
ABSTRACT
The usual way to handle larger problems is to divide them
into subproblems. Traditionally this is a weak point in
Petri nets. Introduction of hierarchies in the net is one
solution to the problem. An alternative way to decompose
Petri nets is to model every subproblem as an independent
net. These nets are linked together by communication
between programmable object oriented tokens.

INTRODUCTION AND BACKGROUND
Simulation Nets (SNs) are Petri Nets extended for conven-
ient modelling of discrete event simulation problems
(Peterson 1981, Reisig 1985, Törn 1981, Törn 1991). Two
tools have been developed for execution of SN models
(Gustavson and Törn 1994a). Object Oriented (OO)
Tokens, for increasing the modelling power of SNs, have
been introduced in (Gustavson and Törn 1994b). Tokens
are natural candidates to carry even complex code and the
step from coloured tokens to object oriented tokens is very
straightforward. If a token has identity, data and in particu-
lar methods it can remember its history, make decisions
based on knowledge and can learn by experience i.e. the
basis for an intelligent choice is established. In order to
extend the knowledge base and decision making of tokens
we let them communicate with each other. This is the most
significant difference between our token model and other
similar models (Javor 1994, Lakos 1994).

These programmable tokens with intercommunication
facilities are very powerful in modelling. By their proper-
ties they become the dynamic part of the otherwise global
and static control structure of the net. They can be used for
adding continuous and fuzzy properties to the net. In the
following we will focus on another quite interesting con-
sequence, namely modularisation.

DECOMPOSITIONS OF NETS
The absence of compositionality has been one of the main
critiques raised against Petri net models (Jensen1992).
One immediate answer to this critique has been the con-
struction of hierarchical Petri nets. SNs are well suited for
structuring a model as a hierarchy of submodels. The
structure of the composition is a tree with one root net
containing all the subnets.

As a complement to the hierarchical composition we
introduce a division into components which are unordered.
For this purpose we use the token communication

described above. We split the model into several nets and
have the tokens to transfer information between them i.e.
the only link between the nets is the token communication.
Let us name this unordered modularisation aspect decom-
position.

To make the idea simpler from a theoretical point of
view we let the details of the token communication be hid-
den and considered as an implementation problem. For the
moment we can simply think of several different nets and
one and the same token appearing in all of them at the
same time. Occurrences of the token in one net will influ-
ence on the behavior of the other net. Nevertheless the nets
are unrelated in the meaning that they don’t need to “know
about each other”, i.e. each net expresses its own aspect of
the problem. This approach lets us concentrate on one
aspect at a time when modelling and gives as result a net of
that aspect. Depending on the states of a common token,
which is the glue to other aspects (modules), there are sev-
eral outcomes which are not obvious from the graph. How-
ever, when modelling the aspect we don’t have to care
about how these states occur or change.

A typical simulation example, a production line
model, may be used to clarify the idea. Assume that tokens
(items) pass through different machines in sequence. In a
high level model the process of a token in one machine can
be represented by a place (MachineX), where the token
stays for some time. Suppose that we want more complex-
ity, so the phases in the machine processing should be
modelled in detail. Rather than inserting a subnet at the
location of the place we model the machine in a separate
net. When a token arrives to the place, its counterpart in
the machine net starts the inner process and the upper level
token becomes available again after the machine process
has finished.

ASPECT DECOMPOSITION VERSUS
HIERARCHICAL
The example of a production line is a model that can be
structured in a hierarchical way as well. The rules of a Petri
net permits every place or transition to be substituted by a

MachineX

MachineX

Start PreProcess

Finish

DECOMPOSING SIMULATION NETS BY TOKEN COMMUNICATION

Åke Gustavson and Aimo Törn
Åbo Akademi

Computer Science Department
SF-20520 ÅBO, Finland

E-mail: agustavs@ra.abo.fi

178

Proceedings of the Conference on Modelling and Simulation 1995 (ESM95, Prag)
eds. M. Snorek, M. Sujansky and A. Verbraeck



net. Instead of the place representing the machine we
insert the machine net. The question of the advantage of
aspect decomposition is then raised.

We claim that there is a different philosophy behind
the aspect decomposition. It has to do with dependency.
The intention is that the net modules which appears in an
aspect decomposition should be complete nets. They
should be executable on their own. Of course the coupling
to the other parts must then be replaced by assumptions. In
our example the machine net can be executed stand alone
if we assume that the incoming trigging signal has arrived.
In that meaning we set up some preconditions. It is how-
ever not clear that the execution of only one part is mean-
ingful in the sense of the semantics of the simulation
problem expressed by the complete net.

This requirement of completeness of the module
should be applicable to analysis. The different net modules
should be independently analysable, provided the precon-
ditions are given. In that sense the correctness analysis of
the different modules can be carried out one by one. We
will not here go into details about analysis of SNs, which
are high level Petri nets and to some parts hard to analyse.
The work with analysis of SNs is yet to be finished. The
intention is that the traditional Petri net analysis technics
(invariants, reachability etc.) should be applicable to the
modules.

For the correctness of the complete model one has
also to consider the connections between the modules. The
outgoing messages from one net can then be regarded as
postconditions, which are transformed into preconditions
in another module. Since these signals are fairly simple,
e.g. variable assignments, their correctness is easy to over-
view.

Hierarchical decomposition is more a programming
construction than a true modularisation. A hierarchically
decomposed net can be flattened and its decomposition is
really the concept of data hiding. It is principally a sequen-
tial way of thinking. Aspect decomposition associate to
the parallel paradigm and the coupling is indeed a syn-
chronization, despite the fact that data exchange may be
involved. One might think of nets in different dimensions,
where one level throws its shadow on another level but is
independent otherwise.

In addition we want to mention some pure practical mod-
elling properties of aspect decomposition.
❍ It can always replace a hierarchical modularisation and

will therefore always be a complement. The choice is
done by the programmer.

❍ If a subnet occurs several times in a net at different

locations it must be reproduced in each spot. One
aspect module is enough to replace them all.

❍ Depending on the model the aspect decomposition can
be clearly preferable. In some models, like the example
of the ferry example below, where modules with a high
degree of independency can be found in a natural way,
the hierarchical decomposition is hard to apply.

IMPLEMENTATION DETAILS
In reality all tokens must be different objects. They cannot
be in more than one place at a time. How can we than
express the simplified model above, where one token can
occur in more than one place? The concept of one token in
two nets can easily be expressed in terms of communica-
tion between OO tokens. The object oriented paradigm is
also included in the possibilities.

OO Tokens, short overview
The major intention by introducing OO tokens was their
extended role in the model, e.g. introduction of intelligent
simulation in SNs. This consists of an automatization of an
otherwise iterative interaction between the programmer
and the tool: The result of the simulation is analysed, the
model is corrected and simulated again. By equipping a
model with knowledge and rules for the goals of the simu-
lation, the bottlenecks could be discovered and removed at
run time.

In our model this work is delegated to the tokens. We
do not permit dynamical changes in the net structure. In
this case we cling to the paradigm of Petri nets, where the
net is fixed and tokens are dynamical and can be destroyed
and created. For this purpose OO tokens are equipped with
considerable computational power. The following proper-
ties are of interest:
❍ Communication between tokens are introduced in two

ways.

❶ The possibility of explicit addressing of a specific
token can be done with several ways to find and
identify the tokens. We can use the unique id
number, given to all tokens at creation as a standard
attribute. Tokens which are not created by transi-
tions at run time, but by the designer, can be given a
global unique name, by which they also can be
accessed.

❷ Tokens of a certain class can have some variables in
only one, shared instance according to what is com-
mon in object oriented style. This common data
pool restricts the communication to reside only
between the same type or subtype of tokens.

❍ Tokens are permitted to duplicate or destroy them-
selves, according to two major strategies:

❶ Token-forking. A token can split up into two, identi-
cal up to the id number. The process is equivalent to
a biological cell division. It is also very similar to
process forking in the UNIX operative system.

❷ Supervised token duplication. One token is respon-
sible for creation of other tokens, which also can be
of different type. The creating token may even have
the privilege to put the created token in a place of its
own choice.

179



❍ An intelligent token has the possibility to set itself
invisible. As a consequence a token in a place cannot
be consumed by a transition. This is a way of introduc-
ing time in places but can also be used for other pur-
poses, e.g. having a token to wait for a message from
another token, possibly residing somewhere else.

OO Tokens in decomposition
All these properties can be used in decomposition. The
strategy chosen depends on the model. In the example of
the product line we can use the visibility concept. The
detailed machine net is designed with a start up place, ini-
tialized with an invisible token. When a token in the pro-
duction line net arrives to the place corresponding to the
specific machine, it sets itself invisible and sends a mes-
sage to trig the machine. When the machine token gets the
signal it sets itself visible. It will then immediately be con-
sumed by a transition which starts the inner process. After
finishing it sends a reply so that the upper process can con-
tinue.

However, closer to the idea of one token in several
nets is to use shared memory for tokens in different nets.
As soon as one token is updated the others will know
about it. How the changes in their memory occur can be
hidden from them. They just follow the state of their inner
data without asking. As a consequence the modules
become more independent.

Because of the different roles of the tokens in differ-
ent nets they can be declared as different classes in the
object oriented meaning. The requirement is that they have
a common superclass from which they inherit the shared
data. It follows that the different tokens can have com-
pletely different methods.

Simulation example: Car Ferry
We will use another simulation example, that of car ferry,
which is inspired by (Birtwistle 1979). It will better show
how the description of one object can be completely
decomposed according to different aspects although the
events in these descriptions occur simultaneously. To
make it more interesting we refine the model. The original
model concerns only the aspect of transporting cars. This
will be enlarged to include also weather conditions and the
inner state of the ferry. We will regard these as three
aspects:
① A ferry serves motorists wishing to cross the strait

between the mainland and a small island. It is the
original model with the following data.

• Capacity limit is six cars.
• Working time 07.00 - 22.00, Time is checked

before leaving mainland. It will not leave after
21.45.

• Cars have some interarrival times and the crossing
time is normally distributed.

• The wanted data is the average number of cars/trip,
empty crossings, average waiting time etc.

② The ferry has inner states which will influence on its
behaviour.

• It has a limited amount of fuel, which is decreased
for each trip.

• Its functioning is subject to impairment.
• Errors in machinery might occur randomly using

some reliability model.
③ The weather conditions are changing and will influ-

ence on the crossing time and the condition of the
ferry.

• The season is changing, causing ice or storm condi-
tions to change.

• The wind has several directions (states) and power.
• The occurrence of fog and rain will influence on

sight conditions.
When modelling we construct three SNs according to this
scheme. We will have a certain token representing the
ferry. The ferry occurs in the following structure of the
three nets:
① A model containing the environment with the strait,

car queues and generation of cars. The ferry moves
between two places representing mainland and island,
loading and unloading cars.

② This net reflects the inner condition and will be a reli-
ability model (MTTR factor). Significant states as
`out of fuel’ and `need for repair’ can be represented
by places into which the ferry moves.

③ The weather environment is modelled as different
states of seasons, wind direction etc. In this net we
can have more than one instance of the ferry repre-
senting all weather aspects.

In the original model the crossing time is just the normal
distribution with some mean and deviation. In the
enhanced model the ferry will compute the speed before
crossing and then the required time can be derived. The
speed is calculated from shared state variables in the token,
which are updated in net two and three.

DISTRIBUTING GLOBAL RESOURCES
Typical for some simulation models is the use of a global
resource, expressed by a token in a place and shared by dif-
ferent parts (transitions or subnets) of the net. A model can
have more than one of such resources. The complexity of
the graph is increased if different parts of the net need glo-
bal resources. No plane embedding can be found and very
long and complicated arcs have to be drawn. In case of
hierarchical decomposition the resource places has to be
put at the uppermost level, violating the structural con-
struction of the net.

How can we apply aspect decomposition to models with
shared global resources? This subproblem can be solved by
the same technique which made aspect decomposition pos-

p2

Proj 1 Proj 2 Proj 3 Proj n

Resource 1 Resource 2

Resource 3

180



sible, namely that the same token can appear in several
places at the same time. Making use of that we let each
part of the net which needs a resource get its own copy.

Since all these copies model the same resource only one
token can be consumed at a time. The mechanism which
permits such a construction is token communication, in the
same manner as in the decomposition. When one token is
consumed the others are locked in their places by the inner
construction of OO tokens. The distributed places can
occur in different modules on different levels in the net.
The effect is the same as having only one place.

EXAMPLE: TRAFFIC LIGHT
We will introduce a detailed example which is taken from
a real simulation research concerning traffic lights. A com-
plicated model in a Petri net will be decomposed into three
rather simple SNs.

The Original Petri Net Model
This model below is in the form it was used for experi-
menting with in real traffic situations. It models a crossing
with roads going in two directions, north-south (N-S) and
east-west (E-W).

To understand this net one has to consider that transitions
are equipped with time delayed firings and by conse-
quence priority for the immediate transitions is assumed.

Direction E-W is modelled in the following way:
❍ Generation of cars: T5.
❍ Queue for crossing: P3.
❍ Departure is modelled by T7-P5-T9-P13-T15. Two

transitions are required for modelling an exponential
time following a fixed time.

Direction N-S is modelled by T4-P2-T6-P4-T8-P12-T14.

Resource1

Resource2

Proj X

time = nexp 0.2

time = 2

time = nexp 0.5

time = nexp 0.15

time = 2

time = nexp 0.5

time = 20

time = 2

time = 3

time = 15

time = 1

time = 3

T4

T6

T8

T14

T5

T7

T9

T15

P2

P4

P12

P3

P5

P13

4
P7

T11

T15 P9

P11

T2

T13

T0

T10

T14

T3

T12

P8

P6
3

P10

P1

T1

P0

The Light is controlled by a token in P1, which means
green for N-S. Transferring of the token to P0 means green
for E-W. The complicated control structure can be
described by an algoritm, where the real world events are
given in comments.
p1 ; direction N-S is open
wait 20 ; fixed minimal time
t11->p9
for i = 1 to 4 ; repeat 4 times(

if (p2 is empty) ; if no cars in N-S
then t0->p0 ; close N-S, open E-W

else wait 3 ; additional time)
if (p2 is empty) ; if no cars in N-S

then t0->p0 ; close N-S, open E-W
wait 2 ; additional time
t2->p0 ; close N-S, open E-W

Decompositional Model
The result of a decomposition in SN is three separated nets.
Because of the realistic programming in SN it contains a
lot of details. We will not comment all of these but concen-
trate on the most interesting parts.
① The aspect of the cars crossing is modelled by a gen-

erator subnet, a queue place and a consuming (depar-
ture) part. For easier understanding we will point out
that this part of the net is modelled by time consuming
transitions. The notation in the name, [direction:2],
means that this is two identical nets, separated by the
local variabledirection.The values 1 and 2 fordirec-
tion corresponds to N-S and E-W.

The model follows the classicalsingle server single
queue concept. The generation part works all the time,
but the departure stops when the token in placeGreen
sets itself unavailable. On this level we do not bother
why and when this occurs.

② The control of the lights is very simple on the upper-
most level. The token of typeLightC will stay in one
place for a time, modelling green for a certain direc-
tion.

The actual time is computed somewhere else, so the
details are hidden. After the time has passed it will
switch to the other direction.

CarArrivals

1:DirectionC

GP

time(nexp(5));
X.Increase(direction);

Generator

X DirectionC

Roads[direction:2]

CarQ

CarDepartures

1:DirectionC

Green

X.start;
time(2 + nexp(0.5));
X.Decrease(direction);

X.avail(direction);
Leave

1 Car

1 Car

X DirectionC

LightChange

GreenEW

1:LightC

GreenNS

X.Switch(1)
X.Change(LightChange)

ChangeNS

X.Switch(2)
X.Change(LightChange)

ChangeEW

X X

XX

181



③ The complicated part of the control is modelled as a
net of its own. The same net performs the time delay
for both directions

The light duration algoritm described above can be
expressed in the following way.

❶ The token is waiting in placeGreen for a minimal
time.

❷ The token moves to placeYellow. In case of no cars
in queue (in theRoads net) it moves back toGreen
immediately. Otherwise it goes into a delayed self
loop, modelled by the transitionLoop.

On the uppermost level we shall consider the connection
between the modules. In the following picture the dotted
line express the relationship between the instances of the
same control token.

The token is involved in both creation and destruction of
cars. By updating data after both operations it will always
know how many cars are queued up in each direction.
Because of its appearance in theLightChange net it knows
which direction is open. When modelling the duration of
time it can always deduce when to change or when to loop
as it knows if the queue is empty.

Finally we shall look at the implementation of this
token. As can be seen the tokens in the models are not
even of the same type. This is however well motivated,
because even if they work on common data, they perform
different operations on the data and appear in different
environments. The object oriented concept gives a very
natural shape to the structural differences between these
tokens.

The light grey tokens in the tree structure below are
virtual tokens acting as superclasses. The others really
appear in the net, as can be seen form the graphs above.
The Control token consists only of shared data areas to
store the information of which direction has green and the
car queues. It is the main communication data base. The
typeDirectionC, involved in theRoads nets managing the
passing of cars, inherits directly fromControl. Only this
token type can update the number of cars. The types
LightC in the netLightChange andDurationC in LightDu-

LightDuration

Yellow

1:DurationC

Green

X.LoopInit
X.Change(LightDuration)

ToYellow

X.Decrease;

X.stop(Loop);

Loop

X.time(X.delay)
X.AllowCh(ChangeDir)

X.stop(Change);

Change

X

X

X

X

X
X.time(3);

GreenEW

Yellow

CarQ

CarDepartures

CarArrivals

Generator
GP

Leave
Green

GreenNS

ChangeEW ChangeNS

Green

ToYellow

LoopChange

LightDuration

LightChangeRoads[direction:2]

ration needs some common data for the change control
which is of no interest forDirectionC. They inherit this
data from the typeChangeC, placed between them and
Control.

Tokens of typeCar, which are generated and con-
sumed, contain no data and therefore need no detailed
description in this model.

REFERENCES
Birtwistle G.M., 1979, “Discrete Event Modelling on
Simula”,(Macmillan computer Science series) 1. Computer Sim-
ulation 2. DEMOS,p 67.

Gustavson Å. and A. Törn. 1994a. "XSimNet, a Tool i C++ for
executing Simulation Nets." InProceedings of 1994 European
Simulation Multiconference (Barcelona, Spain, June 1-3 1994),
146 - 150.

Gustavson Å. and A. Törn. 1994b, “Object-Oriented Tokens, A
Way of Increasing the Modeling Power of Simulation Nets”, In
Proceedings of 1994 European Simulation Symposium(Istanbul,
Turkey, Oct. 9 - 12 1994), 97-101.

Javor A. 1994. “Intelligent Objects in Simulation models”, In
Proceedings of 1994 European Simulation Symposium(Istanbul,
Turkey, Oct. 9 - 12 1994), 9 - 13..

Jensen, K. 1992. Coloured Petri Nets. Volume 1. Spinger-Verlag,
Berlin, Heidelberg.

Lakos C. A. 1994. “LOOPN++: A New Language for Object Ori-
ented Petri Nets.” Technical report TR94-4. Computer Science
Department, University of Tasmania.

Peterson, J. 1981. Petri Net Theory and the Modeling of Systems.
Englewood Cliffs, N.J. 07632: Prentice-Hall.

Reisig W. 1985. Petri Nets, An Introduction. Springer-Verlag.
Berlin Heidelberg.

Törn, A. 1981. “Simulation Graphs: a general tool for modelling
simulation designs”. SIMULATION 37:6: 187 - 194.

Törn, A. 1991. Simulation Modelling. Åbo Akademi University,
Reports on Computer Science & Mathematics, Ser. B, No 12, 140
pp.

LightC

Methods for 
change of 
direction

DurationC

Methods and 
data for loop 
and duration 
control

ChangeC

Data for change 
of direction

DirectionC

Methods for 
decreasing and 
increasing the 
number of cars 
for a certain 
direction

Control

Index variable 
for the current 
direction

Information of 
the number of 
cars in each 
direction

182


