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Abstract. Function calls that cause side effects to actual arguments are
common and well accepted in OO languages. When a function is applied
only partially, such side effects, or preventing them, may lead to surprises.
The paper gives examples of this, and describes different approaches to
deal with side effects. The main focus is on C++ and a partial function
application implementation as a template library. The paper explains
what are the relevant points for controlling side effects to the arguments
of a partially applied function in such a library. As a practical result,
the paper presents a mechanism that can be used with function calls to
control side effects to each function argument individually.

1 Introduction

Lambda functions and partial function application are common features in func-
tional programming languages. Now these features are gradually finding their
way to object oriented (OO) languages as well. Eiffel has an extension called
agents [1, 2], which allows any argument of any function call to be replaced with
a question mark. Such a function call creates an agent, which is basically a par-
tially applied function. In the Sather language [3], a corresponding feature is
known as closures. For C++, a couple of template based extension libraries have
been developed during the recent years, among them FC++ [4], FACT [5] and
Lambda Library (LL) [6], which all provide forms of lambda functions for C++.

OO languages as platforms for these features are quite different from func-
tional languages. Particularly, OO languages typically allow functions to have
side effects on their arguments while functional languages do not. Furthermore,
not all function arguments are treated equally in OO languages. When a member
function of an object is called, that object has a special status compared to the
other function arguments. Regarding these considerations, we are asking what
should the form of manifestation of lambda functions and partial application be
in OO languages.

We show that the question is centered around argument passing mechanisms,
whether to pass arguments by value or by reference, and by what kind of ref-
erence. Passing an argument into a function by reference allows the function to
change the value of the argument as a side effect of evaluating the function. Such



side effects are more or less inherent in languages like C++ or Eiffel; member
functions typically alter the state of the object, the side effect to the left-hand
argument of an assignment operator is usually the reason why to call an assign-
ment operator etc. Consequently, side effects on arguments make sense. But what
about side effects on the arguments when the function is only applied partially?
The paper shows that the issue is more complicated than it may look at the first
glimpse. Partly this is common for OO languages, but partly the complications
stem from C++ and its peculiarities.

Eiffel agents are implemented as a true language extension, which gives a total
freedom over the syntax and semantics of the features, whereas the experimental
C++ libraries stay inside the language. This obviously places some restrictions
on the implementation of the features and makes the syntax a bit crippled, but
whether we stay inside the language or provide a true extension, we believe that
the same questions are still relevant. Nevertheless, the paper mainly discusses a
C++ implementation of partial application.

Finally, as practical results we show that it is possible to implement partial
function application in C++ either to allow or disallow side effects, and even do
this selectively depending on the properties of the underlying function. Further,
we show a mechanism that gives the programmer the control of allowing or
disallowing side effects for each argument separately.

1.1 Partial application syntax in C++

The syntax of partial application in C++ can be defined in many ways. In this
paper we use the syntax of the Lambda Library [6]: To apply a function partially,
the function and its arguments are enclosed in a generic bind function. In such
a function call, special placeholder variables _1, _2, . . . can be used as actual
arguments to state that an argument is left open. A partially applied function
results in a new function, and _1 refers to the first argument of this function, _2
to the second, etc. For example:

bind(f, a, b, _1, _2, e)

takes a 5-argument function f, binds the first, second and fifth argument to
a, b and e, respectively, and results in a two-argument function. Further, the
expression

bind(f, a, b, _1, _2, e)(c, d)

calls this two-argument function and invokes the original function f as

f(a, b, c, d, e).

For operators there is no special function or keyword; a placeholder variable
as an operand implicitly delays the evaluation of the expression it resides in: For
example, with this syntax the expression

2 * (_1 + _2)

is interpreted as

λ x y . 2(x+ y)



1.2 About implementing partial application in C++

Lambda functions and partial application are more or less the same thing when
implemented as a C++ template library. The syntax is different due to the
syntactic sugar in calls to operator functions, but the internal implementation is
the same: a lambda function, or a partial application, creates a kind of a closure
object that encloses the underlying function or operator and the arguments that
were provided. The function call operator of this object can then be called with
the remaining arguments. Considerably simplified, the above example of partially
applying the function f creates an object of type:

struct lambda_functor {
function f;
arguments a, b, e;

template<class T1, class T2>
result_type operator()(T1 _1, T2 _2) { f(a, b, _1, _2, c); }

};

In C++ the question of allowing or disallowing side effects boils down to what
information about the arguments should be stored in the closure of the function
call: the references to, or the values of the actuals at the site of constructing
the closure. At the most concrete level, the question is about the types of the
arguments a, b and c in the above lambda_functor class.

2 Argument binding in C++ standard library

C++ defines two function templates for partial function application: bind1st
and bind2nd. Both take a binary function, bind one of the arguments to a fixed
value, and return a unary function object. The C++ standard [7] defines this
function object to store the bound argument as a copy. The argument that is
left open is passed as a const reference to the function call operator. Hence the
intention is that there should be no side effects to the bound argument, nor to the
unbound argument supplied later. For example, figure 1 shows a straightforward
implementation of bind1st as defined by the standard.

As an example of the usage of standard binders, sum is a standard func-
tion template that creates a binary function object to compute the sum of its
arguments (suppose T is some type for which the operator+ is defined):

sum<T>()(a, b); // calls a + b;
bind1st(sum<T>(), a)(b); // calls T(a) + b;

While comparing these calls, the only difference is that in the latter call a copy
of the bound argument is taken, and the addition operator is called with the
copy. Thus, it seems that there is no difference between the outcome of the two
expressions above and this is probably what the programmer would expect. Note
that it is possible to find cases, albeit somewhat artificial ones, where the outcome



template <class Oper> class binder1st

: public unary_function<typename Oper::second_argument_type,

typename Oper::result_type> {

protected:

Oper op;

typename Oper::first_argument_type value;

public:

binder1st(const Oper& x,

const typename Oper::first_argument_type& y)

: op(x), value(y) {}

typename Oper::result_type

operator()(const typename Oper::second_argument_type& x) const {

return op(value, x);

}

};

template <class Oper, class T>

inline binder1st<Oper>

bind1st(const Oper& oper, const T& x) {

return

binder1st<Oper>(oper, typename Oper::first_argument_type(x));

}

Fig. 1. Standard binder1st implementation

is not what was expected. For example, operator+ might do something peculiar
to its arguments, like change a mutable member of a. Mostly the standard binders
are limited enough to keep the programmer out of trouble.

However, partial application is an appealing technique, particularly conve-
nient with STL algorithms. And when we try to extend the mechanism to cover
a larger set of functions, we are faced with the questions posed in the introduc-
tion. For example, inspired by the previous example, the next thing a program-
mer might want to write, could be (note that this example doesn’t work with
the current standard binders):

sum_assign<int>(a, b); // calls a += b
bind1st(sum_assign<int>(), a)(b); // calls int(a) += b

Now we can see that it makes a difference how binders bind the arguments.

2.1 Binding and member functions

The final definition of binders is an open issue in the standardization process.
A proposed change to the standard library, raised by Stroustrup [8], suggests
that the binder1st and binder2nd templates should define another function
call operator that takes a non-const reference argument:



typename Oper::result_type
operator()(typename Oper::second_argument_type& x) const {
return op(value, x);

}

This would mean that side effects via the unbound argument would be allowed.
The rationale behind the suggestion is to make something like this to work:

class turtle {
public:
void move (step s);

};

void move_all(list<turtle>& ls, const step& s) {
for_each(ls.begin(), ls.end(),

bind2nd(mem_fun_ref(&turtle::move), s));
}

The intention is to call t.move(s) for each element t in the list ls (mem_fun_ref
encloses a pointer to a member function into a bindable function object). Without
the suggested change, however, the code is erroneous. The call to bind2nd creates
a function object with a function call operator prototype defined as:

void operator()(const turtle& t);

But then move is a non-const function and it cannot be called with a reference
to a const turtle object. The effect of the proposed change would be to add the
function call operator operator()(turtle& t) into the binder object, which
would make the code work.

The previous example showed a function to move several turtles in a collection
one step forward. How about a function to move one turtle several steps:

void move_many_steps(turtle& t, list<step>& ls) {
for_each(ls.begin(), ls.end(),

bind1st(mem_fun_ref(&turtle::move), t));
}

Against what one might expect, this piece of code has no effect on the turtle t
at all. Binding t means taking a copy of it, hence the target of the move calls
is a copy of t, which is constructed when the binder function object is created,
and gets destructed after the for_each invocation.

There’s a myriad of additional details. For example, if we use mem_fun and a
pointer argument instead of mem_fun_ref and a reference, the member function
of the original turtle object is invoked:

void move_many_steps(turtle* t, list<step>& ls) {
for_each(ls.begin(), ls.end(),

bind1st(mem_fun_ref(&turtle::move), t));
}



On the other hand, the compilation fails altogether if the list of steps is taken as
a const reference (which would be a natural parameter type for this function):

void move_many_steps(turtle& t, const list<step>& ls);

Furthermore, if the argument to the turtle::move function was const step&
instead of step, compilation would fail as well. See [9] for a discussion about the
shortcomings of standard binders.

The standard tools for partial function application disallow most of the cases
where the interpretation of the partially applied function may not be clear. Still,
an unwary programmer may be taken by surprise, as the preceding discussion
demonstrates.

2.2 Partial application taken further

We’re not stuck with the limited partial function application support of the C++
Standard Library. A template library that allows partial application of function
pointers, function objects and pointers to member functions up to a predefined
arity limit, say for 10-ary functions, was described in [10]. Furthermore, apart
from a few exceptions, any overloadable C++ operator can be overloaded to
accept partial application. Taking argument binding still further, even control
structures and exception handling constructs can be ’applied partially’. [6] Tools
like this enable partial application in expressions where side effects occur natu-
rally in ordinary function application. Consequently, the possibility of side effects
must be taken into consideration. Instead of ignoring the issue, we must deter-
mine how to cope with it.

3 Different approaches to side effects

There are three alternatives to deal with side effects to bound arguments in
partial function applications:

1. Ignore side effects. Take a copy of each bound argument and store the copy in
the function object. If there are side effects, the code compiles but the side
effects affect the copies. This is the approach used in the C++ Standard
Library.

2. Deny side effects. Flag any expressions that might have side effects to bound
arguments as errors. The Standard Library follows this approach to some
extent as well.

3. Allow side effects. Store a reference to each bound argument in the function
object.

A combination of these three alternatives where the semantics is dependent on
the properties of the partially applied function, is also possible. Additionally,
each approach can be complemented with a mechanism that gives the user the
control to bypass the default behavior.



We take three example function calls which, in full application, cause side
effects to their arguments, and discuss applying them partially in the light of
the above three alternatives. First an operator call where the side effect to the
variable i is the only reason to make the call:

int i; int j; ... i += j;

Leaving the left-hand operand unbound creates a unary function that increments
its argument by the value of the bound argument. If the right-hand operand is
left unbound, we end up with a unary function incrementing the bound variable
by the argument of this unary function. For example:

vector<int> v; int j;
...
for_each(v.begin(), v.end(), _1 += j);
for_each(v.begin(), v.end(), j += _1);

The first case is straightforward, and the natural interpretation is that each
element of vector v is incremented by the value of j. The second case is trickier.
The programmers intent is most likely, that the sum of the elements of v is
computed in j. This is also the effect in the ’allow side effects’ approach. In the
’ignore side effects’ alternative, however, a copy of j gets incremented leaving
j intact, which is undoubtedly confusing. A safe, but more restrictive solution
would be to flag the expression as an error and ban it altogether.

The second example moves turtles again. In the example of section 2, we used
standard binders, here we use the binders from LL:

vector<turtle> tv; turtle t; vector<step> sv; step s;
...
for_each(tv.begin(), tv.end(), bind(&turtle::move, _1, s));
for_each(sv.begin(), sv.end(), bind(&turtle::move, t, _1));

Bear in mind that move is a non-const member function of turtle and most likely
modifies its state. Again, the first for_each invocation is quite clear, calling
x.move(s) for each turtle x in the vector tv. The intention of the second one
is to call t.move(y) for each step y in the vector sv. ’Allow side effects’ case
performs just this, whereas against the programmers intent, the ’ignore side
effects’ case keeps moving a copy of the original turtle t. In this example as well,
a safe approach would be to make the second call fail at compile time.

The third example considers calls to freestanding functions, or function point-
ers.

void add_to(int& i, const int& j) { i += j };

Note that the second argument to the add_to function is a reference. In the
function body, i and j can thus be aliased.

vector<int> v;
...
for_each(v.begin(), v.end(), bind(add_to, _1, 5));
for_each(v.begin(), v.end(), bind(add_to, _1, v[0]));



The first for_each call is again a clear case. The bind call creates a unary
function object that increments its argument by 5. In the second case it makes a
difference whether we store the bound argument v[0] as a copy or as a reference.
If a copy is taken, each element in v is incremented by the value of the first
element. If the binding is by reference, the effect is different. The first iteration
increments the first element by itself, which doubles the value of the bound
argument. Consequently, each successive element is incremented by twice the
original value of the first element, which is probably not what the programmer
wanted. Note that the same problem is apparent in our first example as well:

for_each(v.begin(), v.end(), _1 += v[0]);

The above examples demonstrate that neither the ’ignore side effects’ nor
’allow side effects’ approach leads to the most natural outcome in all cases. In
fact, both approaches allow expressions that are somewhat counterintuitive and
thus may lead to errors that are hard to find.

In the preceding examples, the partially applied functions are created as
temporary objects. The types of partially applied functions tend to be rather
complex, and as C++ has no typeof operator or alike, it is difficult to directly
declare a variable that would hold such a type. It is however possible, and with
a set of helper templates it can be made relatively convenient, as demonstrated
by the FC++ library [4]. This means that the function object created as a result
of a partial application can be stored into a variable, and evaluated later, in an
other expression. This brings up another point into the discussion. If a bound
argument is stored as a reference, the argument may not exist any more at the
evaluation site, leading to a dangling reference.

Eiffel approach The parameter passing mechanism in Eiffel is always call-by-
value. But variables in Eiffel hold references to objects making the parameter
passing mechanism in effect call-by-reference (this is not true with expanded
types, such as INTEGER, REAL etc.). Eiffel agents, that is partially applied
functions, obey the normal parameter passing rules, and thus Eiffel takes the
’allow side effects’ approach. Further, variables that refer to agent objects are
allowed. Hence, the agent construction and agent evaluation sites can be very
different. However, dangling references cannot occur due to garbage collection.

4 Implementing the different approaches in C++

Partial application in C++ can be implemented using expression templates [11].
A partially applied function is an expression object that stores the bound ar-
guments and the underlying function. Further, in its template arguments, the
expression object encodes information about the positions, types and number of
bound and unbound arguments. The LL calls these expression objects lambda
functors.

The operator syntax for partial application is achieved by overloading op-
erators for placeholder types that represent the open argument slots, and for



lambda functor types. Partial application of function pointers, function objects
and pointers to member functions is achieved by overloading the bind functions.
As an example, figure 2 shows one overloaded bind function template and one of
the specializations of the lambda_functor template. The return types of bind
functions are instances of lambda functors. Note, that this is only an outline of
the real library code, many details have been omitted.

template<class Function, class Arg1, class Arg2>

lambda_functor<

tuple<

type_mapping<Function>::type,

type_mapping<Arg1>::type,

type_mapping<Arg2>::type

>,

compute_arity<tuple<Function, Arg1, Arg2> >::value

>

bind(Function f, Arg1 a1, Arg2 a2) {

return

lambda_functor<

tuple<

type_mapping<Function>::type,

type_mapping<Arg1>::type,

type_mapping<Arg2>::type

>,

compute_arity<tuple<Function, Arg1, Arg2> >::value

> (make_tuple(f, a1, a2));

};

template<class Args>

class lambda_functor<Args, 2> {

Args args;

public:

template<class A, class B>

typename return_type_traits<Args, A, B>::type

operator(A a, B b) {

return substitute_arguments_and_evaluate(args, a, b);

}

...

}

Fig. 2. Three argument bind function template and the binary lambda functor tem-
plate.

The task of the bind function is simply to group the arguments into a tuple,
and construct the lambda functor. Tuple is a template class that can hold an



arbitrary number of elements of arbitrary types. Tuple types, and their imple-
mentation as a template library is discussed in [12].

The lambda_functor template has two arguments. The first is the argument
tuple type, the elements of which are the types of the arguments to the bind
function. The second is the arity of the functor, which is a property computed
with a traits class from the first template argument, basically by counting the
unbound arguments. The lambda_functor template has a specialization for each
supported arity, providing a function call operator with that arity. This function
call operator substitutes the actual arguments for the placeholders and evalu-
ates the underlying function with this combined argument list. How this works
exactly, is explained in [6], as well as the mechanisms for deducing the return
type of the operator. The important points to consider here are:

1. The argument types of the bind function.
2. The types of the arguments in the argument tuple.
3. The argument types of the lambda functor’s operator().

These are the points that control how side effects are handled.

4.1 Bind function argument types

Partial function application implemented as a C++ template library can only
support functions up to some predefined arity limit. The bind functions must
be defined for each supported arity. These functions are obviously templated,
and their calls rely on the compiler deducing the template argument types. The
basic choices for defining the argument types are either as const references:

template<class F, class A1, class A2>
ret_type bind(const F& f, const A1& a1, const A2& a2);

or as non-const references:

template<class F, class A1, class A2>
ret_type bind(F& f, A1& a1, A2& a2);

The third option would be to not use references at all, but rather take the
arguments as copies. That is an obvious way to prevent any side effects, but
it would also prevent passing non-copyable arguments and possibly introduce
unnecessary copying of objects. Hence, we focus on the above two alternatives.

Overloading based on the type of the function (the first argument) is possible,
and can in some cases be used to guide which mechanism to use for certain
arguments (see Overloading bind functions at the end of this section), but in
general we cannot make any kind of distinction between the arguments. It is
not known beforehand what are the prototypes of the functions that are applied
partially, and thus either one of the options must be chosen for all arguments.

As an example, consider the function:

void foo(int& i, const double& n);



The following code shows a valid call to this function:

int a;
...
foo(a, 3.14);

We then examine a partial application of foo, now binding all arguments:

bind(foo, a, 3.14);

Suppose first, that we use the first bind function definition, the one with the
const parameters. Consider the second argument a, which corresponds to the
first argument of foo. The type of this argument in foo is int&, but in bind
the deduced type becomes const int&. This means, that a is now regarded as
const in the body of the bind function, as well as in the lambda functor that
is created. This means that we cannot call foo with a from within the lambda
functor unless we make a non-const copy of it. Or cast away constness, which
could break const correctness as there is no guarantee that the actual argument
wasn’t const to begin with.

Next, consider what would happen if we used the second version of bind.
Now the type of the second argument would correctly be deduced to int&. What
about the third argument then? The type of 3.14 is double (not const double),
which means that the deduced argument type becomes double&. But 3.14 is a
temporary object, and as according to the C++ standard, a reference cannot be
bound to a non-const temporary, this is a compile time error.1

So basically, it is not possible to create a completely transparent interface
for bind functions. Either we have to somehow trick the compiler to accept non-
const references through a const interface, or turn temporaries into constant
types. Both can be accomplished, but it requires arguments to be wrapped with
helper functions at the call site (see section 5).

The latter is almost possible even without modifications to the calls. Tempo-
raries are created as a result of function and operator calls. Hence, by rigorously
defining all functions returning temporary objects to return const types, all tem-
poraries would be const. For example:

class A;
const A createA() { return A(); }
...
template<class T> void g(T& t);
g(A());
g(createA());

1 Note that a non-const member function of a temporary class object can be called [7,
Section 3.10.], which is very similar to binding a reference to a non-const temporary.
The purpose of this exception is presumably to allow a chain of calls to member
functions (e.g. a.plus(b).multiply(c);), but we find the rule still rather inconsis-
tent.



The type of the expression A() is A and thus the prototype of g in the first call
becomes void g(A&). As A() creates a temporary, the call fails. In the second
case, the prototype becomes void g(const A&), and the call is valid.

There is still one more glitch here. We deliberately used a temporary of
a class type in the example above. The reason for this is, that non-class type
temporaries cannot be const qualified [7, Section 3.10.]. The rationale behind this
rule is probably that there is no visible difference between a const temporary,
and a non-const temporary for non-class types. But there is a difference in the
deduction of template arguments, as was shown above.

Overloading bind functions We only discussed the most general form of the
bind function above and stated that we have to choose either form of parameter
passing for all arguments. However, we can have a bit more control by over-
loading bind for different function forms. For instance, if the target function of
the partially applied function is a pointer to a non-const member function, an
overloaded function of bind can take the object argument as a non-const ref-
erence, whereas for a const member function pointer, the object argument can
be a reference to a const type. By object argument we refer to the argument,
which is the target of the member function call. For example, t in the expression
bind(&turtle::move, t, _1).

Overloading operators for partial application is more flexible. Since each oper-
ator has a fixed number of arguments, and established default semantics, the op-
erators can be overloaded to follow these default rules. For example, operator+=
should be able to modify the first argument, while not the second one. Hence,
the operator can be defined to take the first argument as a non-const reference,
and the second as a const reference.

4.2 Types of argument tuple elements

Once the arguments have survived the first barrier, the bind function call, we
need to consider the next point. How do we store them in the argument tuple
in the lambda functor. Storing the actual arguments as references means that
side effects can occur, while storing the arguments as non-reference types means
copying the actual arguments, and hence side effects can occur, but to the copies
of the actual arguments. Tuple types are not a limitation here, they can hold
references to objects, just as well as the actual objects.

Rather than declaring the types directly as references or as plain types, they
are wrapped inside a traits template. The type_mapping template serves this
purpose in our example lambda functor implementation. This gives us control
whether the arguments are stored as copies or as references, and we can even
make the decision dependable on the type of the argument. For instance, as
arrays cannot be copied, the type_mapping template can always map array types
to references. Furthermore, as explained in section 4.1. we need to use wrappers
to pass non-const references through the bind interface. The type_mapping traits
can be used to retrieve the underlying reference from the wrapped argument (see
section 5). For a discussion about type traits in general, see [13].



4.3 Argument types of function call operator

The next thing to consider is the function call operator of the expression object.
This is the function typically called from an STL algorithm, and the actuals to
the function are the arguments that were left open in the partial application.
These argument types control whether side effects are allowed via the unbound
arguments. Unlike in the standard binders where these argument types are fixed
at time of constructing the expression object, the function call operator is a
template and the argument types are deduced when the function call operator is
invoked. Hence, we again have two main alternatives for defining the argument
types: as references or as references to const.

The section 4.1 discussed the advantages and disadvantages of both alter-
natives, and most of the same concerns apply here as well. However, allowing
side effects for the unbound arguments is maybe slightly less problematic. After
all, providing the remaining actual arguments for a partially applied function is
just an ordinary function call. Hence, it seems to be more natural to define the
function call operators of lambda functors to take their arguments as non-const
references, particularly if side effects are allowed for the bound arguments. A
problem arises with this approach, if the actual arguments are non-const tempo-
raries (see section 4.1). This can happen if dereferencing an iterator inside the
STL algorithm results in a temporary. The problem can be solved, but it requires
the whole partial application to be wrapped inside a function that makes the
arguments const, and the number of specializations increases exponentially with
respect to the number of arguments. STL algorithms, however, supports only
nullary, unary and binary function objects, so this is tolerable.

The function call operator in the example lambda functor delegates the task
of actually substituting the arguments and evaluating the function forward by
calling the function substitute_arguments_and_evaluate. This function hides
a complex chain of templated function calls where the arguments are passed
forward to several functions. We again refer to [6] for the details, but what can
be noted is, that all these functions are templates where the argument types are
deduced, and they can safely take their arguments as non-const references. Once
the arguments are past the first barrier, either the bind function or the lambda
functor’s function call operator, they are not temporaries anymore.2

5 Giving control to the client

It is apparent that partial function application implemented as a template li-
brary cannot be made entirely transparent. By transparent we mean that the
parameter passing mechanism reflects precisely the prototype of the underlying
partially applied function. Furthermore, even if this was possible, it is not obvi-
ous whether this should be the case; partial application is different enough from
a full application to bring up surprises, as discussed in section 3.
2 Nested partial applications, that is function composition, create temporaries, but

these can be handled internally.



Whatever default semantics is chosen, it is possible to provide the program-
mer with tools to override it. Let us return to one of our previous examples:

void add_to(int& i, const int& j) { i += j };

Suppose we have bind functions that prevent side effects by taking arguments as
const references. Depending on the implementation, binding the first argument
of add_to either fails, or the the potential side effect affects a copy of the actual
argument. The programmer may enable the side effect by wrapping the variable
with a helper function:

vector<int> v; int x;
...
for_each(v.begin(), v.end(), bind(add_to, x, _1)); //fails
for_each(v.begin(), v.end(), bind(add_to, ref(x), _1)); //ok

Further, we showed the example where the intent was to increment all ele-
ments in a vector with the value of the first element:

for_each(v.begin(), v.end(), bind(add_to, _1, v[0]));

If bind functions store the arguments as copies, this is exactly what the code
does. We also showed that if arguments are stored as references, the outcome
is something less intuitive. However, if the side effect is what the programmer
wants, even in the case where arguments are stored as copies, this can be achieved
by explicitly wrapping the argument with ref:

for_each(v.begin(), v.end(), bind(add_to, _1, ref(v[0])));

Analogously, we can provide means to state that the argument should be
stored as a copy, instead of a reference. Consider the ’turtle moving’ example in
section 3 and suppose that the object argument is stored as a reference:

turtle t; vector<step> sv;
...
for_each(sv.begin(), sv.end(), bind(&turtle::move, t, _1));
for_each(sv.begin(), sv.end(), bind(&turtle::move, plain(t), _1));

The first for_each invocation calls t.move(s) for each element of sv, while the
second operates on a copy of t and has no effect on t.

5.1 Implementing argument wrappers

The argument wrappers can be implemented by creating a disguise for the true
type of the argument. The wrapper object holds a reference member to the actual
argument, and has an appropriately defined conversion operator for getting back
to the original type. Such an object can pass a non-const reference through a
const qualified parameter, or a reference through a call-by-value barrier. The
following code shows the definitions of the wrapper class and the ref function
template:



template<class T>
class reference_wrapper {
T& x;

public:
explicit reference_wrapper(T& t) : x(t) {}
operator T&() const { return x; }

};

template<class T>
inline const reference_wrapper<T> ref(T& t) {
return reference_wrapper<T>(t);

}

Wrapping a variable with ref creates a reference_wrapper object containing a
reference to the variable. This object can be passed to the bind function where
the wrapping is undone with traits templates. The type_mapping template (see
section 4.2) has specializations for this purpose:

template<class T> type_mapping<reference_wrapper<T> > {
typedef T& type;

};

This specialization converts the argument type back to the original reference
type, and the reference gets stored in the lambda functor’s argument tuple. For
example:

vector<int> v; int x = 3;
for_each(v.begin(), v.end(),

bind(add_to, ref(x), _1)); //ok

First the call to ref(x) returns a reference_wrapper<int> object which is
passed to the bind function (as const reference_wrapper<int>&). The traits
template (type_mapping) maps the reference wrapper back to int& which is the
type of the bound value to be stored. To initialize this value, the conversion
operator to int& of the reference_wrapper<int> class returns the reference
to the original variable x. Hence, all traces of tweaking the reference into the
expression object are gone by the time the for_each algorithm calls the partially
applied function, and add_to gets called with a reference to the variable x.

Additionally, we’ve defined a cref function for wrapping references to con-
stants:

template<class T>
inline const reference_wrapper<const T> cref(const T& t) {
return reference_wrapper<const T>(t);

}

We do not show the implementation of the plain wrapper function mentioned
in the turtle example in section 3. It works much the same way except that



instead of returning a reference to the variable, the wrapper makes a copy of
it when the conversion operator is called. Note that we do not need the plain
wrapper to circumvent an unsuitable parameter passing mechanism, but only to
instruct the tuple that a copy of the bound argument should be stored where a
reference would be stored by default.

6 Conclusions

Side effects to the arguments of a function are common in a typical object ori-
ented program. Particularly, the state of the object argument in a method invo-
cation often changes. This is a feature taken for granted and is well accepted and
natural. Adding partial function invocation to an object oriented language blurs
the picture, and it is not instantly clear whether side effects are that natural
anymore.

This paper identified three alternatives to deal with side effects to the bound
arguments in partially applied functions: to allow, to silently ignore or to deny
expressions with side effects entirely. We discussed the problems with C++ in
detail showing both examples where side effects may take the programmer by
surprise and examples where they are intuitive and natural. None of the ap-
proaches is a perfect solution and it is also possible to treat different types of
functions differently, e.g. side effects can be allowed for the object argument in
a method invocation, while not for the remaining arguments.

Regarding C++, there are further details that prevent a clean solution with-
out modifications to the core language. We described what these details are and
where the problems in C++ implementation of partial application stem from.
Particularly, not being able to const qualify temporaries that are not of class
types is a nuisance. At least for C++, we have to settle for what is a less than
optimal solution, recognizing that beginning programmers may still have some
trouble writing expressions involving complex partial function applications. Ad-
ditionally, we showed how to implement a mechanism that allows the program-
mer to selectively state whether side effects to a certain argument are wanted or
not.
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