
97

ABSTRACT
Simulation Nets (SNs) are Petri Nets extended for

convenient modelling of discrete event simulation prob-
lems (Törn 1991). Experience from modelling and simula-
tion by two interpreting tools suggest that more modelling
power is needed. The nets have to be extended in several
ways. In this paper we concentrate on the extension of the
tokens. The typed (colored) tokens in SNs, which can
carry data, but not make full use of it, will be extended
into object-oriented tokens. These can contain more subtle
data and rules, for a more active participation in the con-
trol structure of the net.

INTRODUCTION
In this paper we set up the guidelines for the further

development of our research in Petri Net (PN) based simu-
lation. For the moment this is in its initial state. Our exist-
ing simulation tools can not handle the new extensions
presented here.

In the following we assume some fundamental knowl-
edge about PNs.

Simulation Nets - A brief overview
A SN uses most of the classical PN extensions like

inhibitor arcs, time, colored tokens etc. Some new exten-
sions are added, such as interrupt arcs, stochastic or-logic
and hierarchies of nets. What might be characteristic for
SN is also the way of modifying the classical extensions.
The modifications are done for simplifying simulation
modelling.

SN have been a research interest at the department
since 1981 (Törn 1981) Two tools have been developed.
SimNet, which is written in Simula and available in VMS
and MS-DOS, has automatic statistics collection, anima-
tion (MS-DOS) and most of the SN properties described
above. XSimNet is a further development of SimNet and
was the first tool in our research to include colored tokens
and textual extensions (code) in the graph. The colored
tokens were however implemented in a restricted way.
They can have data attributes and are able to store data,
computed in transitions. These attributes can however not
influence the execution of the nets. The experience with
XSimNet have convinced us that it would be worthwhile
to increase the modeling power of SNs. This includes also
transitions, places and the subnet concept, but this paper
will only cover the extension of the tokens.

Problems in PN modelling
The qualities of PNs in modeling of systems have

been documented in several papers and research reports.
When the model is simple and small the graph is also very
readable, providing an easy understanding of the problem.
With growing complexity this clarity might be lost. There
may be so many constructions of more or less trivial prim-
itives in the net that the overview is lost. Looking at exist-
ing PN extensions, most of them contain textual
information in addition to graphical symbols. The reason is
quite clear. Textual code with a well defined syntax can
increase modeling power and may reduce the size of the
graphical model. However, if the code is too extensive the
balance between the graph and the code may be disturbed.
By letting the textual declarative part grow at the expense
of the graphical part, the graph could be more or less com-
pletely replaced by code in a suitable programming lan-
guage.

What is a good balance between the graph and text
extension? One answer to this difficult question could be:
The graph should reflect the model of reality and our inten-
sions with the model, but not contain a lot of low level con-
structions.

Another aspect of PN modelling problems can be
stated:One common criticism is that the Petri Net remains
a static, global control structure. There is no sense in
which the net consists of a collection of dynamically cre-
ated objects, each encapsulating its own data and control
structures, together with the ability to generate new
instances of such objects (Lakos 1994). Adoption of
object-oriented structuring into PNs has resulted in the for-
malism called object PNs (or OP-nets). Our intension is
not to apply object-oriented paradigms in the SN. The net
should remain as the traditional global and static control
structure, and as a complement, the tokens will be
extended from passive data tokens to dynamic and data-
oriented control structures. The well defined paradigm of
object-oriented programming is then applicable.

Being the dynamic part of the net, the tokens are natu-
ral candidates to carry even complex code. A lot of low
level details can easily be encapsulated in an object-ori-
ented token.

97

OBJECT-ORIENTED TOKENS, A WAY OF INCREASING THE MODELING
POWER OF SIMULATION NETS

Åke Gustavson and Aimo Törn
Åbo Akademi

Computer Science Department
SF-20520 ÅBO, Finland

E-mail: agustavs@ra.abo.fi

Proceedings of the European Simulation symposium 1994
Ed. A.R. Kaylan, A. Lehmann, and T.I. Ören

.

98

OBJECT-ORIENTED TOKENS
Introducing object-oriented properties in
tokens

The step from colored tokens to object-oriented
tokens is very straightforward. The declaration of a token,
with type or color, is like a class and the tokens are the
objects. We list the traditional object-oriented facilities
and analyze how to handle them.

• Methods are an ordinary extension of the existing
data attributes. They will only operate on the local
data of the token object or the arguments. When a
token resides in a place or transition, it could possi-
bly also use the local data of the corresponding
node. Global attributes are read-only.

• Inheritance must be implemented so that one token
type is a subtype of another. Multiple inheritance
will not be implemented, at least not in the first
stage and a token cannot include another token type
as a field. One strange thing is of course the appear-
ance of virtual tokens, i.e. token types never
intended to appear in the net. They act only as
superclasses for other tokens. There is however one
useful effect of this to be used in the net: If an arc is
restricted to transfer a certain token type, it is valid
also for all possible subtypes.

• Data hiding can be applied directly without modifi-
cations.

With respect to simulation, these extended tokens can
participate in a model in a more sophisticated way. Even in
a colored Petri net, the behavior of the model is dependent
on the net architecture. If we add the possibility that a
token may change it’s attribute values, it can also influence
the routing of itself in the net. As an example we can have
two transitions with enabling predicates that are mutually
exclusive. In these predicates both will call a certain
method of the token to be used. Based on its knowledge,
the token will make a choice between the transitions by
returning the corresponding value from the called method.
For an example see below.

In simulation modeling we can let object tokens rep-
resent dynamic entities like cars, trucks, boats, messages
etc. The net will model the static environment in which
these entities occur. This has also been used before, but the
object tokens can handle more of the decisions and the
modeling conditions. In reality we will find many situa-
tions corresponding to such a model. A truck driver for
example, can make a decision of his routing, but the
choice is restricted by the statical environment, i.e. the
road system. If he is hungry, he can decide to stay longer
in a certain place (state), but if he is out of time he has to
continue. What we see is an interaction between a static
environment and complex dynamic objects.

X.des = 1 X.des = 0

des = if rem_time < (clock - start_time)
then 1 else 0;X X

AI in tokens and token communication
A colorless token is anonymous, and as a consequence

it is historyless. No matter in which state it is in the net, the
next step is independent of it’s lifetime up to now. If the
token has identity, data and in particular methods, it can
remember it’s history. It can make decisions based on
knowledge and it can learn by experience i.e. the basis for
an intelligent choice is established.

In order to extend the knowledge base and decision
making of tokens we may let them communicate with each
other. This means that one token, based on it’s own experi-
ence, can send information to another. There can be a com-
munication between tokens which are in the same net
(environment), but in different states and have different
experience. If a token have traversed the net along a spe-
cific path it can communicate with tokens to enter. The
message might be “Don’t take this road” and/or a descrip-
tion of the path.

We can also have a model with two different nets
(worlds, systems). The tokens can then transfer informa-
tion between them.

The implementation of the communication between
tokens can be done in two ways.

• A common data pool is the simplest alternative.
According to what is common in objectoriented
style, tokens of a certain class can have some vari-
ables in only one, shared instance. This restricts the
communication to reside only between the same
type or subtype of tokens.

• A channel, where the messages are transferred, is a
more sophisticated concept. It includes the possibil-
ity of explicit addressing of a specific token. To
achieve most efficiency, there must be several ways
to find and identify the tokens.
•• All tokens have a unique id number, given at cre-

ation, as a standard attribute. If a token supervises
others, it can store their id numbers in a list. The
number can also be asked for.

•• Tokens in a certain place can be found according
to the place name. Since this tokens always are
queued, there must be a specific keyword for
finding the next element.

•• Tokens which are not created by transitions in run

Information flow

Cut of a
big net

99

time, but by the designer, can be given a global
unique name, from which they also can be
accessed.

Token duplication
Tokens are traditionally dynamical objects. They are

created and destroyed by transitions. Up to now there have
always been a transition involved, when tokens are to be
deleted or created. Another, and in some situations better,
solution is to permit duplication of tokens, according to
specific rules. We will than remove the privilege of token
manipulations from the transitions and permit tokens to
take part in the process themselves.

We will present two major strategies.

• Token-forking. A token can split up into two parts,
identical up to the id number. The process is equiv-
alent with a biological cell division. It is also very
similar to process forking in the UNIX operative
system.

• Supervised token duplication. One token is respon-
sible for creation of other tokens, which also can be
of different type. The creating token may even have
the privilege to put the other tokens in any place in
the net. In order to manipulate the new tokens, the
creator must save their id’s.

Analogue to creation, destruction of itself or some
other token should be possible.

An example from practice: A supermarket might have
a row of cash-desks. The number of cash-desks is fixed,
but some of them might be closed if there are few custom-
ers. At a certain time, when more customers arrive, the
number of cashiers at work will increase.

A model of this example might be SN with a place,
cashes, that contains tokens of a type ‘cashier’. The num-
ber of tokens in that place should increase and decrease
dynamically, according to the queue length of one or more
other places, representing customers waiting for payment.

Token visibility
One way of introducing time in PNs is to equip tokens

with a so called time stamp (Jensen 1992). As a conse-
quence the token is kept invisible in a place for a certain
time, and cannot be consumed by a transition.

An extension of this invisibility is that it must not
always be connected to a time stamp. An intelligent token
should have the possibility to set itself invisible explicitly
for other reasons, like simply refusing to be consumed by
a transition. Such situation might be when the token is
waiting for a message from another token, possibly some-
where else. The visibility setting can also in some situa-
tions be a softer way of manipulation than repeated
creation/destruction.

Language for the methods
For programming object-oriented tokens in SN, we

must define the language and in particular it’s level. We
want a very high level and expressive language with
adjustment to the SN environment. Some of the desired
properties could be summarized as follows:

• As there is a development towards AI, the code
must be related to the problem and also permit sym-
bolic computation. It should have no or at least few
type declarations, type inference is preferred. Pat-
tern matching in a prolog like style is an interesting
feature. The language should be able to handle lists
and similar complex structures.

• Automatic invoking is a usable idea. It can be
defined in different ways.
•• One possibility is to put methods in time queues.

One can introducesignal(T,M) as a procedure for
automatic invoking of a token methodM at a spe-
cific timeT.

•• If a token has a method with the same name as a
place, this method is invoked when the token
arrives at the place.

•• If a token has a method with the same name as
itself (=class name), this will be invoked when
the token is created.

• Fuzzy logic in conditions, complementing tradi-
tional boolean values.

Most languages are designed to be stand alone. In this
case we don’t have a ‘main program’ or ‘program start’.
The main flow is expressed by the net and the coded algo-
ritms are invoked on special conditions.

ACCESSING OTHER PARTS OF THE NET
To achieve full effect of the token control, tokens must

be able to inspect different entities in the net. There will be
a need to at least read attributes in the nodes.

In a SN transitions are equipped with code, which is
executed when the transition fires. Being the active part of
the net transitions can communicate with tokens directly
by calling its public attributes. Therefore there is probably
no need for introducing the possibility for calling transition
methods from outside.

Places ar not active in the meaning that they can
change themselves or in particular anything else. They do
not, as the active transition, execute some code. They have
however standard attributes (queue discipline, number of
tokens etc.) and could be equipped with methods for
accessing these attributes.

EXTENDING EXISTING CONCEPT
A token in a SN is always of a specified type. There is

a possibility to declare user defined types. This is done by
giving a name to the type, set its priority and list the
attributes. The attributes have so far all been numerical.

Even if no types were declared by the user, there is
one predefined typeany. An any token can be regarded as a
simple black and white token and is meant to be used if
there is no need for identity and data. It has no data
attributes, only a predefined priority and id.

The keywordany can also be used in an arc expres-
sion, which restricts what token types should be accepted
by a transition. But in this case it does not restrict the
desired token to be of typeany, it rather means that all
token types are acceptable.

These two concepts, which can seem to be contradic-
tory to each other, are reconciled by introducingany as a

100

superclass for all other token types. It will than be
equipped with four attributes, considered to be necessary
for all tokens.

• iflag, invisibility flag, is a hidden boolean variable.
• prior, priority for queueing, is a public numerical

variable.
• id is a public read-only numerical variable, unique

for all tokens and given at creation.
• time(T), is a public method for setting invisibility

for a time periodT.

CASE STUDY: A GAS STATION PROB-
LEM
Problem Definition

The original of this problem is found in (Schriber
1974). Some smaller modifications have been made for
increasing its usefulness in demonstrating the features of
the extended nets presented.

The interarrival times of cars approaching a gas sta-
tion with the intention of possibly stopping for service are
distributed as shown in the table below:

A car stops for service only if the number of cars
already waiting for service is less than or equal to the
number of cars already being served. (That is, a car stops
only if the driver perceives that not more than one car per
attendant is already waiting to be served.) Cars which do
not stop go to another gas station, and therefore represent
lost business. Other data:

• Opening time: 7 - 19. Cars already waiting in line at
19 o’clock are served, but cars arriving later than
that are not accepted for service.

• Average of the profit per car served: $1.
• Salary of attendants: $2.5 per hour, payed for 12

hours a day.
• Fixed costs: $75 per day.
• Service time distribution:

Interarrival time (seconds) Cumulative Frequency

< 0 0.00

< 100 0.25

< 200 0.48

< 300 0.69

< 400 0.81

< 500 0.90

< 600 1.00

Service time (seconds) Cumulative Frequency

< 100 0.00

< 200 0.06

< 300 0.21

< 400 0.48

< 500 0.77

< 600 0.93

< 700 1.00

The station’s owner wants to determine how many
attendants he should hire to maximize his daily profit. We
will add one feature, that the owner also works as a atten-
dant himself. The goal will be to build an intelligent SN
which via rules finds the optimal number of attendants.

Solution
We will introduce a token typeOwner, which exists

from the start in one single instance. This gives us the pos-
sibility to assign it a global name,Boss, permitting other
tokens to address its methods. At the beginning of the sim-
ulation theBoss works alone. “He” will collect data all the
time and after some days an economical analysis is done.
Another attendant will be hired if the lost profit is larger
than the salary of an attendant.

Because of the possibilities of token control, the SN is
very simple and the high level model is a clear representa-
tion of the problem.

Cars are generated byCarGen and deposited iServQ.
After arrival they send a message toBoss. If the answer is
no (=to many cars waiting), theCar token deletes itself,
symbolizing left off for another station. The communica-
tion allowsBoss to maintain the control of incoming cars.

The Gen-type token is responsible for the timing of
incomingCars. Every time it visits the placeGP there is a
corresponding method invoked which controls the time of
day. If it is over 19 o’clock,Gen will set itself invisible
until next morning. Visiting transitionGT its methodInter-
arrive returns a time interval calculated according to the
above table. AnAttendant token has a similar method,
ServTime, for the transitionService. This gives the follow-
ing structure of the tokens.

The picture shows how inheritance is used, with the
predefinedany as a superclass for all.Owner can work as
anAttendant himself (= be accepted ofService) because it
is inheriting from theAttendant class.SG is never used as a
real token, it is just a superclass containing whatAttendant
andGen have in common i.e. a function for translating the
total time in seconds to day time and a time interval gener-
ation function for different parameters.

ServQ

time = X.Interarrive

GT

Gen

GP

X

CarGen

1:Car

GasStationProblem

(communication)

time = S.ServTime

Service

GasStation

Boss:Owner

Staff
S:Attendant

Attendant
CumFreq

ServTime

Gen

GP

Interarrive

CumFreq

Owner
data
attendants

Staff
attention

ok()
new_attendant

calculate

SG
time_of_day()

timeGen()

any (predefined)

iflag
prior
id
time() Car

ServQ

101

According to the details above the behavior in the net
can be the following. The methodServQ in Car is invoked
when arriving in placeServQ. The Car calls Boss.atten-
tion, and will immediately know if it shall join the queue
or not. The methodStaff in Owner, will give Boss an
opportunity to check the time after each job. When closing
time calculate will be called to sum up the day’s result.
Each tenth day, for example,Boss can make a decision if
he should hire anotherAttendant, e.g. create a new token.
The model can easily be extended and made more compli-
cated in different ways:

• Attendants can have lunch-times, all at different
times.

• Boss can also deleteAttendants or they can decide
to leave the job.

• The requirement on the queue length for theCars to
stop can be individual.

Alternative model in SN
Let us se how to model theGas Station problem in a

SN, as it is today.

In this model there is no possibility to self adjustment,
performed by intelligent tokens. We must do several simu-
lations with different values of variable $N. According to
output, we must calculate the optimal solution. There are
two transition attributes,left andserved, for checking lost
and earned profit. The control structure is fixed in the net
and hard to extend. In general this model is much simpler
and weaker.

The time distribution must be approximated with
exponential times, because SNs do not have possibilities
for deeper programing.

The model uses one significant extension of SNs, an
interrupt arc betweenGT and Closed. Using traditional
inhibitor arcs the model would have been even larger.

CONCLUSION AND FUTURE PLANS
Tokens extended in the way described above, seems

to be an effective way to decrease the size of the net. It is
an important facility, but not the only reason to introduce
them. The advantages could be summarized as below.

• Division of the static and dynamic areas of the

ServQ

PC

PO

1:Car

GasStation

GasStationProblem

time = nexp(300)

GTGP

CarGen

time = 43200

time = 43200left += 1

served += 1

time = nexp(400)

Service

$N

Choice LeaveStay

ServMax

ServBegin

CarInService

GP

Staff

$N:Attendant

Open

Closed

model in separate parts, represented by the net and
the tokens. This allows more natural modelling.

• Introduction of AI (rules and data) in the model,
providing for finding of the optimal solution auto-
matically.

• The textual code is connectd to the graph in a struc-
tured way.

The goal of our research is the construction of a simu-
lation tool, based on experiences from XSimNet and the
theoretical work on extension of the net. The concept of
object oriented tokens is only one part of this project.

REFERENCES
Evans J. B. 1993. “The Net Semantics of Demian.” Technical
report TR-93-11. Department of Computer Science, Faculty of
Engineering, University of Hongkong. (Dec.)

Ghezzi, C., D. Mandrioli, S. Morasca and M. Pezz’e. 1991. “A
Unified High-Level Petri Net Formalism for Time-Critical Sys-
tems”. IEEE Trans. Software Engineering (Feb): 160-172.

Javor A. 1993. “Petri Nets in Simulation”. EUROSIM - Simula-
tion News Europe. no. 9 (Nov): 6-7.

Jensen, K. 1992. Coloured Petri Nets. Volume 1. Spinger-Verlag,
Berlin, Heidelberg.

Lakos C. A. 1994. “LOOPN++: A New Language for Object Ori-
ented Petri Nets.” Technical report TR94-4. Computer Science
Department, University of Tasmania.

Papelis Y. E., and T. L. Casavant. 1992. “Specification and Anal-
ysis of Parallel/Distributed Software and Systems by Petri Nets
with Transition Enabling Functions”. IEEE Trans. Software Engi-
neering (Mar): 252-261

Peterson, J. 1981. Petri Net Theory and the Modeling of Systems.
Englewood Cliffs, N.J. 07632: Prentice-Hall.

Reisig W. 1985. Petri Nets, An Introduction. Springer-Verlag.
Berlin Heidelberg.

Schriber T.J. 1974. Simulation using GPSS. Whiley, New York.

Törn, A. 1981. “Simulation Graphs: a general tool for modelling
simulation designs”. SIMULATION 37:6: 187 - 194.

Törn, A. 1991. Simulation Modelling. Åbo Akademi University,
Reports on Computer Science & Mathematics, Ser. B, No 12, 140
pp.

IWong C.Y., T. S. Dillon and A. E. Forward. 1985. “Timed Places
Petri Nets with Stochastic Representation of Place Time.” In pro-
ceedings of International Workshop on Timed Petri Nets (Torino,,
Italy, July 1-3). IEEE, Computer Society Press, Silver Spring, 96-
103.

