
ABSTRACT
Sensor arcs are extended inhibitor arcs, which can test for
more than zero. By combination with other extensions,
previously introduced in Petri nets, they can express prim-
itives which otherwise have to be modelled in the graph.
This complexity reduction of the graph is essential for the
descriptive clarity of the model.

INTRODUCTION
Since Petri Nets (PNs) were introduced by C.A. Petri
1962, they have been widely used for modelling in differ-
ent areas [Reisig 1985]. With their simple concepts of
transitions, places and tokens, they can express actions,
conditions and states. However, a PN representation of a
large and complicated systems will contain an unaccepta-
ble level of detail. As a result, many users of PNs devel-
oped useful extensions to fit their specific needs.

Simulation Nets (SNs) are PNs extended for conven-
ient modelling of discrete event simulation problems
[Törn 1981,1991]. Our intentions for studying PNs is to
find new suitable extensions for SNs, for simplifying sim-
ulation modelling. These extensions includes both tokens
and the net. The intention is to have the net to reflect the
model, but to avoid technical low level constructions. In
this paper we will concentrate on an extension of the arcs
which we will call sensor arcs.

SENSOR ARCS
The idea is to expand the concept of an arc that performs
only testing with no consuming involved. We will start
with inhibitor arcs and then perform stepwise extensions
of them into sensor arcs.
① An inhibitor arc is a kind of inversion of a the PN arc.

The technique is also called zero-testing and that is
what an inhibitor arc actually does. For reasons clear
from the extension of inhibitor arcs introduced below,
we will use “less than 1 testing” (<1-testing) instead
of zero-testing.

② Instead of <1-testing, one can use <k-testing, where k
is the minimal amount of tokens to prevent the firing
of a transition. In the graphk is written as a multiplic-
ity next to the arc. Fork=1, it is equivalent to zero
testing i.e. a conventional inhibitor arc. With <k-test-
ing one can eliminate some low level details, for an
illustration see Figure 1.

③ Assume that we could use an inverted inhibitor arc,

which will test and give true for not zero. In analog
with <k-testing we can talk about≥k-testing. It can be
used instead of multiple arcs (self loop), but with no
consuming involved.

④ As a result we will introduce sensor arcs, which can
test both ways. We will call them positive and nega-
tive sensor arcs. It is to be emphasized that the no
consuming and the limitation to in-places finally dis-
tantiate them from conventional arcs. As a graphical
symbol we will use an inhibitor arc and for the posi-
tive sensor arc a black dot inside the circular head,
symbolizing a token in the place. In case of a positive
sensor arc,k or more tokens permits the transition to
fire, and in the opposite casek or more tokens inhibits
the transition. From this definition, it is clear thatk>0.

Sensor arcs are specially useful when one or more transi-
tions should be controlled by one single condition, often
modelled by the presence of a token in a certain place.
Consider the following situation, shown in Figure 2 a).
There is a placeP1, for controlling two transitions,T1 and
T2, so that they are mutually exclusive. For this purpose
there is an inhibitor arc betweenP1 andT1, and a double
arc from P1 for control of T2. P1 sometimes contains a
control token, which is deposited/consumed by an external
part of the net. The placeP2 will sometimes receive a
token for firing eitherT1 orT2.

The test ofT2 is unnecessarily complicated and involves
low level constructions in the net which can be avoided,
see Figure 2 b). The problems in Figure 2 a) can be sum-
marized as this:

Figure 1 Using<k-testing for bounding a place (a). This can otherwise
be done to the cost of a more complicated construction (b).
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Figure 2 The example problem model in (a) is reduced by use of sen-
sor arcs (b).
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❍ If the places are equipped with queue disciplines, the
positive test can alter the order, which can be essential.

❍ Eventual statistics of arrivals inP1 can be distorted
and give misleading results.

❍ Consuming and depositing increase the run time.
❍ In case of time delay inT2, the placeP2 has to be one-

safe. Otherwise the control mechanism would not
work and we need a still more complicated construc-
tion.

When more than two transitions are involved sensor arcs
become really helpful.

ANALYSIS OF SENSOR ARCS
It has been showed that inhibitor arc PNs have the compu-
tational power of Turing machines [Peterson1977,1981].
In the general case, inhibitor arc PNs cannot be trans-
formed into ordinary PNs. If the places of the inhibitor
arcs are bounded, than the transformation is possible.

The first expansion, <k-testing, can be transformed in a
similar way, as can be seen from an example (Figure 5).

The positive case,≥k-testing, is analytically the same as a
self loop. The none consuming property can be very useful
in simulation modelling, but plays no role in analysis. For
sensor- arcs we can regard two cases:
① Sensor arcs are added to a original unextended PNs.

Interpreted as a generalisation of inhibitor arcs they
increase the modelling power of PNs in a fundamen-
tal way.

② If the PN contains inhibitor arcs, then it is already a
Turing machine and the addition of sensor arcs is a
tool for getting a smaller and more readable net. Sen-
sor arcs must then be regarded as an abbreviation
property of the PN.

Figure 3 One single token can control a cascade of transitions.

Figure 4 Example of removal of an inhibitor arc, where 10 is
assumed as the bound for P
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Figure 5 Example of transformation of <k-testing where k = 4 and
10 is the bound for P
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SENSOR ARCS AND ARC CONDITIONS
Up to now we have only used an integer to express the
maximum or minimum number of tokens in case of sensor
arcs. In a SN there is a possibility to name the tokens tra-
versed by an arc. More than one token must then be given
as a list. These names are local to the transition and can be
used in the transition code and for routing of the token.
Along with the number or local name the type of the token
has to be given. This forms a condition, because if the
required type is not found in the in-place, the transition is
not enabled. In addition an explicit condition can be given,
referring to some inner states of the token. Such a condi-
tion is local to the arc. In the same way as with ordinary
arcs this can be applied to sensor arcs.

For an arc to bevalid, all of its conditions must be ful-
filled. An explicit arc condition will strengthen a positive
sensor arc, but the weaken negative sensor arc. For sake of
clearness we write out this explicitly:
❍ A valid sensor+ arc willcontribute to the enabling of

the firing of a transition.
❍ A valid sensor- arc willinhibit the firing of a transition.

SIMULATION NETS
As mentioned in the introduction extensions for simplify-
ing modelling are included in SNs. One interesting point is
how sensor arcs fit in this environment and how they coop-
erate with other extensions. Here follows a short overview:
❍ The tokens are expanded from typed and numerical

tokens to intelligent object-oriented (OO) tokens [Gus-
tavsonTörn 1994b] . Such a token has identity and can
carry even complex code. It can remember its history,
make decisions based on knowledge and can learn by
experience. In order to extend the knowledge base and
decision making of tokens we let them communicate
with each other. This is the most significant difference
between our token model and other similar models. OO
Tokens are permitted to duplicate or destroy them-
selves and have also the possibility to set themselves
invisible. An invisible token cannot be consumed by a
transition. This is a way of introducing time in places
but can also be used for other purposes, e.g. having a
token to wait for a message from another token, possi-
bly residing somewhere else.

❍ Transitions play an important role in SNs, and are split
into a conditional and an action part, see Figure 6. As in
many other extensions of PNs, restrictions for enabling
of a transition are allowed [Bandinelli et. al.
1993][Jensen 1992]. Attributes in transitions and
tokens can be changed as a part of the action. Time
delays can be applied to both parts. The transition ena-
bling conditions fall in the same cathegory as the
explicit conditions for arcs, but have a wider scope. It is
for example possible to compare values of two tokens
from different places, each connected by its own arc.

❍ Other extensions are stochastic or-logic arcs, transition
interrupt arcs and hierarcies of subnets which could be
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indexed.

COMBINATION WITH OTHER EXTEN-
SIONS
Sensor Arcs can be combined with other extensions. We
have mentioned the arc inscription above. A discussion
will start the from an example showing some possibilities.

In order to interpret the situation in Figure 7 we shall first
investigate if transitionT is enabled. It depends on three
in-places, all connected with different arcs. All tokens
have local names. We shall go through them one by one.
① P1 is connected with a negative sensor arc which

inhibits T in case of 2 token of typeGreen. Since
there are 2Green tokens inP1, T should not be ena-
bled if there were no arc inscription. The inscription
U.r = V.r is however also essential for the inhibiting
effect. It must true. So in this case the enabling ofT
from P1 depends on the token attributer in token
typeGreen.

② P2 is a normal in-place toT. One token of typeBlue
is required and resides in the place. The enabling
depends on if attributes in typeBlue is smaller than
20.

③ FromP3 emanates a positive sensor arc. The required
token exists in three instances, soT is enabled if at
least one of them fulfils the inscripted requirement of
attributet.

④ The conditional part ofT compares attributes of
tokens from different places. Even in this case there
are three possibilities inP3. T will fire only if it can
find a true solution for the condition.

⑤ In the action part ofT the attributes of tokensX andY
are changed.

When the tokens are not consumed by the transition, there
are some interesting question to be answered. Can we at
all treat the tokens in a similar way as they were con-
sumed? It is clear that token manipulations can only be
applied in connection with sensor+ arcs, because as with
conventional arcs the token must exist. Sensor- arcs repre-
sents the opposite case. By the existence problem, it is
safer to rule out the possibility of all connection with sen-
sor- arcs and transition inscriptions.

One can however be still more restrictive: Shall we
permit the transition to change token attributes although

Figure 6 The graphical notation of a SN transition.
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Figure 7 A collection of possibilities in combining sensor arcs with
boolean inscriptions.
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the token stays in the place all the time? Remember that
the token remaining in the place is accessible from the out-
side world. It is not exclusively controlled by the transition
and can be changed or consumed by another transition.
Clearly spoken this is not a problem with immediate transi-
tions, it is completely related to some type of time delay in
the transition. But time is introduced in this way, this prob-
lem must be treated.

The situation reminds of other cases where mutual
exclusiveness is essential. Of course there are some strate-
gies for handling this. We can sum them up as follows.
① After a transition has got a reference to a certain

token, it can always manipulate it wherever it is.
② The situation is treated as an error. The interpreter ter-

minates, stops or at least print out an error message.
③ The statements for manipulation are not executed if

the token is removed. Eventually a warning message
is printed out.

We prefer strategy one because of the resulting extended
modelling possibilities, which we will describe in the fol-
lowing and let the programmer be responsible for avoiding
unwanted executions. It is easy to rule out such events by
using the transition conditions. A typical example of the
problem and its solution can be studied in Figure 8. The
transitionT1 is enabled and will fire with a delay of 100
time units. Within this time it is possible that a token inP2
will enableT2, so it will remove the token inP1. Since we
by some reason do not want that to happen we do some
simple programming using an attributecheck in X.

MODELLING EXAMPLES
Modelling of Continuous PNs
In a continuous PN the marking of the places are no longer
integer. Instead there is a positive real number and the fir-
ing is like a continuous flow. Models that are enabled by
these nets cannot be transformed into ordinary PNs.

As we regard tokens as data carrying entities or
objects, they are clearly discrete. They can however carry
continuous attributes. Instead of having continuous proper-
ties in places, we can put a stationary token in that place
and in this manner model non place properties of the place.

The example given in Figure 9 is taken from
[DavidAlla 1994] and shows how french dressing is
obtained by mixing salad oil with vinegar. A continuous
place is represented by a double circle, useful when hybrid
PNs are concerned. Figure 9 a) represents an initial state
with 1 l of oil and 1 l of vinegar and no dressing The firing
of T1 has a quantity which is not an integer, in this case it
is 0.1. Since the weight of the arcP1 ➛ T1 is 2, then 0.2 is
taken out of P1. Figure 9 b) shows the result of such fir-

Figure 8 Preventing another transition from steeling a token.

X.check = 1
T2

P1

P2P3

X.check = 0
time(100)
X.check = 1

T1

X X

82



ings, where 0.3 l of dressing is produced.

In Figure 9 c) we can see how the same process is
modelled by numerical data tokens and sensor+ arcs. Here
we explicitly program the action part ofT1 to perform the
calculation of the continuous values, analogue to what is
happening in the continuous net. The conditional part is
omitted, but we have to ensure that the amount of the giv-
ing tokens is sufficient. The transition must also be
enabled in the traditional way.

Modelling of External Events
The normal way of transition firing is by enableness. Syn-
chronized PNs introduce the possibility of synchronizing
the firing of transitions on external events. The external
events corresponds to a change of state of the external
world [DavidAlla 1994].

This is an extension to autonomous PNs, where the
transition can fire if it is enabled, but we don’t know when
it will be fired. A simulation net is non-autonomous in the
way that it is timed and an enabled transition will fire
immediately. The only exception of this rule is when there
is a conflict between two enabled transitions. In that case
one of them will fire, but we don’t know which one. In a
synchronized PN a firing of a transition will occurif the
transition is enabled andwhen the associated event occurs.

The diagram in Figure 10 b) explains how a motor
switches between stopped and working state, trigged by
external eventsE1 (on) and E2 (off). In Figure 10 a) there
is an interpretation in a plain PN, where the states are
modeled by placesP1 andP2. The transitionsT1 andT2
are supposed to fire on the signalsE1 andE2, if they are
enabled. As can be seen from both graphs an on-signal
(off-signal) has no effect if the motor is on (off).

Sensor arcs combined with OO tokens gives us a possibil-
ity to include external events in the net. They also allow
this to be done in a nice graphical way. Figure 11 shows
how the synchronization can be expressed by an extended
token and sensor+ arcs. The external events are managed
by a token inP3. The OO tokenEvent has the two

Figure 9 : Continous PN and its modelling with sensor arcs.
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Figure 10 An example of synchronized nets from [DavidAlla 1994].

P1 (Stopped state)

Event E1 = start-up order

Event E2 = stop order

P2 (Working state)

T1
E1

a)

T2
E2

b) Initial time

Occurrences:
E1

E2
Marking:

P1

P2

Stopped state

Working state

attributesE1 and E2 that can be manipulated externally.
The transitionsT1 and T2 react on these attributes if they
are enabled byP1 or P2. Because the signal, i.e. the true
state ofE1 or E2, should not remain, the transitions set
them to false immediately. The transitionsT3 andT4 will
do the same with events which have no effect, as on-sig-
nals when the motor is working and the reverse. In this
special case the transitions can work with only sensors as
inputs, because the change of state in the tokenEvent pre-
vents them from firing more than once.

Traffic Light Control
In Figure 12 a) a traffic light example is presented for
describing the modelling of a control mechanism with sen-
sor+ arcs. Tokens representing cars are queued up in the
placeCars. Red is represented by a token in the placeTraf-
ficLight. The transitionChange symbolizes the mechanism
for changing the state by consuming and deposing a token
in TrafficLight.

In Figure 12 b) The placeTrafficLight contains an OO
token of typeLight. This type of token has an attributecol-
our. As can be seen in transitionReadyToPass, this
attribute must have the valueGreen for the transition to be
enabled, i.e. for the cars to start passing. The token inTraf-
ficLight will never leave the place, but its attributecolour
will change within periodically controlling the passing of
the cars. Traffic lights with only one direction are however
rare. If we expand the model to a more realistic one then
the model with sensor+ arcs is more convenient. In Figure
13 one single token in the placeTrafficLight controls two
directions, modelled as subnets. It is easy to expand the
model to more than two directions.

Figure 14 shows how to construct the control mecha-
nism in a graphical way.Change consists of four timed
transitions and a place, i.e. a subnet. The token in placeP
has to be consumed by each transition inChange to guar-
antee one single firing, otherwise the value ofX.colour is
enough to ensure mutual exclusiveness.

There are however a lot of alternatives for the model-
ling of the change control. By the communication ability of

Figure 11 Modelling the example from Figure 10 with sensor arcs.
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the OO tokens the control can be somewhere else in the
net or in another net. It can be modelled as an external
event, described above. It can also be programmed non-
graphically, by the built in program language of the OO
tokens. It is up to the programmer to choose if the control
should be shown in the graph or hidden. That corresponds
to the intention of good graphical programming. The
graph should describe our view of the model. It should not
be overloaded with low level details.

There is however another interesting aspect of this use
of sensor+ arcs, which goes beyond an ordinary simplifi-
cation of the net model, namely a communication channel
between two or more transitions. The token, which is
never consumed, can act as a common data base for the
transitions. OO tokens can have complex attributes to
record a lot of data from the transitions, such as times of
firing, time of last firing etc. Transitions can send mes-
sages to each other.

CONCLUSION
We have shown that testing without consuming might be a
useful property of the net. The usefulness is not restricted
to the negative case and zero testing, i.e. traditional inhibi-
tor arcs. Its main advantages occurs when more than one
action (transition) is controlled by one condition and
mutual exclusiveness is assumed.

Sensor arcs are multi-useful and therefore adopting
one of the main principles of PNs. In GPSS for example,
modelling is performed with a lot (>60) of different
blocks. A PN model is built up from a very small amount
of primitives. If we add more to a PN, we must assure that
the additions are simple, consistent and possible to com-
bine with other primitives.

Sensor arcs are in the first case a tool for simulation
efficiency and model simplification and not an analysis
extension. We have seen that sensor arcs alone have no

Figure 13 Two directions controlled by one token
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influence on analysis. There has been no attempt to look at
the effect on analysis from combinations with attribute
testing. This does however not only concern sensor arcs.
Also conventional arcs can be combined with inscriptions.
So this problem is on the whole the question of the use of
standard and user defined attributes in combination with
inscriptions for controlling the net. This analysis is out of
the scope of this paper.

In the next generation of our SN tool, XSimNet
[GustavsonTörn 1994a], our intention is to replace the
inhibitor arcs with sensor arcs. We will then use the graph-
ical symbols and arc notation presented above.
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