
Copyright Notice

The document is provided by the contributing author(s) as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. This is the author’s
version of the work. The final version can be found on the publisher's webpage.

This document is made available only for personal use and must abide to copyrights of the
publisher. Permission to make digital or hard copies of part or all of these works for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage. This works may not be reposted without the explicit permission of the
copyright holder.

Permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the corresponding
copyright holders. It is understood that all persons copying this information will adhere to the
terms and constraints invoked by each copyright holder.

IEEE papers: © IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. The final publication is available at http://ieeexplore.ieee.org

ACM papers: © ACM. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The
final publication is available at http://dl.acm.org/

Springer papers: © Springer. Pre-prints are provided only for personal use. The final publication is available at link.springer.com

http://ieeexplore.ieee.org/
http://dl.acm.org/
http://link.springer.com/

Class and Object Model Conformance using OWL2 Reasoners
Ali Hanzala Khan Espen Suenson

Ivan Porres

Department of Information Technologies, Åbo Akademi University
Joukahaisenkatu 3-5, FI-20520 Turku, Finland

{name.surname}abo.fi

Abstract

In this article we show how to represent UML models using the Web Ontology Language
OWL2 and the Semantic Web Rule Language SWRL, and how to reason about model con-
formance using OWL2 reasoners. Our translation from UML models to OWL2 is driven by
three important forces. First, we want to maintain the closed-world assumption when rea-
soning about UML models. Second, we want to preserve important model information such
as composition and non-unique associations. Finally, model conformance is defined solely
by OWL2 axioms where possible so that many cases can be reasoned about efficiently while
SWRL is used to represent model composition constraints. We have also implemented an
automatic model translation tool. The model translation tool takes as input an object model
and its class model and produces an ontology that can be processed by an OWL2 reasoner
to reveal the object model elements that do not conform to their class model.

Keywords: Model Validation, OWL2, Reasoning.

1 Introduction

Model Driven Engineering (MDE) [11] advocates the use of models to represent the most relevant
design decisions in a software development process. A software development project involves
the creation of many different models often using different modeling languages. Each software
model is described using a particular modeling language, such as the Unified Modeling Language
(UML) [16] or a domain specific modeling language (DSML) [5], and this raises the question if
each model conforms to its metamodel or not.

In this article, we address the problem of the conformance of a UML object model against a
UML class model. In our context, conformance means that given a UML class model containing
classes and associations and a UML object model containing objects and links, we want to know,
first, if each object is a proper instance of a class and each link is an instance of an association
depicted in the class model. Second, objects and links must preserve the uniqueness, multiplicity,
source, target and composition constraints of their classes and associations. An example of a
valid and an invalid object model and a class model is shown in Figure 1.

1.1 Overview of the Approach

In order to mechanically reason about model conformance we need to have a formal definition of
the UML. In this article we have chosen the Web Ontology Language version 2 for Description
Logic (OWL2 DL) [20] to formalize the UML class and object modeling concepts. There is a
number of reasons behind the selection of OWL2 DL. Firstly, OWL2 DL is the subset of OWL2
that it is decidable. Secondly, by using OWL2 DL we will be able to use existing OWL2 reasoners
for model conformance. Finally, OWL2 DL already provides constructs to represent many of the
concepts of the UML such as classes, associations, objects, and links in a rather straightforward
way. Still, a translation of UML models to OWL2 presents several challenges. Unfortunately,
OWL2 DL does not provide any constructions to represent UML concepts such as composition

1

Class and Object Model Conformance using OWL2 Reasoners Ali Hanzala Khan et al.

C1

C3 C4

x:C2

z:C4
P2

1 0..n
P1

C2

n..m
P2 {non-unique}

y:C3

P1

P2

(a) UML Class Model (b) Valid UML Object Model

y1:C1

y2:C1

x:C2

P1

P1

(c) Invalid UML Object Model

Figure 1: (a): A UML class model depicting a class hierarchy, a composition and a non-unique
association. (b): A consistent UML object model conforms to the UML class model, and (c) An
inconsistent object model due to the shared owner.

Translator Validation
using Reasoner

Validation Report UML Class and
 Object Models

 Ontology

Figure 2: Automatic object and class model conformance process.

and non-unique association. Also, OWL2 uses open-world assumption, whereas, UML operates
under the closed-world assumption [12], where complete knowledge of the domain is assumed to
be provided in a model. We assume that all existing classes and objects are known and depicted
explicitly in the models.

The details about representing composition, non-unique associations and the closed-world
environment in OWL2 DL are the main contribution of the article and will be discussed in
Sections 3 and 4 in detail.

To tackle the problem of model conformance, we propose to use a tool to first translate UML
models into OWL2 DL, and then check the translated models for consistency using an OWL2
reasoner. An overview of the process can be seen in Figure 2. The translator will take UML
class and object models as an input in form of XMI [15] and produce formally defined ontology
in OWL2 format as an output. The translator contains the translations of UML concepts into
OWL2 axioms in form of MOFScript [2]. The detail about the translation of a UML class and
object modeling concepts into OWL2 will be discussed in Section 3, and the detail about the
translation process will be discussed in Section 4.

Furthermore, the ontology generated by the translator, contains the translated object model
and a class model in form of OWL2 DL, will further be validated by using an OWL2 reasoner.

� If a generated ontology is consistent, it means that the object model conforms to all
constraints of the class model interpreted according to the semantics that we have given
in our translation.

� If a generated ontology is inconsistent, it means that the object model does not conform
to the constraints given in the class model.

2 Definition of UML Models

We consider a UML class model as a set of classes and their relationships in form of generalization
and associations, as shown in Figure 1a. Whereas, a UML object model consist of objects and
links, where objects are the instances of a class and links are the instances of an association,

2

Class and Object Model Conformance using OWL2 Reasoners Ali Hanzala Khan et al.

as shown in Figure 1b. In this section we give a formal definition of the UML class and object
modeling concepts that we treat in our approach. The definition is given in terms of predicate
logic. In this section we also motivate our choice of features that are included in the definition.

2.1 UML Classes and Objects

A UML class represents a set of objects that have the same characteristics [16]. A UML class C
is defined as a unary predicate C in predicate logic.

An instance of a class is called an object. In UML, every object in an object model must
belong to a specific class in a class model. An object x in an object model belongs to a class C
in a class model is defined in predicate logic as:

C(x) (1)

Class Generalization. A class can be generalized by another class. In this case, a subclass
inherits all traits and constraints of a more general superclass. Furthermore, in UML an object
can only directly belong to one class and that any other classes it belongs to is through general-
ization. A generalization relationship where C2 is the subclass of C1, and x is representing any
object of class C2, is formalized as:

∀x.C2(x)→C1(x) (2)

Disjoint Classes. In UML, any two classes that do not share subclasses are considered as
disjoint classes, the basic restriction on any two disjoint classes C1 and C2 that does not share
any object x:

∀x.¬(C1(x)∧C2(x)) (3)

2.2 UML Associations and Links

A UML binary association defines a relationship between two classes [16]. A UML link is an
instance of an association. A link l of an association P connecting objects x and y is represented
in predicate logic as:

P(x,y, l) (4)

We often do not need to differentiate what link is used to connect two objects. Therefore is
convenient for us to define the following:

∀x,y, l.P(x,y, l)→ P(x,y) (5)

Domain and Range. Every association connects a domain class and a range class. If C1 is
the domain and C2 is the range class, and x,y are the objects of a domain and a range class, the
basic restriction on association P is:

∀x,y.P(x,y)→C1(x)∧C2(y) (6)

Multiplicity. The UML associations can be specified with minimum and maximum multiplic-
ity. This means that there are cardinality restrictions on how many objects from the range class
can link to an object of the domain class. If the minimum multiplicity is n and the maximum
multiplicity is m on association P then:

∀x.C(x)→ n≤ #{y | P(x,y)} ≤ m (7)

Where n,m are non-negative integers and #X is the cardinality of X .

3

Class and Object Model Conformance using OWL2 Reasoners Ali Hanzala Khan et al.

Unique and Non-unique Associations The UML associations can be labeled as unique or
non-unique; a unique association restrict the objects of two classes to connect with each other
more than one time. The restriction of unique association P is written in predicate logic as:

∀x,y, l1, l2.P(x,y, l1)∧P(x,y, l2)→ l1 = l2 (8)

In the case of non-unique associations this restriction does not apply.

Bidirectional. Two UML associations may form a bidirectional and navigable relationship,
provided that they have opposite domain and range classes. If P1 and P2 form an association
then we require that:

∀x,y.P1(x,y)↔ P2(y,x) (9)

Association Generalization. The association generalization allows the specialization of an
existing association with new characteristics and new domain and range. Each instance of the
specialized association is also an instance of the original association. If P2 is a subassociation of
P1, this is expressed in predicate logic as:

∀x,y.P2(x,y)→ P1(x,y) (10)

If the subassociation specifies its own multiplicity restrictions, these are applied separately to
the subassociation, in the same manner as to an ordinary property.

Composition. In composition relationship, an object of a class is made up of parts that are
the objects of another class. A composition relationship is a directed association between two
classes, which is meant to express a ”part-of”or ”ownership”relationship. If there is a composition
relationship from class C1 to class C2 we say that C2 is owned by C1. The direction is marked
by the familiar filled diamond on the association line; the diamond is placed on that end of the
line that connects to the owning class.

We use a single predicate owns to keep track of the composition relationships. If C1 owns
C2 via a composition association consisting of P1 and P2, and P1 is the property from C1 to C2,
then:

∀x ∈C1,y ∈C2.P1(x,y)→ owns(x,y) (11)

Composition relationships are defined in UML by two constraints, exclusive ownership and
acyclic. Exclusive ownership means that an object can have only one owner:

∀x,y,z.owns(x,z)∧owns(y,z)→ x = y (12)

Acyclicity means that an object cannot transitively become an owner of itself. A situation where
an object x owns y, y owns z and z owns x is disallowed. A necessary and sufficient condition
for acyclicity of owns is that the transitive closure of the relation is irreflexive. We can define
owns+, the transitive closure of owns, in the following way:

∀x,y.owns(x,y)→ owns+(x,y) (13)

∀x,y,z.owns+(x,y)∧owns+(y,z)→ owns+(x,z) (14)

Irreflexivity of the transitive closure is then simply expressed as:

∀x.¬owns+(x,x) (15)

4

Class and Object Model Conformance using OWL2 Reasoners Ali Hanzala Khan et al.

3 Translation of UML Class and Object Models to OWL2 DL

In this section we show the translation of UML Class modeling concepts discussed in Section 2
in to OWL2 DL.

3.1 UML Classes Hierarchy

A class represents a collection of objects which share same features, constraints and definition.
A UML Class C in the class model is translated in OWL2 as:

Declaration(Class(C))

Furthermore, if there is a generalization (2) between any two UML classes C1 and C2, such that,
C1 is a subclass of C2, we represent the relationship in OWL2 as:

SubClassOf(C1 C2)

Moreover, in UML class generalization an object of a subclass will also belong its superclass (2).
According to UML semantics of class membership, whenever we assert that a model element is
an instance of a class, we also assert that it is not an instance of its subclasses. But in OWL2
it is not like that, to overcome this semantic gap between OWL2 and UML, we translate UML
class in OWL2 as a union of two disjoint concepts.

EquivalentClasses(C ObjectUnionOf(C_Direct C1..Cn))

DisjointClasses(C_Direct ObjectUnionOf(C1..Cn))

First concept C Direct, represents the collection of all those objects which are the direct instances
of a class. And, second concept represents all objects that belong to its subclasses C1, ..,Cn.

Furthermore, in UML one object in an object model can only belong to one class in a class
model, whereas in an open-world assumption of OWL2 one individual can belong to many
classes, except those classes that are declared as disjoint. It is therefore necessary to explicitly
declare all classes which are not a superclass, a subclass, or sharing any of the subclasses as
disjoint. In OWL2 disjointness (3) among classes is represented as:

DisjointClasses(C1 C2))

3.2 Objects

Every object exist in an object model must belong to a specific class in a class model. In OWL2
the UML object (1) is represented as a class assertion and called an individual. A UML object
x of class C is translated in OWL2 as:

ClassAssertion(C x)

Furthermore, every object in a UML object model is by default different from another. Whereas,
in OWL2 due to the open-world assumption, we need to explicitly mention that all individuals
are different from each other. For example: for objects x1, ..,xn in an object model, we use
OWL2 axiom:

DifferentIndividuals(x1..xn)

5

Class and Object Model Conformance using OWL2 Reasoners Ali Hanzala Khan et al.

3.3 UML Association

A UML association defines a relationship between two classes. A UML association (6) is rep-
resented in OWL2 as an object property. An association P from a class C1 to a class C2 is
represented in OWL2 as:

Declaration(ObjectProperty(P))

ObjectPropertyDomain(P C1)

ObjectPropertyRange(P C2)

3.4 Links

A UML association assertion between the objects in an object model is called a link (4). A
link in OWL2 is represented as a property assertion. The link of an association P between the
objects x1 and x2 in an object model is represented in OWL2 as:

ObjectPropertyAssertion(P x1 x2)

Moreover, due to the open-world assumption of OWL2, for a reasoner to be able to detect a
violation of a minimum multiplicity constraint, we need to provide a definitive knowledge about
the links, connecting or not connecting the individuals of a domain class and a range class of
an association. Therefore, if there is no link between the objects of a domain class and a range
class of a UML association, we need to explicitly declare that there is no connection between
the individuals. The knowledge about the non-existence of link between individuals is called a
negative assertion. The negative assertion of an association P between the objects x1 and x2 in
OWL2 is written as:

NegativeObjectPropertyAssertion(P x1 x2)

A negative assertion is required when there exist an association between the classes but two
specific individuals are not connected with a link.

3.5 Associations Multiplicity

A UML association defines the multiplicity (7), in a non negative integer that describes the
number of allowable instances of a range class. We map the multiplicity of a UML association
into OWL2, by defining the domain class of an association as a subclass of a set of classes, which
relates with the same property and the given cardinality.

The UML association P from class C1 and C2 has a multiplicity constraint of n..m is repre-
sented in OWL2 as:

SubClassOf(C1 ObjectMinCardinality(n P))

SubClassOf(C1 ObjectMaxCardinality(m P))

3.6 Unique and Non-Unique Associations

A UML association multiplicity can be unique or non-unique. A unique association does not
allow two objects to link with each other more than one time, as shown in Figure 3c. In OWL2
the UML unique association is treated as normal object property, and the translation of mul-
tiplicity constraint of unique association is done by using OWL2 axioms: ObjectMinCardinality
and ObjectMaxCardinality, as discussed in Section 3.5. However, in case of a non-unique associ-

6

Class and Object Model Conformance using OWL2 Reasoners Ali Hanzala Khan et al.

C2C1 a:C1
b:C2

 n..m
P

(a) Class Model

c:C2

a:C1 b:C2
(b) Object Model
valid for both
P {unique} and
P {non-unique}

(c) Invalid if
P {unique} and
(d) Valid if
P {non-unique}

P
P

P

P

Figure 3: (a): A class model depicting an association P connection two classes, (b): A consistent
object model for both unique and non-unique P, (c): An inconsistent object model if P is unique,
and (d): A consistent object model if P is non-unique.

ation (8), there can be multiple links between the objects of a domain class and a range class,
as shown in Figure 3d. OWL2 reasoner consider all links which have a common source and a
target as one link, and to make reasoner to be able to consider all those links as different links,
we have introduced an intermediate class in between a domain class and a range class of a non-
unique association. As a consequence, every non-unique association P is translated in OWL2
as a combination of two object properties P I and I P. Where P I connects a domain class to
an intermediate class, and I P connects an intermediate class to a range class of a non-unique
association.

InverseFunctionalObjectProperty(P_I)

An inverse functional object property restricts an individual of a domain class to connect with
more than one individuals of an intermediate class. Furthermore, we put a cardinality restric-
tion of n..m on P I by using OWL2 axioms: ObjectMinCardinality and ObjectMaxCardinality, as
discussed in Section 3.5. Moreover, to ensures that the individuals of an intermediate class C I
connects one to one with the individuals of a range class, we have put the exact cardinality of
one on the property I P.

SubClassOf(C_I ObjectExactCardinality(1 I_P))

Furthermore, a link of a non-unique association P from object a to b in an object model is then
translated as the assertions of the object properties P I and I P as:

ObjectPropertyAssertion(P_I a C_I_#)

ObjectPropertyAssertion(I_P C_I_# b)

Where C I # is an individual of an intermediate class C I, and # is an auto generated unique
number which is responsible to create a distinction between the identical links of a non-unique
association.

3.7 Bidirectionality

If P1 and P2 are UML associations and both associations shares opposite domain and range, then
both associations will be considered as bidirectional (9) of each other. The UML bidirectionality
between the associations P1 and P2 is express in OWL2 as:

InverseObjectProperty(P1 P2)

7

Class and Object Model Conformance using OWL2 Reasoners Ali Hanzala Khan et al.

(a) Class Model
x1:C1y1:C2

x1:C1
y1:C2

y2:C2

(b) Valid Object Model

part-of
x2:C1

x1:C1
y1:C2

x2:C1

 part-of

part-of

C1

C2 part-of

part-of

part-of

part-of

1
 0..n
Part-of

(c) Invalid Object Model (d) Invalid Object Model

Figure 4: (a): Class model representing composition, (b): Consistent object model, (c): Incon-
sistent object model due to the shared owner, (d): Inconsistent object model due to the cyclic
owner.

3.8 Association generalization

An association can be generalized by another association, the association generalization (10) is
also known as association subsetting. The association subseting between association P1 and P2,
where P2 is a subassociation of P1 is express in OWL2 as:

SubObjectPropertyOf(P2 P1)

Similar to class generalization, the generalized association also inherits all the attributes of
a parent association such as: domain and range. We can reassign a domain and a range of
a subassociation, provided that the new domain and the range of a subassociation are the
subclasses of the domain and the range of a parent association.

3.9 Composition

In composition (11), an object of a class is made up of parts that are the objects of another
class. The composition has two constraints exclusive ownership (12) and acyclic (15). Exclusive
ownership, an object can only become a part of one single object, or an object may only have one
single owner as shown in Figure 4c. Furthermore, an acyclic means, an object cannot become a
part of itself or an object cannot transitively become an owner of itself as shown in Figure 4d. To
translate composition shown in Figure 4a into OWL2, we first define an object property named
”part-of”.

Declaration(ObjectProperty(part-of))

Next, we consider the exclusive ownership constraint of composition on the owning end of a
composite relationship. To implement the single owner requirement of a composition relationship
in OWL2, we have firstly, defined the global property owns as:

InverseFunctionalObjectProperty(owns)

The inverse functional property will restrict the individuals of containing class to link with more
than one individuals of owning class. Secondly, we make the composite relationship ”part-of”, a
subproperty of the global property owns:

SubObjectPropertyOf(part-of owns)

Moreover, to capture the acyclic requirement of composition, we define another global property
contains which is transitive and irreflexive at same time. Transitivity will capture the self owner-
ship and irreflexive will not allow the individual to become an owner of itself. This is equivalent
to saying that the transitive closure of the ownership property is irreflexive:

8

Class and Object Model Conformance using OWL2 Reasoners Ali Hanzala Khan et al.

IrreflexiveObjectProperty(contains)

However, it is not possible in OWL2 DL, to combine a cardinality restriction with transitive
properties [9]. If we could do so, the logic system would no longer be decidable, and we would
not be able to use a fully automatic reasoner to carry out validation. To solve this problem we
have expressed the irreflexivity in OWL2 and transitivity in SWRL:

contains(?x,?y)∧ contains(?y,?z) =⇒ contains(?x,?z)

In above SWRL rule, contains represents the aggregation of model elements. Consequently, each
object that owns another object must also contain it. We express this by defining owns a subset
of contains:

SubObjectPropertyOf(owns contains)

4 Implementation of a Model Conformance Tool

4.1 Translator

We have implemented the translations of UML class and object modeling concepts, as discussed
in Section 3, into a translator tool by using the model-to-text transformation tool MOFScript [2].
The implemented translator allows us to automatically transform the UML class and object
models into OWL2. The translator takes a UML 2 class model and an object model as input
in the form of UML XMI 2.1 [15]. The output of the translator is an ontology, which contain
transformed object model and its class model in from of OWL2 functional syntax OWL2fs and
SWRL. The translator script can be downloaded from [1].

As an example, we have translated the UML class model as shown in Figure 3a, and the
object model depicting multiple links of unique association shown in Figure 3c into OWL2 DL
ontology using our translator. The output ontology generated by the translator is as follows:

// UML Class Model into OWL2

Declaration(Class(C1))

SubClassOf(C1_Direct C1)

EquivalentClasses(C1 C1_Direct)

DisjointClasses(C1_Direct C2)

Declaration(Class(C2))

SubClassOf(C2_Direct C2)

EquivalentClasses(C2 C2_Direct)

DisjointClasses(C2_Direct C1)

Declaration(ObjectProperty(P))

ObjectPropertyDomain(P C1)

ObjectPropertyRange(P C2)

InverseFunctionalObjectProperty(P_I)

ObjectPropertyDomain(P_I C1)

ObjectPropertyRange(P_I C_I)

SubClassOf(C1 ObjectMinCardinality(1 P))

SubClassOf(C1 ObjectMaxCardinality(5 P))

Declaration(ObjectProperty(I_P))

ObjectPropertyDomain(I_P C_I)

ObjectPropertyRange(I_P C2)

SubClassOf(C1 ObjectExactCardinality(1 I_P))

// UML Object Model into OWL2

SubClassOf(ObjectOneOf(a) C1_Direct)

SubClassOf(ObjectOneOf(b) C2_Direct)

ObjectPropertyAssertion(P a b)

ObjectPropertyAssertion(P_I a C_I_1)

ObjectPropertyAssertion(I_P C_I_1 b)

ObjectPropertyAssertion(P a b)

ObjectPropertyAssertion(P_I a C_I_1)

ObjectPropertyAssertion(I_P C_I_1 b)

EquivalentClasses(C_I ObjectOneOf(C_I_1))

DifferentIndividuals(a C_I_1 b)

9

Class and Object Model Conformance using OWL2 Reasoners Ali Hanzala Khan et al.

Figure 5: List of test cases and the conformance report summary of invalid object models.

4.2 Reasoning and Conformance Report

The conformance of an object model against a class model is done by validating the output
ontology generated by the translation tool using an OWL2 reasoner. This step is automatic.
Once completed, the OWL2 reasoner produces a report as its output. This report contains
details about possible inconsistencies present in the ontology. The conformance report of an
output ontology shown in Section 4.1 is as follows:

Consistent: No

Reason: Individual a is sameAs and differentFrom C_I_1 at the same time

This means that the individual a cannot really belong to class C 1. A conformance report
generated by an OWL2 reasoner is not always self-explanatory. The analysis of the ontology and
the conformance report reveled that, the individuals a and C I 1 are connected more than one
time with the links of an inverse functional object property I P. Since an inverse functional object
property does not allow multiple links to connect with one individual, the reasoner complains
that the output ontology is inconsistent.

4.3 Tool Validation

The proposed model translation tool has been validated by a suite of test cases, that covers all
class and object modeling concepts discussed in Section 3. Each test case includes a class model,
a valid object model, and an invalid object model. Each test case is transformed into OWL2
using the proposed translation tool and validated by using an OWL2 reasoner. The detail of
test cases and the summary of conformance report is expressed in Figure 5.

10

Class and Object Model Conformance using OWL2 Reasoners Ali Hanzala Khan et al.

4.4 Complexity

We have used OWL2 DL for the representation of UML concepts where ever it’s possible, and
used a decidable fragment of SWRL only for the representation of a model composition con-
straint. OWL2 DL is the standardized formalism of DL which is equivalent to S H OI N (D+).
The complexity of OWL2 DL with regard to the reasoning problems of ontology consistency and
instance checking is NEXPTIME complete [8], whereas the complexity of SWRL is undecid-
able [7, 22]. The combination of OWL2 DL and SWRL becomes undecidable [7]. However, if all
atoms that exist in the SWRL rule use OWL2 class and property names are restricted to known
individuals, then the SWRL rule is considered as DL-Safe rule and becomes decidable [22, 6].
The data complexity of query answering in the decidable fragment of SWRL is deterministic
exponential time [22].

The ontology generated by the translation tool is written by using both OWL2 DL and
the decidable fragment of SWRL. In the light of above discussion, we can conclude that the
ontology generated by the translation tool is decidable, and the complexity with regard to
the reasoning problems such as ontology consistency and instance checking is deterministic
NEXPTIME complete.

5 Conclusions and Related Work

In this article we have presented an approach to reason about the conformance of a UML object
model against its class model using an OWL2 reasoner. Furthermore, we have discussed the
implementation of the translations as an automatic model translation tool.

The approach is fully automated thanks to the translation tool and the existing OWL2
reasoners. Since the translation tools accept standard UML models serialized using the XMI
standard, the approach can be easily integrated with existing UML modeling tools. Unfor-
tunately, the validation report generated by OWL2 reasoners is not always self-explanatory,
because the relationship between UML concepts and OWL2 axioms is not always obvious. As a
consequence, it is not always possible to immediately point out the cause of the problem based on
these violations without manual inspection of the validation report and the problematic object
models. It would greatly add to the usefulness of the method to have some sort of automated
discovery of the cause of violations.

The use of ontology languages and description logic in the context of model validation has
been proposed in the past by different authors [19, 17, 13, 18, 21, 4, 3]. However, to our
knowledge, none of them has addressed the reasoning of composition and non-unique properties
in detail, neither the enforcement of the closed-world restrictions in OWL2 DL. These works focus
on the problem of class model satisfiability, e.g. a class model can generate consistent object
models or not. Furthermore, the validation of UML models using OCL has been discussed
by several authors, including [10, 14]. In OCL, the model conformance rules must be defined
explicitly based on the syntax of the UML models. In our approach, model conformance is
defined on the semantic interpretation of the models. The difference is that while OCL must
define a large number of well-formed rules for different variations and combinations of model
elements, a logic approach requires a smaller number of axioms that are often simpler.

As a future work, we would like to enhance the scope of the proposed translations, by address-
ing the validation of other UML concepts for example: interfaces, data type, class enumeration
and class visibility.

11

Class and Object Model Conformance using OWL2 Reasoners Ali Hanzala Khan et al.

References

[1] Model Validation MOFScript, available at http://users.abo.fi/akhan/model_validation.m2t.

[2] MOFScript Homepage, available at http://www.eclipse.org/gmt/mofscript/.

[3] Artale, A., Calvanese, D., Ibáñez Garćıa, A.: Full satisfiability of uml class diagrams. In: Proceedings
of ER2010. pp. 317–331. ER’10, Springer-Verlag, Berlin, Heidelberg (2010)

[4] Berardi, D., Calvanese, D., Giacomo, G.D.: Reasoning on uml class diagrams. Artif. Intell. 168(1-2),
70–118 (2005)

[5] Chen, K., Sztipanovits, J., Neema, S.: Toward a semantic anchoring infrastructure for domain-
specific modeling languages. In: Proceedings of EMSOFT 2005. pp. 35–43. EMSOFT ’05, ACM,
New York, NY, USA (2005)

[6] Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies. Chapman &
Hall/CRC (2009)

[7] Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A se-
mantic web rule language combining OWL and RuleML (2004), availible at http://www.w3.org/

Submission/SWRL/

[8] Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From S H I Q and RDF to OWL: The mak-
ing of a web ontology language. J. of Web Semantics 1(1), 7–26 (2003), download/2003/HoPH03a.pdf

[9] Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description logics. In: Pro-
ceedings of LPAR 1999. pp. 161–180. Springer-Verlag, London, UK (1999)

[10] Kaneiwa, K., Satoh, K.: Consistency checking algorithms for restricted uml class diagrams. In:
Proceedings of FoIKS2006, Springer. Springer (2006)

[11] Kent, S.: Model Driven Engineering. In: Proc. of IFM International Formal Methods 2002. LNCS,
vol. 2335. Springer-Verlag (2002)

[12] Knorr, M., Alferes, J.J., Hitzler, P.: Local closed world reasoning with description logics under the
well-founded semantics. Artificial Intelligence 175(9-10), 1528 – 1554 (2011)

[13] Machines, I.B., Group, O.M., Software, S.: Ontology definition metamodel (ODM), OMG Document
ad/2003-02-23. Available at http://www.omg.org/.

[14] Malgouyres, H., Motet, G.: A uml model consistency verification approach based on meta-modeling
formalization. In: Proceedings of SAC2006. pp. 1804–1809. SAC ’06, ACM, New York, NY, USA
(2006)

[15] OMG: XML Metadata Interchange (XMI) Specification, version 2.1 (September 2005), document
formal/05-09-01, available at http://www.omg.org/.

[16] OMG: UML 2.2 Superstructure Specification (February 2009), available at http://www.omg.org/.

[17] Parreiras, F.S., Staab, S., Winter, A.: On marrying ontological and metamodeling technical spaces.
In: ESEC-FSE ’07: Proceedings. pp. 439–448. ACM, New York, NY, USA (2007)

[18] Rahmani, Oberle, Dahms: An adjustable transformation from owl to ecore. In: MODELS 2010,
Oslo, Norway, October 3-8, 2010. Proceedings. LNCS, Springer (2010)

[19] Van Der Straeten, R.: Inconsistency Management in Model-driven Engineering. An Approach using
Description Logics. Ph.D. thesis, Vrije Universiteit Brussel, Brussels, Belgium (September 2005)

[20] W3: OWL 2 Document Overview (October 2009), available at http://www.w3.org/TR/

owl2-overview.

[21] Wang, S., Jin, L., Jin, C.: Ontology definition metamodel based consistency checking of uml models.
In: CSCWD 2006. pp. 1–5 (may 2006)

[22] Zhao, Y., Pan, J.Z., Jekjantuk, N., Henriksson, J., Groner, G., Ren, Y.: Most project - definition
of language hierarchy (2008), availible at https://www.most-project.eu/admin/xinha/plugins/

ExtendedFileManager/images/Deliverables/MOST_Deliverable_D3.1.pdf

12

http://users.abo.fi/akhan/model_validation.m2t
http://www.eclipse.org/gmt/mofscript/
http://www.w3.org/Submission/SWRL/
http://www.w3.org/Submission/SWRL/
download/2003/HoPH03a.pdf
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.w3.org/TR/owl2-overview
http://www.w3.org/TR/owl2-overview
https://www.most-project.eu/admin/xinha/plugins/ExtendedFileManager/images/Deliverables/MOST_Deliverable_D3.1.pdf
https://www.most-project.eu/admin/xinha/plugins/ExtendedFileManager/images/Deliverables/MOST_Deliverable_D3.1.pdf

	Introduction
	Overview of the Approach

	Definition of UML Models
	UML Classes and Objects
	UML Associations and Links

	Translation of UML Class and Object Models to OWL2 DL
	UML Classes Hierarchy
	Objects
	UML Association
	Links
	Associations Multiplicity
	Unique and Non-Unique Associations
	Bidirectionality
	Association generalization
	Composition

	Implementation of a Model Conformance Tool
	Translator
	Reasoning and Conformance Report
	Tool Validation
	Complexity

	Conclusions and Related Work

