. This implies that tokens are colored in
some way.

XSIMNET, A TOOL IN C++ FOR EXECUTING SIMULATION NETS

Åke Gustavson and Aimo Törn
Åbo Akademi

Department of Computer Science
SF-20520 ÅBO, Finland

Proceedings of the Conference on Modelling and Simulation 1994
eds. Guasch and Huber

146

4 Time is associated with places. Each token that arrives to
a place is delayed before they become available.

We choose to connect time with transitions according to
strategy 2 above. The main reason is the convenience for simula-
tion modelling. This time concept has however been criticized
from a theoretical viewpoint for violating the main PN concepts
of states (places) and events (transitions). A transition, timed in
this way, represents both of these concepts. It is equivalent to a
small net.

Colored tokens
In a PN all tokens are identical. Introduction of individuality

to tokens has been made in different ways, and by tradition these
tokens are named colored and the resulting net is sometimes
referred to as a CPN, colored PN.

In a SN tokens are colored in the following way. All tokens
are of a certain type and has priority. There is a predefined,
“uncolored” tokentype calledany with a fixed priority. All other
types are user defined and must be declared. Such tokens differ
from the predefined type in that they can have an unlimited num-
ber of numerical attributes. The values of the attributes and the
priority of a declared token type are user defined and may be
changed dynamically in the execution of the model.

Or logic
Or logic means that only one of two or more places are

involved when firing a transition. The extension means that there
is an inclusive or with a built-in random choice, based on proba-
bilities.

Introduction of probabilities makes this extension very use-
ful for simulation. The probabilities are implied by integer num-
bers written on the branches of the arc. Based on given
probabilities, the interpreter will make a random choice of the
branches. For input places the random choice is made among
those having tokens. The probabilities can also be equal, which
results in a pure inclusive or logic.

The same type of arcs can be applied to output places, but
the meaning is different. In this case there is a probabilistic rout-
ing of the token(s).

Stochastic functions
In simulation, time, like time between arrivals, is distributed

according to some probability distribution. To support this SNs
contain built in stochastic functions.

Three such functions can be used as operands in formulas
(see Code in transitions). The functions include the negative
exponential, the normal and the uniform distribution.

Modification of the firing rule
The firing rule for a PN says that if a transition is enabled it

may fire. In simulation we don’t want such an uncertainty. If a
transition is enabled it must fire if this does not conflict with the
firing of another transition. In the latter case, the new rule says
that one of them must fire. The choice is then deterministic but
arbitrary because there is no priority between transitions, unless

time = Expr

this is explicitly modelled by using inhibitor arcs.

Queue discipline in places
With uncolored tokens, a place and it’s markings are like a

counter, which is decremented and incremented with the firings
of transitions. A consequence of having colored tokens is that a
place contains entities. With entities, it makes sense to introduce
order of entities. A place with ordered entities is more like a
queue than a counter.

Each place will treat the tokens according to one of the fol-
lowing queue disciplines. The two classical queue disciplines,fifo
andlifo, may be used. The individual differences between tokens
gives a third queue discipline,priority. The tokens are sorted by
their priority. There is a fourth queue discipline, i.e. unordered.
We will call this disciplinerandom. It differs from the others in
that when a token is to be consumed any token may be removed.
In the other cases only the first to leave can be removed.

Local naming of tokens
There is sometimes a need for identifying a specific token

when it is passing a transition. Reasons for this could be routing
or accessing an attribute of the token.

The way to name a token is to write the name (identifier) on
the arc, instead of just giving the number of tokens required. If
more than one token is required, all of them are named in a list,
e.g. X,Y:type. The scope of the declaration is the corresponding
transition. This means that the same token can pass another tran-
sition with another name.

Interrupts
A transition may interrupt an executing transition in order to

make use of a shared resource. The interrupted transition will
continue it’s execution after the termination of the interrupting
transition. This feature is different from the traditional behavior
of a PN in many ways. It’s main characteristics can be summed
up as follows.

• It is a connection and a token transfer between two transi-
tions, with no place in between.

•It requires time, introduced in the manner described above.
•There must be a concurrence of a shared resource, modelled

by a place, between the two transitions.
The interrupting transition will try to start normally, i.e., by

consuming the token from the shared input place. If the input
place is empty, it will look for an ongoing transition of it’s con-
current neighbor, stop it and use the resource (token) for it’s own
execution.

Code in transitions
With the introduction of time in the manner described above,

the role of the transition has changed. It has become the dominat-
ing, or active node in the net. In a traditional PN states are repre-
sented by places and their marking and the transitions are actions
which change the current state. In a SN we can have ongoing
transitions, which also express a state.

Considering a transition as the executing node, makes it nat-
ural to extend a transition to include code which prepares and col-
lects data that could be of interest for the simulation results. A
transition can have local variables, for computing and storing of
data, and updating attributes of the tokens. This points to a simple
formula-like collection of statements, basically consisting of
assignments. The time delay is also included in the code with the
predefined variabletime.

147

Hierarchy
A modelling tool must support hierarchical design. Mainly

one wants to gradually split the problem into smaller pieces. In
PNs there is a rule that says that every node can be extended to a
become net, which is quite easy to understand. The rule for SNs
says that for any transition (not place), a subnet may be substi-
tuted. This rule is stronger and creates a strict tree structure. As a
consequence, a subnet can only be connected to the outer world
by places in the supernet.

A net or subnet must have a name (identifier) and is in the
graph inscribed in a rectangle. The node names inside a net are
local and can be identical to names outside the net. Every object
is referred to by dot notation starting from the highest level (e.g.
RootNetName.{SubnetName.}ObjectName).

This hierarchy does not affect the analysis of the net. It is
very easy to remove the hierarcies, i.e. to flatten the net. The only
thing to take care of is to avoid name clashes. This is easily done
by applying the dot notation explained above.

Analysis of Simulation Nets
A PN has a well defined theory as a base for analysis of

nets. With the extensions much of the analysis ability is lost.
To obtain the same ability for a SN, we can try to extend the

rules for a PN. This leads to problems with the complexity of the
net. To overcome the problems we will try a solution in two
steps.

• Perform transformations of the net, by replacing exten-
sions with PN constructs. The new net must be equivalent
to the original SN with regard to analysis, not to simula-
tion.

• Use extended analysis functions for the new hybrid net.
As a complement to the simulation tool, there will be an

application for automatic analysis of nets. This project is how-
ever only in it’s initial phase.

A MODELLING EXAMPLE

Spare Part Case
The problem description is taken from (Törn 1991).
A certain machine uses a type of part which is subject to

periodic failure. On failure the machine is turned off, the part is
removed and, if available, a good part is installed. A repairman is
responsible for repairing failed parts. His duties also include
repair of other items, with a higher repair priority.

The objective is to investigate the fractional utilization of
the machine as a function of the number of spare parts. The
details are the following:

• Lifetime for parts: normal distribution (350,70), unit:
hours.

• Repair time: normal distribution (8,0.5), unit: hours.
• Time to remove: 4 hours.
• Time to replace: 6 hours.
• Other items arrives with a mean interval time of 9 hours

according to the poisson distribution.
• Service time for other items: uniform 4 - 12 hours.
Figure 1 shows a SN representing one interpretation of the

problem. We want to emphasize some details of the model, as
representative for SN properties:

• Since the goal is to obtain the optimal number of spare
parts inSpareParts, this number is given by a variable,
noted with a dollar sign. The interpreter will discover
that, and open a window permitting the user to assign and

reassign the value at run time.

• In a PN priority can only be expressed by an inhibitor arc.
This is replaced by the priority queue discipline ofRepQ
(expressed by the dot/bar symbol). A spare part will auto-
matically be placed behind the other items if any. The pri-
ority is strengthened by the interrupt arc betweenRepPart
andRepOther.

• The transition formulas contain abbreviation operators
such as += inRepOther(A += B ≡ A = A + B).

• Token attributeip is used for interrupt checking. It is 1
when X is obtained by interrupt, 0 otherwise. Theintrp
attribute inRepOthercounts how many times interrupt
occurs.

• The different departments are reflected in the hierarchical
structure.

The graph will have the following SNL code:
Netname Factory

Subnet Machine
Subnet RepairDep
Subnet OtherItems
Place SpareParts random

init $NoInStore Part
Place RepQ prior

Netname Factory.OtherItems
Transition Generator

in-out GS 1 any
out RepQ 1 OItem
code time = nexp 9

Place GS
init 1 any

Netname Factory.RepairDep
Transition RepPart

in RepQ 1 Part
in-out CoffeRoom X RepairMan
out Storage 1 Part
code X.ip = 1

time = norm 8 .5
X.ip = 0

Fig 1. Spare Part Case modelled in SN.

SpareParts

$NoInStore:Part

NeedForReplace

BrokenPart

CoffeeRoom

1:RepairMan

GS

time = 6
Replace

Machine

time = norm 350 70
Working

PartReplaced

1:Part

time = nexp 9
Generator

intrp += X.ip
time = unif 4

RepOther

time = 4

Remove

X.ip = 1
time = norm 8 .5
X.ip = 0

RepPart

OtherItems

1:Part

Factory

RepQ

RepairDep

CoffeeRoom

X:RepairMan

1:Part

1:Part

1:Part

1:Part

1:Part

1:Part

1:Part
1:OItem

1:OItem

148

Transition RepOther
in RepQ 1 OItem
code intrp += X.ip

time = unif 4 12
interrupt RepPart CoffeeRoom

Place CoffeeRoom
init 1 RepairMan

Netname Factory.Machine
Transition Replace

in Storage 1 Part
NeedForReplace 1 any

out PartReplaced 1 Part
code time = 6

Transition Working
code time = norm 350 70
in PartReplaced 1 Part
out BrokenPart 1 Part

Transition Remove
code time = 4
in BrokenPart 1 Part
out RepQ 1 Part

NeedForReplace 1 any
Place NeedForReplace
Place BrokenPart
Place PartReplaced

init 1 Part
Token Part 4
Token RepairMan 4

attrib ip
Token OItem 8

THE SIMULATION TOOL XSIMNET
XSimNet is based on the Xview interface to UNIX, which is

a high level user interface with no need of writing commands.
The main command window looks like this.

The command window allows the user to run the model
using predefined options. The SNL code does not include any
description how to run the model. It is only a statical description
of the net and the execution is performed according to the rules
and the user’s requests. Statistics and trace are displayed in an
output window, which have all the properties of a text editor,
except for loading files.

Some properties of the tool
The interpreter is constructed for simulation and is empha-

sizing the finite result more than step by step animation. At this
stage we don’t have the form of animation that allows following
the tokens traversing the net. For a longer simulation, the advan-
tage of such an animation is questionable. Other types of anima-
tion, using bars and curves, might be more informative. In
XSimNet there is a possibility to have animated horizontal bars
which shows the value of a chosen attribute at run time. This ani-
mation is connected to so called agents. An agent is a special

reporting object, which can be set to watch a special attribute.
Each time the attribute changes it’s value, the agent will report
the new value, by text output or by changing the state of the
graphical bar representation.

For final statistics there are two fixed output formats and one
programmable. In the latter case the interpreter will compute the
result according to a script file with a special syntax.

FUTURE PLANS

Drawbacks of the current model
The qualities of PNs in modeling of systems has been docu-

mented in several papers and research reports. When the model is
simple and small the graph is also very readable and gives an
immediate understanding of the problem. With growing complex-
ity however this clarity might be lost. There can be so many con-
structions of more or less trivial primitives in the net that they
cover the overview. The construction below, taken from a traffic
light simulation, exemplifies this.

A token appears in the system from theArrive transition and
disappears atLeave. The graph expresses the following:

for i = 1 to 4
if not Condition then Leave
else wait 3

wait 2
Leave

All nodes inside the dotted lines is just a construction for the
loop and choice mechanism. They could all be removed if we had
some numerical attribute which was decremented and tested.

As the intention with SN is to advance simulation modeling,
one may ask if the current modeling power is sufficient. The
answer is clearly no, more power is needed. In the following we
will cover some interesting modifications for extending the mod-
eling capability.

Testing token attributes
As mentioned above the main principles for the transition

formulas was just data collection. No influence on the execution
of the net is possible. When firing a transition we can test for the
token types in the in-places, but there is no possibility to check
the token attributes. As a consequence a lot of dynamics is lost.

The planned solution to this problem is quite similar to that
of ER-nets (Ghezzi et al. 1991). A boolean predicate is set up,

TempStore

Check

Choice

Leave

Alt1

time = 2
Wait

time = 3
Loop

Alt2

Times RestoreLoop

4

Condition

StopRestore

Arrive

149

which must be satisfied for the transition to fire. We will include
this in the transition box, placed before the action code and sepa-
rate it with a dotted line. The following figure shows an example
graph and the corresponding SNL code.

Transition T1
in P1 X type

p2 Y type
out p3 X type
cond X.data < Y.data

X.loop <= 2
code time = nexp 4

X.data = Y.data

Expanding the time concept
The introduction of the time concept in PNs, has been dis-

cussed in several papers. The time concept preferred is oftenly
dependent of which stand point one has or what the intentions
with the model are. Time connected to transitions can in some
situation be efficient, but in other cases not preferable.

We may ask: Why shall a net, and especially a SN, which is
intended for simulation, have just one time concept? The clarity
of the model will not suffer from using more and different time
concepts, if these are carefully defined. Instead this will lead to
reduced net complexity. A good example is the use of inhibitor
arcs for preventing some actions for a certain time. In the graph
below transition C is inhibited for 5 time units from the end of
transitions A to the start of transition B.

If we can’t assign time to a place, we have to make a dis-
turbingly complicated construction. The single place is expanded
to the net inside the dotted line in figure to the right. The new
model is not only smaller, it is also closer to our intensions.

A different way of assigning time to transitions was already
mentioned in the chapter above as case 1. An enabled transition
remains waiting before it can fire. This construction allows
another transition to “steal” the enabling tokens. It is a useful
mechanism for modeling time-outs and could easily and natu-
rally be included in the header for condition testing introduced in
the proceeding section.

Expanding the tokens
As well as assigning time directly to places we can connect

time to a token. The time stamped token (Jensen 1992) will have
exactly the same function, and is a more natural concept. The
main reason is the passive character of a place. The solution, if
we want the time to be place dependent, is to allow the token to
have several time stamps, each one connected to a specific place.

This leads to adding code to the tokens. The next step is the
exciting idea to go from colored to object oriented tokens. As the

X.data < Y.data
X.loop <= 2

time = nexp 4
X.data = Y.data

X

Y

X

p1

p2

p3

T1

A A

B B

C C

time = 5

time = 5

dynamic part of the net, tokens are well suited for carrying code
and the objectoriented concepts public and private variables and
methods, will be the best way to introduce the code.

Related to the implementary parts of the project, a design
tool for tokens is the needed. Only the statical net has up to now
been subject to graphical design. Later on an object language
must be introduced. This idea is for the moment only in it’s first
stages and only a very simplified prototype of a token designer
exists.

Other expansions
Future plans contain the design and implementation of:

• Libraries for often used and parameterized graph mod-
ules.

• Interpreter extensions, so it can also show the execution
of the net.

• Analysis techniques for the simulation net.

REFERENCES
Evans J. B. 1993. “The Net Semantics of Demian.” Technical
report TR-93-11. Department of Computer Science, Faculty of
Engineering, University of Hongkong. (Dec.)

Ghezzi, C., D. Mandrioli, S. Morasca and M. Pezz’e. 1991. “A
Unified High-Level Petri Net Formalism for Time-Critical Sys-
tems”. IEEE Trans. Software Engineering (Feb): 160-172.

Javor A. 1993. “Petri Nets in Simulation”. EUROSIM - Simula-
tion News Europe. no. 9 (Nov): 6-7.

Jensen, K. 1992. Coloured Petri Nets. Volume 1. Spinger-Verlag,
Berlin, Heidelberg.

Papelis Y. E., and T. L. Casavant. 1992. “Specification and Anal-
ysis of Parallel/Distributed Software and Systems by Petri Nets
with Transition Enabling Functions”. IEEE Trans. Software Engi-
neering (Mar): 252-261

Peterson, J. 1981. Petri Net Theory and the Modeling of Systems.
Englewood Cliffs, N.J. 07632: Prentice-Hall.

Reisig W. 1985. Petri Nets, An Introduction. Springer-Verlag.
Berlin Heidelberg.

Törn, A. 1981. “Simulation Graphs: a general tool for modelling
simulation designs”. SIMULATION 37:6: 187 - 194.

Törn, A. 1991. Simulation Modelling. Åbo Akademi University,
Reports on Computer Science & Mathematics, Ser. B, No 12, 140
pp.

IWong C.Y., T. S. Dillon and A. E. Forward. 1985. “Timed Places
Petri Nets with Stochastic Representation of Place Time.” In pro-
ceedings of International Workshop on Timed Petri Nets (Torino,,
Italy, July 1-3). IEEE, Computer Society Press, Silver Spring, 96-
103.

150

